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Abstract

The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available

methodologies for sampling conformational equilibria and associations of biomacromolecules in the

canonical ensemble, given a continuum description of the solvent environment, are reviewed.

Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC

algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue

of introducing correlations into elementary MC moves, and the applicability of such methods to

simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and

an overview of recent simulation work highlighting the potential of MC methods are also provided.

It is argued that MC simulations, while underutilized biomacromolecular simulation community,

hold promise for simulations of complex systems and phenomena that span multiple length scales,

especially when used in conjunction with implicit solvation models or other coarse graining

strategies.
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1. Introduction

Unlike in other fields of computational science, Monte Carlo (MC) sampling is not used very

often for simulating biomacromolecules. Historically, this can be explained by a strong bias

toward all-atom models of biomacromolecular systems including both macromolecule(s) and

solvent. All physically realistic Hamiltonians employ excluded volume and other stiff, non-

bonded interactions leading to very rugged energy landscapes and large correlations between

many degrees of freedom in these dense systems [1,2]. For such systems, gradient-based

techniques such as molecular dynamics (MD [3]) are assumed to be vastly superior, although

this notion has been challenged [4]. With the advent of refined implicit solvent models [5-7]

and the resultant smoother energy landscapes, MC simulations may gain in appeal for the

simulation community. Here, we provide an overview of the state-of-the-art MC methods

designed for efficient sampling of biomacromolecules using implicit solvent models in an

effective isothermal-isochoric (NVT) ensemble. The use of MC for simulating chains in other

ensembles or for simulations of all-atom condensed-phase systems is only touched upon

briefly. For more general purposes, the textbook by Frenkel and Smit [8] remains an excellent

resource as do other overviews in similar textbooks [9,10].
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The Markov chain Metropolis scheme [11] is by far the most common MC methodology. The

system is randomly perturbed and the proposed move from microstate A to B is accepted with

probability:

(1)

Here, ΔE is the energy difference to transition from state A to B and β is the reciprocal thermal

energy. Metropolis et al. [11] showed that such a scheme samples the Boltzmann distribution

associated with the given Hamiltonian at the temperature specified by β. For larger systems,

such importance sampling is vastly superior to any systematic or random enumeration schemes

which scale extremely poorly with the number of degrees of freedom in the system [8].

In principle, the transition from state A to B needs to be unbiased and ergodic [12,13]. An

illustrative example comes from the example of n-butane, where the degree of freedom for MC

sampling is the single backbone dihedral angle, ϕ. Transitions between microstates are made

by randomly choosing values for ϕ from an interval. If, some values of ϕ are chosen with higher

probability, then the proposed transitions are sampled from a biased – as opposed to an unbiased

– distribution. Conversely, the sampling could be unbiased, but the values for ϕ may be sampled

from a small sub-interval of possibilities. In this case, the simulation would suffer from broken

ergodicity because the simulation cannot – by fiat – sample all possible conformations for n-

butane. There is a hidden ergodicity issue that pertains to the choices one makes for the degrees

of freedom in an MC simulation, a point that is addressed in Section 2.1.

Given a choice for the degrees of freedom, the MC movesets dictate how transitions between

different microstates are realized. For biomacromolecules, the movesets have to be diverse.

This is important because broken ergodicity can also result from movesets that fail to connect

distinct points in conformational space. In any MC simulation the frequencies with which

different elementary moves are attempted and the parameters associated with the different

move types (such as the maximal displacements associated with different moves) are

adjustable. If the movesets are unbiased and ergodic, a sufficiently long MC simulation should

ultimately converge to the same result. In practice, computational resources are finite and the

choices made for adjustable parameters play an important role in determining whether a

simulation actually yields a converged result. Metrics to be used to guide choices for these

parameters are discussed in Section 2.3. Two important guidelines are as follows. First, as

many choices as possible should be made randomly rather than with a pre-determined

“schedule”. For example, the choice of degree(s) of freedom to perturb during an elementary

move should be random rather than scanning all degrees of freedom systematically. Second,

it is always true that every problem has its own optimal parameter set. Hence, simulators should

always have the freedom to adjust all open parameters.

There are several other reasons for the scarce use of MC in simulations of biomacromolecules.

One is the absence of suitable software. The commercial software, BOSS/MCPRO, is provided

by the Jorgensen group [14]. The most common, freely-available simulations packages tailored

to the biomacromolecular simulation community, i.e., GROMACS [15], NAMD [16], and

TINKER [17], have no MC capability. AMBER [18], which may be the most widely used

molecular simulations software, does not provide MC support. However, the CHARMM

[19] package now includes an MC module [20]. Some freely available MC programs like

MCCCS Towhee [21] are not specifically tailored to biomacromolecular simulations. Others,

like PROFASI [22], currently support only very limited Hamiltonians. As detailed in Section

2.2, the software layout for MD and MC codes is fundamentally different, a reason that

contributes to the lack of available programs. We hope that our freely available CAMPARI
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software package, which is scheduled for released in the summer of 2009, will provide a useful

addition to the small group of suitable programs such as CHARMM, MCPRO, and PROFASI.

Although MC is an underutilized tool in the field of computational molecular biophysics, there

are beneficial features that can be exploited, especially in conjunction with implicit solvent

models. Specifically, MC has the potential of accessing length scales that are inaccessible to

molecular dynamics in complex phenomena like peptide aggregation or conformational

sampling of intrinsically disordered proteins.

The rest of this review article is structured as follows:

The first issue we discuss is the choice of degrees of freedom. We briefly review the literature

pertaining to justification and implementation of performing molecular simulations in non-

Cartesian space, most prominently torsional and rigid-body space. We lay out advantages of

such a procedure and comment upon common implementation difficulties, with specific

attention to the issue of consistency between the development and application of force field

parameters for use in MC simulations.

The second area we review is that of computational efficiency of energy evaluations including

special considerations for cutoffs and long-range treatment of electrostatic interactions. We

provide a brief overview of the required bookkeeping given a Hamiltonian of a certain

complexity. Many of these issues are unique to MC calculations due to the fundamentally

different ways in which systems evolve when compared to MD calculations.

Next, we discuss strategies to make maximal use of simple unbiased movesets for

conformational sampling of biomacromolecules. We provide an example to illustrate how the

inclusion of conformational fluctuations spanning multiple length scales can improve the

quality of sampling. We conclude by a discussion of the metrics and guidelines that can be

used to optimize a moveset for a given system.

The fourth area we cover is that of introducing correlations into MC movesets. We discuss

typical biased movesets employed in MC simulations of biomacromolecules and the

corrections and parameter settings needed for the incorporation of biased moves. We address

concerns pertaining to computational efficiency and ease of implementation.

The fifth section provides a brief description of multicanonical techniques and their use and

applicability in MC simulations. We cursorily touch upon the benefits that MC techniques

provide in sampling ensembles other than the canonical ensemble for biomacromolecular

systems.

We conclude by providing a few examples illustrating the peculiarities of sampling phase space

via MC for non-trivial systems relevant to the biomacromolecular field. We provide an outlook

regarding current challenges and the potential strategies that can be developed or adopted to

overcome these challenges.

2. Conformational sampling of biomacromolecules in the canonical ensemble

via Monte Carlo methods

2.1 Choosing degrees of freedom in conjunction with the force field

One of the benefits of MC algorithms is the ability to naturally deal with constraints, i.e., to

set a simulation up in arbitrary sets of degrees of freedom, which may well be different from

the degrees of freedom over which the potential energy is evaluated. In MD, such functionality

is introduced by holonomic constraints [23], for which a variety of popular algorithms have
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been introduced. A long-stranding issue concerned the introduction of mass-metric tensor

artifacts that might arise if one were to restrict sampling to torsional degrees of freedom alone.

These artifacts are undoubtedly present in MD simulations, because momenta conjugate to the

constrained degrees of freedom are explicitly set to zero, thereby introducing a spurious

alteration of the volume element of the configurational integral by the determinant of a reduced

mass-metric tensor. Hence, the efficiency one might gain through the use of longer time steps

is lost through the inefficiency associated with calculating mass-metric tensor determinants

and its gradients. However, MC calculations rest on the separation between the momentum

and configurational integrals and hence the spurious coupling between conformational degrees

of freedom and volume elements does not arise because there are no momenta to be zeroed out

[24]. A simple test illustrates this point: Consider an n-alkane; set the potential energy to be

zero for all values of the relevant degrees of freedom; randomly sample the torsional degrees

of freedom; as long as the torsions are sampled from an unbiased distribution, it should follow

that all values for the degrees of freedom have equal likelihoods of being realized. This test

reveals that Fixman-style [25] corrections are not needed in MC simulations for chain

molecules – an advantage that does not prevail for MD simulations with holonomic constraints.

Integrands of configurational integrals are proportional to exp[–βU(DoF)], where β denotes

the inverse thermal energy parameter and U(DoF) refers to the potential energy that varies as

the degrees-of-freedom (DoF) assume different values. If U(DoF) is set to zero, then the

multidimensional integral over phase space volumes provides an estimate of the size of the

relevant conformational space and all combinations for the degrees-of-freedom should be have

the same probabilities of being accessed. Any accurate MC algorithm has to reproduce the

appropriate unbiased distribution when U(DoF) is set to zero. This sanity check is very useful

since it identifies the presence of bias and the possibility of broken ergodicity in a

straightforward manner. For example, if the DoF were Cartesian coordinates, and one were

using periodic boundary conditions, the degrees-of-freedom should have a uniform distribution

in all three dimensions. Torsional degrees of freedom behave similarly. This makes it possible

to sample dihedral angles in MC simulations from a uniform random distribution. The same

is not true for degrees-of-freedom where the configurational space volume element depends

on the values assumed by the degrees-of-freedom. Examples of such degrees-of-freedom are

Euclidean distances and Euler angles [10]. In these cases, Jacobian corrections need to be

included in either the acceptance or picking probabilities.

The vast majority of MC simulations of biomacromolecules employ torsional space sampling

which is sometimes augmented by sampling of angular degrees of freedom [26] or even the

Cartesian coordinates directly [27]. In the presence of stiff harmonic restraints, step sizes for

the latter will typically be vanishingly small. Inclusion of such moves is not a matter of choice.

Instead, it is determined by the force field used for the calculations. Every molecular mechanics

force field, whether it uses an implicit or explicit representation of the solvent, undergoes a

calibration process. Rigorously speaking, the applicability of said force field is only guaranteed

within the accuracy of calibration if the sampled degrees of freedom are strictly identical

between application and calibration. For instance, introducing holonomic constraints on bond

lengths and angles in MD simulations using a force field parameterized in the absence of such

constraints is incorrect. Rotational barriers in peptides are known to depend strongly on the

flexibility of the stiffer modes [28], including the peptide bond itself [29]. While it is argued

in general that equilibrium properties are not affected by typical constraints in a statistically

significant manner, even the impact on barriers and hence kinetics might be enough to question

their introduction into a force field parameterized in their absence.

The consequences for MC simulations of biomacromolecules are obvious: The choice is to

either employ a force field designed specifically in the presence of such constraints (for

example [30]), or – using a diverse enough moveset – to make sure to sample the appropriate

Vitalis and Pappu Page 4

Annu Rep Comput Chem. Author manuscript; available in PMC 2010 April 27.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



coordinate space directly. The consequences of ignoring this concern are shown in Figure 1.

Here, we compare the temperature-dependent, reversible folding / unfolding of an α-helical

peptide (Ace-A5(AAARA)3A-Nme) for the ABSINTH implicit solvation model and Lennard-

Jones parameters [30] coupled to OPLS-AA/L partial charge parameters [31]. We compare

results from MC in dihedral space (all constraints present) to results obtained using Langevin

dynamics (LD [32]) in Cartesian space. The latter used no constraints whatsoever and bond

length and angle parameters were ported from the OPLS-AA/L force field [31]. The MC

methodology is identical to what has been published previously [30] while the LD methodology

is described in the caption to Figure 1. As can be seen, there is a substantial shift in the

temperature-midpoint of the melting transition of the α-helix. The additional flexibility

decreases helix stability leading to a lower melting temperature. This result is independent of

the metric that we used to quantify the helix-coil transition. It should be noted that some

hysteresis error remains for the LD calculation, even though the CPU time needed was larger

by a factor of 3-5 than the MC simulation. This efficiency benefit provided by MC sampling

is slightly larger than, but generally consistent with what has been reported in the literature for

systems of similar size [26].

In this particular example, constraints strongly affect equilibrium properties as quantified in

terms of the response of the system to changes in temperature. This example shows that it is

not easy to decouple the effects of constraints on enthalpic barriers from those on minima on

the free energy landscape. Caution is therefore required when employing typical

biomacromolecular force fields such as AMBER [33], CHARMM [34,35], OPLS [31], or

GROMOS [36] in MC simulations in dihedral angle space alone. It is important to ensure that

the parameters of a forcefields have been calibrated using MC as the sampling engine prior to

using these parameters in an MC simulation. While this is not the case for simulations of simple

systems such as Lennard-Jones fluids or even associative liquids made of rigid molecules, it

will certainly be an important consideration for highly flexible polymeric systems.

2.2 Bookkeeping and efficiency in computational algorithms for MC simulations

From a software point of view, it is desirable to have a well-structured hierarchical description

for the different biomacromolecules in the simulation system. Such a hierarchy should provide

data structures and access functions on the atomic, residue, molecule, and system levels. This

allows routines for the evaluation of energy terms to be set up at the level of residue pairs.

Experience [14] suggests that this setup is advantageous since it provides a route to easily and

intuitively implement the computational algorithms sketched below.

The requirements for data structures and bookkeeping of simulation variables differ

fundamentally between MD and MC simulations. In MD programs, forces and energies

involving all degrees of freedom are calculated at every step. The system is subsequently

evolved and this process is then repeated for the duration of the simulation. The two core

assumptions, which are taken advantage of, are i) all force and energy evaluations are global,

i.e., are performed for the whole system, and ii) the system evolves in incremental steps such

that there is high correlation between the forces and energies from step n to step n+1. These

assumptions give rise to many algorithmic strategies that are used to speed up MD calculations.

These strategies include the use of twin-range cutoffs, neighbor lists which are updated

infrequently, and the particle-mesh Ewald (PME [37]) method for treating corrections to long-

range interactions.

Unfortunately, neither assumption is true in MC calculations. Instead of requiring global

evaluations of forces, evaluations of energy differences ΔE are needed between pairs of

microstates that are not necessarily close in phase space, but which might only differ in the

values for a subset of degrees of freedom. This implies that a majority of the energy terms

remain fixed and they need not be considered when computing ΔE. For the sake of efficiency,
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this necessitates a strategy for incremental energy updates that is customized for each individual

MC move type, which is part of the available moveset. As an example, consider a solution of

several small molecules as sketched in Panel A of Figure 2. If we assume a pairwise additive

Hamiltonian and no cutoffs, the terms of the Hamiltonian which require re-computation

represent only a small subset of the terms needed to compute the whole system energy. The

computational expense for energy evaluations in this case scales as O(N) with the number of

interaction sites N, if the number of molecules is large relative to the number of interaction

sites per molecule. For biomacromolecules and their associated movesets, it is important to

analyze the efficiency of different elementary move types in these terms. For example, consider

the perturbation of an individual backbone dihedral angle in a single biomolecule (Panel B of

Figure 2). Depending on the location of the residue, the worst complexity for incremental

energy evaluations for this type of move is ~N2/2. For larger molecules, such moves become

increasingly less efficient due to the inherent O(N2) scaling. Conversely, the complexity for a

perturbation of a single sidechain degree of freedom is only of order O(N) (analogous to Panel

A of Figure 2). Even with cutoffs, the scaling in computational complexity for energy

evaluations between different elementary move types will be different. These considerations

provide partial motivation for the development and inclusion of truly local MC moves for which

scaling ultimately is O(N) (see Section 2.4.1).

Aside from the programming complexity of writing separate wrapper routines for energy

updates, the following considerations are peculiar to MC calculations: Not every energy

function that is used in simulations of biomacromolecules is suitable for decomposition into

static and changing terms. Obviously, a strictly pairwise-additive Hamiltonian is well suited

for this type of decomposition. Conversely, non-pairwise-additive Hamiltonians give rise to

the complexity that an interaction between two sites is in fact changed as the result of the

movement of a third site. This is the case for many implicit solvent models such as the Poisson-

Boltzmann (PB [5]) and generalized Born (GB [6]) models, later generations of the EEF1 model

[38] and the ABSINTH model [30]. For these models, the effective multibody interactions

have to be subjected to a cutoff or similar simplifying assumption to allow efficient use in MC

simulations.

In the ABSINTH implicit solvent model, the range of multi-body interactions is limited by the

size of each atom’s (implicit) solvation shell. Since the coupling parameter for these

interactions is the solvent-accessible volume, we can keep track of which interactions to

recompute in addition to those involving the moving parts during that elementary MC move.

We do so by identifying and marking all atoms whose solvent-accessible volumes have

changed as a result of the move. All interactions involving at least one of those atoms are then

recomputed as well. The strictly local nature of the three-body interactions makes this treatment

exact for the ABSINTH model. The scheme also integrates naturally with pairwise cutoffs.

Conversely, alternative strategies were proposed for the GB model introducing cutoffs directly

into the coupling terms based on their magnitude [39,40]. To correct such an inaccurate

treatment in MC simulations, it is important to point to a general strategy cast differently by

Gelb [41] and Hetenyi et al. [42], which allows the bulk of Metropolis sampling to occur from

either a simplified potential or a fast-varying subset of the potential. These short simulation

stretches are periodically accepted or rejected using an “outer” Markov chain in order to ensure

that the desired distribution happens from the full Hamiltonian.

A similar strategy can potentially be used to calculate electrostatic interactions without cutoffs

in periodic boundary conditions using the popular PME method [43]. In MC, the same problem

arises as outlined in the previous paragraph due to the non-decomposability of the reciprocal

space sum. Again, a system-wide evaluation of the full potential energy including the reciprocal

part would only occur in regular or random intervals while the bulk of the sampling would be

performed from the Hamiltonian given by the real-space sum alone. An analogous
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implementation for the standard Ewald method has been presented [44]. Conversely, direct use

of the Ewald sum [45] or approximations to it [46-48] which are pairwise decomposable and

hence suitable for MC simulations have generally proven to be too inefficient for most modern

applications [49]. Additionally, it should be pointed out that Ewald sums – independent of

implementation – are incompatible with implicit solvent models that model a spatially varying

dielectric with anything more than trivial functional dependencies [45].

The issue of electrostatics brings up the issue of cutoffs in general. It is beyond the scope of

this review to discuss the artifacts introduced by using cutoffs on the electrostatic, excluded

volume, and dispersion interactions. It is sufficient to state that for simulations of polar

condensed phases or of biomacromolecules in an implicit solvent model such artifacts are hard

to detect in the canonical ensemble for system volumes of sufficient size. This stands in contrast

to condensed phase systems with mobile charges (see [50] for an illustration). Regardless, for

the MC simulations to remain scalable to larger systems, it is inevitable that some form of

simplification of the infinite-range Hamiltonian be considered. A necessary step for distance-

dependent potentials is the generation of neighbor lists, i.e., the efficient determination of

spatial proximity relationships. Here, MC simulations can take advantage of two common

strategies:

a. Grid-based methods which operate in O(N) time predominantly known as linked-cell

lists [51], which are usually implemented at the level of atoms.

b. Hierarchical methods which take advantage of prior knowledge about molecular

topology and which operate in O(M2) time where M = N/n and n is the (mean) number

of atoms per repeating unit in a polymer, e.g., a single protein residue.

With either method, for an energy calculation associated with an elementary move in a large

system, a vast majority of the interatomic distances involving the moving parts are never

computed. In contrast, Verlet lists [52] are only useful in MC calculations of dense fluids due

to the local nature of elementary moves in this particular case.

In summary, strategies developed for MD simulations do not usually apply in MC simulations.

Neighbor lists and energies need to be incrementally updated for the trial move and kept or

restored to their original values in case of an accepted or rejected move, respectively. Strong

emphasis should be placed on computational efficiency. First and foremost only terms which

need to be computed should be computed. As with all software, the complexity of algorithms

consuming the bulk of CPU time should be carefully analyzed and minimized. Furthermore,

strategies using a simplification of the potential and subsequent correction methods or O(N)

movesets represent promising avenues for future development. Small enough systems,

however, can be dealt with comfortably using even simple movesets. This is the focal point of

Section 2.3.

2.3 Optimizing simple MC movesets for biomacromolecular simulations

With the prominent degrees of freedom being dihedral angles (see Section 2.1), a set of

straightforward movesets emerges. Polypeptide backbone and sidechain torsions including the

peptide bond, but excluding rigid rings or planar systems in the sidechains are sampled from

a uniform prior distribution. The number of degrees of freedom for each peptide residue

therefore ranges from three (Gly) to seven (Lys). For polynucleotides, dihedral angles along

the phosphate-sugar backbone are sampled along with rotations around the nucleoside bond

as well as any existing carbon-oxygen bonds involving free OH-groups [53]. These degrees of

freedom can be sampled using simple perturbations of individual or multiple dihedral angles.

If such a dihedral angle is part of the polymer backbone, one end of the chain pivots around

this joint. Hence, such moves are commonly referred to as pivot moves [54]. In general, moves

involving simultaneous perturbations of several degrees of freedom decay exponentially in
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efficiency with the number of degrees of freedom for a realistic Hamiltonian. This is due to

the linearly growing chance of encountering steric clashes, which goes into the energy

difference governing the exponential Metropolis criterion (see Equation 1). Nonetheless, they

can be useful as they randomly introduce correlation. The latter may be necessary to convert

between conformational states for highly coupled cases like sidechain rotamers [55].

Non-aromatic rings require special treatment. Significant conformational flexibility is retained

and a rigid description is inappropriate. The different pucker states of the sugar moiety or the

proline sidechain are however characterized by a relatively discrete ensemble as is evidenced

by analysis of high-resolution crystal structures [56-58]. Simple approaches therefore can be

designed and implemented by creating a discrete set of states with an associated energy function

meant to reproduce the proper distribution in the context of a suitable background Hamiltonian.

Alternatively, specific approaches to find solutions to the ring closure problem may be

implemented [59]. Such algorithms are discussed in a different context in Section 2.4.1.

As is well-known, the dynamics of polymers in a dense environment under a broad range of

conditions become very slow, often glassy [60-63]. A canonical example is that of a single,

long polymer in a poor solvent, specifically a mean-field solvent environment in which self-

interactions are preferred over chain-solvent interactions [64]. This problem provides a

prototype of the complexity encountered in protein folding problems with implicit solvent

models, and hence is of significant relevance to the biomacromolecular field [65]. Aside from

all more complex movesets inspired by such sampling problems (see Section 2.4), what can

be done to improve the MC methodology even using simple moves alone? And how does one

establish metrics to track sampling efficiency?

We demonstrate the efficiency of a straightforward advancement in simple MC movesets using

the peptide Ace-Nle30-Nme under “deep quench” conditions. Here, Nle indicates the

norleucine residue which is isosteric with lysine. We monitor the collapse of this peptide from

a fully extended state using a degenerate, poor solvent Hamiltonian. Such a Hamiltonian is

provided by only employing Lennard-Jones interactions according to parameters published

previously [30]. A universal parameter for MC moves is the step size, which is normally

sampled from a uniform distribution over a finite interval. Figure 3 compares three different

sampling approaches to pivot moves: i) All dihedral angles are completely randomized each

time they are sampled (maximum step size), ii) all dihedral angles are perturbed in stepwise

fashion, and iii) both methods are mixed. As can be adjudicated from the relaxation behavior

of the system, the efficiency of approaches i) and ii) does seem to track with the density of the

system. Full randomizations perform well in the low density limit, but poorly in the collapse

regime. The opposite is true for stepwise perturbations. The important point is that sampling

of multiple length scales provides a rigorous, synergistic benefit. The strategy of splitting the

moveset into multiple variants of the same basic move type introduces more parameters for

the simulator to set. Unfortunately, it is usually not possible to optimize movesets for every

problem studied, which implies that intuition and rules of thumb combined with preliminary

simulations will inevitably remain prevalent in setting up MC simulations. However, if a more

rigorous parameter optimization is needed, we need metrics that can be used to report on the

efficiency of sampling.

Aside from relaxation measures such as those shown in Figure 3, metrics of sampling inevitably

relate to the rate of “conformational diffusion” or “conformational drift”. The first and foremost

test in this regard should always be reproducibility by running identical replicas of the same

simulation with different starting conditions. Standard deviations of ensemble averages from

a sufficient number of independent individual runs yield standard errors, a procedure similar

to block averaging, but avoiding all potential correlations between blocks. The magnitude of

those standard errors is a high-level, but reliable test to guide the optimization of MC movesets.
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Some systems show reversible order-disorder transitions as a function of control parameters

such as temperature. Typical examples of such systems / problems are helix-coil transitions in

polypeptides, folding-unfolding transitions of globular proteins, melting transitions of small

loop-forming RNA systems, and globule-to-coil transitions in flexible polymers. If disorder-

to-order transitions in such systems are reversible, then simulated values of order parameters

that track these transitions should yield similar values in the forward and reverse directions. A

useful test of a converged Monte Carlo simulation protocol is to test for reversibility. If there

is hysteresis in the simulated order-disorder transitions, then the simulation has clearly not

converged. This hysteresis check is directly adopted from experimental work on two-state

systems and represents an excellent test within the reduced-dimensional space the two-state

analysis is performed in (see Figure 1). A measure that is similar in spirit is the generalized

ergodic measure developed by Straub and Thirumalai [66] which is specifically designed for

MD.

Variance- and covariance-based measures such as autocorrelation “times” of instantaneous

quantities are useful guides, but are less applicable to MC simulations in particular. First, the

absence of significant variance is probably an indicator of a lack of efficient sampling. Second,

MC simulations often take discontinuous paths through phase space, which produces

substantial stochasticity in such analyses, especially vis-à-vis MD data. Nonetheless, with some

prior knowledge of the energy landscape such measures can be used [67]. The bulk of recent

work in this area remains dominated by finding efficient ways to cluster simulation data using

either principal-component analysis (PCA) [68], direct clustering techniques [69], or other

reduced-dimensional quantities [70,71]. It is then assumed that comprehensive sampling in

those spaces is possible and that better coverage and more frequent transitions between basins

correspond to improved sampling. Such analyses are typically independent of the sampling

engine and therefore suitable for usage in optimizing MC movesets.

Finally, for simulations involving multiple molecules, the rigid-body degrees of freedom have

to be sampled. Standard approaches in the spirit of the original Metropolis method are feasible

for translational displacement. Rotations of asymmetric particles are conveniently handled by

quaternions [72]. One of the cutting-edge applications of MC simulations in the

biomacromolecular field is the simulation of peptide aggregation at typical in vitro, i.e., often

very low concentrations. Assuming an implicit solvent representation, the density of such a

system is small whereas the volume is large. In MD, this poses the problem of diffusion-limited

kinetics, a problem which in certain rare cases may be overcome by adaptive time step methods

[73-75]. The concept of sampling multiple length scales simultaneously applies here in an even

more straightforward manner. It is well worth the additional parameters to introduce moves

which fully randomize the translational and rotational degrees of freedom of a given molecule.

A recent application demonstrates the usefulness of such an approach for the reliable sampling

of polyglutamine dimerization at a very low concentration [76].

Of course, a simple moveset will eventually become inefficient with increasing complexity

(density and size) of the problem. Hence, diverse attempts have been made to design new and

better movesets for MC simulations. Those are discussed next.

2.4 Introducing correlation into MC movesets

As touched upon above, the strategy of introducing correlations into Monte Carlo simulations

by simultaneously changing multiple degrees of freedom is a losing proposition due to

increased combinatorial complexity. This is because pivots about multiple torsions lead to

rejected moves, especially when the chains are in dense phases. However, correlations are

necessary because the simple moves have the complication that the conversions between

distinct dense phase configurations are not readily sampled with simple pivot moves. Hence,

much effort has been devoted to design movesets that are inherently biased toward inducing a
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concerted change in the system involving several degrees of freedom at a time. The need for

correlation becomes apparent if one considers rugged energy landscapes. More often than not,

the paths connecting two adjacent minima will involve a collective degree of freedom, i.e., a

concerted change in some or all of the relevant elementary degrees of freedom. Such a scenario

is sketched in Panel A of Figure 4 for the case of two elementary degrees of freedom. Even if

the path is of finite width, elementary moves perturbing only one of the degrees of freedom at

a time would be largely ineffective in connecting the two minima. Conversely, an MC move

biased toward steering the system along this path would have high acceptance rates despite the

need for correcting biases that are introduced by the sampling (see below).

2.4.1 Concerted rotation (loop-closure) algorithms—A common situation that

requires the introduction of correlation into MC movesets is the case in which the ends of the

macromolecule itself or of stretches within it are constrained. This is the case for any ring

system intended for MC sampling. These include the fivemembered rings of sugars and proline,

chemically cross-linked macromolecules such as proteins with disulfide linkages, and of

circular peptides or DNA. However, a much broader range of applications emerges from simply

considering a consecutive stretch of residues within a macromolecule. The enclosed stretch or

loop is considered on its own. The conformation of the residues in that stretch is re-sampled

while the ends remain in place. These so-called concerted rotation or loop closure algorithms

are attractive for three reasons. First, they are truly local and O(N) and can hence be

computationally efficient for a large systems (see Section 2.2). Second, they introduce

correlations between multiple degrees of freedom. Third, they lead to local perturbations

expected to sample the system much more efficiently than pivot moves at high density, e.g.,

in the interior of a folded protein.

On a lattice, so-called crankshaft moves are trivial implementations of concerted rotations

[77]. They have been generalized to the off-lattice case [78] for a simplified protein model.

For concerted rotation algorithms that allow conformational changes in the entire stretch, a

discrete space of solutions arises when the number of constraints is exactly matched to the

available degrees of freedom. The much-cited work by Gō and Scheraga [79] formulates the

loop-closure problem as a set of algebraic equations for six unknowns reducible effectively to

a single equation in a single unknown. The latter is solvable by a systematic search process

and eventually yields one or more discrete solutions for all six unknowns. This approach has

been recast, modified and extended multiple times to design algorithms specifically suited to

allow local MC moves or exhaustive loop sampling for biopolymers [80-82].

In the context of local MC moves, which are of principal relevance here, we can break the

procedure down into several stages:

a. A biased or un-biased pre-sampling or pre-rotation step perturbing a part of the chain.

b. The chain closure algorithm solving the constraint problem for six additional degrees

of freedom to close the chain exactly.

c. Computation of Jacobian weights for the entire composite move.

Step a) is usually included in order to ensure that the resultant conformation is significantly

different from the previous one. If step a) were to be omitted, the identity transformation,

i.e., the solution represented by the conformation the chain is in originally, would always be

obtained as a possible solution which is disadvantageous. The number of degrees of freedom

contained in a) is a free parameter. However, random rotations around multiple dihedrals will

easily generate conformations with no solution under the assumption of constant bond lengths.

Hence, perturbations around the pre-rotation segment are typically either small and / or

restricted to very few if not a single dihedral angle [83-85], or biased toward keeping the end

of the (longer) pre-rotation segment in roughly the same location [81]. This latter idea was
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originally introduced by Favrin et al. [86] as an approximate chain-closure technique, a method

which on its own suffers from the quasi-local nature of the resultant moves.

Step b) is often the time-consuming one due to the need for performing a systematic search of

the solution space in at least one variable. Most implementations suggest a systematic scan of

solution space for both forward and reverse moves which is necessary to properly employ

Jacobian-based weighting. Two related advances were proposed: Mezei [85] suggested

limiting the search space to conformationally close solutions using a “reverse proximity

criterion”. It was shown that performance is superior when compared to the more complete

version of Hoffmann and Knapp [83]. Similarly, Ulmschneider et al. [81] use a restricted search

space with their concerted rotation variant sampling three dihedrals and bond angles each to

arrive at a single solution on average. In both cases, the Jacobian needs to be computed only

for a single forward and reverse transformation rather than for multiple solutions. This step c)

was ignored in early work and identified and introduced by Dodd et al. [82]

An alternative route to implement local MC moves is provided by the literature on (inverse)

kinematics, such as on control systems for robotic arms composed of flexible joints [27,87].

Here, the problem is transformed to either a set of linear equations [27] or finding the roots of

a high-order polynomial [87] at comparable computational expense. One of the benefits of

such an approach is the ability to introduce arbitrary stiff segments into the loop, i.e., the degrees

of freedom used for chain closure do not have to be consecutive. Conversely, library-based

strategies such as that introduced by Kolodny et al. [88] are not suitable for MC simulations

due to the non-ergodicity of the moveset.

In summary, the recommended implementation for concerted rotation moves in MC

simulations uses:

i. A pre-rotation segment of arbitrary length with controllable bias toward keeping the

perturbation small

ii. An efficient solution of the closure problem for an arbitrary set of non-consecutive

degrees of freedom

iii. Implementations tailored to all biopolymers including polypeptides, polynucleotides,

and potentially even lipids as well as polysaccharides

This of course leaves a large set of parameters to optimize for most problems. Only if the

simulator has control of all these parameters, can the literature be used to guide those choices.

It is beyond the scope of this review to exhaustively test and compare various implementations

for MC concerted rotation moves. Naturally, an improvement in the quality of sampling is

shown in the original publications for nearly all proposed methods. An interesting data point

comes from Ulmschneider et al. [26] who compare MC to MD sampling for a set of small

proteins or peptides capable of reversible folding. In a GB/SA implicit solvent model with the

OPLS-AA/L force field, they find that MC sampling, which consists of concerted rotation and

simple sidechain moves, is superior by a factor of 2.0-2.5 using folding times as the dominant

metric. This compares favorably with our own experience as detailed in Section 2.1 (Figure

1).

2.4.2 Cluster move algorithms—Traditionally, density has been the most crucial limiting

factor in making MC techniques useful. At typical liquid densities, acceptance rates even for

single-particle moves drop precipitously. Small molecule diffusion is hindered, and the

simulation of binary mixtures is near-impossible at those densities, and – more importantly –

vastly inferior to MD. The reason is of course the extremely high coupling between all degrees

of freedom in the system, for which no efficient MC move sets can be designed (see Figure 4).
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At slightly lower densities, however, significant advances have been made to introduce

correlation into rigid-body moves. The naïve approach is to randomly select two or more

molecules and to perturb their rigid-body degrees of freedom in concerted fashion, i.e., to

translate them by the same vector and / or to rotate them around a common point. Such a

moveset is perfectly ergodic, unbiased, and potentially able to capture all positive correlation

between molecules. Unfortunately, it is highly inefficient and explodes combinatorially with

system size. Even for a system of 100 molecules, the chances of picking every possible “cluster”

of size four are vanishingly small (there are more than 108 such unique clusters).

In response, two dominant algorithms were developed initially for on-lattice spin systems

[89,90]. Both revolve around determining an effective cluster of spins iteratively based on

pairwise energies to construct a move type capable of overcoming the correlation problem in

these systems, which were typically observed as and referred to as “critical-slowdown

phenomena”. In constructing the clusters, energetic coupling information is therefore used

directly rather than inferring it from spatial coupling. The resultant algorithms can be cast in

a rejection-free manner for certain Hamiltonians and differ fundamentally from the Metropolis

method. The first algorithm is due to Swendsen and Wang [89], the second due to Wolff

[90]. The literature dealing with methodological advances for both of these methods has been

reviewed recently [91]. Off-lattice variants were iteratively refined [92-95] leading to highly

efficient movesets for evolving systems of molecules at low enough density, where “low

enough” is typically governed by the range and strength of interaction potentials (see for

example [96]). The major drawback of all of these methods is the assumption of a pairwise

additive potential. As outlined in Section 2.2, this is not the case for most modern implicit

solvation models which rely on effective many-body interactions. Further development is

needed to design an efficient strategy addressing or circumventing this issue. The reader should

be reminded however, that – as an additional complication – none of the above algorithms is

known to work for a condensed phase system of strongly interacting particles with long-range

interactions. An alternative formalism is proposed by Maggs [97] which might work better in

such circumstances.

What is the utility of this body of literature in the context of all-atom simulations of

biomacromolecules? Two cutting-edge applications come to mind: First, simulating the

aggregation or transient association of peptides and / or proteins with the single-particle

Metropolis method is obviously hindered as soon as strongly interacting molecules are present

and associate. Due to the low net density, algorithms as presented above represent elegant ways

to circumvent those kinetic traps [94]. Second, we anticipate a rapid growth in mixed explicit-

implicit solvent models. A simple case is the explicit treatment of electrolyte ions or other

cosolutes coupled to a continuum description of the water alone [30]. Often, the cosolutes may

represent a dense enough matrix to slow down diffusion of macromolecules even if cosolute

molecules do not specifically bind to the latter. Sampling in such mixed-size solutions may be

substantially enhanced using appropriate cluster algorithms [96].

2.4.3 Gradient-biased Monte Carlo techniques—One of the oldest ideas in MC

simulations is to improve their efficiency by using information about the potential energy

gradient. From the outset, this poses two challenges: i) gradients need to be computed

eliminating one of the efficiency benefits of MC over MD, and, ii) for rugged energy

landscapes, gradients have only local predictive power; i.e., they do not yield guidance for

crossing barriers even though the step-size is not principally constrained as it is in MD. Dating

back to the works of Pangali et al. [98] and Rossky et al. [99], single-particle forces have been

used to guide the displacement of particles in dense systems. While a considerable speed-up

is typically observed relative to the unbiased Metropolis scheme, it remains unclear whether

such a method is ultimately superior to dynamics techniques which ensure explicitly that the

canonical ensemble is sampled, i.e., stochastic (Langevin) dynamics. Brownian dynamics
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(BD), which is stochastic dynamics in the overdamped limit, can just as well be understood as

force-biased (dynamic) MC employing collective moves only [100,101].

Not surprisingly, a large body work has emerged trying to link the methodologies while taking

full advantage of the correlation introduced by using gradients. Such correlation is maximal

for Newtonian MD due to the absence of random noise, which would cause both friction and

momentum correlation loss (governed by the fluctuation-dissipation theorem). Originally,

Duane et al. [102] suggested augmenting MD with Metropolis MC moves to accept only

configurations consistent with the canonical ensemble. The requirement in the MD portion is

that the integrator be time-reversible and symplectic. This mixing of NVE MD sampling with

an outer Markov chain has enabled taking larger time steps in the MD portion compared to

straight NVE or NVT MD. The efficiency, however, has been criticized due to rapidly decaying

acceptance rates essentially caused by integrator error [103]. Hence, multiple improvements

have been suggested [104-108] which extend beyond the scope of this review. An interesting

question can be raised: why is NVT MC not simply alternated with dynamics methods ensuring

sampling from the same, i.e., canonical distribution? Clearly, Newtonian MD with the widely

popular weak-coupling method [109] does not ensure sampling from the proper distribution,

but others including Langevin dynamics do. Assuming short momentum autocorrelation times

in the presence of significant friction, any error introduced by resetting velocities periodically

should be small to negligible. One concern is theoretical in nature and arises from the fact that

such an approach cannot be easily cast as a single Markov chain. Another issue might simply

be a technical point and relate to considerations outlined in Section 2.2.

We conclude that gradient-based techniques, in particular hybrid MD/MC protocols are of

fundamental importance to the biomacromolecular simulation field due to their universality.

They are universal in that they are independent of the details of the system as long as the

potential energy function is differentiable. While the implementation challenge of deriving and

calculating analytical gradients is non-trivial for certain Hamiltonians, such methods present

the most intuitive and straightforward route to introduce correlation into the evolution of the

system. We therefore recommend that a gradient-based hybrid method which rigorously

samples the canonical ensemble be added as an elementary move to available MC software.

The aforementioned universality stands in contrast to techniques designed specifically for

lattice systems or bead-spring polymer models. Some of those latter techniques and their

potential as tools in biomacromolecular MC simulations are discussed next.

2.4.4 Other advanced techniques and their applicability to biomacromolecular

systems—The polymer literature yields a variety of specialized move types in particular for

lattice homopolymers [110]. Sampling methods like the slithering snake and reptation

algorithms (see [111] and references therein) or the original configurational-bias / chain growth

algorithms [112,113] were specifically designed for lattice representations. Despite their

extension to continuum systems and subsequent improvements [114-122], successful

applications to biomacromolecules at an all-atom representation have not been reported.

Certainly, the complexity of actual biological heteropolymers eliminates typical assumptions

about molecular topology and geometry which are taken advantage of in these cases.

However, it also needs to be clarified that not all sampling problems can be solved by

introducing correlation to the moveset. To illustrate this point, consider Panel B of Figure 4.

Instead of an almost barrier-free path connecting the two minima, it is just as well possible for

the barrier to be insurmountable. In this case, stepwise MC and MD methodologies are stunted.

This is where multicanonical techniques come into play by utilizing data obtained from systems

under different conditions, usually different temperatures. A very brief overview of such

techniques is given in Section 2.5. Of course, there are multitudinous techniques which drop

the requirement to stringently sample from the correct ensemble and can be more easily
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classified as energy landscape exploration tools [123]. Often used in conjunction with library-

based approaches, such methods can potentially be extremely useful in guiding the

development of new MC movesets, which specifically capture the intricate correlations needed

for efficient sampling using a fundamentally random approach.

2.5 Beyond the canonical ensemble

The common multicanonical techniques such as replica-exchange or simulated tempering have

been described and reviewed extensively in different contexts [124]. They interface naturally

with MC simulations as they are cast as (biased or unbiased) random walks in terms of a control

parameter – usually temperature. They work by exchanging information between the different

conditions thereby allowing increased barrier crossing and quicker convergence of sampling

at all conditions of interest.

In addition, a variety of techniques with a narrower focus on enhancing the sampling at a single

condition have been developed. There is a variety of techniques employing higher temperature

data to work toward that goal, i.e., to reduce the apparent non-ergodicity at the sampling

temperature of interest [125-130]. Essentially these techniques can be thought of as forming a

continuum as they ultimately rely on similar ideas and/or are based directly on one another.

For systems that are of low complexity, the so-called flat-histogram methods [131,132] present

another alternative to solve the issue of apparent broken ergodicity. Here, a random walk in

energy space is constructed to determine the density of states directly which then yields

thermodynamic quantities. These methods still seem to be restricted to simplified systems as

a very recent application to a lattice protein folding problem demonstrates implicitly [133].

Similarly, the promise of an extension of the method to include a density bias was demonstrated

on a discretized protein model [134].

In summary, a wide variety of tools are available to solve canonical sampling problems by

using information from different generalized ensembles. Such techniques are truly independent

of the underlying MC methodology, whose review in the context of biomacromolecules forms

the bulk of this review article. In the next two sections we conclude by presenting a few recent

highlights demonstrating the applicability and usefulness of MC sampling to problems of

biophysical and/or physicochemical interest.

3. Highlights of MC simulations of biomacromolecules and outlook

Undoubtedly, this paragraph needs to be prefaced by the disclaimer that the MC simulation

work cited below is only a sample, which is by no means exhaustive. Shaknovich’s group has

investigated the folding of several biomacromolecules of interest by coupling MC sampling to

a simplified Hamiltonian biased toward the native state, i.e., a Go model [135-137]. Such

studies have been quite feasible due to the better compatibility of MC methods with simple

potential energy functions. Another example employing statistical potentials comes from

Shental-Bechor et al. [138].

The work of Irbäck deserves special mention where the application of MC methodology to

biomacromolecular systems is considered. Irbäck and collaborators recently applied a simple,

efficient, knowledge-based implicit solvent model to a variety of biologically relevant

problems [139], ranging from the aggregation of amyloidogenic peptides [140] to the

mechanical unfolding of proteins [141]. These are two highlights within a larger body of work

[139] that relies exclusively on MC sampling. They demonstrate the potential inherent in

combining MC with implicit solvent models.

Similarly, Ulmschneider et al. showed that proper MC sampling can be more efficient than

MD for the folding of small peptides [26]. An impressive demonstration of the capability of
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MC is a recent study on the folding of a transmembrane helix in an implicit membrane

environment [142,143]. Vitalis et al. [76] demonstrated that MC simulations can indeed bridge

length scales (and hence timescales) inaccessible to conventional dynamics techniques. They

simulated the dimer formation of two intrinsically disordered polypeptides and obtained

converged associativity data at effective concentrations as low as 100 μM. A dynamics-based

approach would have been infeasible in this case due to the limitation of molecules having to

diffuse hundreds of angstroms.

De Mori et al. have taken a different approach to take advantage of MC simulations. They used

a coarse-grained Hamiltonian to pre-sample phase space in an approximate manner. This is

followed by MD simulations starting from representative structures from the most dominantly

populated clusters within the MC ensemble. Such a hierarchical strategy was employed to study

the folding of a small protein [144] and the oligomer formation of short, amyloidogenic

peptides [145].

We wish to reiterate the theme of combining implicit representations of the solvent

environment with all-atom models of the biomacromolecules taking advantage of the sampling

benefits of MC. Clearly, the boundaries of computer simulation can be pushed to limits which

are not easily reached given finite resources. The time is right for the simulation community

to participate in the application and development of MC methodology for biomacromolecular

systems.
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Figure 1.

Melting of the FS-peptide as a function of simulation temperature. This Figure is analogous to
Figure 8 in [30] and the reader is referred there for details of the computation of helix parameters
and the description of the MC data. Panel A shows net α-helical content, Panel B the mean
number of α-helical hydrogen bonds, and Panel C the mean number of α-helical segments. LD
data were obtained using the impulse integrator of Skeel and Izaguirre [32] with uniform
friction of 5.0ps−1 and an integration timestep of 1fs. The total simulation time at each
temperature was 25ns, the first 10ns of which were discarded for equilibration purposes. No
constraints were used, and all bond angle and bond length parameters were adopted directly
from OPLS-AA/L [31]. No torsions were employed except those keeping quasi-rigid units
planar. Those included the peptide bonds and the guanidinium groups in the arginine
sidechains.
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Figure 2.

Two examples illustrating complexity of incremental energy updates in MC calculations. Panel
A shows the displacement of a single three-site molecule (lighter color) in the presence of four
other such molecules. For a strictly pairwise additive Hamiltonian, the only changing terms
are the ones involving the moving molecule (atoms 1-3). Therefore, the resultant energy
calculation only needs to encompass 36 of the 105 total pairwise site-site energies. Panel B
shows the rotation (pivot) around a single dihedral angle in a molecule composed of 25 sites
(assuming systematic numbering from N- to C-terminus). Upon pivoting, the two arms move
relative to one another, but remain rigid internally. 156 out of the total of 300 site-site
interactions need to be computed, and the efficiency scales poorly with molecule size (see text).
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Figure 3.

The collapse of the peptide Ace-Nle30-Nme under deeply quenched poor solvent conditions
monitored by both radius of gyration (Panel A) and energy relaxation (Panel B). MC
simulations were performed in dihedral space. 81% of moves attempted to change ϕ/ψ-angles,
9% sampled the ω-angles, and 10% the sidechains. For the randomized case (solid line), all
angles were uniformly sampled from the interval −180° to 180° each time. For the stepwise
case (dashed line), dihedral angles were perturbed uniformly by a maximum of 10° for ϕ/ψ-
moves, 2° for ω-moves, and 30° for sidechain moves. In the mixed case (dash-dotted line), the
stepwise protocol was modified to include non-local moves with fractions of 20% for ϕ/ψ-
moves, 10% for ω-moves, and 30% for sidechain moves. For each of the three cases, data from
20 independent runs were combined to yields the traces shown. CPU times are approximate
since stochastic variations in runtime were observed for the independent runs. Each run was
comprised of 3×107 steps. Error estimates are not shown in the interest of clarity, but indicated
the results to be robust.
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Figure 4.

Two arbitrary potential energy surfaces in a two-dimensional coordinate space. All units are
arbitrary. Panel A shows two minima connected by a path in phase space requiring correlated
change in both degrees of freedom (labeled Path a). As is indicated, paths involving sequential
change of the degrees of freedom encounter a large enthalpic barrier (labeled Path b). Panel B
shows two minima separated by a barrier. No path with a small enthalpic barrier is available
and correlated, stepwise evolution of the system is not sufficient for barrier-crossing.
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