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Abstract―An approach is analyzed that makes it possible to reduce anomalous absorption in experiments on
electron cyclotron resonance heating (ECRH) at the second harmonic of the electron cyclotron resonance.
The anomalous absorption is associated with excitation of the low-threshold parametric decay instability of
the extraordinary pump wave at the local maximum of the nonmonotonic density profile. The general case is
considered, which corresponds to nonlinear excitation of only one localized daughter upper-hybrid wave
occurring as a result of the primary decay process. It is shown that, due to rather low instability threshold, it
could hardly be completely suppressed in ECRH experiments using megawatt microwave beams. However,
an increase in the radius of the pump wave cross section can considerably reduce the corresponding anoma-
lous absorption.
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1. INTRODUCTION
Electron cyclotron resonance heating (ECRH) is

widely used at current tokamaks and stellarators. It is
planned to be used at future-generation toroidal facil-
ities, such as the ITER [1] and DEMO [2] tokamak-
reactors. This method is very promising due to the
presence of reliable and relatively compact generators
(gyrotrons) and the concept of local deposition of
microwave power in the electron cyclotron (EC) reso-
nance region [3], based, in particular, on the theoreti-
cal analysis that predicts the absence of nonlinear phe-
nomena during the propagation of ordinary and
extraordinary waves [4]. However, over the past two
decades, a number of anomalous effects have been
observed in experiments on ECR plasma heating,
including the anomalous backscattering of micro-
waves [5–7], ion acceleration [8–10], and strong
broadening of the power deposition profile [11–15].
These effects had no interpretation within the frame-
work of the linear model of plasma-wave interaction.
They had also no explanation within the framework of
the nonlinear wave theory [4], which predicts
extremely high thresholds for excitation of any nonlin-
ear phenomena, including the parametric decay insta-
bilities (PDIs), at least in the cases when the upper
hybrid resonance (UHR) for the microwave is outside
the plasma volume. To explain these anomalous phe-
nomena, a new theoretical model was proposed that
expands the concept of the nonlinear (parametric)

phenomena development in inhomogeneous plasma,
outlined in review [4], and takes into account the dis-
tinctive features of real density and magnetic field pro-
files, formed in toroidal facilities during the ECRH.
With the help of the new model, it turned out to be
possible to interpret all anomalous phenomena and
effects as consequences of excitation of the low-
threshold PDIs of pump waves. The key elements of
the new theoretical model are as follows. First, it is the
possibility of localizing the nonlinearly generated
daughter waves (wave) along the direction of inhomo-
geneity, near the local maximums of the nonmono-
tonic density profiles, which are often observed in the
ECRH experiments [16–18]. Second distinctive fea-
ture is the additional localization of the daughter
waves at the magnetic surface due to the finite width of
the pump beam. We note that the localization effect
makes it possible to suppress the energy losses of
daughter waves (wave) from the decay region and
results in the possibility of excitation of an absolute
PDI pump wave, as a result of which the amplitude of
the daughter waves (wave) exponentially increases
with time [19–25].

For typical conditions of experiments on the ECR
plasma heating using microwaves of extraordinary
polarization at the second harmonic of the EC reso-
nance, the most dangerous scenario of the PDI pump
wave formation is the two-plasmon decay resulting in
the generation of two upper hybrid (UH) quasi-longi-
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tudinal waves [21]. Most likely, the primary two-plas-
mon PDI becomes saturated due to two competing
processes: the cascade of secondary decays [26–29]
and depletion of the pump wave [30–32]. The analy-
sis, the results of which can be found in [33–36],
shows that regardless of the fact whether both primary
daughter waves or only one of them are localized, the
anomalous absorption is determined by the number of
possible steps in the secondary decay cascade. If the
number of steps in the cascade of secondary decays of
the primary daughter wave(s) is odd, this cascade pro-
cess will result in the instability saturation. However,
in the case of an even number of secondary instabili-
ties, the depletion of the pump wave plays a decisive
role in the transition of the primary instability to the
saturation regime, and it is responsible for the
extremely high anomalous absorption (up to 80% of
the pump power). It was shown in [27] that the main
predictions of the developed theoretical model, in par-
ticular, the threshold power of the primary instability
and the spectrum of secondary waves, are in reason-
able agreement with the results obtained in the
detailed study of anomalous backscattering at the
TEXTOR tokamak [6]. We note that the possibility of
strong anomalous absorption of the pump wave of
extraordinary polarization in the ECRH experiments
at the second harmonic of the EC resonance was
experimentally discovered in the model experiments
performed at the linear plasma facility [37].

Thus, the low-threshold two-plasmon decay can
decrease the efficiency of auxiliary heating. This cir-
cumstance makes it important to find a way to avoid or
reduce this parasitic effect. In a particular case, when
both primary UH waves arising as a result of the para-
metric decay of the extraordinary pump wave can be
localized in the vicinity of the density profile maxi-
mum, the method for reducing anomalous absorption
was proposed in [38]. However, this case is very spe-
cific and can occur only in a narrow range of plasma
parameters. In the general case, in the ECRH experi-
ments, the extraordinary pump wave can decay into a
trapped UH wave and not trapped UH (or extraordi-
nary) wave. Just this decay scenario was observed at
the ASDEX-Upgrade [39] and Wendelstein 7-X [40]
facilities during their last experimental sessions. We
note that, at both facilities, the PDI development was
detected in a wide range of parameters during the pas-
sage of microwaves of extraordinary polarization
through the plasma formation, in which the local den-
sity maximum was observed (rotating or stationary
magnetic islands, the axis of the plasma column,
ELMs (edge-localized modes)). Unfortunately, in this
case, the instability saturation is described by com-
pletely different set of nonlinear equations as com-
pared to [38]. For this reason, the results of the analy-
sis presented in [38] and the approach to suppressing
the anomalous effects proposed there are inapplicable
in the general case.
To fill this theoretical gap, in this paper, we con-
sider the possibility of reducing the anomalous
absorption in the case for which the primary low-
threshold decay results in the excitation of only one
localized daughter UH wave, while the second daugh-
ter UH (or extraordinary) wave escapes from the
region of nonlinear interactions along the direction of
inhomogeneity. In this work, we analyze the cascades
of secondary decays of the trapped primary UH wave
with both odd and even number of steps. The effect of
the pump wave depletion is also taken into account. As
a result of the analysis performed, it is shown that an
increase in the beam width of the pump wave can
result in a decrease in the anomalous absorption of the
extraordinary pump wave.

2. PRIMARY DECAY OF EXTRAORDINARY 
PUMP WAVE AND TWO MECHANISMS

FOR ITS SATURATION

Parametric decay occurs in a small volume, in
which the decay conditions are satisfied for the wave
vectors and frequencies of the interacting waves. This
makes it possible to use the Cartesian coordinate sys-
tem , in which the x coordinate plays the role of
a f lux variable, which is directed inside the plasma col-
umn, while the  coordinates are directed across
and along the magnetic field line on the magnetic sur-
face. The origin of the coordinate system coincides
with the local maximum of the upper hybrid (UH) fre-
quency profile. We consider the monochromatic
extraordinary (X) pump wave propagating quasi-per-
pendicularly to the external magnetic field. In the
WKB approximation, it can be represented as follows:

(1)

where  =  is the polarization

vector,  are the unit vectors along the correspond-

ing direction,  is the local value of the

wavenumber, and  and  are the
perpendicular components of the cold plasma permit-
tivity tensor [41]. In the WKB approximation, the
potentials of the daughter UH waves (denoted by the
“a” and “b” indices, where the first wave is localized
in the vicinity of the maximum of the nonmonotonic
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density profile, and the second is non-localized) can
be represented in the following form [22, 23]:

(2)

where the eigenfunction [21]

(3)

describes the localization of the “a” wave along the
x coordinate. In expressions (2) and (3), the wave
numbers  correspond to the “warm” (+) and
“cold” (−) solutions to the local dispersion equation
for the UH wave , obtained for 

and , and . The explicit
form of the dispersion equation can be found in [21,
41]. The frequency of the localized wave obeys
the Bohr–Sommerfeld quantization condition [21]

, where

 are two solutions to the equation . In
the absence of nonlinear coupling, the  ampli-
tudes of all waves in expressions (1) and (2) are con-
stant. After the instability excitation, they cease to be
constant. In particular, under the natural assumption
of weak diffraction of pump wave (1), its depletion as a
result of decay is described by the following equation,
which was obtained for the first time in [35]:

(4)

The boundary condition for the  amplitude of the
pump wave falling onto the plasma layer, in which the
nonlinear interaction occurs, has the following form:
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where  and w are the beam power and width. In
expression (4),  is the magnetic field induction in
the decay region, and  is the plasma nonlinear sus-
ceptibility, which describes the interaction of two lon-
gitudinal waves and the extraordinary wave [42].

The amplitude of the second traveling UH wave ,
escaping from the interaction region and propagating
towards the plasma boundary is described by the fol-
lowing equation:

(6)

with the boundary condition . We integrate
Eq. (6) and substitute the resulting amplitude into
Eq. (4) and into the equation that describes the local-
ized UH wave. As a result, after integrating the equa-
tion for the trapped UH wave over the x coordinate
with the  weight, we obtain the following set of
integro-differential equations [35, 36] for the pump
wave and the trapped UH wave:

(7)

In Eqs. (7),  and  are the dimensionless ampli-
tudes of the pump wave and the trapped UH wave,

respectively, defined as follows: 

and , where  is the pro-
jection of the group velocity of the pump wave onto
the direction of plasma inhomogeneity. In Eqs. (7),
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coefficients averaged over the region of the UH wave
localization; ; the averaging

procedure is described as , and

(8)

In the case of weak depletion of the pump wave, i.e.
when the dimensionless amplitude of the pump wave
is close to unity , representation (8) can be
reduced to . Otherwise, function (8) obeys
the inequality . In addition, in set of Eqs. (7),
we used the coefficient that describes the nonlinear
pumping of the daughter UH wave ,
where

(9)

As can be seen from expression (9), the  coefficient
depends on the pumping power and is inversely pro-
portional to the square of the beam width.

Thus, the set of Eqs. (7) describes the instability of
the extraordinary pump wave with allowance for its
depletion. In set of Eqs. (7), it is the depletion effect
that results in the instability saturation. Meanwhile,
this is not the only mechanism for the instability tran-
sition to the saturation regime. Subsequent decays of
the primary localized UH wave can also result in the
instability saturation. Let us consider the secondary
instability of the localized primary UH wave, which
leads to the excitation of the trapped UH wave and the
ion Bernstein (IB) wave escaping from the decay
region along the direction of plasma inhomogeneity.
The first assumption makes it possible to minimize the
losses of secondary UH waves from the decay region
and increase the efficiency of the three-wave interac-
tion [36]. Accounting for the secondary instability
modifies Eqs. (7) in the following way [35, 36]:

(10)

where , the F function is defined above
in Eq. (8), the coefficient

(11)

describes the secondary instability (it is inversely pro-
portional to the square of the beam width),

  is the coordinate of the point,
in which the  detuning of the decay condition
for the secondary instability has an extremum, and

. In set of Eqs. (10), we also

introduced the dimensionless amplitude  of the
secondary UH wave, which is defined in the same way
as the  amplitude. In expression (11),  is the
nonlinear plasma susceptibility, which describes the
nonlinear coupling of three longitudinal waves [42];

,  is the solution to the dispersion

equation  for the ion Bernstein wave [41].
A detailed derivation of Eqs. (7) and (10) can be found
in [35, 36].
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factor can be estimated as follows [36]:
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Fig. 1. Dispersion curves of localized UH waves (solid and
dash-and-dot lines correspond to  GHz and

 GHz, respectively). UH frequency profile is
shown by thick solid line.  eV and 
51.72 GHz in the local maximum of density profile.
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where α is the dimensionless coefficient depending on
plasma parameters;  is the instability
growth rate determined in homogeneous plasma,
which depends on the amplitude of the decaying local-
ized UH-wave;  is the size of the resonance layer;

 and  are the group velocities of the daughter
UH and IB waves at the  decay point; and  is the
solution to the dispersion equation  for the
daughter ion Bernstein wave [41]. For typical experi-
mental conditions, the gain factor obeys the inequality

 indicating the absence of spatial amplifica-
tion, which interrupts the cascade of successive
decays.

We note that each of the IB waves participating in the
decay cascades has its own unique frequency, at which
the optimal coupling with the eigenmodes of the UH
waves is ensured. In this case, the discrepancy of the res-
onance condition for the wave vectors of interacting
oscillations can be described by a parabola, which is typ-
ical for the case of two close decay points. In the follow-
ing sections, we analyze two cases corresponding to the
odd and even number of secondary instabilities. We will
start from analyzing the first of them.

3. SUPRESSION OF ANOMALOUS 
ABSORPTION IN THE CASE OF ODD 
NUMBER OF SECONDARY DECAYS

We consider the case of small amplitude of the
local density maximum, which was characteristic of
the ECRH experiments that were carried out at the
TEXTOR tokamak [5, 6]. The frequency profile of the
UH wave is shown in Fig. 1 by solid line. The scale
characterizing the depth and size of the potential well

is  = 11.31 cm. The wave-
numbers of the primary and secondary UH waves are
shown by solid and dash-and-dot curves. The fre-
quency of the primary wave is  GHz
( ). The frequency of the secondary wave is

 GHz ( ). The pump wave frequency
is  GHz. Parameters in the local maximum of
the UH-frequency profile are as follows:  eV
and  GHz. The cascade of decays resulting
in the excitation of UH waves, the dispersion curves of
which are shown in Fig. 1, is described by set of
Eqs. (10). We begin analyzing these equations with an
analytical consideration. As was shown in [35, 36], in
this case, the dominant mechanism responsible for the
transition of the instability to the saturated regime is
the secondary instability, which makes it possible to
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neglect the pump wave depletion effect and reduce set
of Eqs. (10) to the following set of equations:

(12)

The primary instability described by the first equation
in set of Eqs. (12) begins to develop if the pump wave

power exceeds the  threshold power. If the pump
wave power considerably exceeds the threshold power,

, then the instability growth rate can be
obtained analytically [35, 36]

(13)
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this purpose, we substitute  in expression (13)
and obtain the following equation for the threshold:

(14)

Since , the left and right sides of Eq. (14)

are proportional to . This allows us concluding
that the instability threshold power does not depend
on the beam width, i.e., . In the specific case
of nonlinear excitation of two localized UH waves,
shown in Fig. 1, the threshold power is  ≈ 107 kW.
Next, we analyze how the saturation level of all daugh-
ter waves depends on the width of the pump beam. The
regime of the instability saturation described by
Eqs. (12) corresponds to its stationary solutions. The
levels of the energy density saturation of the paramet-
rically excited UH waves can be estimated by analyz-
ing the balance of sources and sinks in these equations.
The level of energy density saturation  of the
primary UH waves in the pump beam is determined by
the balance between the secondary decay rate 
and diffraction energy losses of secondary waves from
the pump beam cross section:

(15)

where  ≈ . The

energy density  of the secondary UH waves in
the pump beam cross section is determined by the bal-
ance between the primary instability growth rate and
energy losses due to the secondary decay

(16)

As can be seen, the saturation levels of both the pri-
mary and secondary daughter waves remain indepen-
dent of the pump beam width, but the saturation level
of the secondary UH wave linearly depends on the
pump wave power. Nevertheless, a change in the beam
width can affect the efficiency of energy loss of the
daughter waves from the pump beam cross section and
the efficiency of nonlinear energy transport from the
pump wave to these daughter waves.
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can describe this phenomenon using the perturbation
theory procedure, assuming , where
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pump wave energy f lux along the  coordinate can be
estimated as follows:

(17)

where the correction term  to the pump wave
amplitude obeys the first equation of set of Eqs. (7).
Integrating Eq. (17) over the x coordinate, after simple
calculations, we obtain the expression that, in the limit

, is as follows:

(18)

Substituting expression (18) into Eq. (17), we obtain

(19)

Next, we integrate both parts of Eq. (19) over the y and
z variables. Estimating the double integral as

and bearing in mind that , we finally
obtain:

(20)

Thus, the fraction of the pump power received by the
daughter waves inversely depends on the cross-sec-
tional area of the beam and remains independent of
the pump power.

To verify this prediction, assuming the initial heat
level of all UH waves, we numerically solve Eqs. (10)
with allowance for the pump wave depletion. The
results of the numerical solution are shown in Fig. 2 for
the beam radius and pumping power of w = 1 cm and

 = 600 kW, respectively. The figure shows the dimen-
sionless energy densities of the primary and secondary
UH waves averaged over the pump beam in accordance
with the following mathematical procedure:

and plotted on a semi-logarithmic scale. Solid and
dashed curves correspond to the energies of primary
and secondary UH waves, respectively. Thin horizon-
tal lines are the estimates of saturation levels (15) and
(16). They are in reasonable agreement with the
numerical results. The primary instability is well
described by the analytical formula (13) used for the
fundamental modes in the directions of both y and z
coordinates (see dashed line). The agreement between
the theoretical estimates and the results of the numer-
ical solution of the set of nonlinear partial differential
equations makes it possible to feel confidence in the
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Fig. 2. Time dependences of energies of primary (solid
line) and secondary (dashed line) plasmons in the beam
cross section are shown on semi-logarithmic scale. An
increase in primary UH wave amplitude is adequately
described (dash-and-dot line) by growth rate (13). Thin
horizontal lines are saturation levels (15) and (16). Param-
eters are the same as in Fig. 1, w = 1 cm, and  kW.
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Fig. 3. Anomalous absorption coefficient as a function of
the w pump beam radius. Symbols correspond to results of
numerical solution. Dashed line shows analytical predic-
tion (20).  MW.
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Fig. 4. Anomalous absorption coefficient as a function of
pump beam power. Symbols correspond to results of
numerical solution. Dashed line shows analytical predic-
tion (20). w = 1 cm.
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performed calculations. The anomalous absorption
coefficient as a function of the w pump beam radius is
shown in Fig. 3. The symbols show the result of a
numerical solution. The dotted line corresponds to the
analytical prediction (20). The heating power is  =
1 MW. We see that in the case of weak anomalous
absorption, the analytical dependence is in reasonable
agreement with the results of the numerical solution.
This case is characteristic of odd number of secondary
decays resulting in the instability saturation. The
fraction of the anomalously absorbed pump power
decreases with increasing beam radius. The ano-
malous absorption coefficient as a function of the
pumping power is shown in Fig. 4. The dependences
are shown obtained both as a result of numerical
simulation and in accordance with the analytical esti-
mate (20). As predicted by the analytical estimate (20),
the growth rate of this dependence saturates at

 (see dashed line).

4. ANOMALOUS ABSORPTION IN THE CASE 
OF EVEN NUMBER OF SECONDARY DECAYS

Next, we consider the nonmonotonic density pro-
file with a larger difference between the maximum and
minimum densities than in the previous section,
which makes possible the occurrence of an even num-
ber of successive secondary decays of the primary
UH wave. This case is illustrated in Fig. 5, which
shows the dispersion curves of all eigenmodes excited
as a result of the cascade process during the develop-
ment of decay instability of the pump wave. The solid
line corresponds to the fundamental mode ,

0P

@0 0
thP P

= 0m
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 70.74 GHz. The dashed-dotted line corresponds
to ,  GHz. The dashed line corre-
sponds to ,  GHz. The UH fre-
quency profile is shown by the thick solid line. The
scale characterizing the depth and size of the potential
well is  = 13.2 cm. The dis-
persion curves are shown for the following plasma
parameters:  eV and  GHz. The
decay of the  mode could lead to the appearance
of nonlocalized UH and IB waves. However, the
threshold power for this phenomenon is higher than
the power of the  UH-wave mode, as a result of
which the cascade of successive decays is terminated.
According to [35, 36], this cascade excitation of three
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Fig. 5. Dispersion curves of nonlinearly coupleD UH
waves (solid line corresponds to  and 
70.74 GHz; dash-and-dot line corresponds to  and

 70.72 GHz; and dashed line corresponds to  and
 GHz). UH frequency profile is shown by thick

solid line.  eV,  GHz, and lw =

 = 13.2 cm.
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Fig. 6. Time dependences of energies of primary (solid
line), secondary (dash-and-dot line), and tertiary (dashed
line) plasmons in the beam cross section are shown on
semi-logarithmic scale; the dash-and-dot line 2ν0,0t is
determined by Eq. (13). Thin horizontal lines are satura-
tion levels (10) and (11). Parameters are the same as in
Fig. 5, w = 1 cm and  MW.
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eigenmodes of the UH wave can be described by the
following set of equations:

(21)

where ,  describes the tertiary instabil-
ity, ,  is the coordinate of the point,
at which the  mismatch has a local minimum
during the tertiary instability development, and

. The depletion of the pump

wave , which in this case, is the dominant
mechanism for the instability saturation and is respon-
sible for the considerable anomalous absorption of the
pump wave, is described by the first of Eqs. (21). To
estimate the levels of decay waves in the regime of PDI
saturation, we discard all terms containing time deriv-
atives and replace the derivatives with their rough esti-
mates , . The level of saturation of the
energy density  of secondary UH waves in the
pump beam is determined by the balance between the
growth rate of tertiary waves and the energy loss of ter-
tiary waves from the pump beam cross section charac-
terized by time , i.e.,

(22)

The energy density of the primary UH wave 
becomes saturated in the pump beam cross section due
to the pump wave depletion and its secondary decay.
The level of depletion sufficient to terminate the pri-
mary instability development can be estimated by
numerically evaluating the following balance equation:

(23)

Since the W function depends on the  amplitude (see
Eq. (8)), and the  amplitude is a function of , the
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left side of Eq. (23) depends on , i.e., .
In the stationary regime, the first terms on the right-
hand sides of the third and fourth equations in set of
Eqs. (21) balance the second ones, which makes it
possible to find the levels of saturation of the energy
density of the secondary UH waves  in the
pump beam:

(24)
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Fig. 7. Anomalous absorption coefficient as a function of
pump beam radius. Pumping power is  MW.
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Fig. 8. Anomalous absorption coefficient as a function of
pumping power. Beam radius is w = 1 cm.
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Unfortunately, it is not possible to find  analytically.
This estimate can be obtained only numerically as a
result of solving Eq. (23).

Next, we numerically find the solution to set of
Eqs. (21). The results of solving Eqs. (21) under the
conditions used previously when calculating the dis-
persion curves shown in Fig. 5 (w = 1 cm,  MW),
are presented in Fig. 6, which shows the dimensionless
energies averaged over the pump beam cross section of
the corresponding daughter waves excited during the
cascade decays. The exponential growth of the pri-
mary UH wave (solid line) is adequately described by
the gain factor (dash-dotted line) calculated using the
growth rate (13). The energies of the secondary and
tertiary waves are shown by dash-and-dot and dashed
curves, respectively. Estimates (22)−(24) of the levels
of amplitude saturation of the daughter waves found as
a result of numerically solving Eq. (23), are shown in
the figure by thin horizontal lines. It can be seen that
they are in reasonable agreement with the results of
numerically solving set of Eqs. (21). The anomalous
absorption coefficient as a function of the pump beam

εs
m

=0 1P
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radius is shown in Fig. 7 for the pumping power 
1 MW. The dependence demonstrates that the anom-
alous absorption decreases only slightly with increas-
ing beam width. The anomalous absorption coeffi-
cient as a function of the pumping power is shown in
Fig. 8 for w = 1 cm. The anomalous absorption coeffi-
cient increases with power, asymptotically approach-
ing unity ( ) at a power level of several
megawatts, which corresponds to the total anomalous
absorption.

5. CONCLUSIONS
Summarizing the results of the study, we can con-

clude that the anomalous absorption of microwaves
caused by the development of their low-threshold PDI,
during which only one localized UH wave is excited,
can be reduced by increasing the pump beam radius.
This conclusion is similar to that made in the case when
the primary parametric decay results in the excitation of
two localized UH waves [38]. An increase in the pump
beam radius is useful in the case of odd number of sec-
ondary decays of the primary UH wave, when the
anomalous absorption can be considerably reduced. In
the case of development of an even number of succes-
sive secondary instabilities, the effect of the pump beam
width on the level of anomalous absorption is weaker. In
this case, an increase in the pumping power results in an
increase in the rate of anomalous absorption, which
distinguishes the case considered in this study from the
case, in which two localized UH waves are excited
during the first parametric decay [38].
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