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ABSTRACT. Bayesian models have proved very powerful in analyzing large datasets of radiocarbon (14C) measure-

ments from specific sites and in regional cultural or political models. These models require the prior for the under-

lying processes that are being described to be defined, including the distribution of underlying events. Chronological

information is also incorporated into Bayesian models used in DNA research, with the use of Skyline plots to show

demographic trends. Despite these advances, there remain difficulties in assessing whether data conform to the

assumed underlying models, and in dealing with the type of artifacts seen in Sum plots. In addition, existing methods

are not applicable for situations where it is not possible to quantify the underlying process, or where sample selection

is thought to have filtered the data in a way that masks the original event distribution. In this paper three different

approaches are compared: “Sum” distributions, postulated undated events, and kernel density approaches. Their

implementation in the OxCal program is described and their suitability for visualizing the results from chronological

and geographic analyses considered for cases with and without useful prior information. The conclusion is that kernel

density analysis is a powerful method that could be much more widely applied in a wide range of dating applications.
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INTRODUCTION

As long as people have worked with calibrated radiocarbon (14C) dates, there has been a wish to

summarize large numbers of calibrated dates in an effective way. The issues involved can be

separated into two classes: dealing with systematic biases in the datasets due to survival or

sampling probability, and artifacts which are generated by many of the most widely used

methods for presentation of data. This paper seeks to address the second of these two problems

while acknowledging that the taphonomic biases are in many cases the most important issue.

The overall aim is to find a better way to determine the temporal density of ages, as reflected in

large 14C datasets, where there is no clear prior information on their distribution.

The fact that dates with errors always appear to be more spread than they really are was carefully

considered by Buck et al. (1992) where they introduced the approach of making use of prior

information that events are grouped within phases, under the assumption that they are uniformly

likely to be anywhere within each phase. This approach can be widened to include other types of

distribution such as normal, triangular (Bronk Ramsey 2009) and trapezoidal (Karlsberg 2006;

Lee and Bronk Ramsey 2012; Bronk Ramsey and Lee 2013). All of these approaches reduce the

chronology to a set of model parameters such as the start and end and duration of a uniform

phase. In many cases, it is sufficient to plot and quote the ranges for these parameters to explain

the significance of the data (Bayliss et al. 2007). This type of analysis constitutes much of the

Bayesian chronological analysis currently being undertaken in Archaeology.

Two issues are not fully dealt with in this way however. The first arises in situations where, for

example, a uniform phase model is applied and yet there is still a requirement to look at the

distribution of events within that phase or to summarize that distribution in someway. The second

is where there is no prior information available to postulate a phase with a particular underlying

distribution. This latter case is particularly common when looking at large datasets over long time

periods in order to assess the implications of climatic and other environmental influences (see for

example Stuart et al. 2004; Ukkonen et al. 2011; Buchanan et al. 2008; Shennan 2013).
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Many different approaches have been used to summarize datasets, including binning of

ranges, summing calibrated date distributions, binning the output of such sums and simulation

methods. There are three main problems that arise in these methods: excessive noise seen in

summed distributions, over-smoothing of the data if techniques are used to remove this noise,

and a failure to address the issue of statistical spread unless they are combined with other forms

of Bayesian analysis. Some of the methods are also complex to implement and therefore not

suitable for widespread use in visualizing datasets. The main purpose of this paper is to explore

methods based on Gaussian (normal) Kernel Density estimation in order to asses whether

they might be a useful tool in summarizing 14C datasets with and without other forms

Bayesian analysis.

CURRENT METHODS OF SUMMARIZING
14
C DATASETS

There are a number of different ways people have used to present multiple 14C dates. The first is

simply to plot multiple distributions, which can be done with any of the widely used calibration

software packages. The challenge is how to summarize many such plots, or to understand

their significance.

The older literature contains a very wide variety of methods, including the binning of

uncalibrated dates or mean dates. Clearly these are not ideal except for the roughest of analyses.

More sophisticatedmethods using the ranges from calibrated datasets have also been used (see for

exampleMacDonald et al. 2006) often together with some form of running mean. These methods

are often prone to artificially favor some time periods over others (for example where there is a

plateau in the calibration curve, themean ormedian of calibration distributions of dates from that

period will usually fall near the center of the plateau) and to weight samples with some ranges

more strongly than others (if the length of the ranges is not accounted for). More recently, the

method that has been most widely used is the summed distribution and variations on that. Also

included here is discussion of existing methods that have been used in conjunction with Bayesian

analysis (summed distributions within models and the use of undated events within phases).

Sum Distributions

A simple follow-on step from the multiple plot is to stack multiple plots into a summed dis-

tribution, for example using the Sum command within OxCal. In a sense both the multiple plot

and summed plot share the same problem because the summed distribution is just a super-

position of all of the individual calibrated distributions.

It is useful to consider what the summed distribution actually represents for a set of samples. If a

single sample were selected at random and the probability density for the age of that sample was

required, then the normalized summed distribution would be appropriate. If the likelihood

distributions from the 14C calibration are summed, then the assumption is that all of the

measurements are independent and that there is no a priori reason to suppose the events are

related in any way. There is nothing wrong with this per se but often this is not what is wanted as

a summary. More often what is required is the probability density function for the age of any

randomly selected similar sample whether or not it has actually been dated.

There is extensive literature on the use of Sum distributions with reviews byWilliams (2012) and

Contreras and Meadows (2014). Although many have tried to use Sum distributions for

answering important questions about long terms trends (Shennan 2013; Armit et al. 2014; Kerr

and McCormick 2014; Buchanan et al. 2008) there is widespread agreement that there are

problems in identifying which fluctuations are significant and which are artifacts both in these
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papers and in discussions of them (Culleton 2008; Bamforth and Grund 2012). There are some

who argue that the artifacts are a direct result of the shape of the calibration curve (Kerr and

McCormick 2014) and in a way which is to a degree predicable though the use of simulations

and thereby corrected (Armit et al. 2013, 2014; Timpson et al. 2014). Contreras and Meadows

(2014) point out that the the artifacts generated are essentially random in nature, changing with

each simulation and identify the key problem as being one of separating out signal from noise.

This will always be a balance.

Because of the complication of 14C calibration, before discussing calibrated dates it is worth seeing

how the summing procedure works in a much simpler situation. Figure 1 shows what happens if a

series of measurements are made on samples selected from a bimodal normal distribution. We

assume that these values are measured with a range of different uncertainties, thereby introducing

noise. Normal probability distributions with a mean of the measured value and a standard

deviation of the uncertainty are then summed. When the measurement uncertainty is small the

summed distribution is a very poor representation of the underlying bimodal distribution, showing

a lot of high frequency noise. At intermediate values there are spurious peaks, very similar to those

frequently seen in summed 14C calibrations. When the uncertainty becomes higher the simple

bimodal distribution is generated but smeared by the uncertainty. Only if the sample number is

high and the uncertainty happens to have an appropriate value will the summed distribution give a

reasonable indication of the distribution from which the samples have been taken.

Sum distributions of 14C dates have exactly the same issues but in addition have the compli-

cation of the non-normal distributions from calibration. Figure 2 shows an example of a sum

distribution exhibiting some of the common features: sharp drops and rises associated with

features in the calibration curve and unrelated to the underlying distribution of events, and an

excessive spread beyond the range from which the dates have been sampled, especially where

there are plateaus in the calibration curve. This can be seen more clearly in Figure 3a where the

Sum approach is compared to other methods. In general, there are three main problems

with this as an approach: noise due to the limited number of dated samples, noise from the

calibration process, and excessive spread due to measurement uncertainty.

-30 -20 -10 0 10 20 30

Figure 1 The effect of using the summing of likelihood distributions

for measurements with normally distributed errors. The black line

shows a bimodal normal distribution (centers: ±10, standard

deviations: 3.0) from which 100 random samples have been generated

(shown in the rug plot). Each of the other curves shows what happens

if these values are measured with different standard uncertainties (gray:

0.1, red: 0.5, green: 1.0, blue: 2.0; purple: 4.0) and then the normal

distributions associated with the measurement likelihood summed.

Even with this number of samples the distributions are very noisy

unless the measurement uncertainty is large, at which point the

original distribution is smeared and it is no longer possible to fully

resolve the two original modes.
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Sum Distributions within Models

If the processes underlying the data are properly understood, it is possible to overcome the

excessive spread problem by employing a Bayesian model. Most simply a single uniform phase

model might be used. It is then possible to calculate a Sum for the marginal posterior dis-

tributions of the events within the phase. This provides a visualization of the overall distribution

of dated events within the phase. However, this still leaves the problem of the two types of noise

due to calibration and the limited number of data-points. It is still very difficult to distinguish

this noise from the signal (see Figure 3b).

Undated Events within Phases

A third approach can be used within a Bayesian phase model to produce a distribution which

summarizes our knowledge of each phase inferred only from the boundary dates (see for

example Loftus et al. 2016). We can postulate an undated event within the phase which obeys

the priors (start and end boundaries, together with any particular phase distribution). This

produces a smoother distribution (as shown in Figure 3) but it does not reflect the actual

distribution of events for which there are date measurements. This can still, however, be a

convenient way to summarize both boundary dates in a single plot.

Genetic Models

It is also possible to build other types of information into chronological models. Perhaps the

best case is for demographic data with ancient DNA analysis. Ho and Shapiro (2011) is a useful

review of methods employed including Bayesian multiple-change-point (MCP), Bayesian

skyline, and Bayesian skyride. These all incorporate information on the way populations are

likely to change over time, making the models both more precise and also more robust. Where
14C is used with these genetic models this has not usually been done with the full probability

distribution function from calibration. Molak et al. (2015) have implemented such a procedure

Figure 2 An example of a sum distribution of calibrated 14C

likelihood distributions. The open diamonds show the values of

the randomly selected dates from the range AD100–AD500 for

simulation, the red crosses on the left show the simulated 14C

date central values (all errors in this case are ±25) and the light

gray crosses below show the median values of the resulting

calibrated likelihoods.
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and found that, given the other uncertainties inherent in the genetic models, the output from the

models is not usually affected.

KERNEL DENSITY PLOTS

One of the most widely used non-parametric methods for estimating underlying distributions of

discrete data points is kernel density estimation (KDE; Rosenblatt 1956; Parzen 1962). This is a

(a) Sum of events

(b) Sum within phase

(c) Event within phase

(d) KDE plot within phase

(e) KDE plot unmodelled

(f) KDE model

(g) KDE of sampled events

200 100 1BC/1AD 101 201 301 401 501 601

Modelled date (BC/AD)

OxCal v4.3.2 Bronk Ramsey (2017); r:5 IntCal13 atmospheric curve (Reimer et al 2013)

Figure 3 Comparison of methods of summarizing a set of 40 14C dates. The same

simulations are used as in Figure 2. The open diamonds show the randomly selected dates in

the range AD100–AD500, the light gray crosses show the medians of the likelihood

distributions of the calibrated dates and the black crosses the medians of the marginal

posterior distributions for each dated event. Panel (a) shows the sum of the likelihoods.

Panels (b), (c), and (d) all use the marginal posteriors from the same simple single uniform

phase model with a start and end boundary (Bronk Ramsey 2009): panel (b) shows the sum

of the marginal posteriors, panel (c) shows the marginal posterior for an event simply

constrained to lie between the start and end boundary and panel (d) shows a Kernel Density

plot based on the dated events constrained to be within the phase. Panel (e) is a KDE plot

generated from samples randomly taken from the likelihood distributions. Panel (g) shows

the effect of applying the KDE_Model model which uses the KDE distribution as a factor

in the likelihood (see text). Panel (g) shows a Kernel Density plot of the original calendar

dates chosen from the range AD100–AD500: ideally this is the distribution that the other

estimates should reproduce. The overlain green and red distributions with their associated

ranges show the marginal posterior for the First and Last events within the series: these

should overlap at 95% with the first and last open diamonds which are the actual first and

last events sampled; this is the case for those based on the uniform phase model, and the

KDE model but not those based on the unconstrained Sum or KDE plot.
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frequentist rather than a Bayesian approach with no formal prior for the distribution.

Effectively what the Sum distribution is generating is similar to a KDE distribution where the

kernel is the probability distribution function from the calibration. This is not a suitable kernel

for two reasons: firstly the width of the kernel is not optimized for the sample density, and

secondly the kernel shape is strongly dependent on the details of the calibration process. This is

why the Sum approach has the problems outlined above. However, it is still important to make

use of the uncertainty associated with the calibration. To achieve this, it is possible to use a

KDE approach for each specificMCMC state of the sampled distributions and average over the

different MCMC states. For any particular set of events t= {t1 . . . tn}, assuming a normalized

kernel distribution K(u), and a bandwidth h, the KDE estimate of the underlying distribution

is given by:

f̂hðtÞ =
1

hn

X

n

i= 1

K
t - ti

h

� �

(1)

Kernel Density Estimation Algorithm

Kernel choice and bandwidth estimation are the main issues when generating KDEs. The

standardized normal kernel is widely used where K(u) ∼N(0,1), but other kernels might also be

justified. In this application, the normal kernel will be used because of widespread use and

known properties. Silverman’s rule (Silverman 1986) provides an optimal choice of bandwidth

for use with normal kernels where the underlying distribution is assumed to be normal too. This

estimate for the bandwidth is:

hSðtÞ = ð4 = 3Þ
1
5
σ̂ðtÞn -

1
5 (2)

where σ̂ is the sample standard deviation. This should be considered a maximum bandwidth as

it usually over-smooths multi-modal distributions. In order to overcome this problem, the

Silverman bandwidth can be multiplied by a shaping parameter g with a uniform prior:

hðtÞ = ghSðtÞ (3)

g � Uð0; 1Þ (4)

Effectively this allows the bandwidth to take any value with an upper limit of the Silverman

estimate. The upper limit ensures that the Uniform prior is proper and also ensures that kernels

are not considered which would be wider than optimal (this is only important because of the

MCMC approach used below). A predictive likelihood can then be used to weight possible

values of g. Here the predictive likelihood is taken to be:

L t gjð Þ /
Y

n

i = 1

1

n - 1ð Þ ghSðtÞ

X

n

j = 1;j ≠ i

K
ti - tj

ghSðtÞ

� �

 !" #ðn - 2Þ = n

(5)

where each element in the product is the likelihood of a single event as predicted by the KDE

using all of the other events within the set. The power of (n−2)/n is used because once the mean

and standard deviation are known there are only (n−2) degrees of freedom; it also follows that if

n= 2 there is no information available to determine the multi-modality of the KDE. For large n

the power of (n−2)/n will make very little difference to the probability distribution. One

approach would be to select g as the value that gives a maximum in the likelihood function

(in which case the power applied would be irrelevant) as proposed for example by Zhang et al.

(2006). However, because the parameters t are themselves varying during the MCMC
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simulation, rather than for each pass find a maximum likelihood (which would be computa-

tionally expensive), the parameter g is included within the MCMC using the Metropolis-

Hastings algorithm. The result of this approach is that the output is a likelihood weighted

average of KDEs with slightly different bandwidths (which is why the upper limit of the

Silverman bandwidth is significant: the maximum likelihood would always give a bandwidth

lower than or equal the Silverman estimate anyway).

The MCMC implementation within OxCal works by generating an equal number of random

samples from each of the events ti specified within the model within the kernel probability

distribution function:

/ K
t - ti

h

� �

(6)

To test the effectiveness of this approach, it can be tested on data points with no uncertainty (the

usual application of KDE) against the widely used Matlab KDE package which uses the more

elaborate diffusion method of Botev et al. (2010). Figure 4a shows that the outputs of the

method presented here, and the diffusion method, are virtually indistinguishable (if anything

this method is slightly closer to the original distribution) on two just resolvable normal dis-

tributions and both much better than Silverman’s rule on its own. The disadvantage of the

method presented here for data with no uncertainty is that it is much slower since it involves

MCMC. However, where MCMC is already being used to deal with uncertainty, the approach

is faster than optimizing for each MCMC pass using an approach such as that of Botev et al.

(2010). It is also worth noting that, given there are many different methods for optimizing the

choice of kernel width any KDE is just one possible estimate of the underlying frequency

distribution and there is often no attempt to see how robust this is. The approach of using a

Bayesian method and weighting for the likelihood rather than maximizing it, allows the family

of plausible KDE distributions to be explored. The example given here shows that the mean of

these distributions gives a result at least as close to the true distribution as other methods and

furthermore gives some measure of robustness even in applications of KDE which do not

involve measurement error.

Implementation within OxCal

A new function KDE_Plot has been introduced into v4.3.2 of OxCal to provide KDE plots.

The function takes three parameters:

KDE Plot ðname ½; kernel ½; factor��Þ; (7)

where name is the label applied to the distribution, kernel is the kernel to be used (default is

N(0,1)) and factor is the factor to be applied relative to the Siverman’s rule (default is U(0,1)).

The command can either be used in place of the Phase function or be used as a query on any

grouping and, in this respect, works in just the same way as the Sum function.

In addition to the sampling method used to generate the main KDE probability distribution,

OxCal will also generate snapshots of the KDE during the MCMC at increments of 1000

iterations. An ensemble of these outputs can be plotted as shown in Figure 5 and the variability

summarized as a blue band showing ±1σ. The ±1σ variability is useful as a summary but it

should be remembered that this quantity will only be approximately normally distributed if the

variability is small. If further detail is required on the variability, then the ensembles of possible

KDE distributions should be further analyzed. In this particular case, the kernel width is well

constrained and there is very little variation. An advantage of this MCMC approach is that this

gives some indication of the robustness of the KDE to bandwidth selection.
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Figure 4c shows the output from the KDE_Plot algorithm for the same range of different

measurement uncertainties as shown for the Sum function in Figure 1 (also shown in Figure 4b

for comparison). Here it can be seen that the effect of the KDE is to eliminate the high-

frequency noise seen in the Sum distributions where the measurement uncertainty is low. The

approach does however smear the original signal when the uncertainty is higher (even slightly

more so than the Sum). It is a conservative approach that is unlikely to reveal spurious

structure.

Plots of Unstructured Chronological Data

The KDE_Plot algorithm can be tested on 14C datasets where Sum might have been used.

Figure 3e shows the KDE plot for the same data which generated the summed plot shown in

(a) KDE methods

(b) Sum

(c) KDE_Plot

(d) KDE_Model

-30 -20 -10 0 10 20 30

Figure 4 Comparison of different approaches to KDE. Panel (a)

shows the comparison of different methods for bandwidth

estimation for data sampled from a bimodal normal distribution

with centers at ± 10 and standard deviation of 3; blue: Siverman-

rule estimate, red: the MatLab KDE module (Botev et al. 2010) and

green: the KDE_Plot method described here. Panel (b) is a repeat

of Figure 1 showing the effect of changing measurement uncertainty

(gray: 0.1, red: 0.5, green: 1.0, blue: 2.0; purple: 4.0) on the Sum

distribution. Panel (c) shows the same for the KDE_Plot function

on the same data. Panel (d) shows the application of the

KDE_Model model implementation on the same dataset.
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Figure 3a where the KDE estimate made on samples taken from the likelihood distributions.

For reference the KDE of the calendar dates sampled is shown in Figure 3g.

This approach certainly does have advantages over using the Sum function in that the noise

introduced from the calibration procedure is reduced (see Figure 3a). However, the KDE does

not take any account of the dispersion in the data associated with the measurement uncertainty

and if the First and Last events are sampled (see Figure 3e) these are the same as for the

Summethod and too early and late respectively. In order to deal with this some other method is

still required. If the data can be well represented by one of the existing Bayesian models (such as

the uniform phase model) then it seems best to first use these to model the events listed in the

model and then use KDE to estimate the distribution after modeling.

Kernel Density Plots within Bayesian Models

In the “SumDistributions withinModels” section, it was shown that the Sum can be carried out

on the marginal posterior distributions instead of the likelihood distributions. We can do the

same with the KDE_Plot function too. To do this, rather than simply sampling from the

likelihood distributions a prior model such as the uniform model (Buck et al. 1992; Bronk

Ramsey 2009) can be applied. In doing so the KDE distribution should also take account of the

prior model being applied. This is in part achieved by by applying the prior to the t parameters

in the model. However, this is not sufficient: the samples drawn within each kernel should obey

the same prior (including boundary constraints). So if there is some prior (such as a uniform,

normal or exponential distribution) which pertains to the events P(t) this can be used to modify

the kernel shape for each point to:

/ PðtÞK
t - ti

h

� �

(8)

where there is a hard boundary (a Boundary statement in OxCal) the kernel distributions are

reflected at that boundary; this ensures that the distribution is uniform up to the boundary

rather than rounding off. This enables abrupt transitions to be realistically handled by the KDE

plotting routine. Note that equal numbers of samples are taken for the kernels associated with

each ti to ensure that the actual distribution of events is still reflected in the final KDE. This has

been implemented in OxCal so that the function KDE_Plot can be used within any model in

the same way that the Sum function can. The effects of this can be seen in Figure 3d where the

KDE plot generated within a modeled uniform phase better reflects the start and end of the
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Figure 5 This shows 30 individual KDE estimates generated

during the MCMC with slightly different kernel bandwidths (based

on the parameter g). The underlying data are as for Figure 4a. The

blue line shows the mean of these and the light blue band ±1σ.
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phase than the unmodeled KDE plot (Figure 3e) and is still free of much of the high frequency

noise in the Sum distribution (Figure 3a and b).

Overall this approach can be seen as a mixture of Bayesian and frequentist methods. The

MCMC sampler uses the Bayesian likelihood and model priors and then for each sample state a

frequentist KDE distribution is generated and averaged over the states. This mixture of sta-

tistical approaches is not unique: for example, Bayesian methods are often used to estimate the

kernel bandwidth for KDE (Zhang et al. 2006). A Bayesian interpretation for the approach

taken here would be that the prior for undated events is a product of the prior for the model and

the (frequentist) KDE distribution generated for the dated events.

KERNEL DENSITY MODELS

From the discussion above it is clear that using the KDE_Plot method (Figures 4c and 3d)

provides a display of the distribution of events which is free from the noise artifacts seen in Sum

plots (Figures 4b and 3a). However, unless the plotting method is used together with another

Bayesian model (Figure 3d), the distributions are over-dispersed (Figure 3d) and smear the

underlying signal (Figure 4c). This is ultimately nothing to do with the method itself, it arises

from the assumption that each parameter is totally independent and therefore a greater spread

is statistically much more likely.

In many circumstances, it is incorrect to assume complete independence of our events: often the

events form a coherent grouping, albeit perhaps with variations in event frequency. Consider

the simple situation illustrated in Figure 4. Supposing of the 100 parameters sampled here, there

are precise measurements for 99 of them. For the 100th parameter there might be no mea-

surement information at all and then, if all of the parameters were entirely independent, the

marginal posterior should be uniform across the entire parameter space. If on the other hand the

parameter is from the same group as those for which there are 99 precise values, then it would be

reasonable to assume that the 100th parameter likelihood could be defined by the distribution of

the other 99 values. The best estimate for this distribution is given by the KDE. Alternatively,

supposing for the 100th parameter there is a measurement but an imprecise one, for example

6± 10. In this case, there is some more information: the measurement itself can define the

likelihood but if the parameter is still part of the same group as the other 99, the KDE from our

other values could still be used to narrow this down and, for example, down-weight the values

around 0.What is required is for the likelihood to be given by the product of the likelihood from

the measurement and the KDE from the other parameters as shown in Figure 6.

In practical cases, all of the parameters to be modeled are like to have measurement uncertainty

associated with them, but by usingMCMC it is still possible to use the KDE associated with the

values of all of the other parameters in the chain to define a KDE for updating any individual

parameter. The weighting function to be applied to the likelihood is simply give by the factors of

Equation 5:

pðti g; tj ≠ i

�

� Þ /
1

ðn - 1ÞghSðtÞ

X

n

j= 1;j ≠ i

K
ti - tj

ghSðtÞ

� �

 !ðn - 2Þ = n

(9)

The power of (n−2)/n is included here for two reasons. Firstly if there are less than three

parameters, then it is not possible to estimate the bandwidth for a KDE. Secondly with this

power, the probability of the model as a whole scales as ∝ σ
2−n(t) (because hS ∝ σ(t)) and this

means that the model is scale invariant because the statistical weight of the model with a span of
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s scales as sn−2 (Buck et al. 1992; Bronk Ramsey 2009). Like the uniform phase model, this KDE

model should be able to deal with the excessive scatter due to statistical weight.

Although the KDE model probabilities are chosen to be scale invariant, unlike the para-

meterised models (Buck et al. 1992; Bronk Ramsey 2009), the effective prior for the span or

standard deviation of these models is not necessarily uniform. For this reason, the Bayesian

models with boundary parameters such as the uniform (Buck et al. 1992; Bronk Ramsey 2009)

triangular, or normal (Bronk Ramsey 2009) models would be more appropriate where this is

something required of the model.

This overall approach for the KDEmodel is an extension to that used for the KDE_Plotwhere

the KDE was used only to estimate the distribution of undated events. From a Bayesian per-

spective, the prior for each dated event is the KDE distribution for all of the other events, and

the prior for all undated events is the KDE for all of the dated events. Because the KDEmethod

is in itself frequentist, this is not a purely Bayesian approach. There may be other possible

Bayesian methods such as the Bayesian Bootstrap (Rubin 1981) but none are without their

problems and all require information on the distribution characteristics. If it is accepted that the

KDE is a generally reasonable estimate for any underlying density when we have randomly

selected samples, then the approach taken here is a reasonable approach for dealing with

densities of events for which we have little or no quantitative prior knowledge.

Implementation in OxCal

The KDE_Model is implemented in OxCal and has a format:

KDE Model ðname ½; kernel ½; factor��Þ :::f g; (10)

where the events to be modeled are contained within the braces {...}. The kernel and factor

default to N(0,1) and U(0,1) as for the KDE_Plot function above.

The MCMC algorithm allows for four different trial state changes:

∙ One event tiwithin the distribution is updated: the acceptance of this trial move depends on

the product of the the KDE distribution probability given in Equation 9 for all of the other

events, and the likelihood associated with any direct measurements on ti. See Figure 6 for a

schematic explanation of how this works.

∙ The shaping parameter g is updated: acceptance of this move depends on the using the

probability given in Equation 5. This is exactly the same step as is used in the KDE_Plot

algorithm.

-30 -20 -10 0 10 20 30

Figure 6 Schematic of likelihood for a parameter within a KDE

model. If 99 parameters, all with precisely known values generate a

bimodal KDE as shown in green, and the 100th parameter has a

likelihood given by measurement of 6 ± 10 as shown in red, then the

combined likelihood for the true value of this 100th parameter is

shown in blue.
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∙ All of the events t are shifted together: acceptance of this move depends only on the

combined likelihoods of all of the parameters. All of the probabilities associated with the

KDE model remain unchanged.

∙ All of the events t are expanded or contracted about the mean: acceptance of this move

depends only on the combined likelihoods of the parameters; the change in phase space is

balanced by the KDE model probability.

Both of the last two moves are only used to improve convergence in models with a very short

overall span. For many applications, they are not necessary and could be omitted.

As with all MCMC Bayesian models implemented in OxCal, the Metropolis Hastings algo-

rithm is used to decide whether to accept or reject trial moves (see for example Gilks et al. 1996).

In the current version of OxCal the proposal distributions for dated events are uniform, cov-

ering the full possible range of the likelihood, and similarly that for the shaping parameter g is

~U(0,1), covering the full possible range. For the shift move a quite wide (±1σ) symmetrical

uniform proposal distribution is used and for the expansion/contraction factor a log-uniform

distribution ranging between 0.5 and 2. In general in OxCal bounded uniform rather than

Gaussian proposal distributions are used because of the multi-modal nature of calibrated 14C

likelihood distributions. Future versions may use adaptive sampling procedures depending on

the context which might speed up convergence.

Tests on Simulated Data

The KDE_Model algorithm can be tested against the same simulated uniformly distributed data

that we used with the Sum method in Figure 2, as shown in Figure 7. The output of this model,

together with the sampled distributions for theFirst andLast events is shown inFigure 3f where

it can be seen that the overall span is much closer to the original, or to the output of the single

uniform phase model (Figure 3b–d), than either the Sum plot (Figure 3a) or the KDE_Plot

(Figure 3e). The algorithm removes high frequency noise in the form of sharp edges, peaks and

troughs but does retain lower frequency signal. The method is not as good at detecting the abrupt

ends to the true distribution as the uniform phase model which specifically assumes abrupt

boundaries: this can be seen in themore sloping tails of the distribution and the themarginally wider

estimates for the first and last event. Themethod does provide an output similar to that for theKDE

plot for the randomly selected calendar events (Figure 3g) which is the objective of the method.

By looking at a simulated case where the underlying events are normally distributed, the

method can be tested for a range of 14Cmeasurement errors. Figure 8 shows an example of how

a series of simulations with increasing uncertainty, still reproduces the original underlying

distribution well. To test this further a series of 10 different simulations were done for the

sample range with different uncertainties, and the results of the estimate for the standard

deviation of the KDE distribution are shown in Figure 9. The estimated standard deviation

remains correct and is, within errors, independent of the uncertainty. This contrasts with the

approach of just using a KDE_Plotwithout any Bayesian model, which gives similar results to

using a Sum distribution. In this case it can be seen that the KDE_Model is a good substitute

for a parameterized normal distribution model.

In the case of the kernel density model the power of (n− 2)/n in Equation 9 is much more

important than it was for KDE plots. Although in most instances where the spread of dates is

considerable (including most examples given in the section “Example Applications of KDE

Models”, with the exception of that for the British Bronze Age), a bias on the overall spread of
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dates proportional to s−1 or s−2 would be imperceptible, for models with short spans the impact

would be considerable and the ability of the model to correctly determine the spread of dates as

seen in Figures 8 and 9 would be compromised. Perhaps even more importantly the singularity

at s = 0 would result in the MCMC becoming locked into states with very low span. With this

power included, the MCMC is well-behaved and any bias in overall spread is avoided.

The real advantage in the approach comes with dealing with multi-modal distributions. Before

considering 14C calibrated data it is worth testing the method on the simpler bimodal data

shown in Figure 4. The KDE_Model algorithm has been applied to the same data with a range

of uncertainties and associated noise added. The results of this analysis are shown in Figure 4d.

The method successfully removes the high frequency noise seen in the Sum output and also

eliminates the dispersion shown in the both the Sum and KDE_Plot distributions (Figure 4b

and c). The method retains the lower frequency signal and removes the high frequency noise.

A final theoretical simulation is shown here for simulated 14C dates from the Late Glacial

period. Figure 10 shows how the KDE_Model approach performs in comparison to the Sum

distribution. In this case the KDE_Model performs much better at reproducing the underlying

distribution of events without the sharp spikes and edges which characterize the Sum.

EXAMPLE APPLICATIONS OF KDE MODELS

Here the KDE_Model methodology is tested on a number of published datasets in order to

illustrate the ways in which it might be useful.
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OxCal v4.3.2 Bronk Ramsey (2017); r:5; IntCal13 atmospheric curve (Reimer et al 2013)

Figure 7 Plot showing the output of the KDE_Model method

when used on the same simulated data as Sum in Figure 2. The open

diamonds are a rug plot of the calendar date random samples, the

light gray crosses show the medians of the likelihood distributions

from the simulated 14C measurements for these dates and the black

crosses show the medians of the marginal posterior distributions for

the events from the KDE_Model analysis. On the left the rug plot

for the central values of the simulated 14C dates is shown and the

calibration curve is shown for reference. The dark gray distribution is

the sampled KDE estimated distribution. The blue line and lighter

blue band overlying this show the mean ±1σ for snapshots of the

KDE distribution generated during the MCMC process and give an

indication of the significance of any features. The light gray

distribution shown above is the Sum distribution for reference.
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Irish Early Mediaeval Settlements (Raths)

The first application used the dataset of Kerr and McCormick (2014) on raths. Much of their

paper is focused on how to deal with the artifacts in the distribution of raths through the early

mediaeval period using a combination of binning and subtraction of probability distributions.

They conclude that it is important not to over interpret the details of the distribution. Figure 11

shows the effect of using the KDE_Model function to summarize the data. This analysis would

suggest that the material dated in the raths can be as old as the 5th and 6th centuries but that

very little dates to later than about 1050. The exact interpretation would depend on issues of

sample taphonomy beyond the scope of this paper. However, the key point is that here is no

significant second peak in date density in the second half of the 8th century as suggested by the

Sum distribution, and as concluded by Kerr and McCormick (2014).

British Bronze Age Axes

The next application is not ideally suited to the KDE_Model method because it is based on

phased material with possibly quite short phase lengths, which can be better modeled using

25 yr errors

50 yr errors

75 yr errors

100 yr errors

125 yr errors

150 yr errors

Underlying distribution N(300,100)

400 200 1BC/1AD 201 401 601 801

Modelled date (BC/AD)

OxCal v4.3.2 Bronk Ramsey (2017); r:5 IntCal13 atmospheric curve (Reimer et al 2013)

Figure 8 Simulation of events with an underlying normal distribution N (300, 100). Each

simulation has 100 events and assumes a different measurement uncertainty ranging from

25 to 150 yr. The light gray distributions show the effect of using KDE_Plot without any

Bayesian modeling. The dark gray distributions are the output of a KDE model using the

KDE_Model command within OxCal. The underlying distribution is shown for

comparison. The rug plots show the randomly selected calendar dates (diamonds), the

medians of the simulated 14C dates (light gray crosses) and the medians of the marginal

posteriors of the simulated events (black crosses).
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purely Bayesian parametric models. The dataset chosen for this is the same as that used to test

the trapezium model in Lee and Bronk Ramsey (2012) which relates to dates on British Bronze

Age axes (Needham et al. 1998). Here three different approaches to summarize the dates on

each Bronze axe type are applied. The first method is to assume an underlying uniform phase

model as used in the original publications (Needham et al. 1998) with a KDE_Plot to visualize

the distribution; the second is to use a normal distribution for the data (Bronk Ramsey 2009),

and then use KDE_Plot to show the distribution of events; finally the KDE_Model is used on

its own to both model and visualize the data. The results of these analysis options are shown in

Figure 12. It is clear that all methods give very similar results. This data has a peculiarity in that

for all of the groups other than Acton and Taunton, the dates are not statistically different from

each other and so actually each group could be short-lived. Given this characteristic, the

modeled spans of those phases are actually shorter with the KDE_Modelwhich is just visible in

the plots. Overall it is encouraging that the non-parametric KDE method gives such similar

solutions in a unimodal case like this, though it is not recommended where the overall span

might be close to zero or where a purely Bayesian parametric model can be used.

Paleoindian Demography

The next example draws on the dataset of Buchanan et al. (2008), also discussed by Culleton (2008)

andBamforth andGrund (2012). Againmuch of the discussion arises out of what can be considered

noise and what is signal in the summed distributions of calibrated 14C dates. Here the same dataset

is analyzed using the KDE_Model algorithm. The results of this analysis are shown in Figure 13.

This analysis would suggest that there is a useful signal in the original data but that it is somewhat

masked by the Sum distribution. It has been pointed out that simulations will show fluctuations

even if the underlying density of dates is uniform. This is true, and this is not entirely due to the

calibration curve either, it is simply a result of stochastic noise. In order to explore this further, like

Bamforth and Grund (2012), a simulation of 628 14C dates with comparable error terms has been

Figure 9 Details of the models used are explained in Figure 8. The

estimated standard deviation of the underlying distribution is shown

based on 10 different runs of each model with the error bars showing

the sample standard deviation in results. The events are sampled from

a normal distribution of 100. This plot shows that the KDE_Model

algorithm recovers the underlying distribution independently of

uncertainty whereas a simple KDE_Plot without a Bayesian model

shows over-dispersion as the measurement uncertainties increase.
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undertaken over a similar time period (12,950–8950 cal BP) uniformly distributed throughout the

period. These simulated dates have then been summed (as shown in Figure 14c) and subjected to

the same KDE_Model analysis. The results of this analysis are shown in Figure 14d.

Although there are some underlying fluctuations in rate (which vary with each simulation) there

are no obvious artifacts. As a final test of the method, the median marginal posterior dates from

the KDE_Model have been taken as the true dates of the samples and a simulation run to

recover the original Sum distribution. This is shown in Figure 14e and is very similar to the

original Sum shown in Figure 14a. Each simulation will give slightly different results and the

minor details are clearly not significant. One, albeit impractical, approach to analyzing a

dataset like this would be to try a very large number of possible distributions, simulate the dates

from them and see how well you could reproduce the original Sum distribution. Effectively this

is what the KDE_Model analysis is achieving this case.

The results of the analysis can then be compared to the climate record of NGRIP (Andersen

et al. 2004; Bigler 2004; Rasmussen et al. 2006; Svensson et al. 2008) as shown in Figure 15. To

return to the original subject of Buchanan et al. (2008), there is certainly no indication of an

abrupt bottleneck at 12,900 cal BP: it would seem that the date density peaks slightly after that

and then declines most rapidly as the Calcium flux in Greenland reaches its peak. Overall the

data would suggest that there might be an interesting phase delay between what is recorded in

NGRIP and the archaeological activity in North America.

Megafauna in the Late Quaternary

The next datasets to be considered cover almost the entire range of the calibration curve. These

are datasets for Megaloceros giganteus (Stuart et al. 2004) and Mammuthus primigenius
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OxCal v4.3.2 Bronk Ramsey (2017); r:5; IntCal13 atmospheric curve (Reimer et al 2013)

Figure 10 Two hundred dates were randomly sampled from a

multimodal distribution. The events are assumed to be drawn from

the trimodal distribution with modes centered on 14,400, 13,800, and

12,900 cal BP with standard deviations of 200, 150, and 150

respectively. There are 40 events in the first mode and 30 in the other

two. The 14C measurements are assumed to have a standard error

of 50 and measurement scatter has been simulated. The original

underlying distribution is shown at the top, a simple Sum below that

and the output of the KDE_Model algorithm outlined here. The

rug plot is as for Figure 7.
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(Ukkonen et al. 2011). The raw data in each case, over such a long timescale inevitably show

considerable noise when viewed as a Sum distribution. The KDE_Model distributions (Figure 16)

provide amuchmore reasonable starting-point for discussion of the underlying trends. Of course it is

still very important to keep in mind sampling and survival biases which might affect these dis-

tributions but having a reasonable estimate for the distribution of dated specimens is still very useful.
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OxCal v4.3.2 Bronk Ramsey (2017); r:5; IntCal13 atmospheric curve (Reimer et al 2013)

Figure 11 Comparison of Sum distribution (above) and KDE_Model

distribution for dates on raths as reported in Kerr and McCormick

(2014). The features of the plot are the same as Figure 7.

1500 1400 1300 1200 1100 1000 900 800

Modelled date (BC)

OxCal v4.3.2 Bronk Ramsey (2017); r:5 IntCal13 atmospheric curve (Reimer et al 2013)

(a)

(b)

(c)

Figure 12 Comparison of methods for summarizing dates on different types of bronze axe

from the British Bronze Age (data from Needham et al. 1998). The phases shown in all cases

are from left to right: Acton and Taunton (5 dates), Penard (12 dates), Wilburton (10 dates),

and Ewart Park (9 dates). Panel (a) shows the results of using independent (overlapping)

single uniform phase models for each group with the probability distribution between the

boundaries being visualized using KDE_Plot. Panel (b) shows the same but using a

normally distributed phases (using Sigma_Boundary, see Bronk Ramsey 2009). Panel (c)

simply uses a KDE_Model for each group of dates. All methods give very similar results

indicating that the Acton and Taunton, Penard and Wilburton phases follow on one after

the other with a short gap before Ewart Park.
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Demography of Prehistoric Ireland

The final example provides a challenge to the methodology. The dataset is that used to discuss

the end of the Bronze Age in Ireland in Armit et al. (2014). This comprises 2020 14C dates

(3 having been discarded because of insufficient information). This is challenging for the
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OxCal v4.3.2 Bronk Ramsey (2017); r:5; IntCal13 atmospheric curve (Reimer et al 2013)

n=628

Figure 13 Comparison of Sum distribution (above) and KDE_Model

distribution for dates on Paleoindian contexts as reported in Buchanan

et al. (2008). The features of the plot are the same as Figure 7.

(a)

(b)

(c)

(d)

(e)

8500900095001000010500110001150012000125001300013500

Calendar date (BP)

Figure 14 Comparison of different distributions related to the data from Buchanan et al.

(2008) (628 dates). Panel (a) shows the simple Sum distribution; panel (b) is the

KDE_Model analysis as shown in Figure 13; panel (c) shows the Sum distribution from the

simulation of 628 dates uniformly spread through the period 12,950–8950 cal BP; panel (d)

shows the KDE_Model analysis of the same simulated dataset; panel (e) shows the simple

Sum plot for dates simulated from the medians of the marginal posterior distributions arising

from the KDE_Model analysis. The fact that panel (e) is similar to panel a indicates that the

original sum distribution is compatible with the output of the KDE_Model analysis.
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KDE_Model because Equation 9 entails relating the position of every event to every other

event at each iteration. This becomes very slow for large datasets. For this dataset on a Mac-

Book Pro (2.3 GHz Intel Core i7) it runs at about 1800 iterations (of all parameters) per hour.

Ideally for a proper study this should be run for several days to ensure full convergence.

A purely practical point should be made about running models of this size. These are too large

to run on the online OxCal server and even on a dedicated computer running through the

web-interface may cause memory problems. It is recommended that the model be saved and

then run from the command line of the operating system. To terminate the run delete the .work

file and wait for completion and output of the results which may take someminutes. In future, it

may be possible to optimize the algorithm further for such large models since in practice only

near neighbor events really affect the KDE distribution significantly. However, it is useful to

know that models with thousands of events are possible and the algorithm, although slow, still

works well with reasonably rapid convergence for the main KDE distribution.

The output of the analysis is shown in Figure 17. The focus of the original study was the end of

the Bronze Age in this region. The KDE analysis suggests a peak in density of dates at around

1050 BC with some fluctuation over the next three centuries to 750 BC. There is then a rapid

fall, staring from a peak at about 800BC with very low density from 600 to 450 BC, consistent

with the paucity of evidence for the Early Iron Age (Armit et al. 2014). The KDE analysis

would suggest that this fall, is actually underestimated in the Sum distribution because the

calibrated ranges for dates on either side of this range extend right across this period.

A legitimate question would be whether the drop in density seen in the Early Iron Age could be

due to the calibration plateau covering roughly 800–400 BC. One aspect of this can be tackled

by simulation. Multiple simulations through this period do not show any consistent patterns,

although the models do often show more variability through this period. A couple of examples

of simulations with uniform density are shown in Figure 18 and although patterns are visible

they are generally consistent with a uniform density if you take into account the variability in

the snapshot KDE distributions. This variability is greater if the error margin on the dates is
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Figure 15 A plot of the Ca flux and δ
18O isotope ratios recorded in

NGRIP (Andersen et al. 2004; Bigler 2004; Rasmussen et al. 2006;

Svensson et al. 2008) against the KDE_Model derived probability

density for dates from Paleoindian contexts in North America using

data from Buchanan et al. (2008).
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larger as is to be expected. However, the drop seen in Figure 17 would seem to be unambiguous.

Of course there is always the issue of sampling bias to consider and in general there is a tendency

not to 14C date Iron Age material because of the 14C plateau which could have a very significant

effect on such a study.Whether this is the case or not in Ireland is a question beyond the scope of

this paper.
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OxCal v4.3.2 Bronk Ramsey (2017); r:50; IntCal13 atmospheric curve (Reimer et al 2013)

(a)

(b)

Figure 16 KDE analysis of two sets of megafauna data from

(a) Stuart et al. (2004) (77 dates on Megaloceros giganteus) and

(b) Ukkonen et al. (2011) (112 dates on Mammuthus primigenius,

excluding one beyond calibration range). In each case the rug plots

show in light gray the median likelihoods of the calibrated dates,

and in black the median of the marginal posterior distributions.

The main KDE_Model distributions are shown in a darker shade

with the much noisier Sum shown in the background. The blue

lines and bands show the mean and ±1σ of the ensembles of

snapshot KDE distributions from the MCMC analysis, showing in

this case that the distributions are fairly well constrained.
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n=2020

Figure 17 Comparison of Sum distribution (above) and KDE_

Model distribution for dates on Irish archaeological sites in the

period 1200 BC to AD 400 as reported in Armit et al. (2014). The

features of the plot are the same as Figure 7.
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Having generated a density of dates, this can then be compared to the climate data as presented

in Armit et al. (2014). Figure 19 shows the density plotted both against the NGRIP δ
18O isotope

record (Andersen et al. 2004; Rasmussen et al. 2006; Svensson et al. 2008) and the climate
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Figure 18 Example simulations of 400 14C dates on uniformly

distributed events through the period 1500 BC to AD 500. The

uncertainty of the dates is assumed to be ±30 and ±100 14C yr

in panels (a) and (b) respectively. The blue bands show the ±1σ

variability in snapshot KDE distributions generated during the

MCMC analysis with more uncertainty seen in panel (b) (±100)

than in panel a (±30). There is no consistent patterning in where

rises and falls in the distribution occur and these are therefore

consistent with stochastic effects of the simulations.
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Figure 19 Plot showing the probability density from the KDE_Model

analysis of archaeological 14C dates from Ireland as summarized in Armit

et al. (2014) compared to the δ
18O isotope record of NGRIP (Andersen

et al. 2004; Rasmussen et al. 2006; Svensson et al. 2008) and the

LOWESS (smooth 0.02) climate analysis of Armit et al. (2014). The

NGRIP data is on the GICC05 timescale, all other data is based on 14C

and so on the IntCal13 timescale (Reimer et al. 2013). See text for

discussion.
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summary statistic using LOWESSmodels (smooth = 0.02) presented inArmit et al. (2014). This plot

confirms the conclusions of Armit et al. (2014) that the drop in date density actually proceeds the

climatic downturn of the mid-eighth century. In addition, the finer structure of the KDE_Model

analysis does seem to show some correlation in the period 1100–700 BC with the LOWESS curve

with a slight lag, perhaps of the order of a generation or two. This could imply that demographics is

partly being driven by climate during the later Neolithic, which would not be surprising.

DISCUSSION

These examples show the way in which the KDE_Model works in practice with real data. The

±1σ variability is useful in assessing the success in each case but additional information can be

gained by looking at the marginal posterior distributions for the g shaping parameter because

this is indicative of the nature of the distribution.

Figure 20 shows the marginal posteriors for g for a number of the examples of KDE_Model use

throughout this paper. In general, the marginal posteriors have an approximately normal dis-

tribution (Figures 20a, b, e, f, g) and are quite different to the prior. If you look at the associated

KDE distributions in these cases the ±1σ variability is also well behaved (low in magnitude and

without major fluctuations). However, there are some interesting exceptions.

The g parameter for the analysis of Irish early mediaeval settlements (Figure 11; Kerr and

McCormick 2014) is shown in Figure 20c. In this case g is not very well constrained although
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(g) Fig. 16b

(h) Fig. 17

Figure 20 Marginal posterior distributions for the parameter g in applications of the

KDE_Model for (a) the simulated bimodal distribution shown in Figure 5, (b) the

simulated multimodal distribution shown in Figure 10, (c) the Irish early mediaeval

settlements example from Kerr and McCormick (2014) shown in Figure 11, (d) the

Pennard phase from the British Bronze Age data of Needham et al. (1998) as shown in

Figure 12c, (e) the Paleoindian contexts of Buchanan et al. (2008) as shown in Figure 13,

(f) the Megaloceros giganteus data of Stuart et al. (2004) as shown in Figure 16a, (g) the

Mammuthus primigenius data of Ukkonen et al. (2011) in Figure 16b, and (h) the data of

Armit et al. (2014) as shown in Figure 17. The model is most likely to be robust when the

marginal posterior is a well defined, approximately normal distribution. If the mode is close

to 1 (as in panel (d), a single phase parameterized Bayesian model would be more

appropriate. This parameter should be assessed in combination with the variability in

output results as seen either in ensembles of outputs or in the plot of the ±1σ variability.
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the maximum likelihood is around 0.4 so suggesting a non-Gaussian distribution. On the other

hand, in this case the ±1σ variability in the KDE_Model is fairly low suggesting that the output

of the model is just not very sensitive the choice of kernel width. What you do see is some

fluctuation in the ±1σ variability which is associated with this lack of constraint in g. In this

case, the model still seems to be useful and robust despite the lack of constraint on g.

In the British Bronze Age example (Needham et al. 1998), it has already been noted that the

data for each phase is such that each phase could be very short. All of the marginal posteriors

for g parameters for the different phases are similar and that for the Pennard type is shown in

Figure 20d. The maximum likelihood for g occurs close to 1 indicating that the Silverman’s rule

(Silverman 1986) estimate for the kernel is the most appropriate. This is in turn indicative of a

unimodal distribution which can be well approximated with a normal distribution. The ±1σ

variability is also larger than the mean value showing that the result is not robust. In this case

clearly one of the parameterized Bayesian models would be much more appropriate.

Finally, the demography of prehistoric Ireland example (Figure 17; Armit et al. 2014) has a

marginal posterior for the g parameter as shown in Figure 20h. This is reasonably well con-

strained but multimodal indicating that there are a number of different possible kernel widths

that might be most appropriate. This is also reflected in the ±1σ variability visible in Figure 17,

which exhibits fluctuations through time. It is clear that some of the fine structure here might

not be significant.

In general, the ±1σ variability is a good guide to how robust the output is and the marginal

posterior for g can indicate what the reasons for excessive variability are. In particular, if the

mode marginal posterior for g is close to 1 then a parameterized Bayesian single phase model of

some kind would be much more appropriate. Studying the marginal posterior for g also shows

one of the strengths in approach of allowing g to vary in that multimodal distributions would be

missed if a maximum likelihood method had been employed, giving an over-precise assessment

of the underlying distribution.

CONCLUSIONS

There are a number of different methods available for the analysis and summary of 14C data-

sets. Where prior information is available on the nature of the datasets and their expected

distribution, parametric Bayesian modeling has been found to be very useful. In such cases

KDE plots can be used to summarize the distribution of events within such groupings in way

which both retains signal and suppresses noise.

In a very large number of cases, however, the distribution of events is not well understood and

yet parametric Bayesian analysis requires the assumption of a particular distribution in order to

deal with the problem of over-dispersion from measurement error. Here it is shown that KDE

modeling is a simple and widely applicable method that can be used in such circumstances. It

allows for multimodality in the data and is seen to be much better in recovering underlying

signal than other methods tested. The ability to assess the robustness of the KDE distributions

by looking at the variability seen in distributions during MCMC analysis is also an important

advantage over other methods such as summing which can only provide a single solution.

The KDE approach presented here is a simple one, based on kernels which have the same width

throughout the distribution. There might well be other KDE approaches which could further

refine this method. However, a simple approach has the advantage of keeping the underlying
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assumptions clear. The case studies presented here indicate that the method in its current form

could be applicable to a wide range of important research topics.

In the introduction, it was pointed out that taphonomic issues are often very important in

understanding large 14C datasets and it is important to remember that these cannot be elimi-

nated using the statistical methods described here. In all cases the distributions generated are

estimates for the distributions of the events which have been subjected to the filtering processes

of survival and sampling. In some cases, it might be argued that survival and sampling is fairly

random and that this does indeed give a reasonable representation of the original underlying

processes. In most cases this will not be the case and further interpretation is required. However,

even in these cases having a good representation of distribution of the events which have passed

through the survival and sampling process is still a significant advance.
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