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METHODS FOR SYNTHESIS OF 
SEMICONDUCTOR NANOCRYSTALS AND 

THERMOELECTRIC COMPOSITIONS 

STATEMENT REGARDING FEDERALLY 

SPONSORED RESEARCH OR DEVELOPMENT 

The U.S. Government has rights in this invention pursuant 
to contract Nos. 5000486 and NAS3-03108 awarded by the 

National Aeronautics and Space Administration (NASA), 

grant No. NIRT 0304506 awarded by the National Science 
Foundation (NSF), and grant No. DE-FG02-00ER45805 

awarded by the Department of Energy (DOE). 

BACKGROUND OF THE INVENTION 

The present invention is generally directed to micro and 
nano-sized particles formed of semiconductor compounds, 

thermoelectric compositions formed of such particles, and 

methods for their synthesis. 
Group IV-VI binary semiconductor materials are cur- 

rently of interest for use in thermoelectric applications, such 
as power generation and cooling. For example, PbTe-based 

compounds can be used in solid-state thermoelectric (TE) 
cooling and electrical power generation devices. A fre- 

quently utilized thermo-electric figure-of-merit of a thermo- 

electric device is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S2lT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

k '  

where S is the Seebeck coefficient, u is the electrical 
conductivity, and k is thermal conductivity. In some cases, a 

dimensionless figure-of-merit (ZT) is employed, where T 
can be an average temperature of the hot and cold sides of 

the device. It has also been suggested that nanostructured 
materials can provide improvements in a thermoelectric 

figure-of-merit of compositions incorporating them. 

Accordingly, there is a need for methods of synthesizing 
nanostructured semiconductors from Group IV-VI materi- 

als. There is also a need for such synthetic methods that 
provide high yields and can be readily implemented. More- 

over, there is a need for improved IV-VI micro and nano- 

structures that would exhibit enhanced thermoelectric prop- 
erties. 

SUMMARY OF THE INVENTION 

The present invention provides generally methods of 

synthesizing binary and higher order semiconductor nano- 

particles, and more particularly method of synthesizing such 
nanoparticles formed from Group IV-VI compounds. In one 

aspect, a method of the invention includes the step of 
forming a solution of a Group IV reagent, a Group VI 

reagent and a surfactant. A reducing agent can be added to 
the solution, and the resultant solution can be maintained at 

an elevated temperature, e.g., in a range of about 20" C. to 

about 360" C., for a duration sufficient for generating 
nanoparticles formed as binary alloys of the IV-VI ele- 

ments. For example, the solution can be maintained at the 
elevated temperature for a time duration in a range of about 

1 hour to about 50 hours (e.g., in a range of about 1 hour to 

about 20 hours) to cause formation of the nanoparticles. The 
reagents can be substances, either in elemental form or as 

compounds, that can provide sources of Group IV and VI 

2 
elements. Further, the above steps for generating the result- 
ant solution to be maintained at an elevated temperature can 

be performed in any order, or simultaneously. 

The terms "nanoparticles" and "nanostructures," which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 are employed interchangeably herein, are known in the art. 

To the extent that any further explanation may be needed, 
they primarily refer to material structures having sizes, e.g., 

characterized by their largest dimension, in a range of a few 

nanometers (nm) to about a few microns. Preferably, such 
10 nanoparticles have sizes in a range of about 10 nm to about 

200 nm (e.g., in a range of about 5 nm to about 100 nm). In 
applications where highly symmetric structures are gener- 

ated, the sizes (largest dimensions) can be as large as tens of 
microns. 

In a related aspect, the surfactant can include, without 

limitation, polyethylene glycol (PEG), hexadecyltrimethy- 
lammonium bromide (CTAB) or tergitol NP-9. The concen- 

tration of the surfactant in the solution can be in a range of 
about 0.001 to about 0.1 molar, and more preferably in a 

In another aspect, the Group IV element can be lead (Pb) 
and the Group VI element can be any of tellurium (Te) or 

selenium (Se). A variety of reagents containing these ele- 

ments, e.g., salts of these elements, can be utilized in the 
25 above synthesis method. For example, the reagent contain- 

ing a Group IV element can be any of lead acetate, lead 
chloride or lead sulfate. Further, the reagent containing the 

Group VI element can be any of NaSeO,, NaTeO,, Te 
powder or Se powder. 

In another aspect, the reducing agent utilized in the 

reaction solution can be, for example, hydrazine hydrate, 
sodium borohydride (NaBH,) or any other suitable agent 

that can provide a source of hydrogen atoms. 

In another aspect, a base can be added to the reaction 
solution so as to facilitate reaction of the IV-VI reagents to 

cause formation of IV-VI nanostructures. An example of a 
suitable base for use in the practice of the invention can 

include NaOH, although other bases can also be employed. 

A variety of polar or non-polar solvents can be employed 
in the above synthesis method. Some examples of suitable 

solvents include water, a mixture of water and an alcohol 
(e.g., a mixture of water and ethanol), and hexane. 

In a related aspect, after maintaining the solution at an 

45 elevated temperature for a selected duration, the reaction 
product can be collected, and the synthesized IV-VI nano- 

structures can be extracted therefrom. For example, a pre- 
cipitate containing the nanostructures can be washed with 

de-ionized water to remove unwanted byproducts, and the 

5o resulting product can be dried, e.g., under an inert atmo- 
sphere, to obtain a powder of the nanostructures. 

The generated IV-VI nanostructures can be compacted by 
utilizing, e.g., a plasma compaction process, at an elevated 

temperature (e.g., in a range of about 400" C. to about 900" 

55 C.) and under a pressure of about 100-1000 MPa to form 
thermoelectric compositions. 

In another aspect, the present invention provides a method 

of generating PbTe nanoparticles by preparing a solution 
containing a surfactant, a Pb-containing reagent and Te- 

60 containing reagent. A reducing agent, e.g., hydrazine 
hydrate, can be added to the solution, and the resultant 

solution can be maintained at a temperature in a range of 
about 20" C. to about 360" C., e.g., in a range of about 20" 

C. to about 180" C., for a time duration in a range of about 

65 1 to about 50 hours (e.g., in a range of about 10 to about 30 
hours) so as to generate a reaction product containing PbTe 

nanoparticles. 

15 

20 range of about 0.005 to about 0.05 molar. 

30 

35 

40 . 
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In a related aspect, a base, e.g., NaOH, can be added to the FIG. 11 presents a plurality of X-ray diffraction spectra of 
solution to facilitate formation of the nanoparticles. The different sets of PbSe nanoparticles synthesized under vary- 

Pb-containing reagent can be a lead-containing salt, such as ing conditions in accordance with the teachings of the 

lead acetate, lead chloride and lead sulfate. Further, some invention, 
examples of the Te-containing reagents can include NaTeO, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 FIGS. 12A and 12B present low magnification TEM 

and Te powder. images of PbSe nanoparticles prepared in accordance with 
The reaction parameters, including the molar concentra- one embodiment of the invention by utilizing a surfactant 

tion of the surfactants, can be selected so as to generate PbTe and a reaction temperature of about 100" C., 
nanoparticles having average sizes in a range of about a few FIGS. 13A-13D show SEM images of prototype PbTe 

nanometers and about 100 nanometers. For example, the i o  particles formed in accordance with one embodiment of the 

surfactant concentration can be selected to be in a range of invention and having highly symmetric structures, 
about 0.005 to about 0.05 molar and the reaction tempera- FIGS. 14A-14D show SEM images of prototype PbTe 

ture can be selected to be in a range of about SO" C. to about particles obtained by employing a hydrothermal synthesis 
120" C. to produce nanoparticles with sized in a range of method according to one embodiment of the invention 

about 5 nm to about 100 nm. 
In another aspect, the invention provides a method of FIGS. 15A and 15B show SEM images of PbTe hollow 

forming PbSe nanoparticles by preparing a solution contain- nanoboxes formed in accordance with the teachings of one 

ing a surfactant, an Se-containing reagent and Pb-containing embodiment of the invention, 
reagent, and adding a reducing agent and a base to the FIG. 16 shows an SEM image of a PbTe microflower 

solution. The solution can then be maintained at a reaction 20 synthesized in accordance with one embodiment of the 
temperature below about 360" C., e.g., in a range of about invention exhibiting secondary growth at its tips, 

20" C. to about 180" C., for a time duration sufficient to FIG. 17 shows a TEM image of PbTe nanocrystals 
cause formation of a product containing PbSe nanoparticles. prepared in accordance with one embodiment of the inven- 

In a related aspect, the surfactant can be PEG, hexade- tion by employing a solvent comprising a high volume ratio 

cyltrimethylammonium (CTAB) or tergitol NP-9, and the 25 of ethanol to water, 
Se-containing reagent can include, e.g., a selenium salt, such FIG. 18 schematically illustrates a possible mechanism 

as NaSeO,. Some exemplary compounds that can be utilized for formation of PbTe nanoboxes in accordance with one 
as a source of lead can include lead acetate, and lead embodiment of the invention, 

chloride. FIG. 19 schematically illustrates a IV-VI nanoparticle 
Further understanding of the invention can be obtained by 30 according to one embodiment of the invention that includes 

reference to the following detailed description, in conjunc- metallic domains, 

tion with the attached drawings that are described briefly FIG. 20 is a flow chart depicting various steps in a method 
below. of synthesizing metal-doped IV-VI nanoparticles in accor- 

dance with one embodiment of the invention, 
FIGS. 21A and 21B show, respectively, low and high 

resolution TEM images of prototype Ag,(PbTe),., nanoc- 

rystals synthesized by employing the method depicted in the 

flow chart of FIG. 20, 
FIG. 22 shows a high resolution TEM image of a silver- 

FIG. 2 is a schematic diagram of a plasma compaction 40 doped nanocrystal synthesized in accordance with the teach- 

ings of the invention, 
FIGS. 23A and 23B present, respectively, low and high 

resolution TEM images of Cu,(PbTe),., nanocrystals uni- 

formly doped with copper synthesized in accordance with 

FIGS. 24A and 24B present high resolution TEM images 
of some Cu,(PbTe),, formed in accordance with the teach- 

ings of the invention that include small copper domains. 

15 performed at a reaction temperature of about 125" C., 

BRIEF DESCRIPTION OF THE DRAWINGS 35 

FIG. 1 is a flow chart indicating various steps for syn- 

thesizing IV-VI nanostructures in accordance with one 
embodiment of the invention, 

apparatus to compact IV-VI nanostructures generated in 
accordance with the teachings of the invention, 

FIGS. 3A and 3B present low magnification TEM images 
of prototype PbTe nanocrystals synthesized in accordance 

with one embodiment of the invention, 

FIGS. 4A-4C show high resolution TEM images of 
prototype PbTe nanocrsytals whose low resolution images 

are shown in FIGS. 3A and 3B, 
FIG. 5 depicts an X-ray diffraction spectrum of the 

prototype PbTe nanocrystals whose images are shown in the 50 

above FIGS. 3A-3B and 4A4C,  

FIG. 6 is an SEM image of an exemplary thermoelectric The present invention generally relates to micro and 

composition generated via plasma compactification of pro- nanostructures formed of Group IV-Group VI compounds 

totype PbTe nanocrystals synthesized in accordance with and methods of their synthesis, and to thermoelectric com- 
one embodiment of the invention, 55 positions formed by employing these structures. In some 

FIG. 7A-7B are low magnification TEM images of pro- embodiments, these IV-VI structures can include metallic 

totype PbSe nanoparticles synthesized in accordance with dopants that can further enhance the thermoelectric proper- 
one embodiment of the invention, ties of compositions formed of these structures. 

FIG. 8 A 4 D  are high resolution TEM images of the With reference to a flow chart 10 of FIG. 1, in an 

prototype PbSe nanoparticles whose low magnification 60 exemplary method for synthesizing nanoparticles in accor- 
TEM images are shown in FIGS. 7A-7B, dance with one embodiment of the invention, in a step 12, 

FIG. 9 is an energy dispersed X-ray spectrum of prototype a selected quantity of a surfactant is mixed in a solvent to 
PbSe nanoparticles synthesized in accordance with one obtain a surfactant-containing solution. Surfactants gener- 
embodiment of the invention, ally refer to amphiphilic molecules in which part of the 

FIG. 10 is an X-ray diffraction spectrum of the prototype 65 molecule is hydrophilic and another part is hydrophobic. 
PbSe nanoparticles formed in accordance with the teachings Some examples of suitable surfactants include, without 

of one embodiment of the invention, limitation, polyethyleneglycol (PEG), hexadecyltrimethy- 

45 the teachings of one embodiment of the invention, and 

DETAILED DESCRIPTION 
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lammonium bromide (CTAB) and tergitol NP-9. The con- under compressive pressure to generate a thermoelectric 

centration of the surfactant can be selected based on factors composition. By way of example, a plasma pressure com- 

such as the desired average sizes and the shapes of nano- paction apparatus 24, shown schematically in FIG. 2, can be 

Particles generated in the subsequent steps. For example, in employed for this purpose. The exemplary apparatus 24 
many embodiments, the surfactant concentration can be in a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 includes two high strength pistons 26 and 28 that can apply 

range of about 0.001 to about 0.1 molar. The solvent Can be a high compressive pressure, e.g., a pressure in a range of 

Polar Or non-Polar. While in d x d i m e n t s  described below about 100 to about 1000 Megapascals (MPa), to a sample of 
water is employed as the solvent, in 0 t h  embodiments, nanoparticles, generated as described above, that is disposed 

other solvents such as alcohol, a mixture of water and within a high strength cylinder 30 while a current 32 
alcohol, or hexane can be also utilized. 10 applies a current through the sample for heating thereof. In 

In step 14, a reagent having a Group I v  element and many embodiments, the current density is in a range of about 
another reagent having a Group VI element are added to the 500 ~ / ~ ~ 2  to about 3000 ~ / ~ ~ 2 ,  The temperature of the 

solution. In some embodiments, these reagents can be salts sample (or an estimate thereof) can be obtained by measur- 

containing either a Group I v  element Or a Group VI element. ing the temperature of the cylinder via an optical pyrometer 
Alternatively, the reagents can be powders of such elements. 15 (not shown) or a thermocoup~e attached to the sample 

Some examples of suitable reagents include, without limi- surface, The temporal duration of the applied pressure and 

tation, lead acetate, lead chloride, lead sulfate, and NaSeO,. current is preferably selected so as to compact the nanopar- 

Those having ordinary skill in the art will appreciate that titles while inhibiting formation of larger particle sizes as a 

other compounds having a desired Group I v  Or Group VI result of merger of two or more of the nanoparticles (herein 
element can also be employed. 

a reducing agent is added to the solution to provide a source 

20 also referred to as nanocrystals when in crystalline form). 
with continued reference to the flow chart lo ,  in step 16, 

The above synthesis for generating binary IV-VI 

nanostructures provide a number of advantages, For 

'Odium borohydride maBH4). In many embodiments, a 25 eters, such as temperature, surfactant concentration and the 
base, such as sodium 

type of solvent, can be readily adjusted to vary the size and 
18) to the to Of IV and morpho~ogy ofthe synthesized nanostructures, as discussed 
Group VI elements to generate the desired nanoparticles. It 

should be understood that the above steps can be performed 

Of atoms. Some Of reducing example, they can provide a high yield (e,g,, kilograms per 
agents without limitation, hydrazine hydrate, 

day) of the nanostructures, Further, various reaction param- 

(NaoH) is added (step 

further below, 

in any sequence, In addition, two or more ofthe steps can be 30 

performed simultaneously, In general, the various 

To further the Of the invention and 
purposes, the synthesis Of PbTe and Only for 

pounds described are added and mixed within the solvent in PbSe nanoparticles in accordance with two embodiments of 
the invention are described below. It should, however, be quantities that allow their dissolution therein. 

In step 20, the resultant solution can be maintained at a understood that the teachings of the invention can be utilized 

temperature and for a duration sufficient to allow formation 35 to 'ynthesize Other 

of a reaction product containing IV-VI nanostructures. For BY way of example, PbTe nanocrystals were Prepared by 
example, in some embodiments, the solution can be main- mixing 50 milligrams (mg) of a surfactant (Polyethylene 

tained at an elevated temperature, e.g., a temperature in a glycol (PEG) With a molecular weight of 20,000) With 50 

range of about 200 c, to about 360" c , ,  for a sufficient milliliters (mL) of water to obtain a surfactant-containing 

duration to allow chemical reactions occurring within the 40 aqueous solution. 2.4 grams of NaOH (a base) Pellets were 

solution to generation of nanoparticles containing the added to the solution to obtain an NaOH molar concentra- 
Group IV and Group VI elements. For example, the solution tion of 1.2 in the solution. Tellerium (Te) Powder and lead 

can be transferred into a within acetate, each with a concentration of 1 mMol, were added to 

a furnace to raise its temperature to a desired elevated value, the solution while continuously stirring it. This was followed 

The solution can be maintained at this elevated temperature 45 by adding about 5 mL of hydrazine hydrate (a reducing 
for a tirne duration in a range of about one hour to about 50 agent) to the solution and transferring the solution into a 
hours, or in a range of about 10 hours to about 30 hours, to Pressure vessel (125 mL capacity). The vessel was Placed in 

formation ofthe nanoparticles, other embodiments, a furnace to maintain the temperature of the solution at about 
the solution can be kept at a lower temperature, e.g., in a 160" c .  for about 20 hOurs. Subsequently, the reaction 

range from temperature to about 600 c , ,  to allow 50 product was washed with distilled water to strip off byprod- 
chemical reactions for generating the nanoparticles to occur. ucts from the synthesized PbTe nanoparticles. 

Subsequently, in step 22, the nanoparticles can be The generated PbTe nanocrystals (herein also referred to 

extracted from the resultant reaction product. For example, as PbTe nanopowder) were then examined by employing 
in some embodiments, the reaction product is centrifuged, transmission electron microscopy (TEM), scanning electron 

washed, e.g., with distilled water to remove byproducts, and 55 microscopy (SEM) andx-ray diffractometry (XRD). By way 
a powder precipitate containing the nanoparticles is col- of example, FIGS. 3A and 3B show low magnification TEM 

lected. In some embodiments, the powder containing the images of the PbTe nanocrystals, illustrating that the nanoc- 

nanoparticles can be dried under vacuum and packed in an rystals exhibit diameters in a range of about 5 nm to about 
inert atmosphere (e.g., in a Glove Box under in an argon 40 nm. Further, FIGS. 4A-4C show high resolution TEM 

environment). The packing of the nanoparticles in an inert 60 images of the PbTe nanocrystals. These images show that 
atmosphere can advantageously inhibit formation of oxide the PbTe nanocrystals have a high degree of crystallinity and 

layers around the nanoparticles, which can adversely affect are free of amorphous oxide layers surrounding their outer 
the thermoelectric properties of a thermoelectric composi- surfaces. The lack of oxide layers is particularly advanta- 

tion generated from the nanoparticles in subsequent process- geous because such layers could significantly degrade the 

ing steps, as discussed further below. 65 electrical conductivity, and hence the figure-of-merit, of 
In some embodiments, the synthesized nanoparticles can thermoelectric compositions fabricated by employing the 

be compacted (densified) at an elevated temperature and nanoparticles. 

lv-GrOup nanostructures. 

vessel and 
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A comparison of an X-ray diffraction (XRD) spectrum of 
the PbTe nanocrystals with a corresponding standard spec- 

trum of PbTe, both of which are presented in FIG. 5, shows 

that all the peaks in the nanocrystals spectrum can be 
indexed to a PbTe alloy having face center cubic (FCC) 

structure with a lattice constant of 0.646 nm (a~0.646 nm). 
No peaks corresponding to other phases were detected, thus 

exhibiting the high purity of the synthesized PbTe nanopar- 
ticles. An average particle size of about 30 nm, calculated by 

employing the x-ray pattern and the well-known Debye- 

Scherrer formula is consistent with values discerned from 
the TEM images. 

As noted above, a surfactant (PEG) was employed in the 
synthesis of the PbTe nanoparticles. It was discovered that in 

the absence of the surfactant, the average particle size would 
increase and the crystalline quality of the nanoparticles 

would degrade. It was also discovered that the surfactant 

molecules advantageously inhibit the growth of circumfer- 
ential oxide layers when the solution is exposed to air, 

presumably by acting as capping agents during nanocrystal 
growth. 

Table 1 below presents measured thermoelectric proper- 
ties of prototype samples prepared by compacting, via hot 

press, PbTe nanopowders synthesized by employing the 

above methods as well as the corresponding properties of 
compositions obtained by compacting PbTe micropowders 

(powder of micron-sized PbTe particles). The compaction of 
the powders was achieved by utilizing a plasma pressure 

compaction process performed at an elevated temperature in 
a range of about 700" C. to about 900" C. under moderate 

pressure (100-200 MPa). 

TABLE 1 

8 
containing 50 mg of a surfactant (PEG) in 50 mL of water 
was prepared. One gram of NaOH pellets, 1 mMol of 

selenium (Se) powder, and 1 mMol of lead acetate were 

dissolved in the solution. This was followed by adding 13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 mL of hydrazine hydrate to the solution and sealing it in a 

plastic bottle. After about 24 hours of reaction at room 
temperature (about 25" C.), the resulting reaction product 

was centrifuged, washed several times with distilled water 
and a black precipitate containing PbSe nanoparticles was 

i o  collected. The precipitate was dried under vacuum at a 

temperature of about 60" C. for a few hours and the resultant 
product was packed inside a Glove Box under an argon 

environment. 
FIGS. 7A and 7B show low magnification TEM images of 

15 the synthesized PbSe nanoparticles, indicating an average 
particle size of about 20 nm. FIGS. SA-SD are high reso- 

lution TEM images of the PbSe nanoparticles, illustrating 

that the nanoparticles exhibit highly crystallized structures 
and various morphologies. An energy dispersed X-ray 

20 (EDX) spectrum of the synthesized nanoparticles, illustrated 
in FIG. 9, shows that the atomic percentage of Pb relative to 

Se is close to 1: 1, thus verifying that the nanoparticles in fact 
have a PbSe composition. Further, an X-ray diffraction 

(XRD) spectrum of the synthesized nanoparticles, presented 

25 in FIG. 10, shows that all of the observed peaks can be 
indexed to a PbSe FCC structure with a lattice constant of 

a~0 .612  nm. The absence of peaks in the XRD spectrum 
corresponding to other phases indicates the high purity of 

the nanoparticles. 
An average particle size of about 20 nm was calculated for 

the PbSe nanoparticles by employing the Debye-Scherrer 

30 

Holding 

Pressure Seebeck Electrical 

Hot Pressed (MPa) Particle Density Thermal Coeff. Cond. Power Temp 

Sample Temp (C.) Time (min) Size (g/cm3) Cond.(WlmK) (pVlK) (Slm) Factor (K) ZT 

PbTe micro(1) 750 12712 325 mesh 7.69 1.77 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr 0.11 263 18203 0.0012578 300 0.21 

PbTe micro(2) 825 12715 325 mesh 8.27 1.84 r 0.13 217 25615 0.0012008 300 0.20 

PbTe nano 800 12715 30-35 nm 7.94 1.66 r 0.08 155 15470 0.0010840 300 0.20 

It should be understood that the above data is provided for 
illustrative purposes only and is not intended to indicate the 45 

optimal thermoelectric properties of compositions that can 
be prepared from PbTe nanoparticles synthesized in accor- 

dance with the teachings of the invention. For example, the 
above data does not show enhancement of the thermoelectric 

figure-of-merit of the sample formed of the PbTe nanopar- 50 

ticles relative to the samples formed of PbTe microparticles. 
This is likely due to grain growth in the nanopowder sample 

during the hot press process. In fact, a scanning electron 
microscope (SEM) image (shown in FIG. 6) of the sample 

formed from PbTe nanocrystals by the above hot press 55 

process shows grains comparable in size to those observed 

formula and the XRD spectrum, which is consistent with the 
average particle size that can be derived by utilizing the 

TEM images. It was discovered that various reaction param- 
eters, such as temperature, reaction time and the base 

concentration, could be adjusted to vary the average particle 
size and the particle morphology. For example, reducing the 

reaction time from about 24 hours to about 6 hours in 

conjunction with doubling the concentration of NaOH (uti- 
lizing 2 grams of NaOH) while keeping the other parameters 

unchanged resulted in PbSe nanoparticles having an average 
diameter of about 16 nm. Increasing the reaction time to 

about 48 hours resulted in an increase of the average particle 
size to about 24 nm. The reaction temperature was also 

in a sample formed from PbTe microcrystals by hot press. observed to have an impact on the particle morphology. For 

This observed grain growth is likely due to the high tem- example, PbSe nanoparticles prepared at a reaction tempera- 
perature utilized for the hot press. Performing the hot press ture of about 100" C. with a lower amount of hydrazine 

at lower temperatures (e.g., in a range of about 300" C. to 60 hydrate (4 mL in 50 mL of water) exhibited an average 
about 700" C.) but at a much higher pressure (e.g., in a range diameter of about 30 nm when surfactant was utilized in the 

of about 200 to about 1000 MPa) can significantly improve reaction, and an average diameter of about 35 nm when 
the figure-of-merit of the resultant compositions, e.g., a ZT surfactant was not utilized. FIG. 11 presents XRD spectra of 

of about 2 can be achieved. the PbSe nanoparticles prepared under the above varying 

In another synthesis example in accordance with an 65 conditions. In addition, FIGS. 12A and 12B present low 
embodiment of the invention, PbSe nanoparticles were magnification TEM images of PbSe nanoparticles prepared 

prepared by employing the following steps. A solution in the presence of surfactant at a reaction temperature of 
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about 100" C., showing larger particle sizes consistent with A similar synthetic method, in which NaTeO, was 
the corresponding XRD pattern of FIG. 11. replaced with NaSeO,, was followed-albeit at a lower 

Similar to the previous example, the PbSe nanopowder temperature of about 100" C.-to prepare PbSe microflow- 

was densified at a high temperature (700-900" C.) by ers. 
employing a plasma pressure compaction procedure to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 FIGS. 14A-14C present SEM images of prototype PbTe 

obtain a thermoelectric composition in the form of pellets. 
The pellets were then cut into appropriate sizes for perform- 

ing thermoelectric measurements, as discussed in more 
detail below. 

Table 2 below summarizes the thermoelectric properties 

of two PbSe samples, one obtained by compacting PbSe 
nanocrystals, synthesized in accordance with the teachings 

of the invention, and another obtained by compacting com- 
mercially obtained PbSe microcrystals. 

TABLE 2 

nanoparticles obtained by utilizing the above hydrothermal 
synthesis approach but at a lower reaction temperature of 

about 125" C., illustrating a morphology at an earlier stage 
of development than the microflower morphology discussed 

i o  above. Further reducing the reaction temperature to about 

100" C. can result in formation of PbTe hollow nanoboxes, 
as the SEM images of FIGS. 15A and 15B show, having 

sizes in a range of about 100 nm to about 1000 nm. With 
further decrease of the reaction temperature to about 85" C., 

Holding 

Pressure Seebeck Electrical 

Hot Pressed (MPa) Particle Density Thermal Coeff. Cond. Power Temp 

Sample Temp (C.) Time (min) Size (g/cm3) Cond.(W/mK) (pV/K) (S/m) Factor (K) ZT 

PbSe micro 850 127/2 325 mesh 8.2 1.63 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr 0.10 141 78790 0.001562 300 0.29 

PbSe nano 750 100/5 about 20 nm 7.8 1.7 192 55100 0.002034 300 0.36 

The data shows that the figure-of-merit of the sample 

prepared by utilizing PbSe nanocrystals shows a slight 

enhancement relative to that of the sample prepared from 

PbSe microcrystals. It should, however, be understood that 

this data is only for illustrative purposes and is not intended 

to indicate an optimal thermoelectric figure-of-merit of a 

composition formed of PbSe nanocrystals synthesized in 

accordance with the teachings of the invention. For example, 

further optimization of the compaction process, e.g., per- 

forming it at a lower temperature but at a much higher 

pressure (e.g., 1000 MPa), can result in additional enhance- 

ment of the composition's figure-of-merit. 

It was also discovered that PbTe and PbSe microstructures 

and nanostructures having a variety of morphologies, 

including those with a high degree of symmetry, can be 

synthesized by employing the above methods through 

adjustment of various factors, such as reaction temperature, 

time and relative concentrations of various reactants. By 

way of example, FIGS. 13A-13D show SEM images of 

PbTe highly symmetric nanostructures, herein referred to as 

microflowers, synthesized in accordance with one embodi- 

ment of the invention. FIG. 13B is an SEM image of the 

same microflower as that shown in FIG. 13A but tilted at 45 

degrees and FIG. 13C is an SEM image of another micro- 

flower viewed along a corner thereof, demonstrating 8 
corners and 4-fold in-plane symmetry. In a typical synthesis 

of PbTe microflowers, 50 mg of PEG and 2.4 g of NaOH 

were added to 50 mL of de-ionized water. After a few 

minutes of stirring, 1 mMol of NaTeO, and 1 mMol of PbAc 

(lead acetate trihydrate) were added to the solution and 

stirred until the reactants were dissolved. Finally, about 10 

mL of hydrazine hydrate was added to the solution and the 

solution was transferred to a Teflon-lined autoclave. The 

autoclave was sealed and kept in a furnace at a temperature 

of about 160" C. for about 10 hours, and subsequently 

cooled down to room temperature. The resultant reaction 

product was washed several times with water to remove 

unwanted byproducts from the synthesized PbTe nanostruc- 

tures. 

25 

PbTe nanoparticles having substantially cubic morphologies 

and having sizes in range of about 10 to about 50 nm (an 

average dimension of about 30 nm) were obtained. 

The above examples indicate that the morphologies of the 
30 nano and microstructured can be controlled by adjusting the 

reaction temperature. It was observed that increasing the 
reaction temperature to about 185 C. resulted in secondary 

growths on the tips of microflowers, as shown by the SEM 
image of FIG. 16, while substantially preserving the micro- 

35 flower morphology and size. Similar morphologies can be 

produced by utilizing other sources of Te, such as TeCl,. 

Moreover, similar morphologies of PbSe micro and nano- 

structures can be observed by adjusting the reaction tem- 

4o perature, albeit at temperatures lower than those employed 
for synthesizing the PbTe structures. For example, PbSe 

microflowers were obtained at a reaction temperature of 
about 100" C. and PbSe nanocubes having average dimen- 

sions of about 30 nm were obtained at reaction temperatures 

The concentration of the surfactant can also play a role in 

determining the morphology of the synthesized micro and 

nanostructures. For example, in the absence of the PEG 
surfactant in the above exemplary synthesis, no hollow box 

50 morphology was observed. Rather, micro-sized solid cubic 
particles were produced. Without being limited to any par- 

ticular theory, at sufficiently low temperatures (e.g., in a 
range of about 20" C. to about 200" C.), nanocubes are 

typically produced due to the stabilization effects of the 

55 surfactant. At higher temperatures of about SO" C., generally 
cubic nanparticles can first grow to a critical size determined 

by specific energy and Gibbs free energy, which are depen- 
dent on the reaction conditions. Due to the steric stabiliza- 

tion effect of the surfactant, the cubic nanoparticles can then 
60 act as nucleation particles to allow the growth of secondary 

layers from their comers at which the surfactant concentra- 

tion is lower. 

In some embodiments, a mixture of ethanol and water can 

be utilized as the solvent, together with a surfactant, in the 

65 above synthetic methods to generate Group IV-VI nanoc- 
rystals having regular cubic shapes and hollow interiors. For 

example, FIG. 17 shows a TEM image of PbTe nanocrystals 

45 close to room temperature (e.g., 300" K). 
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prepared by employing a high volume ratio of ethanol to With reference to a flow chart 36 of FIG. 20, in an 
water (e.g., a volume ratio of 8 to 1). These nanocrystals exemplary method for synthesizing the doped nanoparticles 

show a regular cubic shape with an edge length of about 80 described above, in a step 38, selected quantities of a 

to about 180 nm. A strong contrast observed between the surfactant (e.g., PEG) and a base (e.g., NaOH) are dissolved 
dark edges and the bright center indicates a hollow interior zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 in a solvent, such as water. This can be followed by adding 

and a wall thickness of about 40 nm. Reducing the volume reagents containing Group IV and Group VI elements to the 
ratio of ethanol to water (e.g., down to 1 to 1) resulted in solution (step 40). A selected quantity of a reagent contain- 

obtaining a mixture of solid and hollow nanocrystals with ing a metallic element of interest (e.g., silver or copper), as 
irregular shapes. well as a reducing agent can then be added to the solution 

The above illustrative examples show that both the sur- i o  (step 42). In step 44, the solution can be kept at an elevated 

factant and the volume ratio of ethanol to water can play a temperature, e.g., a temperature in a range of about 20" C. 
role in formation of nanoboxes. Without being limited to any to about 360" C., for a duration in a range of about 1 hour 

particular theory, a possible mechanism for formation of the to about 50 hours (e.g., in a range of about 5 hours and about 
above PbTe nanoboxes, shown schematically in FIG. 18, can 20 hours) to cause formation of nanoparticles doped with the 

be understood as follows. Upon dissolution in water, the 15 metallic element. After the reaction, the resulting product 
PEG surfactant molecules aggregate into structures called can be washed, e.g., with distilled water and ethanol, to 

micelles in which the polar hydrophilic heads of the chain- remove impurities, dried, e.g., in vacuum at a temperature of 

like surfactant molecules are exposed to water and their about 60" C., and packed under an inert atmosphere. 
hydrophobic hydrocarbon chains are substantially protected Similar to the previous embodiments, the synthesized 

from contact with water. In addition, the presence of a large 20 doped nanoparticles can be densified by employing a plasma 
amount of activated oxygen in PEG molecular chains can pressure compaction technique, such as that described 

result in strong interactions between PEG and metal ions. above. 
For example, Pb2+-PEG chain structures can be formed To further elucidate the efficacy of the above method for 

when PEG and Pb2+ are mixed together in a solvent. Upon synthesizing metallically doped nanoparticles and only for 

gradual dissolution of Te particles in the solvent, they form 25 illustrative purposes, prototype nanoparticles doped with 
Te2- ions that can react with Pb2+ to form hollow cubic PbTe silver or copper were synthesized, as discussed in more 

nanoboxes with micelles acting as templates and the surfac- detail below. For example, Ag,(PbTe),., nanocrystals were 
tant PEG and their respective counter-ions being selectively synthesized by dissolving about 50 mg of PEG and 2.4 

adsorbed on the PbTe crystal faces. grams of NaOH in about 50 mL of water. Subsequently, 
In another aspect, the invention provides thermoelectric 30 about 1 mMol of Te powder and about 350 mg of lead 

compositions, and methods for their synthesis, that include acetate were added to the solution and stirred for about 10 

nanoparticles formed as a Group IV-Group VI alloy, such as minutes. This was followed by adding about 9 mg of silver 
PbTe or PbSe, and having a metallic dopant, such as copper acetate and 5 mL of hydrazine hydrate to the solution. The 

or silver, dispersed through the alloy portion. The metallic resultant solution was then quickly transferred into a Teflon- 
dopant atoms can be uniformly distributed within the IV-VI 35 lined autoclave and sealed. The solution was kept in a 

alloy. Alternatively or in addition, in some embodiments, the furnace at a temperature of about 205" C. for about 20 hours. 

dopant atoms can form metallic domains distributed, e.g., Subsequently, the reaction product was washed with water 
non-uniformly, through the nanoparticle. By way of and absolute ethanol several times to remove any impurities, 

example, FIG. 19 schematically illustrates an irregularly- dried in a furnace at 60" C. under vacuum for a few hours, 
shaped nanoparticle 34 having a portion 34a formed of a 40 and packed in a Glove Box under an inert atmosphere. 

Group IV-Group VI alloy (e.g., PbTe or PbSe) and a FIGS. 21A and 21B show, respectively, low and high 
plurality of metallic domains 34b (e.g., silver or copper resolution TEM images of prototype Ag,(PbTe),., nanoc- 

domains) surrounded by the alloy portion 34. The metallic rystals synthesized by utilizing the above synthesis method. 

domains are typically non-uniformly distributed within the An energy dispersed X-ray (EDX) study showed that the 
nanoparticle. In some embodiment, the portion 34 can also 45 atomic composition of the nanocrystals can be characterized 

include the metallic dopant atoms forming chemical bonds by Ag,,(PbTe),,,. In some of the nanocrystals, the silver 
with one or more of the alloy's atomic constituents. The dopants form domains having sizes of a few nanometers, as 

particle 34 can have a size (e.g., characterized by its largest a high resolution TEM image of one such silver-doped 
dimension) in a range of about a few nanometers to about nanocrystal presented in FIG. 22 shows. As noted above, 

1000 nanometers, e.g., in a range of about 10 nm to about 50 such domains can advantageously improve the figure-of- 

200 nm or in a range of about 5 nm to about 100 nm. merit of thermoelectric compositions formed from such 
In some embodiments, the metallic dopant has an atomic nanocrystals, for example, by enhancing phonon scattering 

concentration of less than about 30 percent relative to the and providing a high electrical conductivity. 
alloy portion of the nanoparticle. For example, the dopant's The metallic dopants suitable for use in the practice of the 

relative atomic concentration can be in a range of about 1 55 invention are not limited to silver. By way of another 
percent to about 20 percent. example, nanocrystals doped with copper were synthesized 

Without being limited to any particular theory, the inter- in a manner similar to that employed for preparation of 

face boundaries between the metallic domains and the alloy silver-doped nanocrystals. More specifically, the same syn- 
portions of the nanoparticles can result in an increase in thetic steps as those described above were followed but 

phonon scattering. However, the incorporation of metallic 60 rather than employing silver acetate, 11 mg of copper acetate 
domains within the alloy portions of the nanoparticles does monohydrate was used as a source of copper and a reaction 

not substantially degrade their electron transport properties, temperature of about 200" C. was utilized. 
and in some cases enhances these properties. The enhanced FIGS. 23A and 23B present, respectively, low and high 

phonon scattering, together with substantially unchanged (or resolution TEM images of Cu,(PbTe),., nanocrystals uni- 

enhanced) electron transport properties, can result in 65 formly doped with copper. FIGS. 24A and 24B present high 
improved thermoelectric properties of compositions formed resolution TEM images of some of these nanocrystals, 

of the doped nanoparticles. indicating that some copper-doped nanocrystals include 



US 7,255,846 B2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
13 14 

small copper domains dispersed within the Cux(PbTe),, 16. The method of claim 1, further comprising compac- 
matrix. Similar to the silver-doped nanocrystals, these cop- tifying said nanoparticles by applying a pressure in a range 

per nanodomains also improve the figure-of-merit of ther- of about 100 to about 1000 MPa thereto at a temperature in 

moelectric compositions formed of the copper-doped nanoc- a range of about 400 C. to about 900 C. 

rystals. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 17. A method of generating PbTe nanoparticles, compris- 

Those having ordinary skill in the art will appreciate that ing 
various modifications can be made to the above embodi- a pb-con- 
ments without departing from the scope of the invention. For 
example, suitable reagents other that those utilized in the 

sizing IV-VI nanostructures in accordance with the teach- 
ings of the invention. 

What is claimed is: 
1. A method of synthesizing nanoparticles, comprising: 

forming a solution of a Group IV reagent and Group VI 15 

adding a reducing agent to the solution, and 

a solution containing a 

taining reagent and a Te-containing reagent, 

adding a reducing agent to said solution, 
above embodiments can be in synthe- lo maintaining the solution at a temperature in a 

range of about 20" C. to about 360" C. for a time 

duration in a range of about 1 hour to about 50 hours 
so as to generate a reaction product containing PbTe 

nanoparticles. 

18. The method of claim 17, further comprising washing 
said product to strip off byproducts from said nanoparticles. 

said 

said reducing agent to be hydrazine hydrate. 

2, ne method of claim 1, further comprising selecting 21. The method of claim 17, wherein said Pb-containing 
said surfactant to be any of polyethylene glycol (PEG), reagent comprises a lead-containing salt. 

hexadecyltrimethylammonium bromide (CTAB) or tergitol 22. The method of claim 21, wherein said Pb-containing 

NP-9. 25 salt comprises any of lead acetate, lead chloride and lead 
3. The method of claim 1, further comprising selecting sulfate. 

said Group IV element to be Pb or Sn. 23. The method of claim 17, wherein said Te-containing 
4. The method of claim 1, further comprising selecting reagent comprises any of Te powder, NaTeO,. 

said Group VI element to be any of Te or Se. 24. The method of claim 17, further comprising adding a 

5. The method of claim 1, further comprising selecting 30 base to said solution so as to facilitate formation of the 
said reagent having a Group IV element to be any of lead 
acetate, lead chloride, or lead sulfate. 25. The method of claim 24, further comprising selecting 

6. The method of claim 1, further comprising selecting 

reagent and a surfactant, 

maintaining the resultant solution at an elevated tempera- 
19. The method Of 17, further 

17, further 
ture in a range of about 20 to about 360" C. for a time 

Group IV and Group VI elements. 

to be water. 

duration so as to generate nanoparticles containing said 20 20. The method Of 

nanoparticles. 

said base to be N ~ O H ,  
said reagent having a to be Of Te 26, The method of claim 17, further comprising selecting 

35 a molar concentration of said surfactant so as to generate powder, Se powder, NaSeO,, or NaTeO,. 

said reducing agent to be any of a hydrazine hydrate, sodium 
borohydride (NaBH,). 

8. The method of claim 1, further comprising selecting 
said time duration to be in a range of about 1 hour to about 40 

50 hours. 
9. The method of claim 1, further comprising adding a 

base to said solution so as to facilitate reaction of said 

reagents for generating said nanoparticles. 
10. The method of claim 9, further comprising selecting 45 

said base to be any of NaOH. 
11. The method of claim 1, further comprising selecting 

said solvent to be any of water, alcohol and hexane. 

12. The method of claim 1, further comprising centrifug- 
ing a product generated subsequent to the step of maintain- 50 salt, 

ing the solution at an elevated temperature to collect a 
precipitate containing the nanoparticles. 

13. The method of claim 12, further comprising washing 

7. The method Of 1, further comprising PbTe nanoparticles having average sizes in a range of about 

a few nanometers to about 200 nanometers, 

27. A method of forming PbSe nanoparticles, comprising 

preparing a containing a surfactant, and Se- 
containing reagent and a Pb-containing reagent, 

adding a reducing agent and a base to the solution, 

maintaining the resultant solution at a temperature below 
about 360" C. for a time duration sufficient to cause 

formation of a product containing PbSe nanoparticles. 

28. The method of claim 27, further comprising selecting 
said surfactant to be any of PEG, CTAB and tergitol NP-9. 

29. The method of claim 27, further comprising selecting 

said &-containing reagent to be any of Se powder or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan Se 

30, The method of claim 29, further comprising selecting 

said Se salt to be NaSeO,. 

said lead-containing reagent to be a lead-containing salt. 
said precipitate to byproducts from the generated 31. The method Of 27, further 

nanoparticles. 55 

14, The method of claim 1, further comprising selecting 

said surfactant and its concentration such that said resultant 

eters to about 200 nanometers. 

a molar concentration of said surfactant in the solution to be 

32. The method of claim 31, wherein said lead-containing 

comprises lead acetate. 

nanoparticles have sizes in a range of about a few nanom- 33. The method of claim 27, further comprising selecting 

said reaction temperature to be in a range of about 20" C. to 

15. The method of claim 14, further comprising selecting 60 about 360" c .  

in a range of about 0.001 to about 0.1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* * * * *  


