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SOR-Met hods for the Eigenvalue Problem
with Large Sparse Matrices

By Axel Ruhe

Abstract. The eigenvalue problem Ax = \Bx, where A and B are large and sparse
symmetric matrices, is considered. An iterative algorithm for computing the smallest
eigenvalue and its corresponding eigenvector, based on the successive overrelaxation
splitting of the matrices, is developed, and its global convergence is proved. An ex-
pression for the optimal overrelaxation factor is found in the case where A and B are
two-cyclic (property A). Further, it is shown that this SOR algorithm is the first order
approximation to the coordinate relaxation algorithm, which implies that the same
overrelaxation can be applied to this latter algorithm. Several numerical tests are
reported. It is found that the SOR method is more effective than coordinate relaxation.
If the separation of the eigenvalues is not too bad, the SOR algorithm has a fast rate
of convergence, while, for problems with more severe clustering, the c-g or Lanczos
algorithms should be preferred.

1. Introduction. In the present contribution, we set out to find solutions
of the eigenvalue problem

(1.1) iA-\B)x=0,

where A and B are n X n real symmetric matrices and B is positive definite.
We will study direct iterative algorithms which are applicable in cases when
A and B are large and sparse, so that neither inversions nor similarity trans-
formations are convenient to apply. Usually, we are interested in one or a
few of the smallest eigenvalues of (1.1) and their corresponding eigenvectors.

The eigenvalues are the stationary values of the Rayleigh quotient

(1.2) p{x): = x"Ax/xHBx,

and several of the algorithms proposed for the solution of (1.1) work by
applying some optimization method to (1.2). Hestenes and Karush [12]
studied the application of gradient methods (steepest descent); more
sophisticated algorithms, such as conjugate gradients, were studied ex-
tensively subsequently [2], [8], [9], [18]. Applying the Ritz method to
(1.2) yields the Lanczos algorithm [15], which has also been studied by
several authors [17], [10], [18]. The conceptually simplest algorithm of all
is coordinate relaxation where (1.2) is minimized by varying one coordinate
of x at a time. Its origin is unknown but it has been described and studied
by Faddeev and Faddeeva [6], Kahan [14], Schwarz [19], and Shavitt et al.
[24L_
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696 AXEL RUHE

The eigenvalue problem (1.1) is closely related to the linear systems problem,
and most of the algorithms proposed for (1.1) have counterparts in the linear
systems case. In that case, the theory of iterative methods has been developed
much further, the results can be found in the recent monograph by Young
[21]. It is interesting to note that the most successful algorithms for the
solution of linear systems, such as the SOR method, also have counterparts
for the eigenvalue problem, but that they have not been studied very much
earlier in this context, with a few exceptions [3]. In the present contribution,
we will develop the algorithms of SOR type for the eigenvalue problem up
to the same level as they have been developed for the linear systems problem.
We will show that the theory is closely related to that of the linear systems
case, and the applicability and rates of convergence of the algorithms are
also comparable. We will also show that the coordinate relaxation algorithm
is closely related to the SOR method, to use the terminology of Ortega and
Rheinboldt [16], who consider application of the SOR concept to nonlinear
problems; the two methods are applications of nonlinear SOR and 1-step
Newton SOR methods, respectively, to the eigenvalue problem. As far as
the present author has seen, these generalized linear iterations have not
been studied in detail, except for the case of a nonlinear operator being the
sum of a linear and a diagonal one. Here, we extend the theory of such itera-
tions to another important special case. It is interesting to note that methods
of this kind are very often used ad hoc by nonspecialists, therefore it is valuable
to analyze them theoretically in some frequently occurring cases.

We will start by formulating the algorithms and introducing some notations
in Section 2. In Section 3, we prove under which conditions the algorithms
are globally convergent. Though the conditions for convergence are more
complicated than in the linear systems case, it is a relatively easy matter
to make sure that they are fulfilled when applying the algorithms in practical
cases. We continue by studying convergence rates and the choice of relaxation
parameter w in Section 4. It is possible to develop the theory fully when
A — \B is 2-cyclic (property A), and we see that the rate of convergence is
dependent on the separation of the smallest eigenvalue from the rest of the
spectrum. An optimal choice of w gives at least as great an improvement
over simple iteration as does optimal Chebyshev semi-iteration, exactly as
it does in the linear systems case [21]. Finally, in Section 5, we report several
numerical tests and give a few examples with comparisons to other relevant
algorithms. We compare the SOR methods to the Lanczos and c-g methods
which were studied in an earlier report [18] and find that they give comparable
results.

Our general analysis can easily be extended to cover application of other
iterative algorithms for linear systems to the eigenvalue problem (1.1),
provided that they are constructed by means of a convergent splitting [21].
Such methods, applicable to finite difference analogues to partial diiferential
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equations, are ADI methods (see [21]), symmetric factorizations [22], and
direct Poisson solvers (see [23] and [25] for a similar application), as well
as different semi-iterative methods [l], [21]. It is our purpose to report
tests of some of these methods in a later report.

We also postpone the study of algorithms consisting of inverse iteration
based on an algorithm for direct solution of sparse linear systems, since
such methods, at least at the present state of the art, have to be specially
tailored to the problem at hand [11 ].

2. Formulation of the Algorithms. If we count multiplicities, (1.1) has n
real eigenvalues \i,---,K; we order them so that

X! è X2 g • • • g A,.

Since B is positive definite, it defines a scalar product

{x,y)B: = xHBy

and, correspondingly, a norm

|*b:-<*,x)iP.
We denote the J3-orthonormalized eigenvectors by Ui,---,Un.

An iterative eigenvalue algorithm produces a sequence of vectors Xq,Xi, • ••,x,,
where
(2.1) x,+1: = x,-p„      s=0,1, •••,

and, in case of convergence, the corresponding normalized vectors x.: =
*»/||*«|b converge towards some u,; in most cases, we are interested in a
sequence which converges towards u,. The Rayleigh quotients

(2.2) ps : = p (x.) = x?Ax,/x?Bx. = x?Axs

at the same time converge to X, and the normalized residual vectors

(2.3) fs: = rixs)=iA-psB)x.

converge to zero.
We let the rate of convergence be measured by t, by means of

(2.4) Ä = suPriimsup||rs|1/sl

where the supremum is taken over all sequences converging to u,. We see
that 0 ^ R < 1 and that — ln(Ä) gives the rate sought.

Now we are ready to formulate our two applications of the SOR concept
to the eigenvalue problem. A relaxation method is an iterative method where
each iteration, or major step, is divided into n minor steps, in each of which
one of the unknowns is modified in order to satisfy the corresponding equation.
In case of overrelaxation, the correction is multiplied by an overrelaxation
factor oi.
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This can be described in matrix form, if we decompose the matrices occurring
in a diagonal part D, a strictly lower triangular part E, and a strictly upper
triangular part F

(2.5) X = D{X) - E{X) - F{X).
The nonlinear equation {A — p{x)B)x=0 will in each step be replaced by
the linear equation C„xs+1 = 0 with

(2.6) CS=A-T,B,
where T. =diag(f,p) consists of approximations to p{x), tsp being the approxi-
mation used in the sth major and pth minor step.

If we further denote the multiplied corrections by

(2.7) W. = diag(«««,)

and current parts by D, = £)(CS) etc., we get the following matrix equation:

D,(x,+1 - x.) = - W,{D.xs - Esxs+l - F.xs).

Solving this for x,+l, we obtain:

(2.8) xs+1 = M{ W„ T.)xa=xs- VzlCsxs,

(2.9) V, = iWz'Ds-Es).

Different choices of the parameters Ta and Ws now give different algorithms.
The optimal choice of parameters corresponds to the algorithm of coordinate
relaxation [6],  [14], [24] while there are several simpler choices that will
be our main interest in this contribution.

Algorithm 1 {Coordinate Relaxation). Modify t in each minor step:

tsp=P {Xv)

and choose asp optimally so that

(2.10) p{xv +w~ï{xtp+1 -x.p)) =minM(xsp -£ep).
£

In order to find the optimal a, we see that

n(x-(ep) ={xHAx-2te?Ax+i?e?Aep)/{¡xl2B -2^{ep,x)B +í2|ep|||)

which is minimized for £ satisfying the equation [14]

(2.11) a|2-í+»,=0,

(2.12) v = e»{A - p ix) B) x/ (app - p (x) bpp),

(2.13) a = [(eJ,,x)B-|ep||,]/|ac||.

The first-order approximation |=>7 corresponds to asp = l, as can be seen
from (2.7), and the optimal choice is a =2/{l+{l-Aar,)1'2). We have to
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prescribe that p{x) <uiep), otherwise we have  to  choose  a  different  sign
in solving (2.11) to get a minimum. For small r¡, we note that

(2.14) a = l+av + 0{v2).

We use this observation to formulate our second algorithm.
Algorithm 2 {SOR Method). Modify t in each major step

tsp = ts =p{x„),      Ts = t,I,

and choose av = 1 so that Ws =ul.
Now the matrix formulation (2.8) simplifies to

(2.15) x8+1 = M{w, ts)xs=x,-ps=x,- Vf V„

where

(2.16) V. = (w-lDt-E.),

M(«,t): = Jlf(«/,t/)
= (/ - VZ'C.) = (u-1D,-E.)-1((w-1 - D D. +E?).

We note that it is possible to develop eigenvalue algorithms on the basis
of many other splittings

(2.18) A-t.B = V,-H„

where V„ is readily invertible and Hs has small norm—we just use the
formulation (2.15). A closely related algorithm in which only A is split

(2.19) V.=t*-lD(A)-E(A)

has been described by Buffoni [3]. Now and then we will cite results for
that algorithm and discuss its relation to Algorithm 2.

3. Global Convergence. Proofs of the global convergence of coordinate
relaxation have been given [6], [14]; they also apply to overrelaxation with
« <o! < 2 — t, 0 <€ < 1. We therefore confine our attention to Algorithm 2.
First, we will demonstrate under which conditions the Rayleigh quotients
(2.2) mi,M2» • • -,m», • • • form a decreasing sequence, since this gives a guarantee
that ps converges to some value p. Secondly, we study whether this p is an
eigenvalue of (1.1) or, hopefully, the smallest eigenvalue.

First, we state an important identity that relates V. defined by (2.16)
to C, = A — t8B and its main diagonal. We note that

Vt + Vj = Cs + i2-o1)w'1D„

which implies that for any x

(3.1) x"Vtx=k[(2 -w)w-1xHD8x+xllCsx].

This identity is used in proving the following two lemmas which give the
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conditions for convergence of Algorithm 2.
Lemma 3.1. Let x. and p. be computed by Algorithm 2 (2.15). Then

(3.2) m,+i -n. = - (2 -w)<*-1p?D.p,/lx-+1¡%,

where Ds and p, are defined by (2.7) and (2.1).
Proof. We calculate

(f»«+i — Ps)x,+\Bxs+i = xs+1Axs+1 — psxa+ïBxs+i

= -2psHrs+psH{A-p.B)ps

= -2p?VsPs +psH{A -psB)ps

and apply (3.1) to get (3.2).   Q.E.D.
Lemma 3.1 gives the condition for the sequence p. to decrease. Evidently,

this takes place whenever the matrix ((2 — u>)/<Z)D{A — tsB) is positive
definite. Thus we have

Lemma 3.2. A sufficient condition for ps to form a nonstationary decreasing
sequence is

(3.3) (a)    0 < ai < 2,

(3.4) (b)   mo < mina„ /&,, = minp (e¡).i i

Note the relationship between condition (b) and the Rayleigh quotients of
the coordinate vectors. By reversing (b) appropriately, we get an increasing
sequence instead. When we use the algorithm given by (2.19), we have to
add —us||p,|||/ ||xs+1||! to the right-hand side of (3.2) [3] and so we need that
(2 — tj>)D{A) +wpsB has to be positive definite. This gives us

Lemma 3.3. 7/ Vs is given by (2.19) and Xi > 0, the ps form a decreasing
sequence whenever

(3.5) (a)   0<ü,<2/(l-X1-Xffiin(ß)/max(a11))

regardless of the starting vector.
We note that (3.5) gives a larger interval for m than (3.3), and contains

no assumptions on the starting vector. These lemmas can now be combined
into:

Theorem 1. If (3.3) and (3.4) are satisfied, then Algorithm 2 converges in
the following sense

Ps^P =A¡. /",—»0.

Proof. Then Lemma 3.2 implies that ms+i^m«, m» è Àiî it is true that
p,—>p and ps — m»+i—»0. But since (3.2) implies that

p, — p„+\ = (2 — ¡>i)ù3lp, D.pJ || xJ+11| |

^ (2 -o))a>_1 • min(a„ -M<À;)p.iW||x.+i||ii
^ const||p.HI,
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it follows that ||p, |B^0. But by (2.15), t, = V5p, and, since || V. | is bounded,
it follows that ^-+0.   Q.E.D.

Obviously, we have to prescribe that X, should be simple in order to be
sure that St. converge, otherwise the limit points of the sequence xs may
form a continuum in the subspace spanned by the eigenvectors corresponding
to X,. Moreover, we cannot be sure of getting convergence towards Xi unless
we choose such a starting vector that mo < ^2-

4. Asymptotical Convergence Rates. First we show that, provided our general
algorithm converges, it will approach a linear iteration in the limit, and
then we study this linear iteration in order to see how we shall choose the
parameter w.

As can be seen, e.g. in [20], the eigenvalue approximations p. converge
much faster than the residuals t. or the vectors x,. Further, the parameters
ajp in Algorithm 1 soon approach their limiting value 1, as we see from (2.14).
The limiting linear iteration will be (2.8)

(4.1) x,+1=Mx„      M=M(»,\1).

We now compare the computed xs+i with what the linear iteration (4.1)
would have produced. {V and C denote the limiting values of V, and C,
(2.6), (2.9).)

x,+1 -MfeAt)« = (/ - V.-'CJx. -(I- VlQx.
(4.2) ={V1C-Vz1C.)x.

= V1(C-C.)x. + (V1 - V.l)C,x,.

Now we can bound

(4.3) |C-C.|2 = |diag(X1-Mv)ß|2 = ^i-(A2-X1)1|'-.|l.
(44) " V _1 ~~ V'"112 = l V"1(y' ~ V)V,lh

^ K2\W, -*I\2+K3{\2 -XO-'Ir.ll.
The proof of (4.3) is a simple application of the results in [20] while, for
(4.4), we additionally use (2.9) to get the identity:

V-1 -Vrl = V-1(V.-V)VfI

= V"1! -U-HW. -wl) WZ1D, +W-HD. -D)- {E, -E) \ Vz1.
If we now prescribe that convergence has occurred so far that i < a^ < 2

in (2.7), constants Klf K2, and K3 can be found that are independent of s.
Since (2.12) implies |i;| ^ K41| rs || B, we see that

¡W.-*I¡,£Ktlrt\B,
so we have bounded both terms of (4.2) by second order quantities in
||rs||B. Consequently, we will get full information on the asymptotical
behavior of the iterates by studying the limiting linear iteration (4.1).
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We note that for any choice of V„ Ui is a fixed point of the iteration and,
consequently, the matrix of the linear iteration (4.1) has ux as eigenvector
to the eigenvalue 1, Miw,^)^ = ux and so the iteration (4.1) converges to
a vector in the subspace of ux, provided that the remaining eigenvalues are
less than 1 in magnitude, and the rate of convergence (2.4) is determined by

Ä=max|X,(M(ai,X1))|.
A,¡¿1

The fastest asymptotical rate of convergence will be obtained if w is chosen
so that R is minimized. The considerations we have to make are quite similar
to those in the linear systems case: we have to determine tu so that all the
eigenvalues of M{w, Xi), except the dominant one Xi =1, will get the same
absolute value. This is possible in the case that A — \XB is a 2-cyclic matrix
(property A) [21].

Theorem 2. Suppose that limt. = X! and that C = A —\XB satisfies property A.
Then the eigenvalues r¡ of M(üj,Xi) and p of the Jacobi iteration matrix

(4.5) ® = I - D{Q1/2CD{C) 1/2

ordered as

1 = Ml > M2 = 1 — « £? M3 =   •••   è Mr» = — 1

satisfy the relation

(4.6) („-l+o^oiV.

If we choose ui = wc where

(4.7) coc=2/(1+(1-mÍ)1/2),

we get the best asymptotic rate of convergence

R =uc -1 = [1 - (1 -plY'2}/ [1 + (1 -m!)1/2]
(     ' =l-2v/2i1/2 + 0(t).

Proof. In this case,

M(w,Xx) = (- D{C) -EiC)j     Q D{C) +£(C)r)

the ordinary SOR iteration matrix for C, and we can apply the theory from
the linear systems case [21]. Since C is singular, the Jacobi iteration matrix
& will have m = ± 1 as a pair of eigenvalues and they will correspond to
?; = 1 and r¡ = {u — l)2. For <■) > a>c (4.7), all the other eigenvalues of B will
correspond to complex eigenvalues y with \n\ =«—1, while if w<uc, p2
will correspond to a real v with |?/| > a>c — 1. In the case o)=coc, when all
the eigenvalues of M{ai,\i) except two are situated at the circle \n\ =wc — 1,
R is thus minimized and gets the value (4.8). Q.E.D.

The eigenvalues of the Jacobi matrix Z0  are closely related to those of
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the original problem (1.1). Consider the following special case
Corollary 1. Suppose B = I and D{A) =dl. Then

^ = /-(A-X1/)/(d-X1),
(4.9)

Mjk =1 - (X* -\/)/{d -Xi) =1 -2(Xt -\1)/{\n -\x).

The last equality is a consequence of the fact that a matrix with property
A and zero diagonal elements has pairs of eigenvalues \k = —K-k. When B is
not diagonal the situation is somewhat more complicated, but we believe
that (4.9) will also give a decent approximation to pk in other cases where
it is possible to apply the SOR theory.

When (4.9) holds, we get (4.8), R = 1 - 4JT1/2 + 0{Kl) where

(4.10) K = (X„-X1)/(X2-X1)

the condition number of C = A— \XB.  (Compare [18].)
If we use the V, chosen in [3] (2.19) and make the same assumptions as

in Corollary 1, we get the limiting iteration matrix

M = {I-(J,Er1i{l-o1)I+wET + \1wd lI),

E = d1EiA)

and a simple analysis shows that the eigenvalue relation (4.6) is replaced by

(,-l+a,(l-X1d1))2=WV

and we get
Theorem 3. Let Vs be chosen by (2.19) and A satisfy property A and D{A) =

dl and B = I. Then the best rate of convergence occurs for

(4.11) a, =2/3/(1 +(1-^)1/2)

where

/8=d/(d-X1)=(XB+X1)/(X„-X1),

M2=l-X2/d = l-2X2/(XB+X1).

The best rate is given by

R = wß'1 -1=1- AK~m + 0{Kl)

where K is defined by (4.10).
We note that Theorem 3 is proved under stronger assumptions than Theorem

2. Also, here it is possible that the optimal w > 2 (cf. (3.5)) and it is no longer
independent of how we shift the problem (A' = A —aB giving \k = Xt — a).
On the other hand, the best rate R is independent of such shifts and is the
same as (4.8).

5. Numerical Examples. Several numerical tests of the algorithms described
here have been performed. The programs have been run on a CD 3300
computer at the Umeâ University Computing Center. It has 48 bits word
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length, 36 bits of which are the mantissa. The purpose of the tests has been
to see how well the theory developed for special cases (property A etc.) holds
in a more general situation, and to compare the SOR algorithms to other
relevant algorithms, mainly the Lanczos and c-g algorithms. Tests of these
algorithms have been reported earlier [18].

As a first very simple example, we consider the tridiagonal matrix

(5.1) A=T =

2
-1

0

1
2

It has property A, and its eigenvalues are known to be

(5.2) Xt=4sin2(^/2(n+l)),       k = 1,2, • • -,n.

We performed Algorithm 2 for n=20 and 100 with <o = 1(0.05)2. The
observed values of R = lim || t, || 2S are plotted in Fig. 1 and we see that they
are well in agreement with the theoretical value suggested by the SOR theory.
In the same figure, we also plotted the corresponding R obtained by the
SSOR method, and we note that this latter method converged much more
slowly. We also did several tests with (2.19) [3]; the results confirmed the
the theory in Theorems 2 and 3 above. Theorem 2 gives wc = 1.59 for n = 20
and uc = 1.90 for n = 100.

Fig.1  A=T n = 20
Rate of convergence for different co

o SOR algorithm

We also tried more nontrivial  examples with  property  A,  such  as  the
eigenvalues of the "standard" L shaped membrane (see e.g. [7, p. 334]). In
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Table 1, we list theoretical and observed convergence quotients together
with the total number of iterations for some values of w.

Table 1. L Shaped Membrane

(a) A = 1/8     n=84     <oc = 1.65
(b) A = 1/16   n=360   a>c = 1.812

Convergence quotient R       Iterations until
w Theoretical     Observed IM^IO-6

(a) 1.00 0.956 0.922 111
1.50 0.862 0.734 38
1.55 0.836 0.696 33
1.60 0.797 0.643 28
1.65 0.703 0.665 29
1.70 0.700 0.695 32
1.80 0.800 0.770 45
1.90 0.900 0.841 67

(b) 1.60 0.956 0.917 99
1.70            0.934             0.870 72
1.80 0.867 0.862 52
1.81 0.836 0.842 54
1.82 0.820 0.824 56
1.83 0.830 0.824 58
1.90 0.900 0.906 84

In order to show the behavior of the algorithms for matrices without property
A, we list results for two such matrices, one with quite clustered eigenvalues
and the other a Stieltjes matrix. We used the matrix A = T2 (5.1), where we see
that the eigenvalues are clustered in the lower end of the spectrum (5.2). Even
if we content ourselves with choosing n = 20, we get K = 2100 (4.10) which
gives oic = 1.92 (4.9) and a theoretical quotient of fi=0.92. However, the
best convergence we could get was obtained for « = 1.80 and was R =0.977.

In Fig. 2, we list a diagram of the convergence for Algorithms 1 and 2.
We also plotted results for the c-g algorithm [18], in order to get a comparison.
Here, we note a definite advantage for the c-g algorithm and quite bad
applicability of the SOR theory of Section 4 in this paper. The results agree
quite well with those reported by Engeli et al. [5] for the linear equation
problem. It might be of interest to study Fig. 3, where the eigenvalues of
M(oi,Xi) are plotted for some values of w along with the circle |z| = a>—1.
M(w,Xi) has the circle stretched in the positive real direction, M{w, X„) in
the negative direction.
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Fig.2   A=T2 smallest eigenvalue n>20

l'sl

1

10"'

10 2

103

104

lo5

100 200 300 400 500 s

The two real eigenvalues of M(to,Xi) are not at 1 and (to — l)2, as Theorem
2 would have implied; on the other hand, they are both outside the circle,
and their quotient, which is very close to unity, will determine the rate of
convergence which is about 10 times slower than w — 1 would suggest.

The last example is a sparse matrix with a more irregular pattern of filled-
in elements; we have taken (the upper triangle of) the 54 X 54 matrix given
by Curtis in [4] with the filled nondiagonal elements equal to — 1 and the
diagonal elements larger than the corresponding row sums. Here, the agree-
ment with the SOR theory is much better, as can be seen from Fig. 4. Here,
(4.9) gives uc = 1.61 and the best convergence is observed for to = 1.55.

Our theory for Algorithm 2 does not guarantee convergence towards the
smallest (or largest) eigenvalue, unless the starting vector is chosen quite
carefully as indicated by Theorem 1. The tests performed indicate that, in
practice, we get convergence either to the largest or the smallest eigenvalue,
depending on m(*o)- We tried the matrix A=T2 with starting vectors con-
sisting of ± 1 with different numbers of sign changes and got the smallest

(T) Coordinate   relaxation co= 1

(2) —"- W = 1.80

(3) Conjugate gradients
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Flgure3a: A=T* n=20, lower end of spectrum
Eigenvalues of SOR-iteration matrix for u=i.80

eigenvalue for 0—10 and the largest for 11—19 (n=20) changes, respec-
tively. The convergence was only dependent on the starting vector, not on
the choice of to. In some cases, convergence to eigenvalues other than those
in the ends of the spectrum was observed, that took place for the Curtis
matrix with starting vector Xo=(l, —1,1, •••,— l)T, where the second
largest eigenvalue was obtained.

When we come to compare coordinate relaxation, Algorithm 1, to the
simpler Algorithm 2, the former gives a marginally faster convergence in the
earlier iterations. However, it needs more work in each iteration, namely
[19], 27/1+2 multiplications or divisions, where z is the total number of
nonzero elements in A and B, while Algorithm 2 needs only 6n + z, quite a
substantial saving for the sparse matrices which we are considering (2 < lOn).
The c-g algorithm is of a comparable speed, since it needs [18], lln +z
operations and we note that it most often converges in fewer iterations than
the algorithms considered here. Thus, our tests indicate that SOR methods
are the fastest only for very sparse matrices 2 around 5n.
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Flgure.3b:A=T , n=20,upper end of spectrum.
Eigenvalues of SOR-iteration matrix forco=1.50(0.05) 1.65.

Fig.4   A= Curtis matrix n= 54
Smallest eigenvalue

Rate of convergence for different co

ou
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