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Abstract

Background: Methods for the integrative analysis of multi-omics data are required to draw a more complete and

accurate picture of the dynamics of molecular systems. The complexity of biological systems, the technological limits,

the large number of biological variables and the relatively low number of biological samples make the analysis of

multi-omics datasets a non-trivial problem.

Results and Conclusions: We review the most advanced strategies for integrating multi-omics datasets, focusing on

mathematical and methodological aspects.
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Background

Biological functions are exploited by systems of inter-

acting molecules and macromolecules that take part in

physical and biochemical processes in structured environ-

ments. Different types of high-throughput technologies

allow us to collect information on the molecular com-

ponents of biological systems. Each of such technolo-

gies (e.g. nucleotide sequencing, DNA-chips and protein

mass spectrometry) is designed to simultaneously col-

lect a large set of molecular data of a specific kind: e.g.

nucleotide sequences, gene expression and protein abun-

dances. Therefore, in order to draw amore comprehensive

view of biological processes, experimental data made on

different layers have to be integrated and analyzed. The

complexity of biological systems, the technological limits,

the large number of biological variables and the rela-

tively low number of biological samples make integrative

analyses a challenging issue. Hence, the development of

methods for the integrative analysis of multi-layer datasets

is one of the most relevant problems computational scien-

tists are addressing nowadays.
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A few reviews exist on this topic. For example, Berger

et al. [1] described integrative approaches in one of

the sections of their work, which is also focused on

tools for the analysis of single omics layers, while

Kristensen et al. [2] presented objectives, methods and

computational tools of integrative genomics, with a

particular focus on the applications related to cancer

research. Conversely, we would like to focus on mathe-

matical aspects and illustrate the solutions found to the

problem of multi-omics data integration.

The classification of the approaches presented in the lit-

erature as multi-omics methods is a non-trivial task for

at least three reasons. First, most of the computational

approaches developed so far are pipelines of analysis that

apply several methods to carry out a sequence of tasks;

therefore, different pipelines share some methods: for

example, partial least squares regression is included in

both Integromics [3] and sMBPLS [4]. Second, pipelines

presented for addressing a particular problem can be also

used, with minor modifications, to solve another problem,

possibly with other types of omics. Third, several tools can

be used in a supervised or unsupervised setting, according

to the formulation of the problem.
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Methods

On the basis of methodological aspects, we will con-

sider two main criteria. The first is whether the approach

uses graphs to model the interactions among variables.

These approaches, designated as “network-based” (NB),

take into account currently known (e.g. protein-protein

interactions) or predicted (e.g. from correlation analy-

sis) relationships between biological variables. In this

class, graphmeasures (e.g. degree, connectivity, centrality)

and graph algorithms (e.g. sub-network identification) are

used to identify valuable biological information. Impor-

tantly, networks are used in the modeling of the cell’s

intricate wiring diagram and suggest possible mecha-

nisms of action at the basis of healthy and pathological

phenotypes [5].

The second criterion is whether the approach is

bayesian (BY) [6], that is, it uses a statistical model in

which, starting from an a priori reasonable assumption

about the data probability distribution, parametric or non-

parametric, it is possible to compute the updated poste-

rior probability distribution making use of the Bayes’ rule;

of course the posterior distribution depends on dataset

measurements [7]. In the network-based area, bayesian

networks [8–10] are another promising framework for the

analysis multi-omics data.

Therefore, we will arrange integrative methods in four

classes: network-free non-bayesian (NF-NBY), network-

free bayesian (NF-BY), network-based non-bayesian (NB-

NBY) and network-based bayesian (NB-BY) methods. We

will give an overview of the methods that have been pro-

posed for the analysis of at least two different types of

omics datasets and describe with more details the spe-

cific mathematical grounds. In particular, we choose to

consider in detail the mathematical aspects of the most

common, representative or promising methods of each

category.

Results and Discussion

Methods overview

Mathematically, the general problem of analyzing multi-

ple omics datasets can be formulated as the sequential or

joint analysis of multiple component-by-sample matrices,

possibly using other data that carry prior information on

components and samples.

The objectives of integrative analysis can be summa-

rized into the following [2] (Fig. 1): (i) the discovery of

Fig. 1 Overview of multi-omics methods. Methods are placed in boxes according to whether they make use of networks and bayesian theory; the

types of omics that each method takes in input (or has been applied to in a case study) is indicated between parentheses. Grey: network-free,

non-bayesian methods; yellow: network-free, bayesian methods; blue: network-based, non-bayesian methods; green: network-based bayesian

methods. Abbreviations: GEN = genome, CC = ChIP-chip, CN = copy number variations, DM = DNA methylation, DS = DNA sequence, Hi-C =

genome-wide data of chromosomal interactions, LOH = loss of heterozigosity, GT = genotype, GE = gene expression, PE = protein expression
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molecular mechanisms; (ii) the clustering of samples (e.g.

individuals); (iii) the prediction of an outcome, such as

survival or efficacy of therapy. Most of the methods are

developed for the first and second objectives, while less

methods carry out prediction.

Integrative approaches can be more or less stringent on

the types of omics considered in input: some methods are

designed to analyze a specific combination of datasets,

while others are more general. For example, Conexic [11]

is tailored for DNA copy number variations (CNV) and

gene expression data, while iCluster [12] can be in prin-

ciple used for the analysis of any combination of omics

encoded as quantitative values on the same set of samples

(Table 1).

As already mentioned, a distinction can be done

between sequential and simultaneous analysis of multiple

layers. In the former case, the results of the analysis of one

layer are refined by means of the subsequent analyses of

further layers. This is the case, for example, of methods

that are designed assuming a causal effect of an omics (e.g.

genomics) on another (e.g. transcriptomics), like MCD

[13] and iPAC [14]. The joint analysis of multiple omics

can be carried out by means of models that consider

each layer as a separate entity: two examples are multi-

variate regression [15] and multi-objective optimization

[16]. Simultaneous analysis may require a preliminary

step of data fusion, which usually involves objects derived

from single-layer analysis: two examples are the fusion of

sample-sample similarity matrices [17] and of gene-gene

kernels matrices [18] calculated on different omics.

Network-free non-bayesian (NF-NBY)

Among the approaches that have been developed for

specific types of omics there are iPAC [14], MCD [13],

CNAmet [19], sMB-PLS [4] and Camelot [15]. iPAC [14]

is an unsupervised approach for the sequential analy-

sis of CNV and gene expression data on the basis of a

series of gene selection criteria: aberrant genes identified

by the analysis of CNV are further studied by corre-

lation analysis of gene expression in order to find the

subset of aberrant genes potentially leading to a substan-

tial shift in transcriptional programs. MCD [13] (Multiple

Table 1 Methods for the analysis of multi-omics datasets

Method Specificity Multi-omics approach Implementation

Camelot [15] Specific Bivariate predictive regression model NA

CNAmet [19] Specific Multi-omics gene-wise scores R

FALDA [21] General FA + LDA of a joint matrix NA

Integromics [3] General Regularized CCA, sparse PLS R

iPAC [14] Specific Sequential NA

MCD [13] Specific Sequential NA

MCIA [20] General Multiple co-inertia analysis R

sMBPLS [4] General Sparse Multi-Block PLS regression Matlab

Coalesce [30] Specific Multi-omics probabilities C++

iCluster [12] General Joint Gaussian latent variable models R

MDI [28] General DMA mixture models Matlab

PSDF [29] General Hierarchical DMA mixture models Matlab

TMD [27] General Hierarchical DMA mixture models Matlab

Kernel Fusion [18] General Integration of omics-specific kernels Matlab

Endeavour [37] General Integration of omics-specific ranks with order statistics Webserver

MOO [16] General Sub-network extraction on MWG R

Multiplex [38] General Joint analysis of multi-layered networks NA

NuChart [35] Specific Analysis of a MWG R

SNF [17] General Similarity network fusion Matlab, R

SteinerNet [33] Specific Sub-network extraction on MWG Webserver

stSVM [34] Specific MWG R

Paradigm [51] General Multi-omics bayesian factor graphs C++

Conexic [11] Specific Sequential Java

Specificity indicates whether the method was designed for a specific combination of omics (specific) or not (general). Legend: MWG = multi-weighted graph; FA = factor

analysis; LDA = linear discriminant analysis; CCA = canonical correlation analysis; PLS = partial least squares; DMA = Dirichelet multinomial allocation; NA = not available
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Concerted Disruption) is another sequential approach.

CNVs, loss of heterozygosity (LOH) and DNA methyla-

tions are analyzed sequentially in order to find changes in

gene copy number accompanied by allelic imbalances and

variations in DNA methylation resulting in gene expres-

sion differences. CNAmet [19] uses gene-wise weights

calculated considering the gene expression in classes of

samples with different CNVs or DNAmethylation pattern;

weights for CNV and DNA methylation are then linearly

combined to define gene-wise statistics, whose signifi-

cance is assessed by permutation analysis. In 2012 Li et

al. presented the sparse Multi-Block Partial Least Squares

(sMB-PLS) regression method [4] for the identification

of regulatory modules from multiple omics. Common

weights are found in order to maximize the covariance

between summary vectors of the input matrices (CNV,

DNA methylation and miRNA expression) and the sum-

mary vector of the output matrix (mRNA expression).

A multi-dimensional regulatory module contains sets of

regulatory factors from different layers that are likely to

jointly contribute to a “gene expression factory”. Camelot

[15] finds the optimal regression model for phenotype

prediction (drug response) on the basis of matched geno-

type and gene expression data. This method suggests the

molecular mechanisms that predict the phenotype under

analysis.

Conversely from the methods above, Integromics [3],

MCIA [20] and the approach of Liu et al. [21] are based on

models of data integration that can be easily applied to dif-

ferent types of omics. Integromics [3] performs integrative

analysis of two types of omics with the main objective of

finding similarities among samples and correlation among

molecular components. It uses a regularized version of

canonical correlation analysis to highlight correlations

between the two datasets and a sparse version of par-

tial least squares regression that includes simultaneous

variable selection in both datasets. In principle, it can

be applied to any pairs of omics that can be encoded as

continuous sample-by-componentsmatrices.Multiple co-

inertia analysis MCIA [20] is an exploratory data analysis

method that identifies co-relationships between multiple

high-dimensional datasets. Based on a covariance opti-

mization criterion, MCIA simultaneously projects several

datasets into the same dimensional space, transform-

ing diverse sets of features onto the same scale. This

analysis leads to the identification of biological mark-

ers and clusters of samples. Liu et al. [21] presented

a method (shortly FALDA) based on standardization

and merger of several omics (namely mRNA, miRNA

and protein data) into a joint (standardized) molecule-

by-sample matrix. Then, factor analysis (FA) and linear

discriminant analysis (LDA) are used to highlight molec-

ular mechanisms that discriminate different classes of

samples.

Many variations of PLS, a common dimensionality

reduction method, have been introduced for the integra-

tion of complex datasets: for example, Integromics [3]

relies on a sparse version of PLS (sPLS), and other vari-

ants of PLS, such as Orthogonal PLS [22], Kernel PLS

[23] or O2-PLS [24], have been described in the lit-

erature. The idea of weighting the behavior of a gene

at different levels and then combining such weights in

order to get an integrated picture, applied so far for gene

expression, CNV and methylation data [19], is a versa-

tile approach that can be applicable to other types of

datasets (e.g. gene expression, somatic mutations and pro-

tein expression). Thus, below we will describe in more

detail Partial Least Squares (PLS) and the use of signal-

to-noise statistics for the integrative analysis of multiple

datasets [19].

Partial least squares

PLS and PCA (Principal Component Analysis) are tech-

niques that seek to identify a small set of features that

work as predictors of the response dataset. While PCA

works in a purely unsupervised fashion, PLS makes use of

the response in order to find appropriate linear combina-

tions of the predictors that define a new set of features. In

PLS the coefficients of the linear combination are chosen

so that the highest weight is assigned to variables that are

most strongly correlated to the response. In this sense we

can say that PLS is a supervised alternative to PCA, for

details see [25].

Multi-block PLS [4] is a method for performing PLS on

a multi-layered dataset. Like any supervised PLS regres-

sion problem, sMBPLS’s set up consists of n (e.g. n = 3)

input layers X1,X2,X3 and a response dataset Y , where

observations are made on the same set of samples. The

goal is to identify MDRMs (Multi dimensional regulatory

modules) that are column subsets of the input datasets

on the same samples that are strongly associated to the

response. First each layer is represented as the first PLS

predictor for i = 1, 2, 3, (Zi = Xi · wi) and the response

Y is treated the same way (U = Y · v), where wi, v are the

loadings and Zi and U are the summary vectors or latent

variables of respectively the input and response datasets.

Then sMBPLS defines Z = b1Z1 + b2Z2 + b3Z3 that is

a summary vector of the three datasets. The weights bi
are supposed to account for the contribution of the i-th

dataset to the total covariance. Mathematically the prob-

lem can be described as finding the optimal parameters

so that the covariance between input and response (sum-

marized in Z and U) is optimized. The results improve

substantially by introducing a constraint or a penaliza-

tion to the objective function that needs to be optimized:

sMBPLS uses a Lasso penalization - many different penal-

ization choices are possible (for details see e.g. [25]). The

effect of this penalization is often called sparsity, meaning
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that negligible coefficients tend to be drawn to zero. So

the final function to be maximized can be expressed as

�(Z,U,wi, v,b) = cov(Z,U) −

3
∑

i=1

Pλi(wi) − Pλ4(v) (1)

with the further restrictions that vectorswi, v,bmust have

norm equal to 1; here Pλi are the Lasso penalizations. In

order to estimate the optimal parameters in (1) Li et al.

develop an ad hoc algorithm [4].

Gene-wise weights

Multi-omics gene-wise weights have been proposed to

fuse three types of omics into a unique summary score

for each gene [19]. These scores si are defined using gene

expression, DNA methylation and CNV data:

si =
(

wme
i + wcn

i

)

· ǫi, (2)

where wme
i and wcn

i are measures of the expression differ-

ence of the i-th gene between samples with high and low

values of DNAmethylationwme
i and CNVwcn

i , while ǫi is a

normalization term.More precisely, layer-specific weights

for each gene are calculated using the mean and standard

deviation of gene expression

wi =
mi,1 − mi,0

σi,1 + σi,0
, (3)

where the suffixes 1 and 0 indicate, respectively, sam-

ples having high and low values of the other omics (DNA

methylation or CNV). In summary, each variable is asso-

ciated with the sum of a set of signal-to-noise scores, each

of which is calculated considering the means and standard

deviations of the variable using two subsets of samples of a

given dataset (e.g. gene expression) defined on the basis of

the values of the same variable in another layer (e.g. CNV

or methylation).

Network-free bayesian (NF-BY)

Parametric or “strict” bayesian frameworks assume that

the prior probability distribution follows a specific model

dependent on one or more parameters. If the prior fits

the data well parametric bayesian methods usually out-

perform non-parametric ones. On the other hand, if the

initial guess for the prior is hard or even impossible to

formalize, non-parametric or distribution-free methods

are preferred [7]. It is important to remark that non-

parametric or distribution-freemethods are characterized

by the fact that - unlike their parametric counterpart - the

priors are not identifiable with a given family of probabil-

ity distributions depending on one or more parameters,

since this family would be too large, therefore introduc-

ing the need of an alternative definition of the priors in

which - roughly speaking - the parameters themselves are

supposed to be random. In this context, Antoniak [26]

defined Mixtures of Dirichelet Processes (DPM) a use-

ful set of priors for many non-parametric problems, that

was taken as a starting point for many recent works aim-

ing at the integration of multi-omics, such as TMD [27],

MDI [28], PSFD [29], while, for example, iCluster [12]

is a parametric method. The choice between parametric

and non-parametric models is often not arbitrary, but it is

driven by the type of data to be modeled.

iCluster [12] and MDI [28] have been developed with

the main objective of sample clustering and can be applied

to different types of omics. iCluster [12] takes as input

two or more matrices and finds multi-omics clusters

jointly estimating, by means of a prior-posterior bayesian

structure, the clusteringZ, which is modeled as a Gaussian

latent variable having layer-specific weights and parame-

ters. MDI (multiple dataset integration) [28] carries out

the same objective (clustering) using a bayesian approach

to jointly estimate the parameters of Dirichelet Process

Mixture models. These models are applied to find clusters

and relevant genes (features).

An approach closely related to MDI is Savage’s Tran-

scriptional Modules Discovery (TMD) [27] who also

adopts a mixture modeling approach, using hierarchi-

cal Dirichelet process to perform integrative modeling

of two datasets. Conversely to MDI, TMD aims at the

identification of molecular mechanisms.

Patient-Specific Data Fusion (PSDF) [29] extends the

TMD model for assessing the concordance of biological

signals of samples in the two datasets taken into account

(CNV and gene expression data). PSDF can be used to

shed light on molecular mechanisms and cluster samples.

Coalesce [30] is a combinatorial algorithm specifically

developed for the identification of regulatory modules

from the analysis of gene expression and DNA sequence

data. The multi-omics probability for a gene to be

included into a module is calculated combining omics

specific probabilities through the Bayes’ rule.

Since iCluster was introduced, it is often being cited

by subsequent works as an innovative reference approach

for multi-omics clustering of samples, while, as already

said, MDI shares a multi-layer analysis approach (based

on Dirichelet Process Mixture models) with other recent

methods. Hence, we will focus on iCluster andMDI in the

following.

Bayesian latent variablemodels

In 2009, Shen et al. developed a joint variable model

for integrative clustering, naming the resulting method-

ology iCluster [12]. Considering N datasets referred to

the same group of samples, iCluster formulates sample

clustering as a joint latent variable that needs to be simul-

taneously estimated from multiple genomic data types.

The first step is to capture the similarities among genomic

information in each data set, so that the within-cluster
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variance is minimized. This task is performed by an opti-

mization through PCA of the classicalK-means clustering

algorithm, with the additional advantage of reducing the

dimensionality of the data: if k is the number of clus-

ters, the dimensionality n of the genomic data is basi-

cally reduced to the first k-1 principal directions. Second,

the clustering scheme in each layer is represented as a

Gaussian latent variable model with the Gaussian latent

component Z capturing the dependencies across the data

types. Dealing with N different omics measurements on

the same p samples X1,X2, . . . ,XN , each one of dimension

p × ni with usually p << ni, the model can be written in

the following fashion:

Xi = Wi · Z + ǫi (4)

where the matrices Wi are the p × k − 1 weight matri-

ces and ǫi are the independent error terms. After taking a

continuous parametrization Z∗ of Z and assuming Z∗ ∼

N(0, I) and ǫ = (ǫ1, . . . , ǫN ) ∼ N(0, cov(ǫ)), likelihood-

based inference is obtained through the Expectation-

Maximization (EM) algorithm [31]. iCluster requires the

number of desired clusters k as input for the algorithm.

Recently, Kirk et al. [28] presented a bayesian method

for the unsupervised integrative modeling of multiple

datasets. MDI integrates information from a wide range

of different datasets and data types simultaneously. In

a general N-components mixture model, the probability

density for the data p(X) is modeled using Dirichelet-

multinomial allocation mixture model,

p(X) =

N
∑

k=1

wk · π(X|θk) (5)

where wk are the mixture proportions, θk are the param-

eters associated to the k-th component and π is a para-

metric density. Component allocation variables and some

additional parameters - conversely from the TMD model

[27] - are introduced in order to capture the dependencies

among these models and find clusters of genomic enti-

ties having the same behavior in different datasets. The

modeling structure of the multi-layer dataset exploits the

mathematical connection between mixture models and

Dirichelet Processes, a non-trivial problem: for details see

[32]. In this way is possible to construct a prior proba-

bility for each dataset where the probability distribution

is parametrized by component allocation variables. Infer-

ence on such parameters is performed through Gibbs

sampling. Finally, in order to identify groups that tend to

cluster together in multiple datasets, it is natural to exploit

the posterior probability as a metric in order to decide

whether or not a connection among each couple of genes

is strong enough across the dataset.

Both MDI and iCluster carry out simultaneous inte-

grative clustering of multiple omics datasets. However, in

contrast to MDI, iCluster seeks to find a single common

clustering structure for all datasets.

Network-based non-bayesian (NB-NBY)

Methods that we have assigned to this category make

either use of molecular interaction data or use networks

defined from correlation analysis.

SteinerNet [33], the method proposed by Mosca et al.

[16], stSVM [34] and nuChart [35] share a common strat-

egy: the analysis of a multi-weighted graph that carry

multi-omics information. SteinerNet [33] is a method that

identifies molecular sub-networks using omics datasets

and a given molecular network. In order to recon-

struct response pathways, SteinerNet finds a solution

to the prize-collecting Steiner tree (PCST) problem, a

minimum-weighted subtree that find an optimal net-

work subject to weights assigned to vertexes and edges

on the basis of input datasets. Similarly, multi-objective

optimization (MOO) has been recently proposed for the

extraction of sub-networks enriched in multi-omics infor-

mation [16]. Sub-networks are extracted on the basis of

multiple criteria applied to a network that encodes sev-

eral layers of biological information as vertex and edge

weights. Also stSVM (smoothed t-statistic support vec-

tor machine) method [34] loads gene-wise statistics from

multiple omics (miRNA and mRNA) on a molecular net-

work known a priori. Then, a network diffusion method is

used to smooth the statistics according to network topol-

ogy. Significant genes are then used to train a classifier

(a SVM) that predicts the type of sample (e.g. early ver-

sus late disease relapse). NuChart [35] is a method for the

annotation and statistical analysis of a list of genes with

information relying on Hi-C data (genome-wide data of

chromosomal interactions [36]). NuChart identifies Hi-C

fragments by means of DNA sequencing data and cre-

ates gene-centric neighborhood graphs on which other

omics data (e.g. gene expression) are mapped and jointly

analyzed.

ENDEAVOUR [37] calculates gene-wise statistics from

heterogeneous genome-wide data sources (including

molecular interactions) and ranks genes according to their

similarity to known genes involved in the biological pro-

cess under analysis. Single layer prioritizations are then

integrated into a global ranking by means of order statis-

tics. In 2007 De Bie et al. [18] proposed a kernel-based

data fusionmethod for gene prioritization, which operates

in the same setting of ENDEAVOUR. Kernels represent-

ing gene information in each layer are linearly combined

in order to fuse the information and identify disease genes.

SNF (Similarity Network Fusion) [17] is a method that

computes and fuses patient similarity networks obtained

from each omics separately, in order to find disease

subtypes and predict phenotypes. Conversely from the

other methods of this section, SNF uses sample-sample
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networks obtained from correlation analysis. The key step

of SNF is to iteratively and simultaneously update the

global patient similarity matrix of each layer using a local

K-nearest neighbours (KNN) approach combined with

the global similarity matrices of the other layers. Fusion is

then completed by averaging the similarity matrices once

the iterative upgrading is performed.

Recently, a type of multi-partite network (multiplex)

has been introduced as a novel theoretical framework

for network-based multi-layer integrative analysis [38].

Multiplex networks are multi-layer systems of vertexes

that can be linked in multiple interacting and co-evolving

layers. This approach has been proposed for the analysis of

gene expression data in brain [39] and cancer [40]. In the

second example, a sample-sample duplex (two-layers net-

work) has been generated based on correlation between

gene expression profiles, revealing structural similarities

and differences between two classes of samples. Thanks to

their general formalism, in principle multiplex networks

can be applied to the joint analysis of several types of

omics (e.g. one type of omics for each layer), also for

multi-level clustering purposes [41].

In the following subsections, we will discuss in more

detail network diffusion, fusion of similarity networks

and heterogeneous/multiplex networks. Methods that

simulate the diffusion of information throughout a net-

work are being increasingly used, since they allow to

study how the information (e.g. differential expression,

sequence variations) initially available in one or more

network components (vertexes) affects other network

regions [42]. SNF [17] is a diffusion-based strategy that

can be easily extended to the analysis of a wide range of

multi-omics data. Heterogeneous and multiplex networks

are promising frameworks for innovative multi-omics

data analysis.

Diffusion processes on networks

Network diffusion algorithms define a vector of scores σ

associated with network vertexes on the basis of initial

conditions x0 and network topology τ , usually represented

by the adjacency matrix A or the Laplacian matrix L of the

graph.

An application of such techniques is found in stSVM

[34], where a p-step randomwalk kernelK is used in order

to smooth the t-statistics x0, which assess the differential

expression of genes. The kernel is defined as

K = (α · I − L′)p (6)

where α is a constant, L′ is the symmetrically normal-

ized Laplacian matrix of the graph and p is the number of

random walk steps. The smoothing of the t-statistic x is

simply computed using the kernel K :

x = x
T
0 · K (7)

In this case the influence of a node on the network is

controlled by the parameter p. Basically, the information

initially available in each vertex is distributed to its neigh-

bors by means of the application of K. For a deeper insight

of diffusion kernels see [43].

In other diffusion models, the network-based scores

σ = σ(X0, τ) are the steady state solution of a dis-

crete or continuous diffusion process on the network that

can have either a deterministic or a stochastic interpre-

tation. An example of such a technique is the network

propagation algorithm exploited in the work of Hofree

et al. [44]: after mapping a patient mutation profile onto

a molecular network, network propagation is used to

“smooth” the mutation signal across the network. Net-

work propagation uses a process that simulates a ran-

dom walk on a network with restarts according to the

function:

x(t) = αA′ · x(t) + (1 − α)x0, (8)

where x0 is a vector representing some kind of genomic

information about a patient (in this case mutation sig-

nal), A′ is the symmetrically normalized adjacency matrix

capturing correlations among genes, and α ∈ (0, 1) con-

trols how much information is retained in the nodes with

respect to how much is not. For t → ∞ for each patient,

the discrete array x0 is smoothed into a real-valued array

σ = x(∞).

Network diffusion processes are often based on an

actual physical model, having the benefit of exploiting

physical quantities and concepts to drive the setting of

the parameters. For example Vandin and Upfal [45] pre-

sented a computationally efficient strategy for the iden-

tification of sub-networks considering the hydrodynamic

model introduced by Qi et al. [46]: fluid is pumped into

the source node s at a constant rate, diffuses through

the graph along the edges, and is lost from each node

at a constant first-order rate until a steady-flow solution

is reached.

The presence of random walks on a graph allows con-

nections to many other physical models. For example,

another interesting framework is represented by electric

circuits [47], where the relation between the random walk

of electrons on a circuit and Kirkhoff laws is exploited.

eQed is a recent application of the latter [48]. Recently

Mirzaev and Gunawardena have collected and rigorously

demonstrated some of the most important mathematical

results in the context of information dynamics in a linear

framework, also suggesting a possible stochastic interpre-

tation of such diffusion processes on the network in the

Chemical Master Equation formalism [49].

Fusion of similarity networks

An interesting strategy to perform simultaneous network-

based integration of omics is the one at the basis of SNF
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[17]. A number N of different patient similarity networks

with associated global similarity matrices Pi,0 are defined

from N datasets. Let’s assume N = 2 for the sake of clar-

ity. Then, for each layer a KNN local similarity matrix Si
is introduced in order to retain only robust information.

Subsequently, global similarity matrices are smoothed by

two parallel interchanging diffusion processes that con-

sist of the upgrading of the global similarity matrices with

respect to the local similarity matrices of the other layer:

P1(t + 1) = S1 · P2(t) · ST1

P2(t + 1) = S2 · P1(t) · ST2 (9)

having initial condition Pi(0) = Pi,0. After convergence,

the fused similarity matrix is then defined as the aver-

age of P1 and P2 . The result is a similarity matrix that

can be viewed as the weighted adjacency matrix of a net-

work built by fusing the similarity networks associated

with each layer [17].

Heterogeneous networks andmultiplex

In the context of multi-omics data analyses, multiple (k)

layers can be represented by means of k networks. In this

context, we can distinguish between two kinds of formal-

ism: heterogeneous networks and multiplex networks.

Heterogeneous networks consider k different kinds of

nodes, each type corresponding to a different layer of

biological information. In this framework, intra-layer con-

nections and inter-layer connections are formally treated

in the same way, even if they can be weighed differ-

ently. The multi-layered information is therefore some-

how squeezed on just one dimension and the properties

of the resulting graph can be used to manipulate the data.

For example, for k = 2 we can have vertexes of genes layer

g1, g2, . . . , gn and proteins layer p1, p2, . . . , pm. The Lapla-

cian matrix of this heterogeneous network is a (n + m) ×

(n + m) matrix:

Lgp =

[

Lg Bgp

Bpg Lp

]

, (10)

where Lg and Lp are the Laplacian matrices of respectively

gene and protein layers, while the matrices Bgp and Bpg

contain the information about inter-layer connections; in

the case the graph is undirected Bpg = BT
gp. An example of

application of heterogeneous network for modeling gene-

phenotype networks was presented by Li and Patra [50].

Multiplex networks [38] are instead multi-partite net-

works in which each of the k layers models a different

information about the same set of vertexes v1, v2, . . . , vn.

For example, let us consider two omics, represented as a

two-layered multiplex composed of two sample × sample

networks, where the edges of each network are placed in

function of the sample-sample correlations found in the

associated omics. Then, it is possible to analyze inter-layer

correlations by means of multilnks, a quantity that sum-

marizes the connectivity of each pair of samples across

the layers. More precisely, a multilink is a k-dimensional

binary array whose i-th component is set to 1 if the two

samples are connected in the i-th layer and 0 otherwise.

The formalism of multilink is the basis to define weighted

measures and overlaps of the multiplex networks and

other physical quantities, such as entropy, which intro-

duces a theoretical framework to quantify and detect the

information stored in complex networks [38, 40].

Network-based bayesian (NB-BY)

In this section we deal with methods that can be classi-

fied as both network-based and bayesian; these features

select mainly those methods that are somehow related

to bayesian networks (BNs). BNs are probabilistic mod-

els composed of a graph and a local probability model

that can be either parametric or not. BNs represent an

important area of machine learning theory and many

applications of this topic are found in diverse fields. BNs

can be thought as a combination of network theory and

probability theory.

Within the BN framework an important method for

multi-omics data integration is Paradigm [51]. Its goal

is the definition of patient-specific pathway activities by

means of probabilistic inference. Each biological entity

(gene, protein, etc.) is modeled as a factor graph that can

be defined to host a wide range of multi-omics informa-

tion, and is associated with a prior probability of being

activated in a given pathway.

Conexic, a bayesian network-based algorithm, has been

introduced for the identification of driver mutations in

cancer through the integration of gene expression and

CNVs [11]. Conexic is based on a bayesian scoring func-

tion that evaluates how each candidate gene, or a combi-

nation of genes, predicts the behavior of a gene expression

module across tumor samples. Networks, more precisely

regression trees, are used to encode regulation programs.

Below, we will focus on the theoretical setup of the BN

developed by Paradigm [51].

Paradigm: an application of bayesian networks

The goal of Paradigm is the definition of an entities

× samples matrix called IPA (inferred pathway activity)

where IPAij reports a score that accounts for how likely the

biological entity i is activated/null/deactivated in sample j.

The model is network-based since correlations between

data points aremodeled as factor graphs
 = (φ1, . . . ,φm)

that are used for assigning a probability for the genomic

entities or variables X = (X1, . . . ,Xn):

P
(X) =
1

Z
·

m
∏

j=1

φj(Xj) (11)
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where Z is a normalization constant accounting for all of

the possible settings of the variables X and Xj is a set con-

stituted by xj and its “parents” Pa(xj) that are the nodes

that have a link directed to xj in the network. It is impor-

tant to underline that the number of features m is much

less than 2n − 1 (the number of possible edges in the

graph): this “sparsity” facilitates integration. In this way it

is possible to assign to each gene’s xi activity a first a prior

probability distribution and then probability distribution

consistent with the dataset measurements D:

P
(xi = a,D) ∝

m
∏

j=1

∑

S⊂Ai(a)∪D
Xj

φj(S) (12)

where 
 is the fully specified factor graph, S ⊂Ai(a)∪D Xj

are all the possible configurations consistent with both the

dataset measurements D and the fact that gene i is acti-

vated (Ai(a) is the the singleton assignment set {xi = a});

the proportionality constant is the same as Eq. (11). The

junction free inference algorithm and the belief propaga-

tion algorithm are used to infer the probabilities while EM

algorithm [31] is used to learn the parameters. After infer-

ence log odds of the posterior probability distribution are

used to measure the activity of each gene.

Conclusions

Methods for the analysis of multiple layers of biological

information pave the way for a more comprehensive and

deeper understanding of biological systems. Indeed, sev-

eral authors were able to show that the integration of

multi-dimensional datasets leads to better results from

a statistical and a biological point of view than single

layer analyses. For example, using MCD, Charj et al. [13]

showed that the integration of DNA copy number, LOH,

DNA methylation and gene expression data permits the

identification of a higher number of DNA explained gene

expression changes and a set of genes that would have

been missed in standard single layer analysis; Liu et al.

[21] reported an improvement in the identification of

pathways and networks integrating miRNA, mRNA and

proteins; Wang et al. [17] showed that their network

fusion approach applied to gene expression and DNA

methylation lead to clusters of patients (corresponding to

cancer subtypes) with significantly different survival rates.

A better understanding of the algorithms underlying

integrative approaches is important for their correct

application and further development. Network-based

approaches use graphs for modeling and analyzing rela-

tionships among variables and are one of the most impor-

tant classes of multi-omics methods. These approaches

take advantage of algorithms for graph analysis. In par-

ticular, algorithms that propagate information on net-

works are being proposed in several applications and

are often related to actual physical models. Networks

allow to model the intricate cell’s wiring diagram and

to use it as a framework for the integrated analysis of

layers of biological information. However the incom-

pleteness of experimentally detected molecular interac-

tions is still a significant limit. Further, better tools of

analysis are required, because assumptions like normal-

ity and variable independence are often not fulfilled [5].

Multi-layer network-based frameworks, such as hetero-

geneous and multiplex networks, allow the definition

of novel tools for the integration of omics. For exam-

ple, the already mentioned methods of network diffusion

can be extended to such frameworks in order to get

multi-omics propagation scores, and new clustering algo-

rithms could be developed based on these multi-layer

relationships. Moreover, multiple omics data can be nat-

urally embedded in a heterogeneous network framework,

for example metabolomics and genomics data, consid-

ering genes that codify for enzymes as inter-layer links,

and intra-layer relationship given by a priori biological

knowledge (like protein-protein interaction network) or

by network reconstruction based on metabolomics and

transcriptomics data.

Another class of interesting approaches relies on Bayes’

rule. Multilevel bayesian models (parametric or not) are

facing the multi-omics challenge by building frameworks

that facilitate a biologically appropriate formalism for the

assumptions on the prior distribution (e.g. factor graphs,

mixturemodels) and by programming non-trivial and effi-

cient algorithms for parameter estimation. Assuming the

bayesian framework is an interesting choice because it

reduces the integration to the estimate of a smaller set of

parameters, simultaneously suggesting a clear integration

scheme. A limitation of such models is that for paramet-

ric methods the output strongly depends on how well

the prior distribution assumption is able to capture the

core information of the given dataset. Distribution-free

approaches do not have such a problem but sometimes

tend to lack in accuracy. In the network-based context the

application of bayesian networks represents an interesting

compromise between networks and probability theory.

The bayesian framework is promising also regarding the

issue of noise, because errors have the possibility to be

formally taken into account from the beginning of the

analysis.

Not surprisingly, genomics and transcriptomics are

the two omics for which many and more established

approaches of multi-layer analysis exist. However, the

availability of methods that are not tailored for specific

types of omics extends the applicability of integrative

approaches also to omics that are still less covered by

specific methods, such as proteomics, metabolomics or

glycomics.

One of the main limitations of integrative approaches

is related to dimensionality. In fact, if on one hand more
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layers correspond to a more complete picture of the bio-

logical system, on the other hand the dimensionality of

the problem increases. However, a priori information on

the relationships among the components of the biological

system should help in reducing false discoveries.

Several methods are implemented using R [52], con-

firming the prominent role of this programming language

in the analysis of biological data, and Matlab [53]. The

availability of well-documented and user-friendly imple-

mentations is a crucial factor for the usability and spread

of interesting methods. However, there are still several

cases in which software packages are not provided.
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