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Abstract

Background: There is considerable interest in rapid assays or screening systems for assigning

gene function. However, analysis of gene function in the flowers of some species is restricted due

to the difficulty of producing stably transformed transgenic plants. As a result, experimental

approaches based on transient gene expression assays are frequently used. Biolistics has long been

used for transient over-expression of genes of interest, but has not been exploited for gene

silencing studies. Agrobacterium-infiltration has also been used, but the focus primarily has been on

the transient transformation of leaf tissue.

Results: Two constructs, one expressing an inverted repeat of the Antirrhinum majus (Antirrhinum)

chalcone synthase gene (CHS) and the other an inverted repeat of the Antirrhinum transcription

factor gene Rosea1, were shown to effectively induce CHS and Rosea1 gene silencing, respectively,

when introduced biolistically into petal tissue of Antirrhinum flowers developing in vitro. A high-

throughput vector expressing the Antirrhinum CHS gene attached to an inverted repeat of the nos

terminator was also shown to be effective. Silencing spread systemically to create large zones of

petal tissue lacking pigmentation, with transmission of the silenced state spreading both laterally

within the affected epidermal cell layer and into lower cell layers, including the epidermis of the

other petal surface. Transient Agrobacterium-mediated transformation of petal tissue of tobacco and

petunia flowers in situ or detached was also achieved, using expression of the reporter genes GUS

and GFP to visualise transgene expression.

Conclusion: We demonstrate the feasibility of using biolistics-based transient RNAi, and transient

transformation of petal tissue via Agrobacterium infiltration to study gene function in petals. We

have also produced a vector for high throughput gene silencing studies, incorporating the option

of using T-A cloning to insert the gene sequence of interest. These techniques should allow analysis

of gene function in a much broader range of flower species.
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Background
The proliferation of DNA sequences from EST and
genome studies has driven an increasing interest in rapid
assay systems as alternatives to stable transgenics for
establishing gene function. Transient over-expression of
gene sequences using biolistics (particle bombardment) is
now well established for functional assays. In particular, it
has been extensively applied in studies on plant pigmen-
tation, using flower petals or developing maize seeds.
However, this technique is limited in the range of tissues
and biological systems to which it can be applied. Most
notably, unless an obvious change in phenotype occurs, it
is difficult to obtain a sufficient quantity of transformed
cells to enable molecular or biochemical analysis of the
impact of the transgene.

More recently, the use of Agrobacterium tumefaciens infil-
tration (agroinfiltration) for transient assays has become
established for processes such as assigning gene function
[e.g. [1-5]], promoter element analysis [6] and inducible
gene studies [7]. The majority of results have been
obtained using Nicotiana benthamiana, which is particu-
larly suited to this method. However, the agroinfiltration
transient assay system has recently been optimized for
other species, including Lactuca sativa (lettuce), L. serriola
(wild lettuce), Solanum lycopersicum (tomato) and some
cultivars of Arabidopsis thaliana (Arabidopsis) [5]. Vegeta-
tive tissues have typically been used for agroinfiltration,
although tomato fruit [8] and hairy root cultures (using A.
rhizogenes) have also been used [9].

The development of RNA-interference (RNAi) gene silenc-
ing methods, based on the triggering of sequence-specific
RNA degradation in a similar manner to antisense [10] or
sense suppression [11,12] but with higher efficiency, has
allowed the improvement of transient assay systems for
loss of gene function [13-16]. Most of the RNAi systems
have been with virus-induced gene silencing (VIGS), ini-
tially in N. benthamiana [17] and subsequently in other
species as new viral vectors have been developed, for
example for Arabidopsis [18], Hordeum vulgare (barley,
[19]), Pisum sativum (pea, [20]), Glycine max (soyabean,
[21]) and tomato [22]. However, for each target plant spe-
cies a suitable virus vector must be identified, and even
when a suitable viral species is known, its use may be lim-
ited by local biosecurity regulations.

Agroinfiltration has also been used as a delivery system for
transient RNAi [3,9]. However, as with VIGS, agroinfiltra-
tion requires that the host is amenable to infection by the
pathogen, and without the induction of tissue necrosis.
Biolistic delivery offers an alternative delivery system that
avoids the need for a pathogen and allows use of simple
vectors lacking T-DNA or virus sequences. Other develop-
ments of agroinfiltration or RNAi technology include the

suppression of gene silencing to allow higher levels of
transgene expression [3], and the use of novel vector struc-
tures for higher throughput, such as the use of Gateway
cloning [e.g. [23]] or vectors with an inverted repeat of the
transcript termination sequence rather than the target
gene sequence [24].

Antirrhinum majus (Antirrhinum) and petunia (most com-
monly Petunia hybrida and Petunia 'Mitchell') are classic
model systems, with growing EST and genomics
resources. Both species have been used in studies of floral
organ development, floral scent production, self-incom-
patibility and the biosynthesis and regulation of produc-
tion of anthocyanin pigments in flowers (see reviews of
Schwarz-Sommer et al. [25]; Gerats and Vandenbussche
[26]). For Antirrhinum, although Agrobacterium-mediated
systems are available [27], production of stable transgen-
ics remains a difficult process. Thus, we were interested in
establishing additional transient assay systems for these
model species.

We report here the establishment of agroinfiltration for
petunia and N. tabacum (tobacco) floral tissues, and the
use of biolistics for transient RNAi in Antirrhinum. These
systems have been applied to flowers in situ and flower
buds cultured in vitro. In addition, we have developed and
tested a new high-throughput vector for RNAi assays.

Results and discussion
Assay of gene function in flowers using transient RNAi

To enable the use of a sealed chamber biolistic apparatus,
detached flower buds of Antirrhinum were used. We had
previously determined that Antirrhinum buds could suc-
cessfully develop in vitro, with buds 5–10 mm in length
developing relatively normal pigmentation and expand-
ing to open flowers, although the youngest buds did not
always reach the normal size and developed more slowly.

To test transient, biolistic-based RNAi for determining
gene function in flowers, two flower colour genes were
targeted. The construct pPN187, based on pRNA69, was
made for formation of hairpin RNA of an Antirrhinum
chalcone synthase transgene (CHS). CHS has been used as
a test gene in many gene suppression studies, and was one
of the first targets of sense and antisense RNA experiments
in plants [11,12,28]. CHS is one of the biosynthetic
enzymes of the anthocyanin pathway (catalyzing the first
step committed to the biosynthesis of all flavonoids), and
inhibition of this step in anthocyanin-accumulating flow-
ers results in the easily detected phenotype of white petals.
Flower buds from a fully pigmented Antirrhinum line
were picked when 3–10 mm in length (stages 1 and 2 as
defined by Martin et al. [29]), the sepals removed, and the
outer epidermis of the exposed petals bombarded six
times with pPN187. Buds at early developmental stages
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were used so that petal tissue was relatively un-pigmented
when it was bombarded. As the buds subsequently devel-
oped in culture, notable differences in pigmentation were
apparent in comparison to control buds, which were
bombarded with pRT99GFP (Figure 1). While still at the
unopened bud stage, extensive areas with markedly
reduced pigmentation could be seen, with the chlorophyll
of the young bud stage visible (Figure 1B and 1D). As the
flowers developed, white patches appeared in the petals
rather than the usual fully red colouration (Figure 1F, G
and 1H), and these were seen in both the inner and outer
epidermis, which are normally both pigmented in Antir-
rhinum. The areas lacking pigmentation did not have
sharp boundaries, and mixed cell populations were appar-
ent (Figure 1G and 1H).

The other colour gene targeted was Rosea1, which encodes
a MYB-related transcription factor that regulates anthocy-
anin biosynthesis in Antirrhinum [30]. The construct used
was pRNA69-based pPN107, for formation of hairpin
RNA of an Antirrhinum Rosea1 transgene. As with the CHS
experiments, biolistic introduction of the plasmid into
Antirrhinum buds resulted in the development of white,
non-pigmented areas of the petals (Figure 2B). These did
not occur in buds bombarded with the control construct
(Figure 2A). By comparing the pattern of pigment loss
between the inner and outer epidermis, it was clear that,
at least in many cases, where pigment was absent in one
epidermis, it was also absent from the corresponding cells
in the other epidermis (Figure 2C and 2D). While cell
division in the bud continues until the bud is approxi-
mately 10 mm long [31], the zones of inhibition observed
across both epidermal surfaces are not due to cell division
from the original transformed cells, as bombardment was
at a stage past the formation of independent epidermal
cell lineages. Therefore, the presence of the same pattern
of gene inhibition in cells of both the inner and outer epi-
dermis suggests that the RNAi inhibition signal is moving
out from the original biolistically transformed cells and
moving between cell layers. Such a finding is consistent
with the mobility of the silencing signal and spreading of
the silencing state that has been observed in other species
and tissues [32,33], and contrasts with the conclusions of
Douchkov et al. [23], who assumed the method could be
used to study only cell-autonomous traits. We do not
know the extent to which the silencing signal was prom-
ulgated from an individual transformed cell, as the pat-
terns of inhibition are most likely due to the merging of
smaller zones of inhibition (due to the frequency of trans-
formed cells that can be achieved in Antirrhinum petals
using particle bombardment). The extent of inhibition
observed means that it will be possible to use biolistics-
based transient RNAi to produce significant amounts of
transgenic tissue for subsequent analysis. With some
genes of interest, it may be necessary or desirable to simul-

taneously inhibit expression of a marker gene to aid in the
identification of areas of tissue for analysis. Chen et al.
[34] used tandem constructs for CHS and an ACC oxidase
gene in a viral vector to induce transient RNAi in a purple-
flowered petunia. Silencing of CHS resulted in white flow-
ers or flower sectors, and it was found that within these
flowers or flower sectors transcript abundance from the
target ACC oxidase gene (and a related ACC oxidase gene)
was greatly reduced compared with abundance in purple
tissue. Also, tandem inverted repeats within a vector to
produce hairpin RNA for a selectable marker gene and a
gene of interest were successful in triggering RNAi silenc-
ing of both genes in Chlamydomonas, thus allowing RNAi
strains to be easily selected [35].

Although excised flower buds and a sealed chamber 'gene
gun' were used in this study, it is assumed that the cham-
ber-less guns would allow transient RNAi experiments
with petals in situ.

An improved vector for assay of gene function using RNAi

Construction of hairpin gene constructs can be a rate-lim-
iting step for high-throughput screens of gene function,
and more recently developed constructs have used a hair-
pin of the transcript terminator region for easier construct
building [24]. To enable high-throughput construction of
RNAi vectors, we made a new vector, pDAH1, that incor-
porates an antisense nos-sense nos hairpin and several
other advantageous features (Figure 3). In particular; two
XcmI restriction sites in the multiple cloning site (MCS)
allow T-A cloning of the gene sequence of interest; NotI
sites flank the promoter-hairpin sequence for cloning into
pART27-based binary vectors [36]; the promoter can be
exchanged using the upstream PstI site and any of the sites
in the MCS; and the antisense nos-sense nos hairpin is sep-
arated by SacI sites to allow it to be replaced if required.
The spacer in pDAH1 is 97 bp, which is close to the min-
imum size that can be used to separate hairpin-producing
sequences. To test the utility of pDAH1, the ORF of Antir-
rhinum CHS was PCR-amplified using Taq polymerase
and directly ligated into the MCS using T-A cloning,
resulting in pPN283. Biolistic-based RNAi was then car-
ried out using the same method as used for pPN187 and
pPN107. The pPN283 construct was effective in inhibiting
pigment formation in Antirrhinum buds (Figure 4), with
zones of silencing observed as white patches, similar to
those seen after bombardment with the construct contain-
ing an inverted repeat of the CHS transgene (Figure 1).

Transient gene expression in petals using agroinfiltration

Agroinfiltration for transient gene expression was tested in
three species, Antirrhinum, petunia and tobacco, using
the intron-GUS (IGUS) and GFP reporter genes. The
intron in the GUS gene prevents Agrobacterium-derived
GUS expression. Tobacco flowers developed normally
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Inhibition of the function of CHS in Antirrhinum flower buds using transient RNAiFigure 1
Inhibition of the function of CHS in Antirrhinum flower buds using transient RNAi. Flower buds (line 603) cultured 
in vitro are shown 3–14 days after the biolistic introduction of the control plasmid pRT99GFP (A, C and E) or the pRNA69-
based plasmid pPN187 for CHS RNAi inhibition (B, D, F, G and H). C and D are 3 days post bombardment; A, B, E, F and H are 
8 days post bombardment; G is 14 days post bombardment.
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Inhibition of Rosea1 activity in Antirrhinum flower buds using transient RNAiFigure 2
Inhibition of Rosea1 activity in Antirrhinum flower buds using transient RNAi. Petals of buds (line 522) cultured in 
vitro are shown 12–17 days after the biolistic introduction of the control plasmid pRT99GFP (A) or the pPN107 plasmid for 
Rosea1 RNAi inhibition (B, C and D). (C) and (D) show the inner and outer epidermis, respectively, of the same region of one 
petal. The same pattern of inhibition on both surfaces demonstrates that the silencing signal was transmitted from the bom-
barded outer epidermis to the inner epidermis.
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Multiple cloning site (A) and plasmid map (B) of the high-throughput RNAi silencing vector pDAH1Figure 3
Multiple cloning site (A) and plasmid map (B) of the high-throughput RNAi silencing vector pDAH1. Abbrevia-
tions used are: 35Sp, CaMV 35S promoter; nos terminator, transcript termination region of the nopaline synthase gene of A. 
tumefaciens; GFP, green fluorescent protein; AmpR, gene for ampicillin resistance. NcoI site is not shown in (B) as it is not 
unique.
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Inhibition of the function of CHS in Antirrhinum flower buds using transient RNAi based on the plasmid vector pDAH1Figure 4
Inhibition of the function of CHS in Antirrhinum flower buds using transient RNAi based on the plasmid vector 
pDAH1. Petals of buds (line 522) cultured in vitro after the biolistic introduction of the control plasmid pRT99GFP (A) or the 
pDAH1-based plasmid pPN283 for CHS RNAi inhibition (B, C and D). (A) and (B) show buds 7 days after bombardment. (C) 
shows an example of inhibition in the inner epidermis, and (D) in the outer epidermis.
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after agroinfiltration of flowers in situ with 35S:IGUS, and
GUS staining after 1.5 to 3 days clearly showed GUS
expression throughout the epidermis of the petals (Figure
5). Infiltration was successful also for detached tobacco
flowers (Figure 5C), and similar results were observed
when using GFP as the reporter (Figure 6). Infiltrating
detached petunia flowers with 35S:IGUS (Figure 5D) and
35S:GFP (data not shown) constructs showed similar
results as for tobacco, with strong positive signal for sam-
ples ranging from 15 mm-length buds to fully opened
flowers. The level of GFP detected in tobacco petals infil-
trated with a 35S:GFP construct was visually similar to
that of transgenic plants stably transformed with a
35S:GFP transgene (Figure 6D compared with 6E). Exam-
inations based on petal sections revealed that the reporter
genes were expressed in all cell layers of the agroinfiltrated
petals (data not shown). GUS or GFP signal was not
observed in any of the respective negative control plants
(Figures 5A and 6F; data not shown).

Agroinfiltration (using strain LBA4404) of Antirrhinum
petals was unsuccessful (data not shown). Both lack of
Agrobacterium infection and induced necrosis in target tis-
sues have been noted as problems when developing
agroinfiltration protocols, and the identification of Agro-
bacterium strains more compatible with the host plant has
been successful for some species [5]. There are no previous
reports on the use of floral tissue for transient assays with
agroinfiltration, so it is not known whether lack of success
with transient infiltration can be correlated to the
infectability of species with Agrobacterium when generat-
ing stably transformed plants. Antirrhinum is readily
infected by A. tumefaciens or A. rhizogenes [27]; however,
regeneration of plantlets from transformed tissues is diffi-
cult.

Conclusion
Biolistics-based transient RNAi in floral tissues was dem-
onstrated for the classic model species Antirrhinum, and
agroinfiltration methods for transient gene expression
were successfully established for floral tissues of two other
model species, tobacco (N. tabacum) and petunia. To our
knowledge, this is the first report describing the applica-
tion of these techniques to floral tissue. These methods
should allow analysis of gene function in a broader range
of flower species. Furthermore, a construct was developed
for high-throughput RNAi silencing and successfully
tested in petals of Antirrhinum.

Methods
Plant material

The 'Mitchell' petunia line (sometimes referred to as
W115) was obtained from the University of Auckland,
New Zealand, and is Petunia axillaris × (P. axillaris × P.
hybrida) [37]. Antirrhinum line 603 and wild type lines

H75A and JI522 were obtained as seed from Prof Cathie
Martin and Rosemary Carpenter of the John Innes Centre,
Norwich (UK). The tobacco line used was N. tabacum cv
Samsun.

pDAH1 vector construction

The plasmid DAH1 (Figure 3) was derived from pGEM5Zf
(In Vitro Technologies, Auckland, New Zealand).
Linker1F and Linker1R (5'-NotI-PstI-MfeI-NotI-3') were
inserted into the SphI/NsiI site of pGEM5Zf, destroying
the SphI and NsiI sites, to produce pAF. A PstI-EcoRI frag-
ment containing the CaMV 35S promoter from pART7
[36], Linker2F and Linker2R (BamHI/SacI) and the nos
terminator were then ligated into the PstI/MfeI sites of
pAF to produce pAO. A second nos terminator fragment
(with 97 bp of the 3'-end of the GFP sequence) was PCR-
amplified with the primers BglII-SGFP-NOS and XbaI-
EcoRI-ASNOS, digested with BglII and XbaI and cloned in
the antisense orientation into the XbaI/BamHI sites of
pAO to make the nos hairpin vector pAP. A multiple clon-
ing site was then created by inserting Linker3F (Figure 3A,
top strand) and Linker3R (Figure 3A, lower strand) into
pAP digested with XbaI and EcoRI (destroying the
upstream XbaI site) to produce pDAH1. The oligonucle-
otide sequences used were:

Linker1F 5'-AGCGGCCGCCTGCAGACGGACAATT-
GGCGGCCGCCTGCA-3'

Linker1R 5'-GGCGGCCGCCAATTGTCCGTCTGCAG-
GCGGCCGCTCATG-3'

Linker2F 5'-CCTGAG-3'

Linker2R 5'-GATCCTCAGGAGCT-3'

Primer BglII-SGFP-NOS 5'-CGCAGATCTCCACATGGTC-
CTTCTTGA-3'

Primer XbaI-EcoRI-ASNOS

5'-TGCTCTAGAACGAATTCCCGATCTAGTAACATA-3'

Agrobacterium-infiltration vectors

The binary vectors used were pBINm-gfp5-ER [38,39] and
p27IGUS, a vector based on pART27 but containing a
GUS reporter gene with an intron (IGUS; [40]). IGUS was
PCR-amplified from pMOG410 and cloned into pART7
which had been digested with KpnI and SmaI. The cassette
containing 35S:IGUS:OCS was released by NotI digestion
and ligated into NotI-digested pART27.

Hairpin vectors for dsRNA

cDNA encoding the ORF of CHS was PCR-amplified from
a pool of first strand cDNA derived from floral RNA (iso-
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Transient GUS gene expression in tobacco and petunia flowers using Agrobacterium tumefaciens infiltrationFigure 5
Transient GUS gene expression in tobacco and petunia flowers using Agrobacterium tumefaciens infiltration. Pet-
als of tobacco (A, B and C) and petunia (D) were stained for GUS activity 1.5 to 3 days after infiltration with A. tumefaciens 
strain LBA4404 harbouring either the control plasmid pART27 (A) or the 35S:IGUS construct p27IGUS (B, C and D). The pet-
als were infiltrated while attached to the plant (A and B) or detached (C and D). Cuts were made in the petals to enable pene-
tration of the GUS substrate.
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Transient GFP gene expression in tobacco flowers using Agrobacterium tumefaciens infiltrationFigure 6
Transient GFP gene expression in tobacco flowers using Agrobacterium tumefaciens infiltration. Petals infiltrated 
with A. tumefaciens strain LBA4404 harbouring a 35S:GFP construct when they were attached (A, B, C) or detached (D) are 
shown 2 to 2.5 days after infiltration. Panel E shows GFP fluorescence from a flower of a tobacco plant stably transformed with 
a 35S:GFP construct. Panel F shows a flower from a control line transformed with an empty vector (pART27). Images are 
shown for petals under normal light (A) and blue light (B, C, D, E and F). GFP expression is seen as green fluorescence in B and 
green-blue fluorescence in C, D and E (the blue colour occurred with strong GFP fluorescence digitally photographed under 
higher magnification).
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lated from Antirrhinum wild type line H75A) using Fast-
Start Taq polymerase (Roche Applied Science) and gene-
specific primers. pPN187 was constructed based on the
vector pRNA69 [41], containing the CaMV 35S promoter,
multiple cloning sites (separated by the Yabby5 intron) for
inserting sense and antisense sequences for the gene of
interest, and the ocs terminator. The CHS ORF was ligated
in a sense orientation into the XhoI site and in an anti-
sense orientation using ClaI/XbaI sites. pPN283 was con-
structed by ligating the PCR-amplified CHS ORF into
pDAH1 using T-A cloning. pPN107 was made by ligating
the ORF of Rosea1 into pRNA69 in a sense orientation
using the XhoI/BclI sites and in an antisense orientation
using the ClaI/XbaI sites.

In vitro culture of Antirrhinum floral buds

Whole buds (3–10 mm in length; minus sepals) were sur-
face sterilized for 10 minutes using 10% (v/v) bleach con-
taining 1–2 drops of Tween20/100 mL. Buds were then
rinsed three times with sterile water and maintained on
medium #2 (1/2 × MS macro salts/L; 1 × MS micro salt/L;
1 × MS iron/L; 1 × LS vitamins/L; 3% sucrose (w/v)/7.5%
agar (w/v) during and after particle bombardment. The
cultured buds were placed under artificial lights (16 h
photoperiod) at 25°C after bombardment.

Particle bombardment of floral buds

Particle bombardment used a helium-driven particle
inflow gun based on Vain et al. [42], but modified by the
addition of a high speed, direct current solenoid valve for
accurate valve opening times down to 8 ms. The bom-
bardment conditions were a solenoid valve opening time
of 30 ms, a pressure setting of 400 kPa, a shooting dis-
tance of 13 cm, and a partial vacuum of approximately -
95 kPa. Preparation of the DNA/gold suspension was
essentially as in Schwinn et al. [30], with the gold in 50 µL
water prior to precipitation of plasmid DNA onto the gold
particles. A final DNA concentration (for each construct of
interest) of 2 µg DNA per mg of 1.0 µm gold particles was
used. Each bombardment used 5 µL of DNA/gold suspen-
sion. Buds were bombarded six times and then cultured.
Transformation was monitored by including an internal
control vector, pRT99GFP, which was co-precipitated
onto the gold particles with the construct of interest (at
one-fifth the concentration). Also, pRT99GFP alone (at
the same concentration) was used for control bombard-
ment experiments.

Agrobacterium infiltration of floral tissue

Attached tobacco flowers were infiltrated with A. tumefa-
ciens strain LBA4404 harbouring either p27IGUS or
pBINm-gfp5-ER. The LBA4404 cells were cultured in 10
ml LB broth with antibiotic overnight, pelleted and re-sus-
pended in medium #1003 (AB media salts + NaH2PO4

240 mg/L+ glucose 10 g/L + MES 14.693 g/L) supple-

mented with 100 µM acetosyringone, and cultured for 4 h.
The cells were then pelleted and re-suspended to a con-
centration of A600 = 0.5 in 1% (w/v) glucose solution (pH
5.3) supplemented with 100 µM acetosyringon. Flower
buds or opened flowers were pierced with a needle and
infiltrated with the A. tumefaciens culture using a syringe.
When using detached flowers, the flowers were cut into
half across the middle of the tube, agroinfiltrated using a
vacuum chamber, blotted with Whatman paper and cul-
tured in petri-dishes containing moistened Whatman
paper. The agroinfiltrated, detached flowers were cultured
at 25°C under artificial lights (16 h photoperiod) for 2 to
2.5 days before examining reporter gene activity.

Reporter gene assays

1.5 to 3 days following agroinfiltration, flowers were his-
tochemically assayed for GUS activity. Flower samples
were incubated for 12 to 48 h at 37°C in X-gluc staining
buffer (5-bromo-4-chloro-3-indoyl-β-D glucuronide dis-
solved in dimethyl formamide then diluted to 0.5 mg/L X-
gluc in 50 mM phosphate buffer (pH 7.0) containing 1%
(v/v) Triton X-100), and then placed in 70% (v/v) ethanol
to remove the chlorophyll and preserve the sample. In
some instances a brown colour developed due to tissue
necrosis, and this was removed by treatment in a 5% ace-
tic acid/ethanol (v/v) solution at 70°C for 30 min. To ena-
ble penetration of the GUS substrate into the petals they
were either cut into pieces or wounds were made in the
petals.

Light microscopy used an Olympus BH2 microscope and
fluorescent microscopy used an Olympus SZX micro-
scope. Images were recorded using a Leica DC 50 digital
camera.
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