

City, University of London Institutional Repository

Citation: Slabaugh, G. G., Culbertson, W. B., Malzbender, T., Stevens, M. R. & Schafer, R.

W. (2004). Methods for Volumetric Reconstruction of Visual Scenes. International Journal of

Computer Vision, 57, pp. 179-199. doi: 10.1023/B:VISI.0000013093.45070.3b

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4698/

Link to published version: https://doi.org/10.1023/B:VISI.0000013093.45070.3b

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Methods for Volumetric Reconstruction of Visual Scenes

GREGORY G. SLABAUGH

Intelligent Vision and Reasoning Department, Siemens Corporate Research, Princeton, NJ 08540

greg.slabaugh@scr.siemens.com

W. BRUCE CULBERTSON, THOMAS MALZBENDER

Visual Computing Department, Hewlett-Packard Laboratories, Palo Alto, CA 94304

{bruce culbertson, tom malzbender}@hp.com

MARK R. STEVENS

Charles River Analytics Inc., Cambridge, MA 02138

mstevens@cra.com

RONALD W. SCHAFER

Center for Signal and Image Processing, Georgia Institute of Technology, Atlanta, GA 30318

rws@ece.gatech.edu

Abstract
In this paper, we present methods for 3D volumetric

reconstruction of visual scenes photographed by multiple

calibrated cameras placed at arbitrary viewpoints. Our

goal is to generate a 3D model that can be rendered to syn-

thesize new photo-realistic views of the scene. We improve

upon existing voxel coloring / space carving approaches

by introducing new ways to compute visibility and photo-

consistency, as well as model infinitely large scenes. In

particular, we describe a visibility approach that uses all

possible color information from the photographs during

reconstruction, photo-consistency measures that are more

robust and/or require less manual intervention, and a volu-

metric warping method for application of these reconstruc-

tion methods to large-scale scenes.

Keywords
Scene reconstruction, voxel coloring, space carv-

ing, photo-consistency, histogram intersection, volumetric

warping

1 Introduction

In this paper, we consider the problem of reconstructing

a 3D model of a scene of unknown geometric structure us-

ing a set of photographs (also called reference views) of the

scene taken from calibrated and arbitrarily placed cameras.

Our goal is to reconstruct geometrically complex scenes

using a set of easily obtained photographs taken with inex-

pensive digital cameras. We then project this reconstructed

3D model to virtual viewpoints in order to synthesize new

views of the scene, as shown in Figure 1.

To accomplish this task, we have developed methods

that improve upon the quality, usability, and applicabil-

ity of existing volumetric scene reconstruction approaches.

We present innovations in the computation of visibility and

photo-consistency, which are two crucial aspects of this

class of algorithms. One of our visibility approaches mini-

mizes photo-consistency evaluations, which results in effi-

cient computation, and our histogram intersection method

of computing photo-consistency requires almost no user in-

tervention. We also present a volumetric warping approach

designed to reconstruct infinitely large scenes using a finite

number of voxels. These techniques are aimed at bringing

volumetric scene reconstruction out of the laboratory and

towards the reconstruction of complex, real-world scenes.

1.1 Related Work
The 3D scene reconstruction problem has received con-

siderable attention in the literature, and a multitude of so-

lutions have been proposed. Many solutions have been de-

veloped for specific camera configurations (e.g., a small

number of cameras [28], short baselines, parallel optical

axes [4], an ordinal visibility constraint [39], etc.); or spe-

cific classes of scenes (e.g., scenes composed of geometric

primitives such as planes [15, 21], lines, or curves, scenes

exhibiting or lacking texture [54], etc.). Some solutions re-

(a) (b)

Figure 1: One of 24 reference views of our “Ceevah” data set (a) and a new view synthesized after scene reconstruction (b).

quire user interaction [11, 41]. In this paper, we are inter-

ested in a more general case, for which a scene of unknown

geometric structure is photographed from any number of

arbitrarily placed cameras. We are most interested in tech-

niques that require minimal interaction with the user.

In the literature, several methods to represent a visual

scene have been proposed, including layered depth im-

ages [40], surface meshes, surfels [6, 34], light fields [18,

26], etc. In this paper, we focus on volumetric representa-

tions, which provide a topologically flexible way to char-

acterize a 3D surface inferred from multiple images. If

desired, a voxel-based surface can be converted into any of

the above representations with relative ease.

Due to the large number of scene reconstruction ap-

proaches, it would be impossible to provide a comprehen-

sive review here; see [12, 43] for a survey of volumetric

approaches. Techniques such as multi-view stereo [17, 32]

and structure from motion [1, 20, 35] have been quite suc-

cessful at reconstructing 3D scenes. These methods com-

pute and then triangulate correspondences between views

to yield a set of 3D points that are then fit to a surface.

The effectiveness of these reconstruction methodologies

relies upon accurate image-space correspondence match-

ing. Such matching typically falters as the baseline be-

tween views increases since the effects of occlusion and

perspective are difficult to model in image space when the

scene geometry is unknown. Consequently, many of these

methods are not well suited to the arbitrary placement of

cameras.

A level set approach to the scene reconstruction prob-

lem has been proposed by Faugeras and Keriven [16]. A

surface initially larger than the scene is evolved using par-

tial differential equations to a successively better approx-

imation of true scene geometry. Like the approaches we

present in this paper, this level set method can employ ar-

bitrary numbers of images, account for occlusion correctly,

and deduce arbitrary topologies.

Perhaps the simplest class of volumetric multi-view

reconstruction methods are visual hull approaches [25,

29, 49]. The visual hull, computed from silhouette im-

ages, is an outer-bound approximation to the scene ge-

ometry. Algorithms that compute the visual hull are ap-

plicable to scenes with arbitrary BRDFs as long as fore-

ground/background segmentation at each reference view is

possible, and are relatively simple to implement since vis-

ibility need not be modeled when reconstructing the scene

geometry.

While a visual hull can be rendered to produce new

views of the scene, typically the visual hull geometry is not

very accurate. This can diminish the photo-realism when

new views are synthesized. To increase the geometric ac-

curacy, more information than silhouettes must be used

during reconstruction. Color is an obvious source of such

additional information. Many researchers have attempted

to reconstruct 3D scenes by analyzing colors across multi-

ple viewpoints. Specifically, they have sought a 3D model

that, when projected to the reference views, reproduces the

photographs.

Reconstructing such a model requires a photo-

consistency check, which determines if a point in 3D space

is consistent with the photographs taken of the scene. In

particular, a point is photo-consistent [39, 24] if:

• It does not project to background, if the background

is known.

• When the point is visible, the light exiting the point

(i.e., radiance) in the direction of the camera is equal

to the observed color of the point’s projection in the

photograph.

Kutulakos and Seitz [24] state that surfaces that are not

transparent or mirror-like reflect light in a coherent man-

ner; that the color of light reflected from a single point

along different directions is not arbitrary. The photo-

consistency check takes advantage of this fact to eliminate

visible parts of space that do not contain scene surfaces.

This reconstruction problem is ill-posed in that, given a

set of photographs and a photo-consistency check, there

are typically multiple 3D models that consist of photo-

consistent points. In their insightful work, Kutulakos and

Seitz [24] introduce the photo hull, which is the largest

shape that contains all reconstructions in the equivalence

class of photo-consistent 3D models. For a given mono-

tonic photo-consistency check 1, the photo hull is unique,

and is itself a reconstruction of the scene. Since we model

points with voxels, the photo hull is found by identify-

ing the spatially largest volume of voxels that are photo-

consistent with all reference views.

When computing the photo hull, we have found that the

quality of the result depends heavily on two factors. They

are:

1. Visibility: The method of determining of the pixels

from which a voxel V is visible. We denote these

pixels πV .

2. Photo-consistency test: A function that decides, based

on πV , whether a surface exists at V .

In the algorithm presented in the next paragraph, we will

see that visibility and photo-consistency are inter-related

and, as a result, multiple passes must in general be made

over the voxels to find the photo hull.

Volumetric methods for finding the photo hull adopt the

following approach. First, a voxel space is defined that

contains, by a comfortable margin, the portion of the scene

to be reconstructed. During reconstruction, the voxels are

either completely transparent or opaque; initially, they are

all opaque. Voxels that are visible to the cameras are

checked for photo-consistency, and the inconsistent voxels

are carved, i.e., their opacity is set to transparent. Carving

one voxel typically changes the visibility of other opaque

voxels. Since the photo-consistency of a voxel is a func-

tion of its visibility, the consistency of an uncarved voxel

must be rechecked whenever its visibility changes. The

algorithm continues until all visible, uncarved voxels are

photo-consistent. This set of voxels, when rendered to the

reference views, reproduces the photographs and is there-

fore a model that resembles the scene. Pseudocode is pro-

vided in Figure 2.

1We will discuss monotonicity in Section 2.

set all voxels uncarved
loop {

for every uncarved voxel V {
find π

V

if (π
V is inconsistent)

carve V
}
if (no voxels carved on this iteration)

done
}

Figure 2: Generic pseudocode for reconstructing the photo
hull.

The Voxel Coloring algorithm of Seitz and Dyer [39] re-

constructs the photo hull for scenes photographed by cam-

eras that satisfy the ordinal visibility constraint, which re-

stricts the camera placements so that the voxels can be vis-

ited in an order that is simultaneously near-to-far relative to

every camera. Typically, this condition is met by placing

all the cameras on one side of the voxel space, and process-

ing voxels using a plane that sweeps through the volume in

a direction away from the cameras. Under this constraint,

visibility is simple to model using occlusion bitmaps [39].

Voxel Coloring is elegant and efficient, but the ordi-

nal visibility constraint is a significant limitation, since

it means that cameras cannot surround the scene. Kutu-

lakos and Seitz [23] present what we call the Partial Vis-

ibility Space Carving (PVSC) algorithm, which repeat-

edly sweeps a plane through the volume in all six axis-

aligned directions. For each plane sweep, only the subset

of cameras that are behind the plane are used in the photo-

consistency check. This approach permits arbitrary cam-

era placement, which is a significant advantage over Voxel

Coloring. However, when evaluating a voxel’s photo-

consistency, it uses pixels from only a subset of the total

cameras that have visibility of the voxel. To address this

issue, Kutulakos and Seitz [24] subsequently include some

additional per-voxel bookkeeping that accumulates the vis-

ible pixels in the voxel’s projection as the plane is swept

in all six axis-aligned directions. On the sixth sweep, the

full visibility of the voxel is known and considered in the

photo-consistency check. We call this version of their al-

gorithm Full Visibility Space Carving (FVSC).

Such carving algorithms are quite powerful, and have

captured the interest of many researchers who have pro-

posed extensions to or reformulations of the basic ap-

proach. Briefly, Prock and Dyer [36] present a multi-

resolution approach as well as hardware implementations

for improved efficiency. Researchers have performed space

carving using intrinsically calibrated [14] and weakly cali-

brated [22, 37] cameras. Space carving was recast in prob-

abilistic frameworks by Broadhurst et al. [5] and Bhotika et

al. [2]. Researchers have developed carving algorithms for

scenes with shadows [38], opacity [10], mixed pixels [50],

and non-Lambertian surfaces [6, 7]. Vedula et al. [52]

and Carceroni and Kutulakos [6] propose carving algo-

rithms for reconstructing time-varying scenes. Slabaugh et

al. [44] present an epipolar approach to constructing view-

dependent photo hulls at interactive rates.

1.2 Contributions
This paper presents contributions in three areas; visibil-

ity, photo-consistency, and the modeling of infinitely large

scenes. We discuss each below.

As stated above, visibility is a vital part of any algorithm

that reconstructs the photo hull. In Section 2 we present

a scene reconstruction approach, Generalized Voxel Color-

ing (GVC), which introduces novel methods for computing

visibility during reconstruction. These methods support ar-

bitrary camera placement and place minimal requirements

on the order in which voxels are processed, unlike plane

sweep methods [39, 24]. We show that one of our new

methods minimizes photo-consistency checks. We also

demonstrate how full visibility can result in more accurate

reconstructions for real-world scenes.

The photo-consistency test is the other crucial part of an

algorithm that reconstructs the photo hull. In Section 3 we

introduce two novel photo-consistency tests for Lamber-

tian scenes. The first is an adaptive technique that adjusts

the photo-consistency test so that surface edges and tex-

tured surfaces can be more accurately reconstructed. The

second is based on color histograms and treats multi-modal

color distributions in a more principled way than ear-

lier approaches. In addition, our histogram-based photo-

consistency test requires little parameter tuning.

Reconstruction of large-scale scenes that contain ob-

jects both near to and far from the cameras is a challenging

problem. Modeling such a scene with a fixed resolution

voxel space is often inadequate. Using a high enough res-

olution for the foreground may result in an unwieldy num-

ber of voxels that becomes prohibitive to process. Using

a lower resolution more suitable to the background may

result in an insufficient resolution for the foreground. In

Section 4 we present a volumetric warping approach that

represents infinitely large scenes with a finite number of

voxels. This method simultaneously models foreground

objects, background objects, and everything in between,

using a voxel space with variable resolution. Using such

a voxel space in conjunction with our GVC approach, we

reconstruct and synthesize new views of a large outdoor

scene.

We note that some of the content of this paper has ap-

peared in previous workshop and conference papers [9, 42,

47].

2 Generalized Voxel Coloring
We present two closely related space carving algo-

rithms 2 that we collectively call Generalized Voxel Carv-

ing (GVC). They differ from each other, and from earlier

space carving algorithms, primarily in the means they com-

pute visibility. The earlier methods require the voxels to be

scanned in plane sweeps, whereas GVC scans voxels in a

more general order. GVC represents just visible surface

voxels in its main data structure, reducing both computa-

tion and storage. GVC accounts for visibility in a way that

very naturally accommodates arbitrary camera placement

and allows full voxel visibility to be computed efficiently.

The first GVC algorithm, GVC-IB, uses less memory than

the other. It also uses incomplete visibility information

during much of the reconstruction yet, in the end, com-

putes the photo hull using full visibility. The other GVC

algorithm, GVC-LDI, uses full visibility at all times, which

greatly reduces the number of photo-consistency checks re-

quired to produce the photo hull. We show that the use

of full visibility results in better reconstructions than those

produced by earlier algorithms that only use partial visibil-

ity.

As mentioned earlier, carving one voxel can change the

visibility of other voxels, so visibility must be calculated

frequently while reconstructing a photo hull. Because of

self-occlusion in the scene, visibility is complex and po-

tentially costly to compute. Thus, an efficient means of

computing visibility is a key element of any practical space

carving algorithm, including our GVC algorithms.

As a space carving algorithm begins a reconstruction, it

carves voxels based on the visibility of a model that looks

nothing like the final photo hull. One might therefore won-

der: could the algorithm carve a voxel that belongs in the

photo hull? To answer this question, consider the follow-

ing two insights, based on Seitz and Dyer [39]. First, since

voxels change from opaque to transparent during recon-

struction, and never the reverse, the visibility of the remain-

ing voxels can only increase. In particular, if S is the set of

pixels that have an unoccluded view of an uncarved voxel

at one point in time and if S′ is the set of such pixels at a

later point in time, then S ⊆ S′. Second, Seitz and Dyer

make an unstated assumption that the consistency test is

monotonic, meaning for any two sets of pixels S and S′

with S ⊆ S′, if S is inconsistent, then S′ is also incon-

sistent. These two facts imply that carving is conservative:

no voxel will ever be carved if it would be photo-consistent

in the final model. (Although carving with non-monotonic

consistency tests is not in general conservative, we show

2Throughout this paper, we will use the term “space carving algo-

rithms” to refer to the class of volumetric scene reconstruction algorithms

that use photo-consistency to carve a voxel space. Voxel Coloring, PVSC,

FVSC, and GVC are all members of this class.

(a) (b)

Figure 3: The data structures used to compute visibility. An item buffer (a) is used by GVC-IB and records the ID of the

surface voxel visible from each pixel in an image. A layered depth image (LDI) (b) is used by GVC-LDI and records all

surface voxels that project onto each pixel.

in Section 3 that such tests can nevertheless yield good re-

constructions.)

Both GVC-IB and GVC-LDI maintain a surface voxel

list (SVL), a list of the surface voxels in the current model

that are visible from the cameras. For box-shaped voxel

spaces that contain none of the cameras, we typically ini-

tialize the SVL with the outside layer of voxels. We have

used ad hoc methods to initialize the SVL when we used

more complicated voxel spaces, as in Section 4. When

a voxel is carved, we remove it from the SVL. We also

add to the SVL any voxels that are adjacent to the carved

voxel and that have not been previously carved; this pre-

vents holes from being introduced into the surface repre-

sented by the SVL. As described below, we give each voxel

a unique ID number. We use a hash table to find the voxel

with a given ID in the SVL. The SVL can also be scanned

sequentially.

2.1 The GVC-IB Algorithm
The GVC-IB algorithm maintains visibility using an

item buffer [53] for each reference image. An item buffer

is defined as follows: for each pixel P in a reference im-

age, an item buffer, shown in Figure 3a, stores the voxel

ID of the closest voxel that projects to P (if any). An item

buffer is computed by rendering the voxels into the ref-

erence image using z-buffering, but storing voxel IDs in-

stead of colors. As with earlier space carving algorithms,

it is assumed that at most one voxel is visible from any

pixel. Therefore, we make no attempt to model blended

colors that arise from transparency [10] or depth disconti-

nuities [50].

Pseudocode for GVC-IB appears in Figure 4. Once

valid item buffers have been computed for the images, their

pixels are then scanned. During the scan, if a valid voxel

ID is found in a pixel’s item buffer value, then the pixel’s

initialize SVL
loop {

for all images
compute item buffer

accumulate color statistics into SVL voxels
for every voxel V in SVL {

if (V is inconsistent) {
carve V (remove V from SVL)
add uncarved neighbors of V to SVL

}
}
if (no voxels carved)

done
}

Figure 4: GVC-IB pseudocode.

color is accumulated into the voxel’s color statistics.

When the pixel scanning is complete, the SVL is

scanned and each voxel is tested for consistency, based on

the collected color statistics. If a voxel is found to be in-

consistent, it is carved and removed from the SVL. After a

voxel is carved, the visibility of the remaining SVL voxels

potentially changes, so all the color statistics must be con-

sidered out-of-date. At this point, it might seem natural to

recompute the item buffers and start the process all over.

However, because the item buffers are time-consuming to

compute, we delay updating them. Although the visibility

found using out-of-date item buffers is no longer valid for

the current model, it is still valid for a superset of the cur-

rent model. Because carving is conservative, no consistent

voxels will be carved using the out-of-date color statistics,

though some voxels that should be carved might not be.

When the entire SVL has been scanned and all voxels with

inconsistent color statistics have been carved, then we re-

compute the item buffers and begin again. These iterations

continue until, during some iteration, no carving occurs.

At this point, the SVL is entirely consistent, based on up-

to-date visibility, so the SVL is in fact the photo hull.

Profiling GVC-IB revealed that nearly all the runtime is

spent rendering item buffers. This suggested two ways to

accelerate the algorithm. Since each item buffer is inde-

pendent of the others, they can be rendered in parallel on a

multi-CPU computer. Using two CPUs and several image

sets, we measured runtime reductions between 46% and

48% compared to a uniprocessor. Next, in other experi-

ments using a one CPU, we rendered the item buffers using

a hardware graphics accelerator. This resulted in runtime

reductions between 56% and 63%. GVC-IB (and GVC-

LDI) can also be executed in a coarse-to-fine manner, as

described in [36]. We have seen runtime reductions of ap-

proximately 50% using such multi-resolution voxel spaces.

These efficiencies can be combined for faster reconstruc-

tions.

2.2 The GVC-LDI Algorithm

GVC-IB computes visibility in a relatively simple man-

ner that also makes efficient use of memory. However, the

visibility information is time consuming to update. Hence,

GVC-IB updates it infrequently and it is out-of-date much

of the time. Using a monotonic photo-consistency mea-

sure, this does not lead to incorrect results but it does re-

sult in inefficiency because a voxel that would be evaluated

as inconsistent using all the visibility information might

be evaluated as consistent using a subset of the informa-

tion. Ultimately, all the information is collected but, in the

meantime, voxels can remain uncarved longer than neces-

sary and can therefore require more than an ideal number

of consistency evaluations. Furthermore, GVC-IB reevalu-

ates the consistency of voxels on the SVL even when their

visibility (and hence their consistency) has not changed

since their last evaluation. By using layered depth images

instead of item buffers, GVC-LDI can efficiently and im-

mediately update the visibility information when a voxel is

carved and also can precisely determine the voxels whose

visibility has changed.

Unlike the item buffers used by the GVC-IB method,

which record at each pixel P just the closest voxel that

projects onto P , the LDIs store at each pixel a list of all the

surface voxels that project onto P . See Figure 3b. These

lists are sorted according to the distance from the voxel to

the image’s camera. The head of an LDI list stores the

voxel closest to P , which is the same voxel an item buffer

would store. The LDIs are initialized by rendering the SVL

voxels into them.

Using the LDIs, the set of pixels πV from which a voxel

V is visible can be found as follows. V is scan converted

into each reference image to find its projection (without

regard to visibility). For each pixel P in V ’s projection, if

the voxel ID at the head of P ’s LDI equals V ’s ID, then

P is added to πV . Once πV is computed, V ’s consistency

can be determined by testing πV .

The uncarved voxels whose visibility changes when an-

other voxel is carved come from two sources:

• They are inner voxels adjacent to the carved voxel

and become surface voxels when the carved voxel be-

comes transparent. See Figure 5a.

• They are already surface voxels (hence they are in the

SVL and LDIs) and are often distant from the carved

voxel. See Figure 5b.

Voxels in the first category are trivial to identify since they

are next to the carved voxel. Voxels in the second cat-

egory are impossible to identify efficiently in the GVC-

IB method; hence, that method must repeatedly evaluate

the entire SVL for color consistency. In GVC-LDI, vox-

els in the second category can be found easily with the

aid of the LDIs; they will be the second voxel on the

LDI list for some pixel in the projection of the carved

voxel. GVC-LDI keeps a list of the SVL voxels whose

visibility has changed, called the changed visibility SVL

(CVSVL). These are the only voxels whose consistency

must be checked. Carving is finished, and the photo hull is

found, when the CVSVL is empty.

When a voxel is carved, the LDIs (and hence the vis-

ibility information) can be updated immediately and effi-

ciently. The carved voxel can be easily deleted from the

LDI list for every pixel in the voxel’s projection. The same

process automatically updates the visibility information for

the second category of uncarved voxels whose visibility

has changed; these voxels move to the head of LDI lists

from which the carved voxel has been removed and they

are also added to the CVSVL. Inner voxels adjacent to the

carved voxel are pushed onto the LDI lists for pixels they

project onto. As a byproduct of this process, the algorithm

learns if the voxel is visible; if it is, it is put on the CVSVL.

Pseudocode for GVC-LDI is given in Figure 6.

2.3 GVC Reconstruction Results

We now present experimental results to demonstrate our

GVC algorithms, and provide, for side-by-side compari-

son, results obtained with Space Carving. As discussed in

Section 1.1, there are two versions of the Space Carving al-

gorithm: Partial Visibility Space Carving (PVSC) and Full

Visibility Space Carving (FVSC). As will be shown, PVSC

produces less accurate results than GVC and FVSC. There-

fore, we will focus more on comparing GVC to FVSC.

(a) (b)

Figure 5: When a voxel is carved, there are two categories of other voxels whose visibility changes: (a) inner voxels that

are adjacent to the carved voxel and (b) voxels that are already on the SVL and are often distant from the carved voxel.

initialize SVL
for all images

compute LDI
place all voxels in SVL onto CVSVL
while (CVSVL not empty) {

choose a voxel V from CVSVL
remove V from CVSVL
scan convert V to find π

V

if (π
V is not consistent) {

carve V (remove from SVL, LDIs)
for all inner neighbors U of V

add U to SVL, CVSVL, LDIs
for voxels U that move to head of LDIs

add U to CVSVL
}

}

Figure 6: GVC-LDI pseudocode.

2.3.1 Comparison with Partial Visibility Space Carv-
ing

Figure 7 shows two of fifteen reference views of our

“bench” data set. Calibration of the 765 x 509 pixel images

had accuracy of a maximum 1.2 pixels of reprojection er-

ror for the points used in the calibration. We reconstructed

the scene using a 75 x 71 x 33 voxel volume. New views

synthesized from the GVC-IB and PVSC reconstructions

are shown in Figure 7.

The PVSC image is considerably noisier and more dis-

torted than the GVC image, a trend we observed with all

data sets we tested. In general, PVSC produces less ac-

curate reconstructions than GVC, since, when computing

photo-consistency, PVSC does not use the full visibility of

the scene, unlike GVC. During a plane sweep, the cameras

that are ahead of the plane are not considered by the PVSC

algorithm even though those cameras might have visibility

of voxels on the plane. Since photo-consistency is deter-

mined using a subset of the available color information,

the photo-consistency test sometimes fails to produce the

proper result had the full visibility been considered. For

some data sets, we found the PVSC runs faster, while for

others, GVC runs faster. However, PVSC always requires

less memory than GVC-IB or GVC-LDI.

Additional comparisons between GVC and PVSC ap-

pear in [9].

2.3.2 Comparison with Full Visibility Space Carving

Next, we present results of running GVC-IB, GVC-LDI,

and Full Visibility Space Carving (FVSC) on two data

sets we call “toycar” and “ghirardelli”. In particular, we

present runtime statistics and provide images synthesized

with FVSC and our algorithms. The experiments were run

on a computer with a 1.5 GHz Pentium 4 processor and

768 MB of RAM.

The toycar and ghirardelli data sets are quite different

in terms of how difficult they are to reconstruct. The toy-

car scene is ideal for reconstruction. The seventeen 800 x

600 pixel images are computer-rendered and perfectly cal-

ibrated. The colors and textures make the various surfaces

in the scene easy to distinguish from each other. Two of

our toycar reference views are shown in Figure 8. In con-

trast, the seventeen 1152 x 872 ghirardelli images are im-

perfectly calibrated photographs of an object that has sig-

nificant areas with relatively little texture and color varia-

tion. Two of our ghirardelli reference views are shown in

Figure 9.

We reconstructed the toycar scene in a 167 x 121 x 101

voxel volume. The reconstruction of the ghirardelli data

set occurred in a 168 x 104 x 256 voxel volume; note this

resolution is significantly higher than that used to recon-

struct the toycar scene. New views synthesized from re-

constructions obtained using the GVC-IB, GVC-LDI, and

FVSC algorithms are shown in Figures 8 and 9 for the toy-

car and ghirardelli data sets, respectively. The three re-

constructions in each figure are not identical because we

used a photo-consistency test (the adaptive standard devia-

tion test that will be discussed in Section 3.2.1) that is not

monotonic. Therefore, the order in which the voxels were

processed affected the final result. However, for each data

set, the three reconstructions are comparable in terms of

quality.

There were significant differences between the algo-

rithms in terms of runtime statistics, as shown in Table 1.

The “Checks” column in the table indicates the number of

photo-consistency checks that were required to complete

the reconstruction. For both data sets, FVSC required an

order of magnitude more consistency checks than the GVC

algorithms, for two reasons. First, on each sweep through

the volume, FVSC processes inner voxels, i.e., voxels that

are inside the surface and not visible to any of the cam-

eras. GVC, in contrast, does not process the inner voxels,

instead only processing surface voxels. GVC-LDI is par-

ticularly efficient, since it only processes the surface vox-

els that change visibility, resulting in a minimal number of

photo-consistency checks. Second, some voxels can only

be carved using a large amount (possibly all) of the their to-

tal visibility. In FVSC, the amount of visibility grows from

nothing at the beginning of the first sweep through the vol-

ume, to full visibility at the end of the sixth sweep. During

some of these earlier sweeps, there may not be enough vis-

ibility for the voxel to be carved. In contrast, GVC uses

more visibility. In particular, GVC-LDI always uses full

visibility each time a voxel’s photo-consistency is checked.

The “Time” column in Table 1 indicates the amount

of time required to complete the reconstruction. For the

toycar data set, the GVC algorithms were slightly faster

than FVSC. Although GVC processes fewer voxels, the

additional overhead required to maintain the visibility data

structures does not result in a significantly faster runtime.

However, for the Ghirardelli data set, the efficiency of

GVC-LDI’s relatively complex data structures more than

compensates for the time needed to maintain them. Be-

cause GVC-LDI finds all the pixels from which a voxel is

visible, it can carve many voxels sooner, when the model

Data Set Algorithm Checks Time (m:s) Memory

Toycar FVSC 25.8 M 32:31 156 MB

Toycar GVC-IB 3.1 M 36:16 74 MB

Toycar GVC-LDI 2.2 M 29:16 399 MB

Ghir. FVSC 154 M 2:35:43 337 MB

Ghir. GVC-IB 12.1 M 2:01:27 154 MB

Ghir. GVC-LDI 4.5 M 0:47:10 275 MB

Table 1: Runtime statistics for the toycar and ghirardelli

data sets.

is less refined, than GVC-IB. Furthermore, after carving

a voxel, GVC-LDI only reevaluates the few other voxels

whose visibility has changed. Consequently, GVC-LDI is

faster than GVC-IB by a large margin. For FVSC, the large

number of photo-consistency checks results in a slower

runtime.

The last column of Table 1 shows the memory usage

of the algorithms. All three approaches keep copies of the

input images in memory. As described in [24], for Lam-

bertian scenes, FVSC additionally stores color statistics

for each voxel in the voxel space. This grows as O(N3),
where N is the number of voxels along one dimension of

the voxel space. Additionally, we store the one of six parti-

tions [24] of space that each camera lies in for each voxel.

This storage is also O(N3). We note that the partitions

could be computed on the fly (i.e., requiring no storage) at

the expense of runtime. However, in our experiments, we

opted for a faster runtime. Unlike FVSC, the voxel res-

olution has little bearing on the memory requirements for

GVC-IB and GVC-LDI. GVC-IB requires equal amount

of memory for the images and the item buffers. The LDIs

dominate the memory usage in GVC-LDI and consume

an amount of memory roughly proportional to the number

of image pixels times the depth complexity of the scene.

The SVL and CVSVL data structures used by GVC-IB

and GVC-LDI require O(N2) storage, and are relatively

insignificant. Thus, of the three approaches, GVC-IB re-

quired the least amount of memory. For the toycar data

set modeled with a lower resolution voxel space, GVC-

LDI required more memory than FVSC. However, for the

ghirardelli data set modeled with a higher resolution voxel

space, GVC-LDI required less memory than FVSC.

2.4 Summary
In this section we presented our Generalized Voxel

Coloring algorithms, GVC-IB and GVC-LDI. These ap-

proaches support arbitrary camera placement and recon-

struct the scene using full visibility. We demonstrated that

methods like GVC that use full visibility result in more

accurate reconstructions than those that use partial visibil-

ity. The GVC-IB algorithm is memory efficient, while our

(a) (b)

(c) (d)

Figure 7: Bench scene. The top row shows two of the fifteen input images. The bottom row shows a new view synthe-

sized from the Partial Visibility Space Carving reconstruction (c) and the GVC-IB reconstruction (d). The PVSC image is

considerably noisier and more distorted than the GVC-IB image.

(a) (b)

(d) (e) (f)

Figure 8: Toycar scene. The top row shows two of the seventeen images input images. The bottow row shows new views

generated by rendering the FVSC (d) GVC-IB (e), and GVC-LDI (f) reconstructions.

GVC-LDI algorithm reconstructs the scene using a mini-

mal number of photo-consistency checks, which, for many

scenes, results in a faster reconstruction.

3 Photo-Consistency Tests
When reconstructing a scene using a space carving al-

gorithm, there are two key factors that affect the quality

of the reconstructed model. The first is the visibility that

is computed for the voxels. In the previous section we

demonstrated that using full visibility produces better qual-

ity reconstructions than using only partial visibility. The

second factor is the test that is used to judge the photo-

consistency of voxels.

The section begins by describing the likelihood ratio

test, the first consistency test that was proposed for space

carving. We then describe several of the most straight-

forward, and perhaps obvious, candidate tests. Next, we

present two tests that we have developed, the adaptive stan-

dard deviation test and the histogram test. These two tests

have consistently yielded the best results in our new view

synthesis application, and one of the tests has the added

advantage of requiring little or no parameter adjustment.

Finally, we present results that show some color spaces are

better than others for space carving.

We have provided Figure 10 for comparison of the con-

sistency tests and color spaces. It shows reconstructions

performed with identical programs, aside from the tests or

color spaces being compared. All the reconstructions in

the figure use the same “shoes” data set, consisting of 30

1536 × 1024 images, but the results are consistent with

other data sets we have tried. The reconstructions have

been rendered to an identical viewpoint that is different

from any of the input images used in the reconstructions.

Parameters used in the tests were tuned to minimize holes

in the calibration target that serves as the floor of the scene.

Og̈uz Özün [33] has also compared consistency tests and

had similar success with the two tests we developed.

Kutulakos and Seitz [24] have stated that the photo hull,

the set of all photo consistent voxels, provides “the tightest

possible bound on the shape of the true scene that can be

inferred from N photographs”. However, different photo

consistency tests lead to different photo hulls, many of

which do not resemble the scene. If there is a voxel that

belongs in a reconstruction but is judged by the test to be

inconsistent, then space carving carves the voxel from the

model. Worse, because the voxel is then considered trans-

parent, the algorithm can draw incorrect conclusions about

which images see the remaining uncarved voxels, leading

to more incorrect carving. Figure 12b shows an example

of this problem. The consistency test just described can be

thought of as being too strict for declaring voxels that be-

long in the model to be inconsistent. Tests can also be too

lenient, declaring voxels to be consistent when they do not

belong in the model; this can lead to voxels that appear to

float over a reconstructed scene. A single consistency test

can simultaneously be both too strict and too lenient, cre-

ating holes in one part of a scene and floating voxels else-

where. The reconstructions in Figure 10 all demonstrate

this to varying degrees.

In most space carving implementations there has been

an implicit assumption that the pixel resolution is greater

than the voxel resolution—that is, a voxel projects to a

number of pixels in at least some of the images. We be-

lieve this is reasonable and expect the trend to continue be-

cause: 1) runtime grows faster with increasing voxel res-

olution than it does with increasing pixel resolution, and

2) the resolution of economical and readily available cam-

eras keeps growing. We make use of this assumption in

the adaptive standard deviation and histogram consistency

tests. Steinbach et al. [46] have reported that they obtained

better reconstructions when they precisely computed the

projections of voxels into images, rather than using approx-

imations, like splats. We have observed the same effect

and therefore use scan conversion to determine voxel pro-

jections. We make the assumption in this section that the

scenes being reconstructed are approximately Lambertian,

and we use the RGB color space, except where noted.

3.1 Monotonic Consistency Tests
Kutulakos and Seitz assume monotonic consistency

tests will be used with space carving. When such tests and

full visibility are employed, space carving is guaranteed

to yield the photo hull, the unique photo-consistent model

that is a superset of all other photo-consistent models.

Seitz and Dyer [39] determine the consistency of a voxel

V using the likelihood ratio test (LRT):

(n − 1)s2

πV < τ (1)

where πV is the set of pixels from which V is visible, sπV

is the standard deviation of the colors of the pixels in πV ,

n is the cardinality of πV , and τ is a threshold that is deter-

mined experimentally. LRT has the virtue of being mono-

tonic. However, because of the (n− 1) term in Equation 1,

LRT has the disadvantage that voxels that are visible from

more pixels are more likely to be carved. Nevertheless, as

shown in Figure 10b, LRT can produce a reasonable re-

construction when photographs are available that sample

the scene fairly uniformly.

The next two consistency tests we describe are mono-

tonic and lack LRT’s sensitivity to the number of pixels

that view voxels. First, perhaps the most obvious choice

for a monotonic consistency test is:

max{dist(color(p1), color(p2)) | p1, p2 ∈ πV } < τ (2)

where dist is the L1 or L2 norm in color space. The disad-

vantages of this test are its computational complexity and

(a) (b)

(d) (e) (f)

Figure 9: Ghirardelli scene. The top row shows two of the seventeen reference views. The bottom row shows new views

generated by rendering the FVSC(d), GVC-IB (e), and GVC-LDI (f) reconstructions.

(a) (b) (c)

(d) (e) (f) (g)

Figure 10: Reconstructions of the shoes data set using different consistency tests. (a) is a photograph of the scene that was

not used during reconstruction. (b) was reconstructed using the likelihood ratio test, (c) using the bounding box test, (d)

using standard deviation, (e) using standard deviation and the CIELab color space, (f) using the adaptive standard deviation

test, and (g) using the histogram test.

its sensitivity to pixel noise. Second, the bounding box test

is a simple, related test with low computational complex-

ity. In this test, a voxel V is checked for consistency by

comparing a threshold to the length of the great diagonal

of the axis-aligned bounding box, in RGB space, of the

colors of the pixels in πV . Disadvantages of the bounding

box test are that it is a somewhat crude measure of color

consistency and it is sensitive to pixel noise. A reconstruc-

tion performed with this test, shown in Figure 10c, pro-

duced more floating voxels than LRT but also recovered

some detail that LRT missed.

3.2 Non-monotonic Consistency Tests
We can easily think of plausible consistency tests, for

example tests that threshold common statistics like stan-

dard deviation:

sπV < τ (3)

Unfortunately, many such tests are not monotonic, includ-

ing thresholded standard deviation. When space carving

is used with non-monotonic consistency tests, it can carve

a voxel that might be consistent in the final model. The

algorithm can also converge to different models depend-

ing upon the order in which the voxels are processed, so

there is no unique photo hull corresponding to such tests.

However, this is not necessarily a disadvantage if the objec-

tive is to produce models that closely resemble the scene.

In fact, among the tests we have tried, the two that have

consistently produced the best looking models, the adap-

tive standard deviation test and the histogram test, are

not monotonic. The reconstruction shown in Figure 10d,

produced using thresholded standard deviation, demon-

strates that non-monotonic tests can yield reasonable mod-

els. The test produced fewer floating voxels than LRT and

the bounding box test, and recovered some detail that LRT

missed.

3.2.1 An Adaptive Consistency Test

Because we consider voxels to have nonzero spatial extent,

they can represent portions of surfaces that include abrupt

color changes and significant texture. Using any of the con-

sistency tests already described, a high threshold is needed

to reconstruct such surfaces. The same scenes can also in-

clude surfaces with little or no color variation. Such re-

gions require a low threshold to minimize cusping [39] and

floating voxels. Fortunately, we can measure the amount of

color variation on a surface by measuring the amount color

variation the surface projects to in single images.

This suggests that it would be beneficial to use an adap-

tive threshold that is proportional to the color variation seen

from single images. This is illustrated in Figure 11. Let πV
i

be the set of pixels in image i from which voxel V is vis-

ible, let sπV

i

be the standard deviation of πV
i and let s be

(a) (b)

(c) (d)

Figure 11: Handling texture and edges. In (a), a voxel

represents a homogeneous region, for which both sπV and

s are small. In (b) and (c), a voxel represents a textured

region and an edge, respectively, for which both sπV and s

are large. In (d), a voxel representing free space has a large

sπV and small s.

the average of sπV

i

for all images i from which V is visible.

In (a), (b) and (c) in the figure, where the voxel is on the

surface, note that sπV and s are both simultaneously either

small or large. In (d), where the voxel is not on the surface,

s is small and sπV is large.

We constructed an adaptive consistency test, which we

call the adaptive standard deviation test (ASDT), as fol-

lows:

sπV < τ1 + τ2s (4)

where τ1 and τ2 are thresholds whose values are deter-

mined experimentally. ASDT is the same as the thresh-

olded standard deviation test of Equation 3 except for the

τ2s term.

Figure 12 shows a data set for which thresholded stan-

dard deviation, regardless of threshold, failed to recon-

struct the scene, yet ASDT produced a reasonable model.

Figure 10f shows an ASDT reconstruction that is superior

to reconstructions produced by any of the other consistency

tests we have described so far. Note that the ASDT model

has fewer floating voxels as well as fewer holes than the

other models. A disadvantage of ASDT is the experimen-

tation that is required to find the values of τ1 and τ2 that

produce the best reconstruction.

3.2.2 A Histogram-Based Test

Since a voxel often represents a part of a surface that

crosses color boundaries or includes significant texture, it

(a) (b) (c)

Figure 12: Figure (a) is a reference image from our El

data set, (b) shows the best reconstruction obtained using

thresholded standard deviation, and (c) shows a reconstruc-

tion obtained using the adaptive standard deviation test.

can be visible from pixels whose colors have a complex,

multi-modal distribution. A few parameters of a distribu-

tion, such as the variance and standard deviation used by

the previous tests, can only account for second order statis-

tics of the distribution. Furthermore, such parameters make

assumptions about the distributions, for example standard

deviation accurately characterizes only Gaussian distribu-

tions. The multi-modal color distributions that we would

like to characterize are unlikely to conform to any such as-

sumptions. In contrast, histograms are nonparametric rep-

resentations that can accurately describe any distribution.

This inspired us to develop a consistency test that uses his-

tograms. The test produces excellent reconstructions and

has the additional advantage of requiring little or no pa-

rameter adjustment.

Our histogram test computes a color histogram for each

image from which a voxel is visible and then compares the

histograms. There are many ways to compare histograms;

we use histogram intersection because it produces good re-

constructions and is simple and efficient to implement. We

say two histograms intersect if there is at least one pair of

corresponding bins (one bin from each histogram) in which

both bins have nonzero count. For a given voxel V and im-

age i, we build a histogram Hist(πV
i) of the colors of all

the pixels in πV
i . We define V to be consistent if, for every

pair of images i and j for which πV
i and πV

j are not empty,

Hist(πV
i) and Hist(πV

j) intersect. In other words,

∀i,jHist(πV
i)

⋂
Hist(πV

j) 6= ∅ i 6= j (5)

Therefore, a single pair of views can cause a voxel to be

declared inconsistent if the colors they see at the voxel do

not overlap. We use a 3D histogram over the complete

color space. Furthermore, we have found that eight bins

per channel are adequate for acceptable reconstructions;

this yields 512 bins (8 × 8 × 8) for each image of each

voxel.

We made several optimizations to minimize the runtime

and memory requirements related to our consistency test.

Notice that the histogram intersection only needs to test

which histogram bins are occupied. Hence, only one bit

is required per bin, or 512 bits per histogram. Histogram

intersection can be tested with AND operations on com-

puter words. Using 32-bit words, only 16 AND instruc-

tions are needed to intersect two histograms. The number

of histogram comparisons needed to test the consistency of

a voxel is equal to the square of the number of images that

can see the voxel. Fortunately, in our data sets the average

number of images that could see a voxel fell between two

and three, so the number of histogram comparisons was

manageable.

Histogram-based methods can suffer from quantization:

a set of colors that falls in the middle of a histogram bin can

be treated very differently from a set that is similar but is

near a bin boundary. We avoided this problem by using

overlapping bins, which, in effect, blur the bin boundaries.

Specifically, we enlarged the bins to overlap adjacent bins

by about 20 percent. A pixel with a color falling into mul-

tiple overlapping bins is counted in each such bin. This

makes the consistency test insensitive to bin boundaries

and small inaccuracies in color measurement.

We found histogram intersections to be a somewhat un-

reliable indicator of color consistency when a voxel was

visible from only a small number of pixels in some im-

ages. Hence, if this number fell below a fixed value (we

typically used 15 pixels), we did not use the image in the

consistency test.

Figure 17 shows a number of reconstructions produced

with the histogram consistency test. The right column of

the figure shows a reference view (that was used in the re-

construction), and the left image shows the reconstructed

model projected to the same viewpoint as the reference

view. Another histogram reconstruction, shown in Fig-

ure 10g, is similar to ASDT reconstruction but significantly

better than the other reconstructions.

A significant advantage of our histogram consistency

test is that it requires little or no parameter tuning. The

test does have parameters, for example the number of his-

togram bins and the bin overlap, but the test is significantly

less sensitive to its parameter settings than any of the other

tests we have described. For example, using the thresh-

olded standard deviation test and a typical data set, the

threshold value that gave the best reconstruction was just

5% higher than a value that caused the reconstruction to

fail catastrophically. With another data set but the same

consistency test, the best reconstruction was obtained with

a threshold 53% higher than the best value for the first data

set. Finding ideal settings for sensitive parameters is very

time consuming. In contrast, five of the six histogram re-

constructions shown in Figure 17 were performed with our

(a) (b) (c)

Figure 13: (a) is a photograph from the dinosaur data set,

(b) was reconstructed in the RGB color space, and (c)

shows a more robust reconstruction of a bright region ob-

tained in the CIELab color space. Data set courtesy of

Steve Seitz.

default parameters and no tuning was needed.

3.3 Color Spaces
The RGB color space, which we have used for most of

our reconstructions, is not perceptually uniform. Specifi-

cally, in the RGB color cube, two dark colors that can be

easily distinguished might be quite close together, whereas

two bright colors that are relatively far apart might be hard

to distinguish. It follows that, for a given threshold, a

consistency test might be too lenient in dark areas, in-

troducing floating voxels, while simultaneously being too

strict in bright areas, introducing holes. There are many

color spaces that would avoid this problem; we experi-

mented with CIELab, which is perceptually uniform. Fig-

ures 13b and 13c show two reconstructions that are sim-

ilar in most respects except a bright region in (c) was re-

constructed more robustly in CIELab space than the corre-

sponding region in (b), reconstructed in RGB. Figure 10e,

also obtained using CIELab color space, is quite similar to

the RGB reconstruction in Figure 10d, probably because

the scene has relatively little brightness variation. The re-

constructions in Figures 10e and 13 were produced using

thresholded standard deviation, although CIELab should

be equally effective with other consistency tests.

Because lighting can change while a scene is pho-

tographed, several people have suggested that we might

obtain better results by weighting luminance less than

chrominance when testing color consistency. CIELab has

a luminance channel, allowing us to test this idea. How-

ever, in several experiments, we found de-emphasizing lu-

minance to be of minimal benefit.

3.4 Summary
Along with visibility, consistency tests have a large im-

pact on the quality of reconstructions produced by space

carving algorithms. We have described a number of con-

sistency tests, including two we developed. Figure 10 al-

lows the various consistency tests to be compared side-

by-side. The adaptive standard deviation test and the his-

togram test yielded models that simultaneously have dra-

matically fewer floating voxels and holes. The histogram

test avoids time-consuming experimentation because it is

relatively insensitive to its parameter settings. We have

also shown that the choice of color space can affect the

quality of reconstructions, especially in unusually bright

or dark regions of a scene.

4 Volumetric Warping
We now present a volumetric warping technique for

the reconstruction of scenes defined on an infinite domain.

This approach enables the reconstruction of all surfaces,

near to far away, as well as a background environment,

using a voxel space composed of a finite number of vox-

els. By modeling such distant surfaces, in addition to fore-

ground surfaces, this method yields a reconstruction that,

when rendered, produces synthesized views that have im-

proved photorealism.

Our volumetric warping approach is related to 2D en-

vironment mapping [3, 19] techniques that model infinite

scenes for view synthesis. However, our approach is fully

three-dimensional and accommodates surfaces that appear

both in foreground and background. While methods that

define the voxel space using the epipolar geometry between

two or three basis views [37, 22] form a voxel space with

variable resolution, our approach does not give preference

to any particular reference views, and additionally, it ex-

tends the domain of the voxel space to infinity in all spatial

dimensions.

4.1 Volumetric Warping Functions
The goal of a volumetric warping function is to repre-

sent an infinite volume with a finite number of voxels. The

warping function must satisfy the requirements that in the

warped space, no voxels overlap and no gaps exist between

voxels. These requirements are easily accomplished for a

variety of warping functions. We use the term pre-warped

to refer to the volume before the warping function is ap-

plied.

4.1.1 Frustum Warp

We now describe a frustum warp function that is used to

warp the exterior space. We develop the equations and fig-

ures in two dimensions for simplicity; the idea easily ex-

tends to three dimensions.

The frustum warp function presented here separates the

voxel space into an interior space used to model foreground

surfaces at fixed resolution, and an exterior space used

to model background surfaces at variable resolution, as

shown in Figure 14. The warping function does not af-

fect the voxels in the interior space, while voxels in the

exterior space are warped so that their size increases lin-

early, in each dimension, with distance from the interior

(a) (b)

Figure 14: Pre-warped (a) and warped (b) voxel spaces shown in two dimensions. In (a), the voxel space is divided into two

regions; an interior space shown with dark gray voxels, and an exterior space shown with light gray voxels. Both regions

consist of voxels of uniform size. The warped voxel space is shown in (b). The warping does not affect the voxels in the

interior space, while the voxels in the exterior space increase in size further from the interior space. The outer shell of voxels

in (b) are warped to infinity. These voxels are represented with arrows in the figure.

Figure 15: Boundaries and regions. The outer boundaries

of both the interior and exterior space are shown in the

figure. The four trapezoidal regions, ±x and ±y are also

shown.

space. Under this construction, voxels in the exterior space

will project to roughly the same number of pixels for view-

points in or near the interior space. Voxels on the outer

shell of the exterior space have coordinates warped to in-

finity, and have infinite volume. While the voxels in the

warped space have a variable size, the voxel space still has

a regular 3D lattice topology.

The frustum warp assumes that both the interior space

and the pre-warped exterior space have rectangular shaped

outer boundaries, as shown in Figure 15. These bound-

aries are used to define four trapezoidal regions, ±x, and

±y, based on the region’s relative position to center of the

interior space. These regions are also shown in Figure 15.

Let (x, y) be a pre-warped point in the exterior space,

and let (xw, yw) be the point after warping. To warp (x, y),
we first apply a warping function based on the region in

which the point is located. This warping function is applied

only to one coordinate of (x, y). For example, suppose that

the point is located in the +x region. Points in the +x and

−x regions are warped using the x-warping function,

xw = x
xe − xi

xe − |x|
,

where xe is the distance along the x-axis from the center

of the interior space to the outer boundary of the exterior

space, and xi is the distance along the x-axis from the cen-

ter of the interior space to the outer boundary of the interior

space, shown in (a) of Figure 16. A quick inspection of this

warping equation reveals its behavior. For a point on the

boundary of the interior space, x = xi, and thus xw = xi,

so the point does not move. However, points outside of the

boundary get warped according to their proximity to the

boundary of the exterior space. For a point on the bound-

ary of the exterior space, x = xe, and so xw = ∞.

Continuing with the above example, once xw is com-

puted, we find the other coordinate yw by solving a line

equation,

yw = y + m(xw − x),

where m is the slope of the line connecting the point (x, y)
with the point a, shown in (b) of Figure 16. Point a is

located at the intersection of the line parallel to the x-

axis and running through the center of the interior space,

with the nearest line l that connects a corner of the interior

(a)

(b)

Figure 16: Finding the warped point. The x-warping func-

tion is applied to the x-coordinate of the point (x, y), as the

point is located in the +x region. This yields the coordi-

nate xw, shown in (a). In (b), the other coordinate yw is

found by solving the line equation using the coordinate xw

found in (a).

space with its corresponding matching corner of the exte-

rior space, as shown in the figure. Note that in general,

point a is not equal to the center of the interior space. By

using such a construction, a point in a pre-warped region of

space (e.g. +x) will stay in the that region after warping.

As shown above, the exterior space is divided into four

trapezoidal regions for the two-dimensional case. In three

dimensions, this generalizes to six frustum-shaped regions,

±x, ±y, ±z; hence the term frustum warp. There are three

warping functions, namely the x-warping function as given

above, and y- and z-warping functions,

yw = y
ye − yi

ye − |y|

zw = z
ze − zi

ze − |z|
.

In general, the procedure to warp a point in the pre-

warped exterior space is as follows.

• Determine in which frustum-shaped region the point

is located.

• Apply the appropriate warping function to one of the

coordinates. If the point is the in ±x region, apply the

x-warping function, if the point is in the ±y region,

apply the y-warping function, and if the point is the

±z region, apply the z-warping function.

• Find the other two coordinates by solving line equa-

tions using the warped coordinate.

4.1.2 Resolution in the Exterior Space

The pre-warped exterior space is warped to infinity in all

directions by the warping function, regardless of how many

voxels are in the exterior space, assuming that the exterior

space consists of a shell of voxels at least one voxel thick

in each direction. However, the number of voxels in the ex-

terior space determines the resolution of the exterior space.

Adding more voxels allows finer details of distant objects

to be more finely modeled.

4.2 Implementation Issues
Reconstruction and new view synthesis of a scene using

a warped voxel space poses some challenges, which we

now describe.

First, the warped voxel space extends to infinity in each

dimension, and therefore cameras get embedded inside the

voxel space. Since the photo-consistency measure is effec-

tive only when each surface voxel is visible to two or more

reference views, we must remove (pre-carve) a portion of

the voxel space to produce a suitable initial surface for re-

construction. User guided or heuristic methods can be used

for pre-carving.

Second, as discussed in Section 3, space carving algo-

rithms sometimes carve voxels that should remain in the

volume. Thus, it is possible that a voxel on the outer

shell of the voxel space would be identified as inconsis-

tent. Since one cannot see beyond infinity, we never carve

voxels on the outer shell.

Finally, the geometry of objects in the exterior space

is rather coarse since it is modeled with lower resolution

voxels. After reconstruction, if a new view is synthesized

near such low resolution geometry, the resulting image will

appear distorted, as large individual voxels will be identifi-

able in the synthesized image. However, in our method, we

intend for the reconstructed model to be viewed from in or

near the interior space. For such viewpoints, objects in the

exterior space will project to roughly a constant resolution

that is matched to the outer shell of voxels in the interior

space. This yields synthetic new views that do not suffer

from such distortions.

4.3 Volumetric Warping Results
We have modified the GVC algorithm of Section 2 to

utilize the warped voxel space. We performed a recon-

struction using ten cylindrical panoramic photographs of

a quadrangle at Stanford University. References [27, 41]

discuss the calibration of such images. One of the 2500 x

884 photographs from the set is shown in Figure 18 (a). A

voxel space of resolution 300 x 300 x 200 voxels, of which

the inner 200 x 200 x 100 were interior voxels, was pre-

carved manually by removing part of the voxel space con-

taining the cameras. Then, the GVC algorithm was used

to reconstruct the scene. A new synthesized view of the

scene is shown in (b). Note that objects far away from

the cameras, such as many of the buildings and trees, have

been reconstructed with reasonable accuracy for new view

synthesis.

Despite the successes of this reconstruction, it is not per-

fect. The sky is very far away from the cameras (for prac-

tical purposes, at infinity), and should therefore be repre-

sented with voxels on the outer shell of the voxel space.

However, since the sky is nearly textureless, cusping oc-

curs, resulting in protrusions in the sky. Reconstruction

of outdoor scenes is challenging, as surfaces often do not

satisfy the Lambertian assumption made by our photo-

consistency measure. On the whole, though, the recon-

struction is accurate enought to produce convincing new

views.

5 Conclusion
In this paper we have presented a collection of meth-

ods for the volumetric reconstruction of visual scenes.

These methods have been developed to increase the qual-

ity, applicability, and usability of volumetric scene recon-

struction. Visibility and photo-consistency are two es-

sential aspects to any carving algorithm that reconstructs

the photo hull. Accordingly, we introduced GVC, a

full visibility reconstruction approach that supports arbi-

trary camera placement and does not process inner vox-

els. Our GVC-IB algorithm is memory efficient and eas-

ily hardware accelerated, while our GVC-LDI algorithm

minimizes photo-consistency checks. We also presented

new photo-consistency measures for use with Lambertian

scenes. Our adaptive threshold method better reconstructs

surface edges and texture, while our histogram intersec-

tion method requires nearly no parameter tuning. Finally,

we showed how the voxel space can be warped so that

infinitely large scenes can be reconstructed using a finite

number of voxels.

Volumetric scene reconstruction has made significant

progress over the last few decades, and many techniques

have been proposed and refined. Future work in this

field may include more sophisticated handling of non-

Lambertian scenes, new methods for reconstruction of

time-varying scenes, and more computationally efficient

methods for real-time reconstruction.

Acknowledgments
We thank Steve Seitz and Chuck Dyer for use of their

data in addition to discussions regarding volumetric scene

reconstruction. We are grateful to Mark Livingston and

Irwin Sobel for calibration of the Stanford data set. We

also express our gratitude to Fred Kitson for his contin-

ued support and encouragement of this research. Finally,

we thank Gozde Unal, John MacCormick, David Mari-

mont, and the anonymous reviewers for useful comments

and suggestions.

References
[1] Beardsley, P., Torr, P., and Zisserman, A. 1996. 3D

Model Acquisition from Extended Image Sequences.

In Proc. European Conference on Computer Vision,

pp. 683 - 695.

[2] Bhotika, R, Fleet, D., and Kutulakos, K. 2002. A Prob-

abilistic Theory of Occupancy and Emptiness. In Proc.

European Conference on Computer Vision Vol. 3, pp.

112 - 132.

[3] Blinn, J. and Newell, M. 1976. Texture and Reflection

on Computer Generated Images. Communications of

ACM, 19(10): 542 - 547.

[4] Bolles, R., Baker, H., and Marimont, D. 1987.

Epipolar-Plane Image Analysis: An Approach to De-

termining Structure from Motion. In In International

Journal of Computer Vision 1(1): pp. 7 - 55.

[5] Broadhurst, A. and Cipolla, R. 2001. A Probabilistic

Framework for Space Carving. In Proc. International

Conference on Computer Vision, pp. 388 - 393.

[6] Carceroni, R. and Kutulakos, K. 2001. Multi-View

Scene Capture by Surfel Sampling: From Video

Streams to Non-Rigid 3D Motion, Shape & Re-

flectance. In Proc. International Conference on Com-

puter Vision, pp. 60 - 67.

[7] Chhabra, V., 2001. Reconstructing Specular Objects

with Image-Based Rendering Using Color Caching.

Master’s Thesis, Worchester Polytechnic Institute.

[8] Colosimo, A., Sarti, A., and Tubaro, S. 2001. Image-

based Object Modeling: A Multi-Resolution Level-Set

Approach. In Proc. International Conference on Image

Processing, Vol. 2, pp. 181 - 184.

[9] Culbertson, W. B., Malzbender, T., and Slabaugh,

G. 1999. Generalized Voxel Coloring. In Proc. ICCV

Workshop, Vision Algorithms Theory and Practice,

Figure 17: Reconstructions using the histogram intersection test for determining photo-consistency.

(a)

(b)

Figure 18: Stanford scene. One of the ten reference views, (a), and reconstructed model projected to a new synthesized

panoramic view (b).

Springer-Verlag Lecture Notes in Computer Science

1883, pp. 100 - 115.

[10] De Bonet, J. and Viola, P. 1999. Roxels: Responsi-

bility Weighted 3D Volume Reconstruction. In Proc.

International Conference on Computer Vision, pp. 418

- 425.

[11] Debevec, P., Taylor, C., and Malik, J. 1996. Modeling

and Rendering Architecture from Photographs: A Hy-

brid Geometry and Image-Based Approach. In Proc.

SIGGRAPH, pp. 11 - 20.

[12] Dyer, C. 2001. Volumetric Scene Reconstruction

from Multiple Views. In Davis, L. S. ed., Foundations

of Image Analysis. Kluwer: Boston, MA, pp. 469 -

489.

[13] Eisert, P., Steinbach, E., and Girod, B. 1999. Multi-

Hypothesis, Volumetric Reconstruction of 3-D Objects

From Multiple Calibrated Camera Views. In Proc. of

the International Conference on Acoustics, Speech,

and Signal Processing, pp. 3509-3512.

[14] Eisert, P., Steinbach, E., and Girod, B. 2000. Auto-

matic Reconstruction of 3-D Stationary Objects from

Multiple Uncalibrated Camera Views. In IEEE Trans-

actions on Circuits and Systems for Video Technology,

10(2), pp. 261 - 277.

[15] Faugeras, O. and Lustman, F., 1988. Motion and

structure from motion in a piecewise-planar environ-

ment. In Journal of Pattern Recognition and Artificial

Intelligence, 2(3) pp. 485 - 508.

[16] Faugeras, O. and Keriven, R. 1998. Complete Dense

Stereovision Using Level Set Methods. IEEE Transac-

tions on Image Processing, 7(3): 336 - 344.

[17] Fua, P. and Leclerc, Y. 1995. Object-Centered Sur-

face Reconstruction: Combining Multi-Image Stereo

and Shading. International Journal of Computer Vi-

sion, 16(1): 35 - 56.

[18] Gortler, S., Grzeszczuk, R., Szeliski, R., and Cohen,

M. 1996. The Lumigraph. In Proc. SIGGRAPH, pp.

43-54.

[19] Greene, N. 1986. Environment Mapping and Other

Applications of World Projections. IEEE Computer

Graphics and Applications, pp. 21 - 29.

[20] Jebara, T., Azarbayejani, A., and Pentland, A. 1999.

3D structure from 2D motion. IEEE Signal Processing

Magazine, 16(3): 66 - 84.

[21] Johansson, B. 1999. View Synthesis and 3D Recon-

struction of Piecewise Planar Scenes Using Intersec-

tion Lines between the Planes. In Proc. International

Conference on Computer Vision, 1999, Vol. 1, pp. 54 -

59.

[22] Kimura, M., Satio, H., and Kanade, T. 1999. 3D

Voxel Construction Based on Epipolar Geometry. In

Proc. International Conference on Image Processing,

pp. 135 - 139.

[23] Kutulakos, K. and Seitz, S. 1999. A Theory of Shape

by Space Carving. In International Conference on

Computer Vision, Vol. 1, pp. 307 - 314.

[24] Kutulakos, K. and Seitz, S. 2000. A Theory of Shape

by Space Carving. In International Journal of Com-

puter Vision, 38(3), pp. 199 - 218.

[25] Laurentini, A. 1994. The Visual Hull Concept for

Silhouette-Based Image Understanding. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

16(2): 150 - 162.

[26] Levoy, M. and Hanrahan, P. 1996. Light Field Ren-

dering. In Proc. SIGGRAPH, pp. 31-42.

[27] Livingston, M. and Sobel, I. A New Scale Arbitration

Algorithm for Image Sequences Applied to Cylindrical

Photographs. HP Laboratories technical report HPL-

2001-226R1, 2001.

[28] Longuet-Higgins, H., 1981. A Computer Algorithm

for Reconstructing a Scene from Two Projections. Na-

ture, 293(10): 133 - 135.

[29] Matusik, W., Buehler, C., Raskar, R., Gortler, S.,

and McMillan, L. 2000. Image-Based Visual Hulls. In

Proc. SIGGRAPH, pp. 367 - 374.

[30] Max, N. 1996. Hierarchical Rendering of Trees from

Precomputed Multi-Layer Z-Buffers. In Proc. Euro-

graphics Rendering Workshop, pp. 165 - 174.

[31] McMillan, M. and Bishop, G. 1995. Plenoptic Mod-

eling: An Image-Based Rendering System. In Proc.

SIGGRAPH, pp. 39 - 46.

[32] Narayanan, P., Rander, P., and Kanade, T. 1998. Con-

structing Virtual Worlds Using Dense Stereo. In Proc.

International Conference on Computer Vision.

[33] Özün, O. 2002. Comparison of Photo-Consistency

Measures Used in the Voxel Coloring Algorithm. Mas-

ters thesis, Middle East Technical University.

[34] Pfister, H., Zwicker, M., Van Baar, J., and Gross, M.

2000. Surfels: Surface Elements as Rendering Primi-

tives. In Proc. SIGGRAPH, pp. 335 - 342.

[35] Pollefeys, M., Koch, R., Vergauwen, M., and Van

Gool, L. 1999. Hand-Held Acquisition of 3D Models

With a Video Camera. In Proc. 2nd International Con-

ference on 3-D Digital Imaging and Modeling, pp. 14

- 23.

[36] Prock, A. and Dyer, C. 1998. Towards Real-Time

Voxel Coloring. In Proc. DARPA Image Understand-

ing Workshop, pp. 315 - 321.

[37] Saito, H. and Kanade, T. 1999. Shape Reconstruction

in Projective Grid Space from Large Number of Im-

ages. In Proc. CVPR, pp. 49 - 54.

[38] Savarese, S., Rushmeier, H., Bernardini, F., and Per-

ona, P. 2001. Shadow Carving. In Proc. International

Conference on Computer Vision, Vol 1, pp. 190 - 197.

[39] Seitz, S. and Dyer, C. 1999. Photorealistic Scene Re-

construction by Voxel Coloring. In International Jour-

nal of Computer Vision, 35(2): 151 - 173.

[40] Shade, J., Gortler, S., He, L., and Szeliski, R. 1998.

Layered Depth Images. In Proc. SIGGRAPH, pp. 231-

242.

[41] Shum, H. Y., Han, M., and Szeliski, R. 1998. Interac-

tive Construction of 3D Models from Panoramic Mo-

saics In Proc. CVPR, pp. 427 - 433.

[42] Slabaugh, G., Malzbender, T., and Culbertson, W. B.

2000. Volumetric Warping for Voxel Coloring on an

Infinite Domain. In Proc. 3D Structure from Multiple

Images for Large Scale Environments (SMILE), pp. 41

- 50.

[43] Slabaugh, G., Culbertson, W. B., Malzbender, T., and

Schafer, R. 2001. A Survey of Volumetric Scene Re-

construction Methods from Photographs. In Proc. In-

ternational Workshop on Volume Graphics, pp. 81 -

100.

[44] Slabaugh, G., Schafer, R., and Hans, M. 2002. Image-

Based Photo Hulls. In Proc. 1st International Sympo-

sium on 3D Processing, Visualization, and Transmis-

sion, pp. 704 - 708.

[45] Slabaugh, G. 2002. Novel Volumetric Scene Recon-

struction Methods for New View Synthesis. Ph.D. The-

sis, Georgia Institute of Technology.

[46] Steinbach, E., Eisert, P., Betz, A., and Girod, B. 2000.

3-D Reconstruction of Real World Objects Using Ex-

tended Voxels. In Proc. International Conference on

Image Processing, vol. I, pp. 569 - 572.

[47] Stevens, M., Culbertson, W. B., and Malzbender, T.

2002. A Histogram-Based Color Consistency Test for

Voxel Coloring. In Proc. International Conference on

Pattern Recognition, vol. 4, pp. 118 - 21.

[48] Stevens, M. 1999. Reasoning About Object Appear-

ance in the Context of a Scene. Ph.D. Thesis, Colorado

State University.

[49] Szeliski, R. 1993. Rapid Octree Construction from

Image Sequences. Computer Vision, Graphics and Im-

age Processing: Image Understanding, 58(1): 23 - 32.

[50] Szeliski, R. and Golland, P. 1998. Stereo Matching

with Transparency and Matting. In Proc. International

Conference on Computer Vision, pp. 517 - 524.

[51] Tsai, R. 1987. A Versatile Camera Calibration Tech-

nique for High-Accuracy 3D Machine Vision Metrol-

ogy Using Off-the-Shelf TV Cameras and Lenses.

IEEE Journal of Robotics and Automation, RA-3(4):

323 - 344.

[52] Vedula, S., Baker, S., Seitz, S., and Kanade, T. 2000.

Shape and Motion Carving in 6D. In Proc. CVPR, Vol.

2, pp. 592 - 598.

[53] Weghorst, H., Hooper, G., and Greenberg, D. P. 1984.

Improving Computational Methods for Ray Tracing.

ACM Transactions on Graphics, 3(1): 52 - 69.

[54] Yezzi, A. and Soatto, S., 2001. Stereoscopic Segmen-

tation. In Proc. International Conference on Computer

Vision, pp. 59 - 66.

