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Abstract

Initially, this paper presents an overview of the existing methods used
for the identification of vortices in fluids, attempting to point out their
different strengths and weaknesses. In addition, a new method is proposed
to identify vortices directly from velocity field information. It defines a
point inside a vortex as a point around which there is rotation. By look-
ing at the velocity directions in the neighbourhood of a point we decide
if there is rotation. A measure of the strength of rotation at the point is
also introduced based on the magnitude of the velocity components in the
neighbourhood. The method is tested on simulated data and performs
well. Finally a Lagrangian identification method (Direct Lyapunov Ex-
ponents, DLE) is used to attempt to calibrate the λ2-criterion in order
to match an objectively defined edge. The results here indicate that it
might not be possible to find a λ2 threshold to match edges found using
the DLE method.
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1 Introduction

While we all may believe we know how to recognise a vortex, a mathematically
unambiguous definition is hard to find. The difficulty lies in that our intuitive
concept of a vortex can be described as a vaguely circular motion in a fluid. The
problem is exacerbated by the lack of clear edges to a vortex, i.e. when looking
at a vortex as a finite structure it is difficult to agree on where the vortex ends.

Since the discovery of vortical structures in turbulence, research in the area
of vortex identification has been of interest. It has resulted in an array of
methods designed to identify vortices given the output of simulations or velocity
measurements in experiments. While some of these methods have become very
popular and are widely used in fluid dynamics, the λ2 method presented in [11]
being most notable, it is still not universally accepted. A further complication
is the visualisation of the results given by different methods. For example, some
methods introduce different thresholds for visualisation purposes, varying the
thresholds can greatly change the appearance of the results.

Identification of vortices can be seen as a tool for understanding complex
flow phenomena. For example, being able to follow individual vortices in a
turbulent flow throughout their lifetimes. The methods developed are therefore
an important aid for research in fluid dynamics. Furthermore, they have a
practical application in industry. The successful control of flows requires an
accurate understanding of the structures present in the fluid. For example,
in combustion engines it is interesting to control the surface area of the flame
front in order to optimise the combustion reactions. In this case vortices can
both improve the reaction by mixing fuel and air and have a negative effect,
for example if the vortices are too large they might distort the flame front too
much.

The aim with this thesis is to study the difficulties in defining, identifying and
visualising vortical structures. This is accomplished by investigating existing
methods for vortex identification and suggesting a new method based on a simple
analysis of the velocity field. A comparison of the results given by different
methods is of interest. The problems surrounding the visualisation of the results
are to be addressed by suggesting different possible ways to show the vortices in
an image. This is especially interesting when looking at three-dimensional data.
Finally we combine two methods in order to attempt to exploit the strengths
of each method and provide a more complete understanding of the magnitude
and behaviour of vortices.

There are two distinct problems: the identification of vortices, and the visu-
alisation of the results. In complex flows there are many interacting vortices, all
which may be bent or twisted resulting in rotation in several different planes for
each single vortex; therefore, even assuming a method of identification is agreed
upon, displaying the results in an easily understood format is still a difficult
task.

The methods implemented for this Master’s thesis have been programmed
in Matlab.

1.1 Structure of the Thesis

This Master’s thesis is structured so that a short presentation of theoretical
concepts relevant to the results is given first. The theory section includes some
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basic concepts of fluid dynamics and a qualitative description of how a vortex
may be formed in a simple case. Each flow case that was studied with our vortex
identification method is described here, including how and where we expect to
find the vortices in each case.

Furthermore, the theory section includes an introduction to some of the
mathematical formalia encountered in the different identification methods pre-
sented. That section aims to provide a basic background that will allow the
reader to easily follow the theory behind the methods. It includes tensors and
lagrangian frames of reference, especially in connection to Lyapunov exponents
and other ideas from dynamic systems theory.

The second section goes through the different methods that have been used,
and still are used, for identifying vortices. It is not exhaustive, but it shows a
broad spectrum of the ideas that have been attempted and gives a clear idea
as to what aspects of the flow are viewed as central when discussing vortices.
At the end of the section a summary of the methods, with references to the
publications where they have been presented, is given. Some of the strengths
and weaknesses, as presented by different researchers, of the different methods
are also included in this summary.

The third section presents the first identification method implemented for
this Master’s thesis. It is validated by being applied to the data sets described
earlier, and further compared to one of the more popular identification methods
(λ2-method). The results are shown with a short discussion for each data set,
especially in relation to the variables changed.

The fourth section describes a method that attempts to combine two of the
methods presented in Section 2. The method itself and results, including a
discussion, is presented there.

The final section has conclusions regarding both methods developed in this
thesis and potential future works.

2 Theory

2.1 Fluid Dynamics

Fluid mechanics is a discipline in applied mechanics concerned with the be-
haviour of liquids and gases at rest or in motion. Fluid dynamics is the part
that is concerned with the motion of fluids. Among other things, fluid dynam-
ics tries to describe how the fluid flow evolves under complex dynamics which
may involve heat transfer and possibly chemical reactions, as for example in
combusting flows.

The physical characteristics of fluid motion are usually described through
fundamental mathematical equations. Most of the behaviour of fluids in motion
can be described by a number of partial differential equations known as the

Navier-Stokes equations. These equations describe the basic physical laws
that govern the motion of the fluid. While these equations may seem simple the
solutions differ greatly in character depending on the starting conditions and
the characteristics of the fluid.

Flow is generally divided into different groups depending on the properties
of the fluid particles in the flow. A very important distinction is whether a
flow is laminar or turbulent. The Reynolds number, defined below, is used to
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distinguish between laminar and turbulent flow. Low Reynolds numbers are
associated with laminar flows, and large ones with turbulent flows. There is
also a transitional flow, which describes the case when laminar flow is becoming
turbulent but is not yet fully turbulent. Both laminar and turbulent flows are
generaly unsteady, meaning that the velocity at a given point in space varies
with time. A flow is steady if there is no change in the velocity field through
time. Therefore it is not possible to have a steady turbulent flow. Turbulent
flow is generally seen as chaotic as there is no regular variation or identifiable
pattern in the unsteadiness of turbulence. Laminar flow, on the other hand, can
be steady but is not necessarilly so.

The Reynolds number is a non-dimensional ratio between the inertial force
and the viscous forces acting on the fluid. The Reynolds number is defined as
Re = ρV l

µ
, where ρ is the fluid density, V is the velocity of the fluid, l is a

characteristic length and µ is the viscosity of the fluid. The exact values for
when Reynolds numbers are ”large” or ”small” are not well-defined but change
depending on the actual problem. For example the flow in a round pipe is
considered laminar if Re is less than approximately 2100, and turbulent for
values greater than 4000 [20].

Viscosity is a property specific to each fluid and can be seen as a measure of
how easily the fluid flows. The dynamic viscosity, µ, of a fluid is the constant
of proportionality in the relationship

τ = µ
du

dy

which relates the shearing stress to the rate of shearing strain in a fluid. Viscos-
ity is very sensitive to temperature, but not to pressure. It is often combined
with density in fluid flow problems, and is then called the kinematic viscosity

ν = µ
ρ
. A large value of viscosity means the fluid is less likely to flow, i.e. the

forces between the particles in the fluid are large enough to withstand external
forces without moving too much.

2.1.1 Vortices and Coherent Structures

Both vortices and coherent structures lack a strict definition. In general any
form of pattern arising in the flow that has an effect on transport is considered a
coherent structure. However, when talking about vortices people have a general
understanding of what is meant: existence of some form of common particle ro-
tation. The typical intuitive vortex is a tornado, or maelstrom. However, while
this is generally accepted it is more difficult to reach a consensus regarding how
far away from a centre of rotation a vortex actually extends. Due to viscosity
there is no clear start or end to the structure. This is further complicated when
there are several structures interacting with each other. Vortices are commonly
associated with turbulence, but they occur in laminar flow as well.

A coherent structure (CS) is an idea that was orginally introduced when
discussing turbulence. It singles out areas in the fluid where there is less mixing
or movement than would be otherwise expected considering the velocity field,
that means that a section of the fluid remains roughly together (coherent) while
moving in the fluid.

Both these concepts, however, are vague and not strictly defined. Comparing
the two descriptions of coherent structures below we can see that they are both
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vague. A major difference is that while one expects vortical motions the other
does not require this.

”It is generally accepted that flows with general time dependence admit emer-

gent patterns which influence the transport of tracers, those structures are often

generically refered to as Coherent Structures” [18].
”Turbulent shear flows have been found to be dominated by spatially coherent,

temporally evolving vortical motions, popularly called coherent structures” [11].
Vortices are coherent structures, and while the inverse is generally true, it is

not necessarily so.

2.1.2 Lagrangian Coherent Structures

The distinction between a CS and a Lagrangian coherent structure (LCS) is
mainly in the nature of the methods used to identify them.”A Lagrangian Co-
herent Structure is basically a coherent structure that is identified using methods
that work in the Lagrangian frame, that is then the CS are studied in terms
derived from fluid trajectories” [18]. Unambiguous definitions depend on which
method is being used to find them, see the Overview of Methods section.

LCS are separated into two groups, connected to their definitions from dy-
namical systems: attracting and repelling structures. This has to do with
whether fluid particles that get close to the structure will be pulled into it or
pushed away. Intuitively, this places vortices in the former group, since particles
are pulled into the vortical motion.

Mixing in the fluid is also determined by the interplay of LCS. The edges
of an LCS are generally material lines in two dimensions (or surfaces in three-
dimensional space), meaning that there is no flux through the edges. Therefore
LCS result in a partitioning of the fluid. ”Lagrangian coherent structures typ-
ically represent separatrices which divide the flow into dynamically distinct re-
gions” [18]. The idea of finding lines that separate dynamically distinct regions
can of course be used to try to find the edges of a vortex. The dynamics of the
fluid are different inside the vortical structure from the rest of the flow.

2.1.3 Example of Vortex Formation in the Wake of a Cylinder

A group of vortices that are easy to identify and visualise are the ones formed in
the wake of a cylinder. If the cylinder can be seen as infinite (meaning there will
be no influence in our data from the ends of the cylinder) the flow pattern will
be practically two-dimensional, allowing us to look at only a plane. By varying
the velocity of the fluid passing by the cylinder different Reynolds numbers are
attained, and therefore different behaviours can be observed in the wake of the
cylinder.

At low Reynolds numbers viscous effects dominate the behaviour of the fluid
and the flow therefore follows the edges of the cylinder all the way through. This
type of flow is also known as creeping flow. The streamlines in this case will be
symmetric before and after the cylinder. There is no wake to speak of.

By increasing the Reynolds number, the region where viscous effects dom-
inate becomes smaller, only extending a short distance ahead of the cylinder.
The viscous effects are convected downstream and the flow loses its symmetry.
The flow also separates from the cylinder, creating the wake of the cylinder.
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Depending on the Reynolds number any of the cases shown in Figure 2 can be
observed.

The velocity of the fluid decreases as it gets close to the cylinder until it
reaches zero, at the so-called stagnation point, point (1) see Figure 1. As the
fluid then moves along the side of the cylinder to point (2) its velocity increases
until it reaches a maximum. After point (2) the velocity decreases again until at
point (3) it separates from the edge of the cylinder. The exact position of point
(3) depends on the characteristics of the flow. At very low Reynolds numbers
separation does not occur, see Figure 2.

Figure 1: Different points of interest along the edge of the cylinder.

The velocity of the fluid beyond the separation point is lower than that of
the freestream, this velocity difference will force a rotation as the faster fluid
overtakes the slower one. Eventually a backflow occurs in the separation area,
causing vortices. If the Reynolds number is high enough the vortices are shed
from the cylinder.

2.1.4 The Simulated Data Sets used throughout the Report

The data used in this thesis is the result of simulation of different cases. It was
all provided by my supervisor. Here the different simulations will be described,
including what we expect to find in each case.

1. Laminar flow after an infinite cylinder set along the y-axis. The flow
direction is the z-direction. Reynolds number is 100. The vortices formed
in the wake are essentially 2-dimensional in character with rotation in
the xz-plane. The vortices are shed alternatingly from either side of the
cylinder, with opposite rotation. This is the case described as an example
in the previous section. Data for this case exists in both a coarse and a
fine grid.

2. Laminar flow after a spherical object. The flow is in the z-direction.
Reynolds number is 400. This results in highly three-dimensional vor-
tices, i.e. a single vortex has many planes of rotation and it is bent like
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Figure 2: Diagram of the different flow patterns that can be found in the wake
of a circular cylinder [20].

master thesis

a ”hairpin”. They are however well defined as this is still a laminar case
due to its low Reynolds number.

3. Turbulent flow after a spherical object. This is the same case as the
previous one, except at a much higher Reynolds number, 10000, which
means that the wake is turbulent. This means that the vortices will be
less organised, more of them, and often smaller.

4. A jet. The flow in a jet is turbulent.

2.2 Tensors

Cartesian tensors are necessary when representing quantities with several direc-
tions associated with them. A pth-order tensor has p directions associated with
it, and 3p components when working in three-dimensional space. Using the Ein-
stein summation convention simplifies the notation associated with Cartesian
tensors. Using this convention if a suffix is repeated then summation over all
values of the suffix is implied. An important rule of the summation convention
is that a suffix cannot appear more than twice in an expression.

Tensors were introduced to relate observations made in different frames of
reference to each other. Orthogonal transformations of the type

X = Qx+B (1)
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where Q is an orthogonal matrix, leave the distance between two points invari-
ant.

Bearing this in mind a tensor of second order is defined as a quantity with
physical dimension, characterised by n2 real numbers (n being the physical
dimension of space) such that under a change of reference frame, given by (1),
the relation (below) between the components aij and AKJ in the two frames is
satisfied.

AKJ = QKkQJjakj ,K, J = 1, 2, ..., n

It is important to note that the order of a tensor relates to the directions
associatied with it, while the physical dimension has to do with the dimen-
sions of the Euclidean space we are working in. For most physical applications
this is equivalent to 3-dimensional space [1].

2.2.1 Structural Properties of Tensors

A tensor is called symmetric with respect to the indices ki and kj , i < j,
if these indices can be interchanged, without the corresponding components
changing their values.

In contrast, a tensor is called antisymmetric (or skew-symmetric) with
respect to the indices ki and kj , i < j, if by interchanging the indices ki and kj
the corresponding components change their sign.

Both definitions are valid in any reference frame, which entails that these
properties have an invariant character and therefore express objective properties
of the physical quantities represented by the tensors [1].

2.3 Eulerian and Lagrangian Fields

Eulerian fields are indexed by the position x̄ in an inertial field. The vector
fields we are used to working with are Eulerian, i.e. velocity field, pressure field,
density field.

In the Lagrangian frames a fluid particle is defined as a point that moves
with the local fluid velocity. In this case X+(t,Y) denotes the position at time
t of the fluid particle that is located at Y at the specified fixed reference time
t0. Mathematically this can be written:

X+(t0,Y) = Y

where X+ determines the position of the fluid particle at the reference time, t0
and the following describes the fluid particle moving with the local fluid velocity.

∂

∂t
X+(t,Y) = U(X+(t,Y), t)

This definition is given in terms of the Eulerian velocity field, U, for any
Y. The equation can be integrated backward and forward in time to obtain
X+(t,Y) for all t.

Lagrangian fields are indexed by the position Y at reference time t0 and
not by the current position of the fluid particle. Y is called the Lagrangian

coordinate for fixed Y.
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A fluid particle is also called a material point. Similarly one can define
material lines, surfaces and volumes. For instance, at time t0 a simple closed
surface S0 encloses the volume V0. The corresponding material surface S(t) is
defined to be coincident with S0 at time t0. Every point in S(t) moves with the
local fluid velocity. Because a material surface moves with the fluid, the relative
velocity between the surface and the fluid is zero. Therefore a fluid particle
cannot cross a material surface, i.e. there is no mass flux accross the surface
[17].

2.4 Dynamical Systems

A dynamical system on a topological space X is a continuous map Φ : G×X →
X such that, for all x ∈ X and for all s, t ∈ G,

Φ(s+ t, x) = Φ(s,Φ(t, x))

Φ(0, x) = x.

If a systems past and future states can be completely determined by its
state at any one particular instant the process is deterministic. The possible
states of the system in which the process is taking place may be represented
by points of a differentiable manifold, known as the state space of the model.
A deterministic process is often governed by a smooth vector field on the state
space, the dimension of the space depends on the process being studied. In
fluid dynamics, for example, we must take into account the velocity of the
fluid at infinitely many different points implying that the state space is infinite
dimensional [10]. A simulated flow however has a finite dimensional state space
as velocity information is only known at the grid points.

The Lyapunov exponents of a transformation Φ : X → X are a measure
of the local expansion or contraction properties of Φ. Lyapunov exponents are
defined by a limit process, but can be approximated numerically. The method
can only be used for smooth dynamical systems since they require a differentiable
structure. The idea behind Lyapunov exponents can be explained as follows:
Let X carry a differentiable structure, and let Φ be differentiable. For each
tangent vector V at some x ∈ X, we consider the iterated application of the
derivative dΦ of Φ on V:

dΦn(x)(V),

determine its norm in a given metric on X and let n tend to ∞ [12].
Under the assumption that Φ is ergodic, there are at most d = dimX differ-

ent possibilites for the corresponding limits

λ(x) = lim
n→∞

1

n
ln ‖dΦn(x)(V )‖ (2)

These limits are called the Lyapunov exponents of Φ, and they do not de-
pend on the measure nor on the metric employed [12]. In the context of fluid
dynamics the Cauchy-Green deformation tensor is used instead of the iterated
derivative of Φ on V. It is also generally interesting to only look at the largest
Lyapunov exponent, related to the largest eigenvalue of the deformation tensor,
and therefore the direction in which expansion or contraction is the greatest.
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A linear map is hyperbolic if it has no eigenvalues on the unit circle. For a
point to belong to both a stable and an unstable set it must be hyperbolic. Sta-
bility of manifolds relates to whether they are attracting or repelling structures.
Repelling structures emerge under forward integration, while the attracting ones
require backward integration. Attracting Lagrangian coherent structures are
unstable manifolds for time-independent vector fields. Repelling LCS are the
stable manifold in the same vector fields [5].

3 Overview of Methods

3.1 Methods Based on the Velocity Gradient tensor

The velocity gradient tensor D̄ can be written as Dij =
∂ui

∂xj
. As this is a second

order tensor it can be decomposed into a symmetric and a skew-symmetric part

Dij = Sij + Ωij where Sij = 1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

and Ωij = 1
2

(

∂ui

∂xj
−

∂uj

∂xi

)

. Sij is

known as the rate-of-strain tensor, and Ωij is the vorticity tensor.
The charateristic equation for ∇u is given by

λ3 + Pλ2 +Qλ+R = 0

where P, Q and R are the three invariants of the velocity gradient tensor. Using
the decomposition into symmetric and anti-symmetric parts these invariants can
be expressed as follows.

P = −tr(D̄)

Q =
1

2
(tr(D̄)2 − tr(D̄2)) =

1

2
||Ω̄||2 − ||S̄||2

R = −det(D̄)

3.1.1 Q-criterion

The Q-criterion defines a vortex as a ”connected fluid region with a positive
second invariant of ∇u”[14], i.e Q > 0. This criterion also adds a secondary
condition on the pressure, requiring it to be lower than ambient pressure in the
vortex. Looking at the definition of the second invariant we can see that Q
represents the local balance between shear strain rate and vorticity magnitude,
defining vortices as areas where the vorticity magnitude is greater than the
magnitude of rate-of-strain [9, 14].

3.1.2 ∆-criterion

The ∆-criterion defines vortices as ”regions in which two of the eigenvalues of
∇u are complex and the streamline pattern is spiralling or closed”[14]. In order
to determine if the eigenvalues are complex we examine the discriminant of the
characteristic equation.

∆ =

(

Q

3

)3

+

(

R

2

)2

> 0
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This definition is valid for incompressible flows where P = 0. The streamlines
are closed or spiralling if two of the eigenvalues form a complex conjugate pair.
By looking at the ∆ we can see that Q > 0 is a more restrictive criterion than
∆ > 0 [2].

3.1.3 λ2-criterion

The λ2-criterion looks for a pressure minimum but removes the effects from
unsteady straining and viscosity by discarding these terms. Taking the gradient
of the Navier-Stokes equations results in

ai,j = −
1

ρ
pij + νui,jkk

where aij is the acceleration gradient and pij is symmetric. Decomposing the ac-
celeration gradient into symmetric and antisymmetric parts we get the vorticity
transport equation as the antisymmetric part, and the symmetric part

DSij

Dt
− νSij,kk +ΩikΩkj + SikSkj = −

1

ρ
pij

The first two terms in the left hand side represent unsteady irrotational strain-
ing and viscous effects respectively. Therefore only S2 + Ω2 is considered to
determine if there is a local pressure minimum that entails a vortex. A vortex
is defined as ”a connected region with two negative eigenvalues of S2+Ω2” [11].
Since S2 + Ω2 is symmetric it has real eigenvalues only, and by ordering the
eigenvalues λ1 ≤ λ2 ≤ λ3 the definition becomes equivalent to requiring that
λ2 < 0. Generally visualised as isosurfaces for different values of −λ2 [11].

In planar flows, the three conditions described above are equivalent.

3.1.4 Swirling Strength Criterion

The Swirling Strength Criterion uses the imaginary part of the complex
eigenvalues of the velocity gradient tensor to visualise vortices. It is based
on the idea that the velocity gradient tensor in Cartesian coordinates can be
decomposed as

∇u = [dij] = [ν̄r ν̄cr ν̄ci]





λr 0 0
0 λcr λci

0 −λci λcr



 [ν̄r ν̄cr ν̄ci]
T

where λr is the real eigenvalue with corresponding eigenvector ν̄r and the com-
plex conjugate pair of complex eigenvalues is λcr ± iλci with corresponding
eigenvectors ν̄cr ± iν̄ci. By expressing the local streamlines in a coordinate sys-
tem spanned by the three vectors (ν̄r, ν̄cr, ν̄ci) we can see that the local flow is
either stretched or compressed along the axis ν̄ r while on the plane spanned
by the vectors ν̄cr and ν̄ci the flow is swirling. The strength of this swirling
motion can be quantified by λci, called the local swirling strength of the vortex.
The threshold for λci is not well-defined. On theoretical grounds it should be
set to zero, but the results are smoother when it is set to a positive value. The
criterion is therefore λci ≥ ǫ > 0 [21].

14



3.1.5 Enhanced Swirling Strength Criterion

The Enhanced Swirling strength criterion uses the idea presented by [4]
regarding the non-local aspects of vortical structures. The idea is to approximate
the non-local concept or orbital compactness based on local analysis of time-
frozen flow fields. By looking at the projected motion of a fluid particle in the
swirling plane (as seen in the swirling strength criterion) it can be shown that
the time period for one revolution in the vortex plane is 2π/λci. Two points
in this plane with an initial separation of r0 will be separated by rf after n
revolutions. The two distances can be expressed in terms of the eigenvalues of
∇u as

r0
rf

= exp

(

2πn
λcr

λci

)

.

The ratio λcr/λci is called the inverse spiralling compactness, which is used
to approximate the orbital compactness in a vortex. The added advantage of
using this method is to restrict regions of strong outward spiralling motion in the
definition. A vortex is therefore defined as regions where λci ≥ ǫ and λcr/λci ≤ δ
where ǫ and δ are positive thresholds [2].

3.1.6 Triple Decomposition

The idea behind introducing a triple decomposition of the velocity gradient
tensor is to try to extract a so-called pure swirling motion. It is motivated by
the fact that vorticity cannot distinguish between shearing motion and swirling
motion. The aim is to decompose an arbitrary instantaneous state of the relative
motion into three elementary motions:

1. Pure Shearing (Elongation)

2. Rigid body rotation

3. Irrotational straining (Shearing)

The three motions are described in terms of a structured continuum where
groups of material particles form fluid elements. The relative motion of the
particles then result in different motions and deformation of the fluid element.
The velocity gradient tensor is broken down into three additive elements, all
with tensor characterisics, as follows,

∇ū = (∇ū)EL + (∇ū)RR + (∇ū)SH

where the terms correspond to each of the elementary motions. The elongation
tensor should be symmetric, the rigid body rotation tensor antisymmetric and
the shearing tensor purely asymmetric. The requirement of having a purely
asymmetric tensor means that a suitable frame of reference has to be chosen.
The procedure to attain an unambiguous decomposition algorithm can be de-
scribed by the three steps below.

Begin by finding the basic reference frame (BRF) defined by the condition

[|S12Ω12|+ |S23Ω23|+ |S31Ω31|]
BRF

= MAX[|S12Ω12|+ |S23Ω23|+ |S31Ω31|]
ALLFRAMES .
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in this frame the velocity gradient is decomposed as follows

∇u ≡





ux uy uz

vx vy vz
wx wy wz



 =

(

residual
tensor

)

+

(

shear
tensor

)

where the residual tensor is given by

(

residual
tensor

)

=





ux (sgnuy)MIN(|uy|, |vx|) •
(sgnvx)MIN(|uy|, |vx|) vy •

• • wz





where the two non-specified off-diagonal elements are calculated in the same
way as the other two off-diagonal elements are. Finally the residual tensor is
decomposed into its symmetric and antisymmetric parts, which then correspond
to∇uEL and∇uRR. The last step is to transform the results back to the original
refence frame.

This method then defines a vortex as a connected fluid region with a non-
zero magnitude of the residual vorticity, the antisymmetric part of the residual
tensor. The method is only described for planar flows, so its effectiveness in
three-dimensional vortex identification is not clear [14].

3.2 Vorticity

Vorticity is defined as the curl of the velocity, ω = ∇ × U and it is equal to
twice the rotation of the fluid at (x, t). As a result of this, the vorticity can
be used directly to identify vortices. A problem associated with this method is
that vorticity cannot distinguish between swirling motions and shearing motions
[13].

Vorticity can be readily visualised by plotting isosurfaces of |ω|. This can be
problematic however as different thresholds can result in different geometrical
structures. Also, if the velocity gradient acts to stretch the material line element
aligned with ω, then |ω| increases correspondingly. This is known as vortex
stretching, which means that as a vortex is stretched along the velocity gradient,
the magnitude of vorticity will increase. This effect does not exist for two-
dimensional flows.

Vorticity is a vector field and therefore has integral curves obtained by solv-
ing

dx

ds
=

ω

|ω|

where s is the distance along the vortex line. Other parameters can be used
instead of s, and scaling with the magnitude of vorticity is not necessary. In-
finitely many vortex lines can be drawn in the flow, therefore in order to get
useful results using this method, the choice of starting point is very important.
If the starting point is not a part of an organised structure there is a risk that
its motion will be erratic, resulting in lines that traverse the entire flow without
any clearly visible pattern. Therefore, the structures to be visualised have to
be identified before drawing the lines. This is therefore a method for visualising
vortices, not identifying them [16, 13].
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3.3 Lagrangian Methods

3.3.1 Direct Lyapunov Exponent

The Lyapunov exponent (to be defined below) at a given point provides a mea-
sure of the separation of neighbouring particle trajectories initialised near that
point. That is, a particle located at position x0 at time t0 will have position
given by x(t,x0, t0) at time t. An expansion coefficient related to the evolution
of the particle can be calculated by looking at the finite-time version of the
(right) Cauchy-Green deformation tensor

∆ =
dφt

t0
(x)

dx

T
dφt

t0
(x)

dx

and using its largest singular value λmax∆. Since the maximum eigenvalue
is used in this definition, there is no direction information in the Lyapunov
exponent.

The (largest) direct Lyapunov exponent can be defined in different ways as
the two examples below show

σT =
1

|T |
ln
√

λmax(∆) [18],

σT =
1

2T
ln(λmax(∆)) [6].

Regions of maximum material stretching (hyperbolic Lagrangian Coherent
Structures, LCS) generate maximising curves for the DLE field, known as ridges.
However, maximising curves of the DLE field are not necessarily regions of maxi-
mum material stretching, they can also indicate locally maximal shear. To make
sure that a ridge is indeed a hyperbolic LCS, the strain rate normal to the ridge
can be calculated. Forward and backward time integrations also provide dif-
ferent information, backward time integration reveals attracting material lines,
while forward time integration ridges mark the location of repelling material
lines [6].

3.3.2 MZ-criterion

This method is objective, meaning that it remains invariant under coordinate
changes of the form

x̄ = Q(t)x+ b(t)

where Q(t) is a time-dependent proper orthogonal tensor, and b(t) is a trans-
lation vector [8]. This allows for having rotating frames of reference, which can
be interesting when looking at the structures in a fluid inside a rotating tank
for example.

The MZ-criterion describes vortices through the stability of fluid trajectories
in three-dimensional incompressible flows. Physically, it defines a vortex as a
material region where an element’s long-term evolution does not follow the trend
expected from the instantaneous rate-of-strain tensor.

The rate of strain acceleration tensor is defined as

M = ∂tS+ (∇S)v + S(∇v) + (∇v)TS
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where S is the rate of strain tensor.
The restriction to a zero-strain cone Z that travels with the trajectory, MZ ,

remains positive definite if the trajectory is hyperbolic.
Trajectories in regions of sustained material stretching and folding have a sta-

bilty type known as Lagrangian hyperbolicity. This method relates Lagrangian
hyperbolicity to the Eulerian domain, by showing that stability can be guaran-
teed if the trajectory remains in a hyperbolic domain of the Eulerian frame. In
order to find this type of stability three-dimensional space is partitioned into
hyperbolic and elliptic domains, where the hyperbolic domain H (t) is the set of
points at which MZ is positive definite. The elliptic domain is the set of points
at which MZ is indefinite. They are both three-dimensional open sets separated
by two-dimensional boundaries.

In the hyperbolic domain material elements align with subspaces that are
close to the eigenvectors of positive strain, while in the elliptic domain mate-
rial alignment is either absent or inconsistent with the trend suggested by the
eigenvalues of the rate of strain.

A vortex is defined to be a bounded and connected set of fluid trajectories
that remain in the elliptic region E (t), thereby avoiding the hyperbolic domain.
That is, a vortex is a set of fluid trajectories along which MZ is indefinite [8].

3.4 Other Methods

3.4.1 R-definition

This method attempts to add a concept of non-locality to the identification of
vortices, thereby adding the idea of vortices as structures. It is a Galilean in-
variant method that uses the notion that the particles inside a vortical structure
show small variations in their relative distance even when following completely
different trajectories.

Let us consider two particles in a flow (a, b) and their respective velocities
ua and ub. Then the ratio

R(x, t) =

|
t
∫

0

ua(τ)dτ −
t
∫

0

ub(τ)dτ |

t
∫

0

|ua(τ)− ub(τ)|dτ

measures the difference in the total distance travelled by each particle (the par-
ticle trajectories) and the relative distance between them. The ratio is bounded
between 0 and 1, and assumes lower values for pairs of particles belonging to a
vortical structure.

This method is practically applied by selecting a large number of particles
at random positions in a flow field. These particles are then split up into pairs
where any one particle can be a part of more than one pair. The starting
distance between the two particles in each pair should be within a previously
defined interval [dm, dM ]. This interval can be chosen freely and therefore serves
as a filtering tool, by setting a lower limit. The structures with a spacial scale
smaller than dm will not be considered in the results.

The parameter t can be viewed as a pseudo-time, allowing this analysis to
be made for flows frozen at a certain point in time. The choice of this parameter

18



is not crucial, but when it is chosen it is important to observe that if t is too
high some information can be lost.

The ratio R(t) is then calculated for every pair and followed in pseudo-time
by integrating the equation describing its trajectory, dx

dt
= u(x, t). The results

can then be plotted on a graph by choosing a threshold value Rth and plotting
in the flow field the midpoint of pairs of particles with R(t) ≤ Rth at the instant
t = 0 [4].

3.4.2 Closed or Spiralling Streamlines

The use of spiralling or closed pathlines or streamlines to detect vortices is in-
tuitive. It is also a non-local method, as it looks at the trajectories of several
particles in relation to one another. However it is not Galilean invariant, this
means that different results are received if the frame of reference is translated.
This method is difficult to apply in complex flows due to their rapidly trans-
forming vortex topology [11].

3.4.3 Pressure Minima

When looking at a steady inviscid planar two-dimensional flow, a pressure min-
imum can be found at the center of a rotating motion. This is a consequence
of the balance of the forces acting on a fluid element in the radial direction.
Based on this, a pressure minimum has been used as an indicator for rotation
in a fluid, i.e. a vortex. However, the argument for pressure minima no longer
applies when the flow is unsteady, viscous or three-dimensional. While it is
possible that a pressure minimum can be found in the center of a rotation, it is
not necessary. As a result this method is unsuitable for identifying vortices in
complex flows [4].

3.4.4 Sectional Swirl-and-Pressure-Minimum Scheme

This method traces lines of pressure minima under a swirl condition to find
the axis and the core of a vortex. It then visually represents these as so-called
vortex skeletons. The idea is that as Reynolds numbers increase, the radius of
the vortex cores decrease, therefore, if the vortex is sufficiently thin it can be
represented by its central axis, and the core can be disregarded.

The vortex skeleton can be constructed in different ways. One such way is
to trace the lines of sectional pressure minimum. The pressure minimum search
begins in planes which are either normal to the vorticity or to the eigenvector
associated with the smallest eigenvalue of the pressure Hessian. For strong
slender vortices the results of both methods are comparable, as the planes are
more or less parallel.

Because swirling motion is not always associated with a sectional pressure
minimum, a condition is added to make sure that there will be swirling.

Consider an arbitrary point (x1, x2) in a flow. The velocity at this point is
projected onto a plane which together with a third direction forms a Cartesian
coordinate system moving with the velocity at that point. In this plane of
reference the velocity is written as

u = Wijx.
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The topological structure of the streamlines in the vicinity of this point is
characterised by the sign of the discriminant of the matrix Wij ,

D =
1

4
(W11 −W22) +W12W21

For a plane of arbitrary orientation the condition is defined as D(θ, φ) < 0.
This results from rotating the Cartesian coordinate system. The angles (θ, φ)
are given by the direction of the third eigenvector of the pressure Hessian [13].

3.5 Summary of Methods for Vortex Identification

• Methods based on the Velocity Gradient Tensor

Q-criterion Looks at the second invariant of the velocity gradient tensor,
Q. A vortex is defined as areas where Q > 0. Essentially this means
a vortex is a connected region where the antisymmetric component
of ∇u, that is the vorticity tensor, dominates over the symmetric one
[9].

∆-criterion A vortex core is a region of space where the vorticity is
sufficiently strong to cause the rate-of-strain tensor to be dominated
by the rotation tensor, i.e. the velocity gradient tensor has complex
eigenvalues. Whether the eigenvalues are complex can be determined
by looking at the sign of the discriminant, ∆ [3].

λ2-criterion This method is based on searching for pressure minima
across the vortex, by taking the gradient of the Navier-Stokes equa-
tions and decomposing it into symmetric and antisymmetric parts
[11].

Swirling-strength Criterion Using the imaginary part of the complex
eigenvalue of ∇u to visualise vortices and quantify the strength of the
local swirling motion inside the vortex. The method is based on the
∆-criterion and identifies local strength on the local plane of swirling
[21].

Enhanced Swirling-strength Criterion The idea is to approximate
the measure of the non-local orbital compactness based on local anal-
ysis of time-frozen flow fields. Using the ratio λcr

λci
, called the inverse

spiralling compactness. A vortex is then defined as an area where the
strength or rotation (swirling strength) is larger than a given thresh-
old, and the orbital compactness is smaller than another threshold
[2].

Triple Decomposition A vortex is defined as a connected fluid region
with a non-zero magnitude of the residual vorticity. The triple de-
composition of ∇v aims to extract an effective pure shearing motion,
so-called residual vorticity [14].

• Methods that rely on Vorticity

These methods differ from those presented above in that they all calcu-
late the vorticity and then attempt to visualise their findings in different

20



ways. In this sense they are all the same identification method, but dif-
ferent visualisation methods. The inability to distinguish between shear
rotation and swirling motion is therefore something they all suffer from.

Vorticity Magnitude |ω| The method fails in boundary walls and can-
not distinguish between shear rotation and swirling motion. The
structure of the isosurfaces of vorticity magnitude varies with thresh-
old. As a result this is a subjective method due to the arbitrary choice
of threshold.

Vorticity lines The method is generally chaotic in three dimensions.
Furthermore it is topologically and structurally unstable, as well as
unable to represent the strength of vorticity [16].

Kinematic vorticity number Nk This method measures the quality of
rotation. Nk is a pointwise measure of |ω| non-dimensionalised by the
norm of the strain rate. Nk does not discriminate between vortices
with small and large vorticity [19].

• Lagrangian Methods

Direct Lyapunov Exponents Using direct Lyapunov exponents (DLE)
to identify Lagrangian coherent structures. The DLE is used as a
measure of the separation (or attraction) of particles that start off
nearby. This way attracting material structures (corresponding to
structures seen using flow visualisation in experiments) can be found.
This method is computationally expensive, as it requires the integra-
tion of particle trajectories [6].

MZ criterion Looks at the fluid trajectories in thee dimensional incom-
pressible flows. By looking at the restriciton of the strain acceleration
tensor, defined as M̄ = ∂tS̄ + (∇S̄)v̄ + S(∇v̄) + (∇v̄)T S̄, to a zero
strain cone Z it defines vortices as sets of fluid trajectories with in-
definite MZ . Physically this can be interpreted as ”a material region
where material elements do not align with subspaces that are near
the eigenspaces of the rate of strain” [8].

• Other Methods

Closed or Spiralling Streamlines Spiral curves by observer moving
with the vortex. Not Galilean invariant. Does not work for highly
undsteady flows as they do not allow particles to complete a full ro-
tation. Also as we do not know where the vortex in question is a
priori we cannot place an observer in the path of the vortex. This is
a non-local method [15].

Pressure Minima Works well for two-dimensional flow. The idea that
a pressure minima can be found along the axis of the vortex is not
necessarily true for unsteady, viscous or three-dimensional flow. Not
appropriate for systems in which many vortices coexist. Arbitrary
choice of pressure threshold.

R-definition Vortices here are considered to be material tubes of low
particle dispersion. Non-local analysis introduces the idea of vortices
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as structures. The particles inside a vortical structure show small
variations in their relative distance even when following completely
different trajectories. A vortex is defined as the region comprized of
pairs of particles with R less than a threshold value [4].

Sectional Swirl-and-Pressure Minimum Scheme The method con-
structs vortex skeletons by tracing the lines of sectional pressure min-
imum. The swirl condition (D(θ, φ) ≥ 0) where D is the discriminant
of the velocity gradient tensor projected on a plane (so-called plane
of swirling) [13].

4 Vortex Identification Directly from Velocity

Field Information

4.1 Introduction to the Idea

This method for identification of vortices looks directly at the velocity field of
two-dimensional planes. It builds on the simple idea that the direction of the
flow around the center of rotation will have opposite signs on either side of the
vortex. A first version of this method was tested, with surprisingly good results
by just looking at the velocity components in one direction: perpendicular to
both the direction of the flow and the expected axis around which the vortices
would be rotating. A problem with only looking in one direction is however
that the method is unable to distinguish between vortices and shear forces. To
address this problem, and furthermore in order to narrow the definition of the
vortex, the method was generalised to searthatch at the velocity components in
two directions, thus attemtping to span the entire plane of rotation.

The method only searches planes, but by looking at the three principal
orthogonal directions all possible planes of rotation are taken into account. This
allows the method to work in three dimensions.

By analysing the velocity field information of the nearest neighbours of the
point we are working with, this method traces the centre of rotation of the
vortex. It does not however offer a solution to the problem of how far from the
axis the vortex extends. An attempt to solve this is done by extending the axis
to include the points with a common rotation around the center.

4.2 Description of the Method

The three-dimensional domain can be reduced to two dimensions because any ar-
bitrary plane of rotation can be described by searching three orthogonal planes.
Using a simple two-dimensional search for each plane therefore provides all the
information necessary to locate the vortices. The final version superimposes
information from different planes to create a three-dimensional result.

This method relies on a change of frame of reference. The necessary frame
should be moving in the direction of the flow with the average flow velocity.
To get to this frame from the ”laboratory” frame the average flow velocity is
calculated and subtracted from the matrix storing the velocity component in
that direction.

Once a plane has been selected the algorithm carries out a number of steps
described below.
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4.2.1 Searching Algorithm

1. A signum operation is carried out on the matrices containing the velocity
components in the directions that span the plane.

2. For each point in the plane the 4 neighbouring points are selected. See
Figure 3. On each line only one velocity component is considered, as the
figure shows when looking at either side of the point in the z-direction we
are only interested in the velocity component in the x-direction.

Figure 3: Figure showing what velocities the algorithm looks at for each point.
The numbers represent the sign of the velocity components in the x- and z-
directions for each point, u and w respectively

3. If the sum of the signum values of the velocity matrix in the relevant direc-
tions for the neighbouring points is zero a vortex centre is likely present.

4. An extra check is made to make sure the directions entail a rotation as
there are two situations where the sum of the signum values can be zero,
see Figure 4.

Figure 4: Figure showing a possible velocity profile leading to a ”false vortex
centre”.

23



The situation in Figure 4 is clearly shear and not vortical motion. The
check is done by checking the sum of the signum values for the upper and
left points. If sgn(uleft) + sgn(wup) = 0 the point is discarded.

5. A point is defined as belonging to a vortex centre if

sgn(uleft) + sgn(uright) + sgn(wup) + sgn(wdown) = 0

and

sgn(uleft) + sgn(wup) 6= 0

6. For the points that fulfill the above criteria the strength of the vortex
centre is calculated as the sum of the absolute values of the velocity com-
ponents in the relevant directions. That is

strength(x) = |(uleft)|+ |(uright)|+ |(wup)|+ |(wdown)|

4.2.2 Growth Algorithm

The algorithm described above will find the smallest scale of rotation that can
be identified in a given grid. A method to allow the core to ”grow” from this
centre is described below. This attempts to extend the parts of the domain and
determine a cutoff that is not dependent on a predetermined threshold. The
method works as follows:

1. The initial algorithm is carried out and every point inside a vortex is
marked in the signum velocity matrices with a zero.

2. Every point in the plane is checked in the same way as the initial algorithm
except when a zero is encountered. If a neighbouring point has a zero the
algorithm will look past that until it reaches the first non-zero point in
that direction. See Figure 5. If a point is found to qualify as a vortex the
signum matrix is updated with new zeros.

Figure 5: Figure showing what happens when a zero is encountered.

3. Step 2 is carried out a predetermined number of times, or until no new
points are added.
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4. The strength at each point is calculated by the searching algorithm. How-
ever when plotting the results, the strength is multiplied by a constant
k, such that 0 ≤ k ≤ 1. The constant is also raised to the power of
the number of iteration we are plotting, for example in iteration number
2: strength = strength × k2. This way the size of the dots plotted will
decrease as we move away from the centre even if the velocities increase.

4.2.3 Superposition of Results for Three-Dimensional Data

In order to use this method in three-dimensional data, the algorithm is applied
to a large number of planes: the three principal planes for each point in our
domain. Given that the actual data used in this thesis is obtained from nu-
merical simulations performed in cartesian grids it is simple to look at every
plane in the simulated data. Any arbitrary plane of rotation can be found using
this method, as it can be expressed as a sum of rotation in the three cartesian
planes. The method essentially performs an orthogonal decomposition of any
arbitrary rotation.

The methods described above are then carried out for each plane. The results
are stored in matrices with all the coordinates to the points where rotation was
found and a vector with the strengths at all points. Each plane orientation has
a matrix and a vector, allowing us to visualise the planes of rotation in the
images produced.

We define the strength of rotation at each point to be given by the largest
strength. That is, if a point has rotation in two planes, the strongest rotation
will be given as the strength at that point.

4.3 Visualisation of the Results Obtained using this Method

The results from this method are visualised in two- or three-dimensional space
as a set of dots. The size of the dot is determined by the strength of the vortex
at that point. The colour of the dot is also connected to the strength at the
point, while the colour of the edge marks what plane the rotation is found in.

While this visualisation is satisfactory in two-dimensions, and even in simpler
three-dimensional cases, it becomes cluttered when the complexity of the flow
increases. Small strength rotations add a lot of ”noise” to the solution set
making it more difficult to identify relevant structures. To minimise this problem
a threshold has been added when visualising the results. This means that only
rotations of a certain strength and higher are plotted in the solution.

The thresholds have been determined in different ways, generally the mean
strength was used as a threshold, however in some cases (especially the turbulent
ones) this proved to be too high, so a constant multiplied by the minimum
strength was attempted instead.

Another attempt to make the vortical structures extracted using this method
clearer has been to join the dots with lines. In this case the thickness of the
lines is determined by the strength of the points it is connecting. The lines are
only plotted for points that have a short Euclidean distance between them, i.e.
neighbouring points with rotation.
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4.4 Results

4.4.1 Wake of an Infinite Cylinder

As this case is the simplest among the data it was used to test if the results
differ depending on how fine grid resolution is.

It was also used to check what kind of results can be obtained using the
growth method. The method was run until it stopped on its own, and different
number of iterations were tested. The decay constant in the growth method
was chosen after trying several different values to get the clearest possible vi-
sualisation. The decay constant used in these results is 0.8 for both the coarse
and the fine grid.

To aid in determining whether the results seem viable or not the velocity
field in the plane being studied is plotted in the same figure, along with the
area that is classed as a vortex core by the λ2 method: λ2 is less than zero.
Zero has been chosen since it is the standard threshold in the definition of the
λ2 method. In practice, however, different thresholds are used to provide better
visualisations. The darkened area in the images shows which areas are identified
as a vortex core by the λ2 method.

Coarse Grid

Figure 6: Results of the searching algorithm compared to the λ2 method and
the velocity field.

As we can see in Figure 6, the searching algorithm finds the centers of rotation
to be inside the areas designated by the λ2 method. As expected the centers of
rotation can be found in the core of the vortex. In Figures 7 and 8 the growth
algorithm has been used. After two iterations we can see that the size of the
core from the λ2 method is comparable to what is found using the direct method
for most of the vortices. Finally, allowing the growth method to run until it
stops itself (this requires 14 iterations) results in some of the vortices growing
into each other. We can also see that the core grows unevenly in the different
directions.
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Figure 7: Results after allowing the growth algorithm to run twice.

Figure 8: Results after allowing the growth algorithm to run until it stops on
its own.

Fine Grid

On the fine grid the results are quite similar. Both methods find a similar
number of points when only using the searching algorithm. This suggests that
in a finer grid we identify a smaller part of the vortex core as its center. More
iterations are required before the method stops itself (22 in this case). The
areas considered to be vortices are more rounded with this method than what
the λ2 method obtains. The decay constant may be too low for the fine grid
when letting the growth method run until it stops itself.
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Figure 9: Results from the
searching algorithm in the fine
grid resolution.

Figure 10: Results after allow-
ing the growth algorithm to run
until it stops on its own on the
fine grid.

4.4.2 Laminar Wake of a Sphere: Hairpin Vortices

This is the simplest three-dimensional case as the wake of the sphere is laminar.
Single vortices in this case rotate in different planes as the vortex is bent into
the shape of something like a hairpin. In Figure 11 we can clearly see three
hairpin shaped vortices among some smaller structures.

Figure 11: Visualisation showing all the points around which rotation can be
found in the laminar wake of a sphere.
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The growth method was also used with this data set. The results with a
predetermined number of iterations are shown below. We can see in Figure 12
that it becomes difficult to make out the details when several structures are
close to each other if too many iterations are used.

Figure 12: Visualisation showing all the points around which rotation can be
found in the laminar wake of a sphere after three iterations of the growth
method.

A threshold was introduced when creating the visualisations to make it easier
to see how the larger structures behave. The threshold is set to 0.02, which is
the mean strength for this case. While having a zero-threshold does not make
these results hard to read in this case, as can be seen in Figure 11, it is likely
to be worse for more complex cases. Also, when running the growth method,
having too many points with very low strength slows the method down and
makes the results much harder to read, see Figure 12.

A close up to the second hairpin can be seen in Figure 13 with different
combinations of threshold and growth iterations. We can see that by adding a
threshold the hairpins become clearer, by making sure weak rotations are not
plotted. However, when examining the close up with a zero threshold we get
more detail, and we can even see something that looks like a smaller hairpin
growing out of the bigger one. This is not visible in the close up with a threshold
and no growth but can be guessed at in the image with three growth iterations.

29



(a) Two growth iterations and 0 threshold

(b) Search algorithm with a 0.02 threshold (c) Three growth iterations, 0.02 threshold

Figure 13: A close up of the second hairpin vortex with different combinations
of threshold and growth iterations.

4.4.3 Turbulent Wake of a Sphere

The turbulent wake of a sphere is much less ordered than the laminar one, as
can seen in Figure 14. Growth iterations were attempted but none of the results
were an improvement to what can be seen just from the search algorithm. As
we can see, there are very many structures, and it is difficult to see individual
ones in the mess.
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Figure 14: Turbulent wake of a sphere, zero threshold and no growth iterations.

However, some of the structures are similar to what was seen in the laminar
case. At around z = 6 we can see what strongly resembles a hairpin vortex of
the type seen in the previous case. Figure 15 shows a different angle of the same
results, where we can see the structure more clearly.

Figure 15: Turbulent wake of a sphere, zero threshold and no growth iterations.
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An interesting observation is that after that structure the wake consists of
smaller, weaker structures, and it is narrower than before that point. This can
be very clearly seen when looking at the results where a strength threshold has
been added.

Figure 16: Turbulent wake of a sphere, threshold = 10*min(strength) and no
growth iterations.

There is also a qualitative difference in this case when comparing to some
results obtained with the λ2 method, as seen in Figure 17. After the structure
at z = 6 discussed above, the wake is made up of weaker structures threaded
amongst each other. However when looking at the λ2 results it seems like the
smaller, thinner vortices recombine to make a larger structure near the end of
the computational domain.

Figure 17: Vortex identification using λ2 isosurfaces
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4.4.4 A Jet

(a) Zero threshold and no growth (b) Threshold set to mean strength

Figure 18: Vortical structures in a jet

In Figure 18 we can see that the searching algorithm finds a lot or points with
rotation. The results with no threshold fail to give us much information, other
than that the results have the expected shape. However, once a threshold is
added we can start seeing some more details. The first observation that can
be made is that the rotation in the outer edges of the circular cross section is
generally in the planes perpendicular to the plane in which the cross section lies,
while the rotation inside of the jet is dominated by structures rotating around
an axis in the direction of the flow.

The results are more interesting when looking at a close up of the flow closest
to the nozzle. Figure 19 shows some results. Here we can see that closest to the
nozzle all the rotation is found in the planes normal to the cross-section of the
nozzle. However it quickly changes and structures rotating in the xz-plane (the
plane of the nozzle) appear. These are fairly long, and have a helical shape.
No vortices can be found in the volume directly above the nozzle itself. All the
structures are formed at the edges.
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(a) Lines joining the points with rotation.
Darker shades of grey represent stronger ro-
tation

(b) Points showing vortical motion
with a zero threshold with lines
traced over areas with strength
greater than the mean

Figure 19: Different views of the vortices found near the exit of a jet nozzle

4.5 Evaluation of the Method

The first thing to note about this method is that it is not Galilean invariant.
It requires the selection of a suitable frame of reference and different results
are received if the frame of reference is changed. This is clearly a weakness,
especially if the method is intended for use in flows where the ”predominant
flow direction” is not clear, making it difficult to select the suitable reference
frame.

That said, the simplicity of the method makes it attractive to implement, and
the vortices identified using it are in agreement with our intuitive understand-
ing of a vortex. It is also computationally inexpensive as no multiplications,
gradients etc are required. Also, the searching algorithm can be potentially
optimised by having a less extensive search.

However, some arbitrary tresholds are still in place. The most evident ones
are a) the number of growth iterations if the extension of the core want to
be increased, and b) the rate of decay in the strength of the later iterations.
The choice of the measure of strength is in itself arbitrary, as it is defined to
be the sum of the magnitude of the velocity components we search out in a
neighbourhood of a given point. For example, when extending the core to more
points the strength of the center could be defined as the sum of all the strengths
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in that core, instead of just using the closest neighbours.
The results obtained using this method are also grid dependent. The smallest

structure that can be found is determined by how fine the grid is. Also, if a
vortex is assumed to be a structure having a certain diameter, searching in a
fine grid would find a smaller percentage of the structure.

It is also clear that while visualising using points in a three-dimensional space
works surprisingly well, it would be more appropriate to use surfaces instead,
similar to those obtained from the λ2 method. This has not been implemented
due to time constraints.

A further improvement to the visualisation would be to include the direction
of the rotation. This can be done by looking at the vorticity vector at each point
marked as a vortex, as this would give the rotation direction in itself.

A more visually appealing visualisation would also be helpful, for example
encasing the structures in surfaces resembling the λ2 visualisation in Figure
17 instead of presenting them as clusters of points. Attempts to alternative
visualisation methods can be seen in Figure 19 where a combination of lines
and points has been used, these are however costly in memory and are therefore
difficult to attempt with the whole domain.

5 Using the Direct Lyapunov Exponent to Cal-

ibrate the λ2 Method

As described in the Overview of methods, the direct Lyapunov exponent is a
measure of the separation between neighbouring particles after a certain period
of time. The idea being that particles in a coherent structure will have little
tendency to move apart from each other, while particles not belonging to the
structure will move away quickly. It is similar to the R-method, and is non-local
in nature.

As we have seen before, one of the main difficulties in identifying vortices
is finding the edges of a vortex. Most of the methods we have seen rely on
setting an arbitrary threshold for visualisation purposes. However, the La-
grangian methods, and especially the use of the Direct Lyapunov Exponent
have a strength here, being that regardless of integration time, the edges are
found to be in the same place. The main difference attained through using
different integration times is how much detail of the different structures can be
resolved [18, 6].

This of course invites the idea of combining an Eulerian method, such as the
λ2 method, with the direct Lyapunov exponent, and use the DLE method to
locate the edges of a vortex together with an Eulerian method to find the core
of the vortex. Further one can look at the λ2 values at the edges found by the
DLE method and set that as a threshold. The λ2 method can then be used to
identify vortices that will extend to the edges found by the DLE method. This
means that the DLE method only has to be run once to calibrate λ2 therefore
decreasing computational cost.

Finding a threshold value using this method means that the threshold would
no longer be arbitrary. It is likely that different cases will have different thresh-
olds. And even within one frame it is possible that different vortices will have
different λ2 values on the boundaries. A suggestion is to choose the threshold
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by averaging the values found at the boundaries.
To test if this idea is viable, a DLE method to locate lagrangian coherent

structures is implemented and tested on the infinite cylinder case. This means
that the method will only be used in two dimensions for this thesis. If sharp
edges can be found using this method, the λ2 values at those points will be
extracted to attempt to find a threshold value.

5.0.1 Implementation of DLE Method

The DLE method is implemented in two dimensions. As a result only one plane
is studied at a time, and therefore velcity components in the direction normal to
the plane are not taken intp account. This will likely introduce an error to the
solution, because any separation (or attraction) of particles in the y-direction
will be unaccounted for.

The implementation of the method can be described in the following steps:

1. Once the velocity data for a plane has been loaded it is refined using linear
interpolation. This is important for the resolution of the scalar field. In
this case the grid is refined by 23 in each Cartesian direction. In the cases
where different time frames are used, time is also interpolated to 5 times
shorter steps. For a discussion of the accuracy of using refined numerical
velocity data see [7].

2. Each point in the new grid is viewed as a particle, and its trajectory is
integrated over a certain time. Explicit Euler is used as a time-stepping
method. There are two versions of this, one integrates through physical
time, looking at other different time frames. The other uses the instanta-
neous data in every ”time-step”. This is similar to the approach described
in the R-criterion [4] where we imagine the flow is frozen at a point in time.
This should make the results more comparable to what the λ2 method pro-
vides as they are only based on instantaneous data. The time integration
can be done either forward or backward in time.

3. Once the particle trajectories have been calculated every particle, x̄ is
viewed with a neighbour ȳ at time t0 and a differentiation is carried out
as follows

dΦT x̄

dx̄
=

[

yTx − xT
x

δx

yTz − xT
z

δz

]

That is, the change in distance between them in the x and z directions
compared to their initial separations.

4. When the differentiation has been carried out for every point (particle
pair) the Lyapunov exponent can easily be calculated from the definition

σT
t0
(x̄) =

1

|T |
ln
√

λmax(∆)

where λmax(∆) is the largest eigenvalue of ∆ = dΦT x̄
dx̄

∗
dΦT x̄
dx̄
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5. Finally, the ridges in the scalar field sigma are located. These are defined
to be the Lagrangian Coherent Structures in [18]. Following the method
outlined in the same paper, ridges are located as follows

• Calculate the Hessian at each point





∂2Φ(x1)
∂x2

1

∂2Φ(x1)
∂x1∂x2

∂2Φ(x2)
∂x1∂x2

∂2Φ(x2)
∂x2

2





• Calculate the gradient at each point

• Calculate the eigenvalues of the Hessian at each point. The eigenvec-
tor corresponding to the smallest eigenvalue direction is extracted,
λmin

• A new scalar field is created by calculating the inner product of the
gradient and λmin at each point.

Once the DLE field is plotted the boundaries of the vortices can be seen. An
appropriate vortex is then chosen and its edge extracted. In this case the edge
is extracted by choosing the points above a certain threshold. The λ2 values at
the edge are then studied and an attempt to chose a threshold based on this
information is made.
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5.1 Results

5.1.1 Integrating through Physical Time

(a) Lyapunov Exponent in forward time
T=10

(b) Second derivative ridges forward time T
= 10

(c) Forward time, T = 50 (d) Sum of ridges in a forward time series,
T1 = 3 Tend = 25

(e) Lyapunov Exponent in backward time T
= -15

(f) Second derivative ridges backward
time T = -15

Figure 20: DLE method in forward and backward time for different integration
times

These results are more difficult to interpret. According to [6] integration in
backward time reveals vortices, since they are attracting Lagrangian Coher-
ent Structures. Integration in forward time reveals repelling structures, which
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means when a particle reaches the edge of one of these structures it cannot
pass through. Therefore these should be boundaries through which little or no
mixing occurs. In both cases, the Lyapunov exponent highlights areas of high
shear as well as the structures we are looking for.

5.1.2 Frozen Flows

Looking at a time frozen flow should make it easier to compare with the instan-
taneous methods such as the λ2 method and the method shown in the previous
section. This is because we only look at the flow in that time instant, therefore
we have the same amount of information as the instantaneous methods have. In
order to calculate a Lyapunov exponent in this case we imagine that the parti-
cles are moving in a steady flow and follow their trajectories there. The results
shown in Figure 21 are compared to the λ2 method in the same time-frame.

(a) Backward integration with pseudo-time t=-
150

(b) Forward integration with pseudo-time t=300

Figure 21: Results of the DLE method with a frozen flow.

An interesting attempt is presented in Figure 23 where the velocity field was
changed by subtracting the average velocity in the direction of the flow. The
results are shown below with a plot of the respective velocity fields. The ridges
are then calculated for each case. Notice that the altered case has a better
correspondence to the λ2 contours. See Figure 23.
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(a) Backward integration with actual velocity field, including a velocity field plot

(b) Backward integration with altered velocity field, including a velocity field plot

Figure 22: Different results obtained by changing the velocity field
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Figure 23: The Lyapunov Exponent for backward time integration t = -300 in
the altered velocity and contours for λ2 = 0 and λ2 = −0.5

(a) Actual velocity field (b) Altered velocity field

Figure 24: Ridges from backward integration
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Figure 25: Lyapunov exponent with t = -700 and λ2 contours traced on it

From Figure 25 the edge to a vortex is traced. The edge we will be looking
at is marked on a λ2 field in Figure 26.

Figure 26: The edge we are looking at is superimposed on a plot of the λ2 values
in the domain
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In Figure 27 we can see a plot of how the λ2 values vary along the edge.
The maximum is λ2 = 0.4797, the minimum λ2 = −0.3168 and the mean
λ̄2 = 0.0125. It is evident that chosing a threshold is more complicated than
simply finding the mean. A more detailed study of ways to optimise the choice
of threshold based on the boundaries given by the DLE is necessary.

(a) (b)

Figure 27: Different views of the variation of λ2 along the edge of a vortex

(a) t = 5 (b) t = 10

(c) t = 15 (d) t = 20

Figure 28: Backward DLE with 500 iteration seen in different time frames
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As seen in the results in Figure 28, a dark line consistenly can be seen through
the vortices. This line is likely an area of high shear, which could potentially
give more information on how the vortices will evolve in time. We would assume
the vortices to be deformed along a line of high shear, and the line to rotate
with the vortex until it is shed from the cylinder, which is in fact what we see
in the results.

5.2 Evaluation

It is positive to see that the areas with negative λ2 are found inside the bound-
aries of the DLE structures. The results indicate that the mean λ2 value along
the edge is an inappropriate way to get a value. In fact, calculating a single λ2

threshold using the DLE boundaries is difficult due to the large variation of λ2

values along the boundary. It would also be interesting to follow a single vortex
in time to see how the relation between DLE boundary and λ2 value evolves.

Choosing the boundary by setting a threshold is not ideal, but it is a good
way to start studying what kind of values the λ2 method finds in what look like
clear boundaries in the DLE method. As can be seen in Figure 28 the same
flow can have different DLE values in different time frames, making it difficult
to use this method when looking at the time evolution of a flow. A better
edge detection method could improve this part of the method. It could also be
of interest to chose a narrower line as the edge. What is extracted using the
threshold approach is quite thick, and therefore the λ2 values vary even along
the width of the line.

The DLE method is computationally very costly, and the errors introduced
when using a small domain, like the one we have tested it on, are probably quite
high (further work necessary). However it is still very interesting to find a less
arbitrary way of chosing the threshold in the λ2 method.

In this implementation particles that leave the computational domain are
stopped at the boundary, this is likely to introduce a sizeable error into the
computation, especially in the areas far from the center of the domain. Another
error is introduced as the particles are allowed to travel through the cylinder,
this means that the part of the domain up to the cylinder is highly innaccurate.

In order to study the line of high shear a longer computational domain could
be of interest in order to follow a single vortex through its entire evolution in
time.

6 Conclusion and Future Work

In this thesis we have presented an overview of methods that have been used,
and still are used, for identifying vortices. The methods are presented shortly
including the theory motivating the definitions given by each. An attempt was
made to concretely present the advantages and disadvantages of the different
methods. However, as the different methods are tested in different ways it is
difficult to find concrete weaknesses and strengths for many of them.

A new method for vortex identification, using velocity field information di-
rectly, was presented and tested in four different simulated data sets. The results
are in accordance with the intuitive expectations, including the more complex
flows: a jet and turbulent wake of a sphere. The visualisation method used
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in the tests (a plot of points in a three-dimensional domain) is sufficient for
testing purposes but there is much room for improvement. It was seen that in
the more complex flows the visualisations became cluttered, making it difficult
to get a clear view of the structures identified. Other visualisation approaches
were tested with good results, however they were not applied to a full result set
due to computer memory constraints.

Finally, two of the methods presented in the overview were implemented
and combined. The direct Lyapunov Exponent was used to identify edges of
vortices in the laminar wake of a cylinder, a case with two-dimensional vortices.
The aim was to use the edges found to calibrate the λ2 method. By chosing a
threshold for the visualisation based on the λ2 values along the edge in the DLE
method the subjectivity of the choice of theshold could be removed. However,
it was found that the λ2 values have a large variation along the edges in the
DLE field, making it impossible to find a single λ2 value that would result in
matching edges.

However, it was gratifying to note that the λ2 < 0 areas are generally found
inside the DLE edges, meaning that using both methods can provide an answer
to where the core of the vortex is as well as its extent. The DLE method also
shows a set of dark lines that go through the vortices it highlights, see Figure
28. These are of interest as they may provide more information regarding how
a vortex will be deformed in time.

There is much that can be improved upon and done in the future in this
area. The combination of the DLE method with existing Eulerian methods is
very interesting, due to the DLE method’s ability to unambiguosly find an edge
to a vortex. A three-dimensional implementation and testing in more complex
flows is necessary to judge the potential of combining such methods.
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