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METHODS OF CALCULATING THE ELECTRONIC AND ATOMIC STRUCTURES OF
INTERFACES

A,P, Sutton

Department of Metallurgy and Science of Materials, Oxford University,
Parks Road, Oxford 0X1 3PH, U.K.

Résumé - Des méthodes pour calculer les structures &lectroniques et
atomiques des parois, sont décrites. On donne une introduction aux
pseudopotentiels et des méthodes LCAO. Des méthodes pour calculer la
structure &lectronique d'un paroi d'une certaine structure atomique, sont
considérées. On y discute la possibilité& des calculations d'energie
totale, oii les structures atomiques et &lectroniques sont calculées
simultanément.

Abstract — Methods of calculating the electronic and atomic structures of
interfaces are described. An introduction to pseudopotentials and LCAO
methods is given. Methods of calculating the electronic structure of an
interface with a given atomic structure are considered. The feasibility of
total energy calculations, in which the atomic and electronic structures
are calculated simultaneously, is discussed.

1 ~ INTRODUCTION

It is well known that the atomic and electronic structures of interfaces are
intimately coupled. Coulomb interactions between ion cores in a condensed phase
are moderated by the valence electron distribution which responds virtually
instantaneously when ions are displaced or a different ionic species is
introduced. In a metal each ion carries with it a neutralizing cloud of valence
electron charge forming a neutral 'pseudo—-atom'. Pseudo-atoms can be treated as
single entities in those metallic systems where linear screening is valid, and
their interaction is then described by an effective pair potential. But in other
materials the treatment of the valence electron distribution and its response has
to be more elaborate. This paper is an introduction to the theoretical methods
used to study the electronic and atomic structures of interfaces involving such
materials. Much of the quantitative progress in this area is founded on
pseudopotentials and, in section 2, we give a brief account of the principles
underlying them. A great deal of physical insight into the electronic structure
of interfaces (and many other defects) has been provided relatively easily by the
empirical tight binding method and other LCAO (linear combination of atomic
orbitals) techniques. This method is described and appraised in the second part
of section 2. With this background, we proceed, in section 3, to describe methods
that have been used to calculate the electronic structure of interfaces of known
(or presumed!) atomic structure. Section 4 contains a very brief account of the
methods that have been used to calculate the total (internal) energy of
interfaces. These are the methods which lead (at least in prineciple) to the
minimum energy atomic configuration, with the electronic structure of the
interface taken fully into account. In section 4 emphasis has been placed on
semi-empirical methods because of their greater ability to deal with large numbers
of atoms (e.g. for grain boundary calculations).

2 — FORMULATIONS OF THE ELECTRONIC STRUCTURE PROBLEM

The Hamiltonian for a system of interacting electrons and atomic nuclei consists
of a sum of three terms. The first, H,, is the sum of nuclear kinetic emergy

Avrticle published online by EDP _Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985438



http://www.edpsciences.org
http://dx.doi.org/10.1051/jphyscol:1985438

C4-348 JOURNAL DE PHYSIQUE

operators and Coulomb interactions. The second, Hg, is the sum of electromnic
kinetic energy operators and Coulomb interactions, and Hegp is the sum of
electron—nuclear Coulomb interactions. Since electronic motion is so much faster
than nuclear motion, electrons adjust to a ground state configuration for any
particular set of nuclear positions. This enables us to separate the electronic
and nuclear motions, and the Hamiltonian for the electrons becomes Hp + Hgp
(Born—Oppenheimer approximation). A further simplification follows from
recognizing that valence electrons play the dominant role in chemical bonding.
Core electrons are assumed to be unaffected by surrounding atoms and they are
therefore assigned to their isolated atomic states. Accordingly, the problem is
reduced to solving for the valence electronic states in the field of other valence
electrons and the ion cores.

A simplification of the many electron problem has been achieved by the density
functional formalism, /1/. In this formalism it is is shown that the ground state
total energy of the full many electron problem can be expressed as a unique
functional of the electron density, p(r). The utility of this formal result is
limited by the fact that we cannot give an exact functional for the exchange and
correlation energy of an interacting electron gas, E,. [p(z)]. Indeed,

finding Exc[p(z)] is equivalent to solving the full many electron problem.
Nevertheless, if p(r) is sufficiently slowly varying we can invoke the local
density functional approximation and write

Ee [f(f)]= ff(f) £ (p(0) dr L

where ey (p(z)) is the exchange and correlation energy function per electron
of a uniform electron gas of density p(r). Kohn and Sham /1/ showed that equation
(1) reduces the many—electron Schrddinger equation to a one-electron equation:

(‘ﬁ_g + Veg [f(f)]) (}/L (1‘) = £ 9“- () .
where f(f) = Z / "u‘ (f)/z 3)

occﬁpied

and \4;£[p(£)] is an effective one-electron potential:

Ve L)) = [ 'ﬁﬁr')&f."’_ﬁl,(f? & Ve (p)

Pion (r) is the ionic charge density. Vy. (p(£)] is the exchange-
correlation potential, which is related to g4 (px)) by

V. (f(ﬁ‘)) = f% (F(f) Exe (f(f))) | (5

Equations (2-4) are solved iteratively until the electron density distribution,
given by equations (2) and (3), is consistent with the one—electron potential,
given by equation (4). Such calculations are described as self-consistent. One
role of V.. is to eliminate the self-interaction of the electroms contained in
the first term of equation (4), /2/. A number of forms for Vi, (p) have been
tested, /3/.

As will be discussed in section 4, the local density functional approximation
(equation (1) ) has been very successful at describing ground state properties of
various solids, such as the total internal energy. However, quite severe
discrepancies with experiments have been found for excited state properties. For
example, band gaps are normally underestimated by ~50%. This may indicate that
there are significant many body effects which are not treated adequately by the
local density approximation.
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In general the one electron energies, g;, obtained self-consistently from
equations (2-4) are meaningful only if they are occupied states because only then
do then contribute to the electron density and hence to the effective one-electron
potential used to calculate them self-consistenly. When an electron is promoted
to a higher energy state the excitation energy is determined not only by the
change in the single particle state but also by the reaction of the system as a
whole to the excitation. The latter component is not significant in the case of a
spatially extended state, but it can become very important for localised states,
such as those bound to defects.

In the all-electron approach the eigenvalues and wave functions of all the
electrons, including the ion core electrons, are calculated. Some of the methods
with this approach use muffin tin potentials such as the KKR /4/, APW /5/ and
LMTO /6/ techniques. A particularly efficient all-electron method for obtaining
one~-electron eigenvalues, called the SCF-Xq-SW method, has been developed by
Johnson and co-workers /7/ and has appeared prominently in the literature on
temper embrittlement in recent years /8/. This method is very similar to muffin-
tin approaches since the potential is spherically arveraged within each atomic
sphere and spatially averaged between them. The spherical and spatial averaging
may be expected to be a good approximation for the potential in close—packed
solids, such as pure metals. However, to study the formation of directional
bonds and charge densities it is desirable to remove this constraint on the
potential. In addition, total energies calculated by the SCF-Xq method are very
inaccurate because of the use of the muffin-tin approximation. This has led to
some spectacular failures of the method to calculate the shapes of simple
molecules such as H,0 and NH;. Recent LMTO calculations /6/ drop the muffin tin
approximation and give very good results for these two molecules.

Pseudopotential formulations of the Hamiltonian do not suffer from shape
constraints on the potential, and they underpin much of the theoretical work on
interfaces.

Pseudopotential Formulations

Pseudopotentials were introduced to replace the all electron eigenvalue problem
(i.e. core and valence wavefunctions treated on an equal footing) by a simpler
eigenvalue problem which applied to the valence subspace only. In the Philips-—
Kleinman prescription /9/ this was achieved with use of the orthogonalized plane
wave (OPW) method of bandstructure /10/, in which plane waves were combined with
Bloch sums of core electron wave functions in such a way that each basis function,
X3» was orthogonal to the core states. The Hamiltonian, HPS

with these basis functions as its eigenfunctions and the valence electron
energies, Ej, as its eigenvalues differed from the all electron Hamiltonian:

H = -—'klvl

2 2 WPS (¢) + VH (r) + V,(C (g(f)) 6)

Hlos 7{} (r) = EJ‘ 'XJ' (r) (7)

VH(E) and ch(p(z)) are the inter—electronic Coulomb and exchange—

correlation potentials for the valence electrons only (Vy. is expressed here

in the local density approximation). Wps (r) is the total pseudopotential and
represents the residual interaction between the valence electron and the ion cores
after orthogonalization to the core states. The effective potential seen by the
valence electron is then

Vege [50)] = Wog () + Vo) + Ve G0) @
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which is the effective potential referred to in equation (4). W,g (r) is
often written as a sum of ionic pseudopotentials, which in generag are angular
momentum dependent, centred at sites R,,

(0 3
Wrs(f)= ;% Vs (_f'*_&() Pta(

where gia is the 1lth angular momentum projection operator with respect to the
centre at R,. Ionic pseudopotentials that are expressed as angular momentum
dependent are termed 'monlocal', whereas 'local' ionic pseudopotentials represent
an average l-independent form, Vpg (x):

lcal
W (01 = L Vo5 (- Ra)

P < (10)

(9

Self—-consistent calculations of the valence electronic structure are based on the
partitioning of the effective potential represented in equation (8). The
screening, represented by the last two terms in equation (8), is calculated self
consistently from the valence electron density p(r) in the system of interest,
whereas the ionic pseudopotential is fixed from the outset for a reference system
(often the perfect crystal or isolated ion). Various approaches have been
developed for finding 'transferable' ionic pseudopotentials, some of which are not
based on core orthogonalisation. Before we discuss some of these we mention the
empirical pseudopotential approach which is perhaps closest to the tight binding
Hamiltonian.

In the empirical pseudopotential approach /11/ the effective potential, equation
(8), is written as a sum of atomic pseudopotentials which are represented by just
a few terms in a Fourier expansion. The coefficients are adjusted to agree with
some experimentally determined features of the energy bands. Since one fits the
screened ionic pseudopotentials in the reference system the screening is fixed and
hence self-consistency is outside the scope of this approach. Only a few terms
are needed in the Fourier expansion of these pseudopotentials, to obtain good fits
to the interband transition energies. However, near a defect the potential cannot
be represented by just a few terms in a Fourier expansion, and all fixed-screening
theories are of doubtful validity where there is a dramatic change in the electron
density such as at surfaces and vacancies.

A large number of self-consistent surface and interface calculations have been
carried out with use of semi—empirical ionic pseudopotentials (12). The approach
is to assume a functional form for the ionic pseudopotential, either in real space
or wave-vector space, with a number of free parameters which are adjusted to
reproduce either the observed free ion term values or the perfect crystal band
structure, The fitting procedure can be performed with arbitrary forms for the
pseudopotential in the core and the usual choice is to make the potential ‘'soft’
(i.e. finite and smooth) in the core region. The reason for this choice is that
a relatively small plane wave basis set is needed for convergence of the charge
density with soft potentials. The valence electron charge density is calculated
from equation (3) with the assumption that the pseudo—wave functions (X' in
equation (7))are the real valence wave functions. But, although the valence
electron eigenvalue spectrum may be fitted accurately by a semi-empirical ionic
pseudopotential there is no guarantee that the valence electron wave—functions are
accurately reproduced for the reference system. In addition, in-attaining self-
consistency soft—core pseudopotentials can suffer from overpenetration of the core
region by the valence electron density when the ion is placed in an environment
different from its reference system. Hard—core pseudopotentials (strongly
repulsive at small r), on the other hand, ensure minimal core penetration
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following changes of environment and therefore have a greater transferability.
These factors have led to the recent development of 'norm—conserving' ionic
pseudopotentials /13/ which give the true valence electron wave functions outside
a core radius, r,, as well as the correct valence electron eigenvalues. Their
definition makes no reference to core electron states. The method of
construction permits a continuous range from soft to hard core potentials with a
trade—off between potential softness and pseudo-wave function accuracy away from
the core. These potentials are non—local and have optimum transferability.
They are fitted by a small set of analytic functions which facilitates their use
either with a plane wave basis set for k-space calculations or a local Gaussian
basis set for real space calculations.

LCAO Methods

The hallmark of LCAO methods is the expansion of the one-—electron wave function,
¢i» as a linear combination of atomic orbitals, Pa:

% Ciu ¢x (11)

where « is a composite index demoting orbital type (s,p,d etc.) and the atomic
site on which it is centred (for a review see ref. /14/). Each valence electron
is assumed to move in an effective potential (equation (8)) that is represented in
the one electron Hamiltonian (equation (2)) as a sum of atom—centred potentials.
As in the empirical pseudopotential method these atom—centred potentials can be
identified as screened ionic pseudopotentials. The Schr8dinger equation

reduces to a set of linear equations.

%Z (H“‘F ~ € Sq‘ﬁ)c‘-/g =0

(12)

which requires

defIH~£51

(13)

for non—trivial solutions. and S,g are the integrals

<¢a|H|¢B> and <¢a|¢B)' respectgvely. The Hamiltonian matrix

elements, H g, consist of one-, two— and three~ centre interactions, some of
which have the meaning of on-site energies, hopping integrals and crystal field
integrals /15/. 1In the case of a perfect crystal the wavevector k is a good
quantum number and the eigenvalue problem, equation (10), factorises to a set of
much smaller independent equations, one for each k. The eigenvalues of these
reduced equations give the band structure E; (5),_hhere n, the band index,
labels the different states at each k. ’

In so-called ab initio calculations the integrals H g and S g are

evaluated explicitly for an assumed set of atomic orbitals. Semi-empirical
methods, such as Extended Hiickel Theory, assume simple prescriptions for H,

and Syg. The majority of surface and interface LCAO calculatioms have used

the empirical tight binding (ETB) approach which has its origins in the work of
Slater and Koster /16/. This is an interpolation scheme whereby the matrix
elements Hy g are treated as parameters that are fitted to the energy bands
(obtained experimentally or from accurate calculations) at points of high symmetry
in the Brillouin zome /17/. The atomic basis functions @, are assumed to form

an orthonormal set so that the overlap matrix SaB is the identity matrix.



C4-352 JOURNAL DE PHYSIQUE

L8wdin /18/ supplied a justification for this assumption by showing that one can
always construct an orthonormal set of atomic basis functioms, &, from a
nonorthogonal set, ¢a, by the transformation

T =5 st g
& F O(F F

Slater and Koster /16/ showed that the &, have the same transformation

properties as the ¢a and one is therefore justified in assuming an orthogonal

set. However, it is clear from equation (l4) that the orthogonal set is more

spatially delocalised than the set Qa, which is familiar from the theory of

Wannier functions.

(14)

In its simplest and most widely used form only one and selected two—centred
interactions are retained in the tight binding approximation (e.g. /17/). Often
the two—centred interactions are confined to nearest neighbours only. Having
fitted the non—zero Hamiltonian matrix elements to selected points of an accurate
band structure one studies the electronic structure of an unrelaxed defect by
assuming the same matrix elements are transferable to the defect environment /19/.
Krieger and Laufer /20/ criticised this last assumption, particularly in its
application to a coordination defect such as a vacancy or a free surface, because
it is tantamount to ignoring the change in the effective potential in the vicinity
of the defect. The vindication of the use of a localised and approximately
transferable atomic~like basis set came with the work on "chemical
pseudopotentials® /21/. A defining equation for the localized atomic like
orbitals was developed /21/ in which the influence of the atomic environment
occurs only as a weak perturbation. This is achieved by using the valence
orbitals on an adjacent atom to cancel off most of that .atom's potential. These
orbitals represent the exact solutions of the one—electron problem, and although
they are not orthogonal they satisfy a secular equation, like equation (12), with
a diagonal S matrix. The drawback is that the H g which appear in the

secular matrix are not matrix elements of the true Hamiltonian, but those of a
non-Hermitian pseudo~Hamiltonian. However the pseudo-Hamiltonian becomes
Hermitian when the basis functions are geometrically equivalent orbitals on
different sites or sets of symmetry related orbitals.

For s—p bonded semiconducters, such as Si, Ge, GaAs etc., a "minimal basis set™ is
often used consisting of one s and three p atomic—like orbitals on each of the two
atoms in a primitive cell (e.g. /17/). Very good fits to the valence energy bands
have been obtained in this way but the lower cohduction bands are less
satisfactorily described. But it is crucial to have an accurate description of
both the valence and lower conduction bands because they both contribute to defect
states in the principal band gap. One way of improving the fit to the conduction
bands is to include d-states in the basis set, but this increases severely the
size of a defect computation. Louie /22/ has developed a successful method of
including the effect of the d-states in covalent systems without increasing the
size of the secular determinant. This method was used in ref. /23/ to study the
electronic structure of the unreconstructed 30° partial dislocation core in 8i,
and it is expected to be used increasingly in the future.

ETB calculations are, strictly speaking, not self-consistent as the method does
not make use of explicit basis orbitals, so that it cannot yield valence charge
densities. The squares of the coefficients, c¢;j,, of the orbitals are often
treated as effective atomic charges. This is a questionable practice because, if
one assumes orthogonal orbitals, equation (1l4) reveals that the coefficients
correspond to charge distributed over several atoms, whereas with nonorthogonal
orbitals the sum of the squares of the coefficients is not unity. Nevertheless
this definition of the local charge density can be used to mimic self-consistency
in simple models (e.g. /24/) where diagonal Hamiltomian matrix elements are
considered to be charge dependent.
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Finally we mention the semi-empirical self-consistent field LCAO methods of
quantum chemistry such as the neglect of differential overlap methods /25/. As
well as being self-comsistent (without invoking the local density approximation)
these methods have well~defined total energy algorithms /26/. However, I know of
no application of these methods to study interfaces.

3 ~ ELECTRONIC STRUCTURE CALCULATIONS FOR INTERFACES WITH ASSUMED ATOMIC
STRUCTURES

Given the atomic structure of an interface one can calculate the corresponding
electronic structure by a variety of methods. In all such calculations, however,
one must first decide how to deal with the loss of translational symmetry normal
to the interface, and possibly parallel to it as well. In general, periodic
interfaces (i.e. those which display two—~dimensional symmetry parallel to the
interface) are rare between crystals of different materials. Aperiodic interfaces
can be studied only by cluster methods, whereby a region of the interface is
modelled by a cluster of atoms with appropriate boundary conditions on the surface
of the cluster (e.g. /27/). Various methods of 'embedding' these clusters have
emerged in recent years /28/. Fortunately, the semiconductor heterojunctions of
technological significance are characterised by very small lattice mismatches
/29/. In those cases the mismatch is ignored and in 'ideal' interfaces atoms are
assumed to be in their ideal crystal positions right up to the interface.
Frequently, however, the mismatch at metal-semiconductor and metal silicide-—
semiconductor interfaces is not negligible. Louie and Cohen /30/ took the view
that the existence of a continuum of free—electron—like states is the essential
property of the metal at a metal-semiconductor interface. Accordingly, they
modelled the Al crystal in their study of Al1-Si interfaces by a jellium of
appropriate demsity, which eliminated the difficulty of lattice mismatch. The
main conclusions of this work have received support from calculations on the Al-Ge
(001) interface (31) in which the jellium approximation was not made. For the
rest of this section we will consider only periodic interfaces.

The loss of translational symmetry normal to the interface in a bicrystal
signifies that crystal band structure methods are inapplicable. There are
essentially two ways of coping with this. The first is to consider a
superlattice of interfaces in which alternate slabs of 5 to 12 layers of each
material, parallel to the interface, are stacked periodically on top of each
other. This restores translational symmetry normal to the interface and the
calculation is essentially a band structure calculation with a large unit cell.
Similarly, this geometry has been used to study free surfaces, chemisorption and
the early stages of interface formation (i.e. up to a few monolayers coverage) by
periodically inserting vacua between 'slabs' of crystal, including chemisorbed
atoms, overlayers etc. The second approach is to consider a true bicrystal
geometry, and treat the interface as a localised perturbation (i.e. localised in
the direction normal to the interface) of the bulk properties of the adjoining
crystals., The Green's function formalism is ideally suited to this problem and
has been developed successfully for surfaces and interfaces /32/. We shall
briefly discuss these two approaches in turn.

Both plane wave and LCAO basis sets have been used in superlattice calculations.
The self-consistent pseudopotential superlattice calculations, introduced by
Cohen, Schllter and coworkers /12/, employed semi—empirical ionic

pseudopotentials and a plane wave basis set for the valence wavefunctions. Even
with soft core pseudopotentials very large basis sets were needed to achieve
convergence of the charge density (typically 300-600 plane waves for cells
containing only 20-40 atoms). This results in enormous matrices to be
diagonalised and it is computing power which limits the application of this method
to cells containing greater numbers of atoms. The results of such a calculation
consist of the energies and wavefunctions of all superlattice states, including
any interface states, the total self-consistent charge density and charge
densities of individual states and atom—resolved local densities of states. Self-—
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consistent superlattice calculations have been carried out with LCAC bases in
refs. /33,34,35,36/. In general hard-core pseudopotentials require a
prohibitively large plane wave basis set for convergence and this is the reason
for using an atomic basis (e.g. /35/). Tight binding superlattice calculations
have also been carried out (e.g. /37,38,39/).

The very large matrices one has to diagonalise with the superlattice method are a
consequence of the fact that bulk states of the adjoining crystals are produced
together with any interface induced states. In the second approach /32/ this
shortcoming is avoided by first calculating the band structures of the adjoining
crystals, and then focussing on the interface induced changes. These changes are
readily found by a Green's function tight binding formalism once a matrix has
been written down which represents the procedure of cutting two infinite solids
and joining them to form a bicrystal (plus two semi-infinite free crystals which
can be discarded). The Green's function formalism distinguishes clearly between
interface induced and bulk states. It provides a powerful method of studying
bound interface states, resonances and antiresonances within the bands, and wave
vector—, atom— or orbital- resolved local densities of states. The sizes of the
matrices involved in this method are determined by the range of the interface
potential, which is usually much more localized than the wave functions of
interface states. For example, Pollmann and Pantelides /32/ used an empirical
tight binding Hamiltonian with a minimal basis set (sp3) and only nearest
neighbour interactions to study ideal Ge—-GaAs and Ge—ZnSe (100) interfaces. In
that case the matrices involved were only 64 x 64, although it should be stressed
that the calculations were not self-consistent. Although the matrices involved in
the Green's function method are relatively small a large number of Green's
functions for the perfect crystal (evaluated at different crystal wavevectors)
have to be stored. This is not a serious problem with the large storage
capacities of modern computers.

It is interesting that the results obtained for the Ge—GaAs (110) interface by the
self-consistent pseudo-potential method /40/ and the empirical tight binding
Green's function method /41/ are in qualitative agreement. The results differ
slightly in the number and wave-vector dependences of the low-lying interface
states. It is not clear whether these differences are due to self-consistence
effects or. the relatively poor representation of the conduction bands in the
empirical tight binding Hamiltonian.

Pollmann /42/ has shown how overlayers, chemisorbed species, superlattices and
defects at surfaces and interfaces can be treated by the Green's function

formalism.

4 - TOTAL ENERGY CALCULATIONS

Ideally we would be able to calculate the minimum free energy structure of an
interface, taking into account self-consistently its electronic structure.
Considerable progress has been made towards this goal in recent years,

principally because of the use of demsity functional theory /1/ and greater
computing power. For example, it is now possible to predict accurately not only
the correct lattice parameter and bulk modulus of elemental semiconductors /43/,
compound semiconductors /44/ and metals /45/ but also crystal stability and
pressure induced phase transformations /43/. These calculations require only the
atomic numbers of constituent elements and a subset of crystal structures as input
information. Norm—-conserving pseudopotentials, combined with the local density
functional approximation are employed in the total Hamiltonian and the problem is
solved self-consistently either in momentum space /46/ or real space /47/. Having
achieved such an accurate description of the ideal crystal its application to
interfaces is currently limited by computing power. The principal problem is
convergence of the basis set. In order to predict, for example, the various
reconstructed configurations of the Si (111) surface the total energy calculation
would require an accuracy of better than 0.0leV/surface atom /48/. At present



C4-355

this could only be achieved with a prohibitively large basis set of either plane
waves or local Gaussian orbitals, Nevertheless, a number of total energy
calculations have been performed, with limited relaxations included. Many of
these calculations have probed the geometry and local bonding of chemisorbed atoms
on semiconductor /36,49/ and metal /33/ surfaces, with photoelectron spectroscopy
experiments providing a valuable check.

A more tractable (but less accurate) approach to minimizing the total internal
energy of large systems in semiconductors has been developed by Chadi /50,51,52/,
in an ETB framework. The total energy is written as

ET:: 2:/; E"(é) + Z (u(£L +u‘z€;) + uaNb
oc,:;’t:fieal bo:\ds (15)

The first term is the band structure energy and is the sum of energies of all
occupied one-electron states. The second and third terms denote the correction
due to overcounting of the electron—electron interactions in the band structure
energy and it also includes the ion—ion Coulomb interactions. The summation in
the second term is over all bonds and g¢; denotes the fractional change in bond
length from the reference value in the perfect cyrstal. The empirical
constants U; and U, are obtained from the condition that the total energy of the
perfect crystal is a minimum at the experimentally observed lattice parameter and
by fitting the bulk modulus. The tight binding interaction parameters are
assumed to have an inverse square dependence on bond length /53/. Np in the

last term is the number of bonds in the system and U, is determined from the
cohesive energy of the perfect crystal. The last term in equation (15) is vital
in those cases where bonds are broken or formed; in its absence the total energy
would decrease monotonically with increasing atomic coordination. The energy of a
defect in a system containing N atoms is given by AEp = Ep (N) - NE,, where

E, is the total energy per atom in the perfect cyrstal. As in other empirical
approaches, there is the question of transferability of the parameters U,, U,,

U, and the tight binding interaction parameters, from the perfect crystal, where
they are fitted, to the defect environment. This can be tested only by comparison
with experiment and indeed equation (15) has been surprisingly successful at
predicting some reconstructed surface geometries /50/.

Bond distortions and reconstructions can give rise to charge tramsfer which
introduces Coulomb interactions that are not included in equation (15). Although
these interactions would be screened by valence electrons their effect is to
reduce the degree of charge transfer which in turn affects the resultant atomic
configuration. In principle, these effects could be taken account of by making
the intra—atomic tight binding matrix elements charge dependent, as in rxef /24/.

An expression for the force on an atom is obtained by differentiating equation
(13) with respect to an atomic coordinate. Chadi /51/ has shown how the Hellmann
Feynman theorem can be used to obtain a simple expression for the derivative of
the band structure energy. Using this method he calculated a relaxed structure
of the £=9 (221), 38.94°/[1T0] symmetrical tilt boundary in Si /52/.

Chadi's formulation for s—p covalent solids has some similarities with that used
by Masuda and Sato /54/ to calculate dislocation core structures in b.c.c.
transition metals. These authors also express the total energy as a sum of a band
structure term (arising from the d band only) and a short range repulsive
interaction. The band structure energy contribution is formulated in real space
using the local density of states on each atom, and integrating the one—-electron
energies to the Fermi level. The local density of states is approximated by a
Gaussian fitted to the second moment /55/ and the ddo, ddm and dd§ tight binding
interactions are assumed to vary exponentially with the interatomic distance.

The assumption of a Gaussian local demsity of states obliterates all the structure
which this important function contains. The assumption could be avoided by using
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the ‘recursion method' /56/ to calculate the local density of states /57/.
Alternatively, one could use the Hellmann-Feynman forces /51/ to give an exact
expression in the framework of the d-band tight binding Hamiltonian, without
making any assumption about the local density of states. We also note that
Harrison /53/ has presented arguments, based on muffin tin orbital theory, for an
inverse fifth power dependence of the d—-d tight binding interactions on
interatomic distance.

Finally we mention the use of valence force fields (e.g. /58/) to study grain
boundary structures in covalently bonded solids /59,60/. 1In this approach the
total energy is expressed as a sum of strain energy terms (bond stretching,
bending and possibly torsion) and bond breaking energies with the perfect crystal
as the reference configuration. Valence force fields have enjoyed considerable
success in describing phonon dispersion relations for the perfect crystal /58/.
However, their application to situations involving large atomic displacements is
limited by the fact that they do not take into account electronic
rehybridization. For example, Harrison /61/ has shown that the 2x1
reconstruction of the Si (111) surface is due to a balance between a net energy
gain from rehybridization of the dangling hybrids, accompanying the buckling of
the surface, and an energy penalty resulting from the distortion. Nevertheless,
the valence force field approach is expected to be reliable when tetrahedral
bonding is preserved, as in ref. /59/.

5 — CONCLUSIONS

Norm-conserving pseudopotential combined with the local density functional
formalism are currently the most accurate method of describing the ground state
electronic structure of surfaces and interfaces. In principle, total energy
calculations for a diverse range of heterophase and homophase interfaces can be
performed with this formalism, but in many cases the size of the calculation is
prohibitively large for the current generation of computers. However, it has
been argued /62/ that underestimation of the band gap by ~50%, by descriptions
using the local density functional approximation, implies similar errors for the
predicted positions of defect energy levels in the fundamental gap. In silicon,
for example, this would imply a maximum error of #0.3eV for the defect energy
levels predicted by the most accurate calculations. Semi-empirical LCAO methods,
such as the empirical tight binding method, can provide a good deal of qualitative
insight, with a relatively small calculation. Recent improvements on the usual
tight binding scheme were mentioned in section 2 and an efficient method of
calculating forces on atoms in the tight binding scheme was referred to in section
4,
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DISCUSSION

0,K., Andersen; A comment: Your statement that the most accurate way of performing
density functional calculations is to use norm-conserving pseudopotentials is not
true. The use of pseudopotentials is an additional, and in my opinion often
unnecceeessary approximation. There exist many all electron calculations where
this approximation is not made. Besides, the vast majority of density functional
calculations for transition-, rare earth~ or actinide systems have not made use of
the pseudopotential approximation but were performed with all electron methods
such as the KKR-, IMTO-, ASW-, LAPW-, or LCAO.

P. Neumann: How much would the complexity of density functional methods be
increased by treating finite temperature situations (compared to classical
molecular dynamic calculations)?

A.P. Sutton: If the calculations were carried out self-consistently it would be
far too large (at the present time). However, the force on an atom can be quickly
calculated by the empirical tight-binding total energy scheme (Chadi's scheme) and
Newton's equations of motion could be solved in a molecular dynamics simulation
using this force.

D.P, DiVincenzo: Does the 1local stress tensor remain a physically meaningful
quantity in a theory containing non-pairwise interactions (for example, the LCAO
technique)?
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A.P., Sutton: I believe it does. There is a quantum mechanical stress theorenm,

which is similar to the Hellmann-Feynman theorem, due to Nielsen and Martin.

V. Vitek: The "asymmetry" in the total energy calculations of the band structure
calculations is treated very carefully while the repulsive part is treated using a
simple pair potential is unsatisfactory. I feel that, at least in metals,
structural aspects of defects are often controlled more by the pair potential part
than by the band structure part. Is the situation different in covalently bonded
solids?

A.P. Sutton: I agree with you that a lot more physics seems to go into the band
structure energy than the remaining terms in the empirical tight binding total
energy expression. Certainly in covalent solids the change in the band structure
energy 1s very important because of rehybridization. In transition metals the
short range repulsive potential may well be equally important as the band
structure energy, and it should depend strongly on interatomic separation at less
than first neighbour separation.

J,R, Smith: Comment to question by Vitek. In the case of transition metals, our
self-consistent all-electron calculations of surface energies indicate that the
sum of the eigenvalues is only a fraction of the total energy.

S.G. lLouje; Commet to question by Vitek: The sum of eigenvalues term is an
important element in Chadi's empirical tight-binding total energy scheme which
goes beyond pairwise interactions. This term allows for the rehybridization of the
bonds at different geometries provided that they are not far from the bulk
environment.

K,L, Merkle: To what extent can the density functional approach be applied to
ionic solids and specifically can different charge states at the boundary be
treated?

A.P. Sutton: There is no difficulty at all in treating ionic solids when the local
density approach is combined with (say) norm-conserving pseudopotentials. Provided
the calculation is carried out self-consistently, different charge states can be
treated accurately.



