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METHODS OF CALCULATING THE ELECTRONIC AND ATOMIC STRUCTURES OF 

INTERFACES 

A.P. Sutton 

Department of Metallurgy and Science of Materials, Oxford University, 
Parks Road, Oxford 0X1 SPU, U.K. 

Résumé - Des méthodes pour calculer les structures électroniques et 
atomiques des parois, sont décrites. On donne une introduction aux 
pseudopotentiels et des méthodes LCAO. Des méthodes pour calculer la 
structure électronique d'un paroi d'une certaine structure atomique, sont 
considérées. On y discute la possibilité des calculations d'énergie 
totale, où les structures atomiques et électroniques sont calculées 
simultanément. 

Abstract - Methods of calculating the electronic and atomic structures of 
interfaces are described. An introduction to pseudopotentials and LCAO 
methods is given. Methods of calculating the electronic structure of an 
interface with a given atomic structure are considered. The feasibility of 
total energy calculations, in which the atomic and electronic structures 
are calculated simultaneously, is discussed. 

1 - INTRODUCTION 

It is well known that the atomic and electronic structures of interfaces are 
intimately coupled. Coulomb interactions between ion cores in a condensed phase 
are moderated by the valence electron distribution which responds virtually 
instantaneously when ions are displaced or a different ionic species is 
introduced. In a metal each ion carries with it a neutralizing cloud of valence 
electron charge forming a neutral 'pseudo-atom'. Pseudo-atoms can be treated as 
single entities in those metallic systems where linear screening is valid, and 
their interaction is then described by an effective pair potential. But in other 
materials the treatment of the valence electron distribution and its response has 
to be more elaborate. This paper is an introduction to the theoretical methods 
used to study the electronic and atomic structures of interfaces involving such 
materials. Much of the quantitative progress in this area is founded on 
pseudopotentials and, in section 2, we give a brief account of the principles 
underlying them. A great deal of physical insight into the electronic structure 
of interfaces (and many other defects) has been provided relatively easily by the 
empirical tight binding method and other LCAO (linear combination of atomic 
orbitals) techniques. This method is described and appraised in the second part 
of section 2. With this background, we proceed, in section 3, to describe methods 
that have been used to calculate the electronic structure of interfaces of known 
(or presumed!) atomic structure. Section 4 contains a very brief account of the 
methods that have been used to calculate the total (internal) energy of 
interfaces. These are the methods which lead (at least in principle) to the 
minimum energy atomic configuration, with the electronic structure of the 
interface taken fully into account. In section 4 emphasis has been placed on 
semi^empirical methods because of their greater ability to deal with large numbers 
of atoms (e.g. for grain boundary calculations). 

2 - FORMULATIONS OF THE ELECTRONIC STRUCTURE PROBLEM 

The Hamiltonian for a system of interacting electrons and atomic nuclei consists 
of a sum of three terms. The first, Hj,, is the sum of nuclear kinetic energy 
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opera to r s  and Coulomb i n t e r a c t i o n s .  The second, He, is  the  sum of e l e c t r o n i c  
k i n e t i c  energy opera to r s  and Coulomb i n t e r a c t i o n s ,  and Gn is the  sum of 
e lec t ron-nuc lea r  Coulomb i n t e r a c t i o n s .  Since e l e c t r o n i c  motion is  so  much f a s t e r  
than nuclear  motion, e l e c t r o n s  a d j u s t  t o  a ground s t a t e  configurat ion f o r  any 
p a r t i c u l a r  s e t  of nuclear  pos i t ions .  This enables us t o  separa te  t h e  e l e c t r o n i c  
and nuclear  motions, and t h e  Hamiltonian f o r  the  e l e c t r o n s  becomes He + Hen 
(Born-Oppenheimer approximation). A f u r t h e r  s i m p l i f i c a t i o n  follows from 
recognizing t h a t  valence e l e c t r o n s  play t h e  dominant r o l e  i n  chemical bonding. 
Core e l e c t r o n s  a r e  assumed t o  be unaffected by surrounding atoms and they a r e  
t h e r e f o r e  ass igned t o  t h e i r  i s o l a t e d  atomic s t a t e s .  Accordingly, t h e  problem i s  
reduced t o  so lv ing  f o r  the  valence e l e c t r o n i c  s t a t e s  i n  t h e  f i e l d  of o the r  valence 
e l e c t r o n s  and the  ion  cores.  

A s i m p l i f i c a t i o n  of t h e  many e l e c t r o n  problem has been achieved by t h e  d e n s i t y  
f u n c t i o n a l  formalism, 111. I n  t h i s  formalism it is is shown t h a t  t h e  ground s t a t e  
t o t a l  energy of t h e  f u l l  many e l e c t r o n  problem can be expressed a s  a unique 
f u n c t i o n a l  of t h e  e l e c t r o n  dens i ty ,  p ( r ) .  The u t i l i t y  of t h i s  formal r e s u l t  is  
l i m i t e d  by the  f a c t  t h a t  we cannot give an exact  func t iona l  f o r  the  exchange and 
c o r r e l a t i o n  energy of an i n t e r a c t i n g  e l e c t r o n  gas, Ex, [p(f)]. Indeed, 
f ind ing  ~ , ~ [ p ( f ? ]  i s  equivalent  t o  solving t h e  f u l l  many e l e c t r o n  problem. 
Nevertheless,  i f  p(r)  i s  s u f f i c i e n t l y  slowly varying we can invoke t h e  l o c a l  
dens i ty  func t iona l  approximation and w r i t e  

where E~~ (p(f) )  is  t h e  exchange and c o r r e l a t i o n  energy func t ion  per e l e c t r o n  
of a uniform e l e c t r o n  gas of dens i ty  p(r).  Kohn and Sham /1/ showed t h a t  equat ion 
(1) reduces t h e  many-electron SchrGdinger equat ion t o  a one-electron equation: 

where 

V. . ro(r) l  is an e f f e c t i v e  one-electron p o t e n t i a l :  

pion (L) is the  i o n i c  charge densi ty .  VXc ( p ( r )  ) is t h e  exchange- 
c o r r e l a t i o n  p o t e n t i a l ,  which is  r e l a t e d  t o  %, (p(L))  by 

Equations (2-4) a r e  solved i t e r a t i v e l y  u n t i l  the  e l e c t r o n  dens i ty  d i s t r i b u t i o n ,  
given by equat ions  ( 2 )  and (31, is  cons i s t en t  wi th  the  one-electron p o t e n t i a l ,  
given by equat ion (4).  Such c a l c u l a t i o n s  a r e  descr ibed a s  se l f -cons i s t en t .  One 
r o l e  of Vxc is  t o  e l imina te  the  s e l f - i n t e r a c t i o n  of the  e l e c t r o n s  contained i n  
t h e  f i r s t  term of equat ion (4) ,  /2/. A number'of forms f o r  Vxc (p)  have been 
t e s t e d ,  /3 / .  

As w i l l  be discussed i n  s e c t i o n  4, the  l o c a l  dens i ty  func t iona l  approximation 
(equat ion (1) ) has been very success fu l  a t  desc r ib ing  ground s t a t e  p roper t i e s  of 
var ious  s o l i d s ,  such a s  t h e  t o t a l  i n t e r n a l  energy. However, q u i t e  severe  
d i sc repanc ies  with  experiments have been found f o r  exc i t ed  s t a t e  proper t ies .  For 
example, band gaps a r e  normally underestimated by -50%. This may i n d i c a t e  t h a t  
t h e r e  a r e  s i g n i f i c a n t  many body e f f e c t s  which a r e  not t r e a t e d  adequately by t h e  
l o c a l  dens i ty  approximation. 



In general the one electron energies, EL, obtained self-consistently from 
equations (2-4) are meaningful only if they are occupied states because only then 
do then contribute to the electron density and hence to the effective one-electron 
potential used to calculate them self-consistenly. When an electron is promoted 
to a higher energy state the excitation energy is determined not only by the 
change in the single particle state but also by the reaction of the system as a 
whole to the excitation. The latter component is not significant in the case of a 
spatially extended state, but it can become very important for localised states, 
such as those bound to defects. 
In the all-electron approach the eigenvalues and wave functions of all the 
electrons, including the ion core electrons, are calculated. Some of the methods 
with this approach use muffin tin potentials such as the KKR /4/, APW /5/ and 
LMTO /6/ techniques. A particularly efficient all-electron method for obtaining 
one-electron eigenvalues, called the SCF-Xa-SW method, has been developed by 
Johnson and co-workers /7/ and has appeared prominently in the literature on 
temper embrittlement in recent years /8/. This method is very similar to muffin- 
tin approaches since the potential is spherically arveraged within each atomic 
sphere and spatially averaged between them. The spherical and spatial averaging 
may be expected to be a good approximation for the potential in close-packed 
solids, such as pure metals. However, to study the formation of directional 
bonds and charge densities it is desirable to remove this constraint on the 
potential. In addition, total energies calculated by the SCF-Xa method are very 
inaccurate because of the use of the muffin-tin approximation. This has led to 
some spectacular failures of the method to calculate the shapes of simple 
molecules such as H20 and NH3.  Recent LMTO calculations /6/ drop the muffin tin 
approximation and give very good results for these two molecules. 

Pseudopotential formulations of the Hamiltonian do not suffer from shape 
constraints on the potential, and they underpin much of the theoretical work on 
interfaces. 

Pseudopotential Formulations 

Pseudopotentials were introduced to replace the all electron eigenvalue problem 
(i.e. core and valence wavefunctions treated on an equal footing) by a simpler 
eigenvalue problem which applied to the valence subspace only. In the Philips- 
Kleinman prescription /9/ this was achieved with use of the orthogonalized plane 
wave (OPW) method of bandstructure /lo/, in which plane waves were combined with 
Bloch sums of core electron wave functions in such a way that each basis function, 
x., was orthogonal to the core states. The Hamiltonian, Hps 
wjth these basis functions as its eigenfunctions and the valence electron 
energies, E., as its eigenvalues differed from the all electron Hamiltonian: J 

vH(fl) and Vxc(p(fl)) are the inter-electronic Coulomb and exchange- 
correlation potentials for the valence electrons only (V,, is expressed here 
in the local density approximation). Wps (fl) is the total pseudopotential and 
represents the residual interaction between the valence electron and the ion cores 
after orthogonalization to the core states. The effective potential seen by the 
valence electron is then 
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which is  t h e  e f f e c t i v e  p o t e n t i a l  r e f e r r e d  t o  i n  equat ion ( 4 ) .  W (r) i s  
o f t e n  w r i t t e n  a s  a sum of i o n i c  pseudopotent ia ls ,  which i n  generay a r e  angular  
momentum dependent, centred a t  s i t e s  &, 

A 
where P1 , i s  t h e  l t h  angular  momentum pro jec t ion  operator  wi th  respec t  t o  t h e  
cen t re  a t  I&. I o n i c  pseudopotent ia ls  t h a t  are expressed a s  angular  momentum 
dependent a r e  termed 'nonlocal ' ,  whereas ' l o c a l '  i o n i c  pseudopotent ia ls  r epresen t  
an average 1-independent form, Vps (f): 

Self-consis tent  c a l c u l a t i o n s  of t h e  valence e l e c t r o n i c  s t r u c t u r e  a r e  based on t h e  
p a r t i t i o n i n g  of t h e  e f f e c t i v e  p o t e n t i a l  represented i n  equat ion (8). The 
screening,  represented by t h e  l a s t  two terms i n  equat ion (8 ) ,  is ca lcu la ted  s e l f  
c o n s i s t e n t l y  from the  valence e l e c t r o n  dens i ty  p(r )  i n  t h e  system of i n t e r e s t ,  
whereas t h e  i o n i c  pseudopotent ia l  is  f ixed  from the  o u t s e t  f o r  a r e fe rence  system 
(o f ten  the  pe r fec t  c r y s t a l  o r  i s o l a t e d  ion) .  Various approaches have been 
developed f o r  f ind ing  ' t r ans fe rab le '  i o n i c  pseudopotent ia ls ,  some of which a r e  no t  
based on core  or thogonal isat ion.  Before we d i scuss  some of these  we mention the  
empir ical  pseudopotent ia l  approach which is perhaps c l o s e s t  t o  the  t i g h t  binding 
Hamiltonian. 

In  the  empi r i ca l  pseudopotent ia l  approach /11/ the  e f f e c t i v e  p o t e n t i a l ,  equat ion 
(8) ,  is w r i t t e n  a s  a sum of atomic pseudopotent ia ls  which a r e  represented by j u s t  
a few terms i n  a Fourier  expansion. The c o e f f i c i e n t s  a r e  adjusted t o  agree wi th  
some exper imental ly  determined f e a t u r e s  of the  energy bands. Since one f i t s  the  
screened i o n i c  pseudopotent ia ls  i n  the  re fe rence  system the  screening is  f ixed  and 
hence sel f -consis tency is  ou t s ide  the  scope of t h i s  approach. Only a few terms 
a r e  needed i n  t h e  Fourier  expansion of these  pseudopotent ia ls ,  t o  ob ta in  good f i t s  
t o  t h e  interband t r a n s i t i o n  energies .  However, near a de fec t  the  p o t e n t i a l  cannot 
be represented by j u s t  a few terms i n  a Fourier  expansion, and a l l  fixed-screening 
t h e o r i e s  a r e  of doubtful  v a l i d i t y  where t h e r e  i s  a dramat ic  change i n  t h e  e l e c t r o n  
dens i ty  such as a t  su r faces  and vacancies.  

A l a r g e  number of se l f -cons i s t en t  su r face  and i n t e r f a c e  ca lcu la t ions  have been 
c a r r i e d  ou t  wi th  use  of semi-empirical i o n i c  pseudopotent ia ls  (12). The approach 
is t o  assume a f u n c t i o n a l  form f o r  the  i o n i c  pseudopotent ia l ,  e i t h e r  i n  r e a l  space 
o r  wave-vector space, wi th  a number of f r e e  parameters which a r e  ad jus ted  t o  
reproduce e i t h e r  the  observed f r e e  ion  term values  o r  the  pe r fec t  c r y s t a l  band 
s t r u c t u r e .  The f i t t i n g  procedure can be performed with  a r b i t r a r y  forms f o r  t h e  
pseudopotent ia l  i n  t h e  core  and t h e  usual  choice  is t o  make t h e  p o t e n t i a l  ' s o f t '  
( i .e.  f i n i t e  and smooth) i n  t h e  core  region. The reason f o r  t h i s  choice is  t h a t  
a r e l a t i v e l y  smal l  p lane wave bas i s  s e t  is needed f o r  convergence of t h e  charge 
dens i ty  with  s o f t  po ten t i a l s .  The valence e l e c t r o n  charge dens i ty  is ca lcu la ted  
from equat ion (3) with  the  assumption t h a t  the  pseudo-wave funct ions  (Xj i n  
equat ion ( 7 ) ) a r e  the  r e a l  valence wave funct ions .  But, although the  valence 
e l e c t r o n  eigenvalue spectrum may be f i t t e d  accura te ly  by a semi-empirical i o n i c  
pseudopotent ia l  t h e r e  is  no guarantee  t h a t  the  valence e l e c f r o n  wave-functions a r e  
accura te ly  reproduced f o r  t h e  reference system. I n  add i t ion ,  i n  a t t a i n i n g  s e l f -  
consis tency soft-core pseudopotent ia ls  can s u f f e r  from overpenetra t ion of the  core  
region by the  valence e l e c t r o n  d e n s i t y  when t h e  ion  is  placed i n  an environment 
d i f f e r e n t  from its reference system. Hard-core pseudopotent ia ls  ( s t rong ly  
repu l s ive  a t  small L), on the  o the r  hand, ensure minimal core  pene t ra t ion  



fol lowing changes of environment and the re fo re  have a g r e a t e r  t r a n s f e r a b i l i t y .  
These f a c t o r s  have l e d  t o  the  recent  development of 'norm-conserving' i o n i c  
pseudopotent ia ls  /13/ which give the  t r u e  valence e l e c t r o n  wave funct ions  outs ide 
a core rad ius ,  re, a s  we l l  a s  the  c o r r e c t  valence e l e c t r o n  eigenvalues. Their  
d e f i n i t i o n  makes no re fe rence  t o  core e l e c t r o n  s t a t e s .  The method of 
cons t ruc t ion  permits a continuous range from s o f t  t o  hard core  p o t e n t i a l s  wi th  a 
trade-off between p o t e n t i a l  so f tness  and pseudo-wave func t ion  accuracy away from 
t h e  core. These p o t e n t i a l s  a r e  non-local and have optimum t r a n s f e r a b i l i t y .  
They a r e  f i t t e d  by a smal l  s e t  of a n a l y t i c  func t ions  which f a c i l i t a t e s  t h e i r  use 
e i t h e r  wi th  a plane wave bas i s  s e t  f o r  &-space c a l c u l a t i o n s  o r  a l o c a l  Gaussian 
bas i s  s e t  f o r  r e a l  space ca lcu la t ions .  

LCAO Methods 

The hallmark of LCAO methods is the  expansion of the  one-electron wave func t ion ,  
a s  a l i n e a r  combination of atomic o r b i t a l s ,  @a: 

where a is a composite index denoting o r b i t a l  type (s,p,d etc.)  and t h e  atomic 
s i t e  on which i t  is centred ( f o r  a review see re f .  /14/).  Each valence e l e c t r o n  
is  assumed t o  move i n  an e f f e c t i v e  p o t e n t i a l  (equation ( 8 ) )  t h a t  is represented i n  
t h e  one e l e c t r o n  Hamiltonian (equat ion ( 2 ) )  as a sum of atom-centred p o t e n t i a l s .  
As i n  the  empi r i ca l  pseudopotent ia l  method these  atom-centred p o t e n t i a l s  can be 

i d e n t i f i e d  a s  screened i o n i c  pseudopotentials.  The Schr8dinger equation 
reduces t o  a set of l i n e a r  equations. 

which requ i res  

f o r  non- t r iv ia l  so lu t ions .  and S a r e  the  i n t e g r a l s  
(0.1~ 1%) and <@a)@p)  respe:ffvely. '@The Hamiltonian matr ix  
elements,  Ha , c o n s i s t  of one-, two- and three-  cen t re  i n t e r a c t i o n s ,  some of 
which have t l e  meaning of on-site energies ,  hopping i n t e g r a l s  and c r y s t a l  f i e l d  
i n t e g r a l s  /15/. I n  t h e  case  of a pe r fec t  c r y s t a l  t h e  wavevector & is a good 
quantum number and t h e  eigenvalue problem, equat ion ( lo ) ,  f a c t o r i s e s  t o  a set of 
much smal ler  independent equat ions ,  one f o r  each &. The eigenvalues  of these  
reduced equat ions  give the  band s t r u c t u r e  En (k), where n, the  band index, 
l a b e l s  the  d i f f e r e n t  s t a t e s  a t  each &. 

I n  so-called a b  i n i t i o  c a l c u l a t i o n s  the  i n t e g r a l s  Hap and Sap a r e  
evaluated e x p l i c i t l y  f o r  an assumed s e t  of atomic o r b i t a l s .  Semi-empirical 
methods, such a s  Extended Hiickel Theory, assume simple p resc r ip t ions  f o r  H a 8 
and Sap. The major i ty  of su r face  and i n t e r f a c e  LCAO c a l c u l a t i o n s  have used 
the  empir ical  t i g h t  binding (ETB) approach which has i t s  o r i g i n s  i n  the  work of 
S l a t e r  and Koster /16/. This is  an i n t e r p o l a t i o n  scheme whereby the  matr ix  
elements Hap a r e  t r e a t e d  a s  parameters t h a t  a r e  f i t t e d  t o  the  energy bands 
(obtained exper imental ly  o r  from accura te  c a l c u l a t i o n s )  a t  po in t s  of high symmetry 
i n  the  B r i l l o u i n  zone /17/. The atomic bas i s  func t ions  0, a r e  assumed t o  form 
an orthonormal s e t  s o  t h a t  the  over lap matr ix  Sag is  the  i d e n t i t y  matrix. 
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Ldwdin / l a /  suppl ied a j u s t i f i c a t i o n  f o r  t h i s  assumption by showing t h a t  one can 
always cons t ruc t  an orthonormal s e t  of atomic bas i s  func t ions ,  Qa from a 
nonorthogonal s e t ,  ga, by the  t ransformat ion 

S l a t e r  and Koster /16/  showed t h a t  the  Qa have the  same transformation 
p roper t i e s  a s  t h e  ga and one i s  the re fo re  j u s t i f i e d  i n  assuming an orthogonal 
s e t .  However, i t  is  c l e a r  from equat ion (14)  t h a t  the  orthogonal s e t  is more 
s p a t i a l l y  de loca l i sed  than the  s e t  Oa,  which is f a m i l i a r  from the theory of 
Wannier funct ions .  

In  i t s  s implest  and most widely used form only one and s e l e c t e d  two-centred 
i n t e r a c t i o n s  a r e  re ta ined  i n  t h e  t i g h t  binding approximation (e.g. /17/). Often 
the  two-centred i n t e r a c t i o n s  a r e  confined t o  nea res t  neighbours only. Having 
f i t t e d  the  non-zero Hamiltonian matr ix  elements t o  s e l e c t e d  po in t s  of an accura te  
band s t r u c t u r e  one s t u d i e s  the  e l e c t r o n i c  s t r u c t u r e  of an unrelaxed de fec t  by 
assuming t h e  same matr ix  elements a r e  t r a n s f e r a b l e  t o  t h e  de fec t  environment /19 / .  
Krieger and Laufer /20/  c r i t i c i s e d  t h i s  l a s t  assumption, p a r t i c u l a r l y  i n  i t s  
a p p l i c a t i o n  t o  a coordinat ion de fec t  such a s  a vacancy o r  a f r e e  su r face ,  because 
i t  is  tantamount t o  ignoring the  change i n  the  e f f e c t i v e  p o t e n t i a l  i n  the  v i c i n i t y  
of the  defect .  The v ind ica t ion  of the  use of a l o c a l i s e d  and approximately 
t r a n s f e r a b l e  atomic-like bas i s  s e t  came with  the  work on "chemical 
pseudopotent ia ls"  /21 / .  A def in ing  equat ion f o r  the  l o c a l i z e d  atomic l i k e  
o r b i t a l s  was developed /21/  i n  which the  in f luence  of the  atomic environment 
occurs only a s  a weak per turbat ion.  This is achieved by using t h e  valence 
o r b i t a l s  on an adjacent  atom t o  cancel  off most of t h a t  atom's p o t e n t i a l .  These 
o r b i t a l s  r epresen t  the  exact s o l u t i o n s  of the  one-electron problem, and although 
they a r e  not  orthogonal they s a t i s f y  a s e c u l a r  equation, l i k e  equat ion ( 1 2 ) ,  with 
a diagonal S matrix. The drawback is  t h a t  t h e  Hap which appear i n  the  
secu la r  matr ix  a r e  not matr ix  elements of t h e  t r u e  Hamiltonian, but those of a 
non-Hermitian pseudo-Hamiltonian. However t h e  pseudo-Hamiltonian becomes 
Hermitian when t h e  b a s i s  funct ions  a r e  geometr ical ly  equivalent  o r b i t a l s  on 
d i f f e r e n t  s i t e s  o r  s e t s  of symmetry r e l a t e d  o r b i t a l s .  

For s -p  bonded semiconductors, such a s  S i ,  Ge, GaAs e tc . ,  a "minimal bas i s  s e t "  i s  
o f t e n  used cons i s t ing  of one s and th ree  p atomic-like o r b i t a l s  on each of the  two 
atoms i n  a p r imi t ive  c e l l  (e.g. / 1 7 / ) .  Very good f i t s  t o  the  valence energy bands 
have been obtained i n  t h i s  way but the  lower cohduction bands a r e  l e s s  
s a t i s f a c t o r i l y  descr ibed.  But it is c r u c i a l  t o  have an accura te  desc r ip t ion  of 
both the  valence and lower conduction bands because they both con t r ibu te  t o  de fec t  
s t a t e s  i n  the  p r i n c i p a l  band gap. One way of improving the  f i t  t o  the  conduction 
bands is  t o  include d-s ta tes  i n  t h e  bas i s  s e t ,  but t h i s  inc reases  severe ly  the  
s i z e  of a de fec t  computation. Louie /22/  has developed a success fu l  method of 
including t h e  e f f e c t  of the  d-s ta tes  i n  covalent  systems without inc reas ing  the  
s i z e  of t h e  secu la r  determinant.  This method was used i n  r e f .  /23/  t o  study t h e  
e l e c t r o n i c  s t r u c t u r e  of the  unreconstructed 30" p a r t i a l  d i s l o c a t i o n  core  i n  S i ,  
and i t  is expected t o  be used inc reas ing ly  i n  t h e  fu tu re .  

ETB c a l c u l a t i o n s  a r e ,  s t r i c t l y  speaking, not se l f -cons i s t en t  a s  t h e  method does 
not make use of e x p l i c i t  bas i s  o r b i t a l s ,  so  t h a t  i t  cannot y i e l d  valence charge 
d e n s i t i e s .  The squares  of the  c o e f f i c i e n t s ,  c i a ,  of t h e  o f b i t a l s  a r e  of t e n  
t r e a t e d  a s  e f f e c t i v e  atomic charges. This is a quest ionable  p r a c t i c e  because, i f  
one assumes orthogonal o r b i t a l s ,  equat ion ( 1 4 )  revea l s  t h a t  t h e  c o e f f i c i e n t s  
correspond t o  charge d i s t r i b u t e d  over s e v e r a l  atoms, whereas with nonorthogonal 
o r b i t a l s  t h e  sum of t h e  squares of the  c o e f f i c i e n t s  i s  not uni ty .  Nevertheless 
t h i s  d e f i n i t i o n  of the  l o c a l  charge dens i ty  can be used t o  mimic sel f -consis tency 
i n  simple models (e.g. / 2 4 / )  where diagonal  Hamiltonian matr ix  elements a r e  
considered t o  be charge dependent. 



Fina l ly  we mention t h e  semi-empirical se l f -cons i s t en t  f i e l d  LCAO methods of 
quantum chemistry such a s  the  neglect  of d i f f e r e n t i a l  overlap methods /25/. As 
we l l  a s  being se l f -cons i s t en t  (without invoking t h e  l o c a l  dens i ty  approximation) 
these methods have well-defined t o t a l  energy algorithms 1261. However, I know of 
no app l i ca t ion  of these  methods t o  s tudy i n t e r f a c e s .  

3 - ELECTRONIC STRUCTURE CALCULATIONS FOR INTERFACES WITH ASSUMED ATOMIC 
STRUCTURES 

Given t h e  atomic s t r u c t u r e  of an i n t e r f a c e  one can c a l c u l a t e  the  corresponding 
e l e c t r o n i c  s t r u c t u r e  by a v a r i e t y  of methods. I n  a l l  such ca lcu la t ions ,  however, 
one must f i r s t  decide how t o  dea l  wi th  the  l o s s  of t r a n s l a t i o n a l  symmetry normal 
t o  the  i n t e r f a c e ,  and possibly  p a r a l l e l  t o  i t  a s  well .  I n  general ,  pe r iod ic  
i n t e r f a c e s  ( i .e .  those which d i sp lay  two-dimensional symmetry p a r a l l e l  t o  t h e  
i n t e r f a c e )  a r e  r a r e  between c r y s t a l s  of d i f f e r e n t  ma te r i a l s .  Aperiodic i n t e r f a c e s  
can be s tud ied  only by c l u s t e r  methods, whereby a region of the  i n t e r f a c e  is  
modelled by a c l u s t e r  of atoms with  appropr ia te  boundary condi t ions  on the  su r face  
of the  c l u s t e r  (e.g. /27/).  Various methods of 'embedding' these  c l u s t e r s  have 
emerged i n  recen t  years  /28/. For tunately ,  the  semiconductor he te ro junc t ions  of 
technological  s i g n i f i c a n c e  a r e  charac te r i sed  by very small l a t t i c e  mismatches 
1291. I n  those cases  the  mismatch is  ignored and i n  ' i d e a l '  i n t e r f a c e s  atoms a r e  
assumed t o  be i n  t h e i r  i d e a l  c r y s t a l  pos i t ions  r i g h t  up t o  the  i n t e r f a c e .  
Frequently, however, the  mismatch a t  metal-semiconductor and metal s i l i c i d e -  
semiconductor i n t e r f a c e s  is not neg l ig ib le .  Louie and Cohen 1301 took the view 
t h a t  t h e  ex i s t ence  of a continuum of f ree-electron- l ike  s t a t e s  is t h e  e s s e n t i a l  
proper ty  of the  metal a t  a metal-semiconductor i n t e r f a c e .  Accordingly, they 
modelled t h e  A1 c r y s t a l  i n  t h e i r  study of Al-Si i n t e r f a c e s  by a j e l l ium of 
appropr ia te  densi ty ,  which el iminated the  d i f f i c u l t y  of l a t t i c e  mismatch. The 
main conclusions of t h i s  work have received support  from c a l c u l a t i o n s  on t h e  Al-Ge 
(001) i n t e r f a c e  (31) i n  which the  j e l l ium approximation was not  made. For t h e  
r e s t  of t h i s  s e c t i o n  we w i l l  consider only pe r iod ic  i n t e r f a c e s .  

The l o s s  of t r a n s l a t i o n a l  symmetry normal t o  the  i n t e r f a c e  i n  a b i c r y s t a l  
s i g n i f i e s  t h a t  c r y s t a l  band s t r u c t u r e  methods a r e  inappl icable .  There a r e  
e s s e n t i a l l y  two ways of coping with  t h i s .  The f i r s t  is t o  consider a 
s u p e r l a t t i c e  of i n t e r f a c e s  i n  which a l t e r n a t e  s l a b s  of 5 t o  12 l a y e r s  of each 
mate r i a l ,  p a r a l l e l  t o  the  i n t e r f a c e ,  a r e  s tacked p e r i o d i c a l l y  on top of each 
other .  This r e s t o r e s  t r a n s l a t i o n a l  symmetry normal t o  t h e  i n t e r f a c e  and t h e  
c a l c u l a t i o n  is e s s e n t i a l l y  a band s t r u c t u r e  c a l c u l a t i o n  with  a l a r g e  u n i t  c e l l .  
S imi la r ly ,  t h i s  geometry has been used t o  s tudy f r e e  su r faces ,  chemisorption and 
the  e a r l y  s t ages  of i n t e r f a c e  formation (i.e. up t o  a few monolayers coverage) by 
p e r i o d i c a l l y  i n s e r t i n g  vacua between ' s l abs '  of c r y s t a l ,  including chemisorbed 
atoms, over layers  e t c .  The second approach is  t o  consider  a t r u e  b i c r y s t a l  
geometry, and t r e a t  t h e  i n t e r f a c e  a s  a l o c a l i s e d  pe r tu rba t ion  (i.e. l o c a l i s e d  i n  
t h e  d i r e c t i o n  normal t o  t h e  i n t e r f a c e )  of the  bulk p roper t i e s  of the  ad jo in ing  
c r y s t a l s .  The Green's func t ion  formalism is  i d e a l l y  s u i t e d  t o  t h i s  problem and 
has been developed success fu l ly  f o r  su r faces  and i n t e r f a c e s  1321. We s h a l l  
b r i e f l y  d i scuss  these  two approaches i n  turn. 

Both plane wave and LCAO bas i s  sets have been used i n  s u p e r l a t t i c e  ca lcu la t ions .  
The se l f -cons i s t en t  pseudopotent ia l  s u p e r l a t t i c e  c a l c u l a t i o n s ,  introduced by 
Cohen, Schlii ter and coworkers 1121, employed semi-empirical i o n i c  
pseudopotent ia ls  and a plane wave bas i s  s e t  f o r  t h e  valence wavefunctions. Even 
wi th  s o f t  core pseudopotent ia ls  very l a r g e  bas i s  s e t s  were needed t o  achieve 
convergence of the  charge dens i ty  ( t y p i c a l l y  300-600 plane waves f o r  c e l l s  
containing only 20-40 atoms). This r e s u l t s  i n  enormous matr ices  t o  be 
diagonal ised and it is  computing power which l i m i t s  the  app l i ca t ion  of t h i s  method 
t o  c e l l s  containing g r e a t e r  numbers of atoms. The r e s u l t s  of such a ca lcu la t ion  
c o n s i s t  of the  energies  and wavefunctions of a l l  s u p e r l a t t i c e  s t a t e s ,  including 
any i n t e r f a c e  s t a t e s ,  the  t o t a l  se l f -cons i s t en t  charge dens i ty  and charge 
d e n s i t i e s  of ind iv idua l  s t a t e s  and atom-resolved l o c a l  d e n s i t i e s  of s t a t e s .  Self-  
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consistent superlattice calculations have been carried out with LCAO bases in 
refs. /33,34,35,36/. In general hard-core pseudopotentials require a 
prohibitively large plane wave basis set for convergence and this is the reason 
for using an atomic basis (e.g. 1351). Tight binding superlattice calculations 
have also been carried out (e.g. /37,38,39/). 

The very large matrices one has to diagonalise with the superlattice method are a 
consequence of the fact that bulk states of the adjoining crystals are produced 
together with any interface induced states. In the second approach 1321 this 
shortcoming is avoided by first calculating the band structures of the adjoining 
crystals, and then focussing on the interface induced changes. These changes are 
readily found by a Green's function tight binding formalism once a matrix has 
been written down which represents the procedure of cutting two infinite solids 
and joining them to form a bicrystal (plus two semi-infinite free crystals which 
can be discarded). The Green's function formalism distinguishes clearly between 
interface induced and bulk states. It provides a powerful method of studying 
bound interface states, resonances and antiresonances within the bands, and wave 
vector-, atom- or orbital- resolved local densities of states. The sizes of the 
matrices involved in this method are determined by the range of the interface 
potential, which is usually much more localized than the wave functions of 
interface states. For example, Pollmam and Pantelides 1321 used an empirical 
tight binding Hamiltonian with a minimal basis set (sp3) and only nearest 
neighbour interactions to study ideal Ge-GaAs and Ge-ZnSe (100) interfaces. In 
that case the matrices involved were only 64 x 64, although it should be stressed 
that the calculations were not self-consistent. Although the matrices involved in 
the Green's function method are relatively small a large number of Green's 
functions for the perfect crystal (evaluated at different crystal wavevectors) 
have to be stored. This is not a serious problem with the large storage 
capacities of modern computers. 

It is interesting that the results obtained for the Ge-GaAs (110) interface by the 
self-consistent pseudo-potential method I401 and the empirical tight binding 
Green's function method 1411 are in qualitative agreement. The results differ 
slightly in the number and wave-vector dependences of the low-lying interface 
states. It is not clear whether these differences are due to self-consistence 
effects or the relatively poor representation of the conduction bands in the 
empirical tight binding Hamiltonian. 

Pollmann 1421 has shown how overlayers, chemisorbed species, superlattices and 
defects at surfaces and interfaces can be treated by the Green's function 
formalism. 

4 - TOTAL ENERGY CALCULATIONS 
Ideally we would be able to calculate the minimum free energy structure of an 
interface, taking into account self-consistently its electronic structure. 
Considerable progress has been made towards this goal in recent years, 
principally because of the use of density functional theory /I/ and greater 
computing power. For example, it is now possible to predict accurately not only 
the correct lattice parameter and bulk modulus of elemental semiconductors 1431, 
compound semiconductors 1441 and metals 1451 but also crystal stability and 
pressure induced phase transformations 1431. These calculations require only the 
atomic numbers of constituent elements and a subset of crystal structures as input 
information. Norm-conserving pseudopotentials, combined with the local density 
functional approximation are employed in the total Hamiltonian and the problem is 
solved self-consistently either in momentum space 1461 or real space 1471. Having 
achieved such an accurate description of the ideal crystal its application to 
interfaces is currently limited by computing power. The principal problem is 
convergence of the basis set. In order to predict, for example, the various 
reconstructed configurations of the Si (111) surface the total energy calculation 
would require an accuracy of hetter than O.OleV/surface atom 1481. At present 



t h i s  could only be achieved with  a p r o h i b i t i v e l y  l a r g e  bas i s  s e t  of e i t h e r  plane 
waves o r  l o c a l  Gaussian o r b i t a l s .  Nevertheless,  a number of t o t a l  energy 
ca lcu la t ions  have been performed, wi th  l i m i t e d  re laxa t ions  included. Many of 
these  c a l c u l a t i o n s  have probed t h e  geometry and l o c a l  bonding of chemisorbed atoms 
on semiconductor 136,491 and metal 1331 su r faces ,  wi th  photoelectron spectroscopy 
experiments providing a valuable  check. 

A more t r a c t a b l e  (but l e s s  accura te )  approach t o  minimizing t h e  t o t a l  i n t e r n a l  
energy of l a r g e  systems i n  semiconductors has been developed by Chadi /50,51,52/, 
i n  an ETB framework. The t o t a l  energy is  w r i t t e n  a s  

E = .E E,(!3) + .E (U,E;  +YE;) f U.N* 
7- 

occupied bkdc (15) 

The f i r s t  term i s  t h e  band s t r u c t u r e  energy and is  t h e  sum of energies  of a l l  
occupied one-electron s t a t e s .  The second and t h i r d  terms denote the  cor rec t ion  
due t o  overcounting of the  e lectron-electron i n t e r a c t i o n s  i n  t h e  band s t r u c t u r e  
energy and it a l s o  includes  the  ion-ion Coulomb i n t e r a c t i o n s .  The summation i n  
t h e  second term is over a l l  bonds and ci denotes the  f r a c t i o n a l  change i n  bond 
l eng th  from the  reference value i n  t h e  pe r fec t  c y r s t a l .  The empir ical  
constants  U1 and U2 a r e  obtained from t h e  condi t ion t h a t  t h e  t o t a l  energy of the  
pe r fec t  c r y s t a l  is  a minimum a t  t h e  experimentally observed l a t t i c e  parameter and 
by f i t t i n g  t h e  bulk modulus. The t i g h t  binding i n t e r a c t i o n  parameters a r e  
assumed t o  have an inverse  square dependence on bond l eng th  1531. Nb i n  the  
l a s t  term is  t h e  number of bonds i n  t h e  system and Uo is  determined from the  
cohesive energy of t h e  p e r f e c t  c r y s t a l .  The l a s t  term i n  equat ion (15) is v i t a l  
i n  those cases  where bonds a r e  broken o r  formed; i n  i t s  absence t h e  t o t a l  energy 
would decrease  monotonically with  inc reas ing  atomic coordinat ion.  The energy of a 
de fec t  i n  a system containing N atoms is given by AET = ET (N) - NE,, where 
Eo is the  t o t a l  energy per atom i n  t h e  pe r fec t  c y r s t a l .  As i n  o the r  empi r i ca l  
approaches, t h e r e  is t h e  quest ion of t r a n s f e r a b i l i t y  of t h e  parameters Uo, U1, 
U p  and the  t i g h t  binding i n t e r a c t i o n  parameters,  from the pe r fec t  c r y s t a l ,  where 
they a r e  f i t t e d ,  t o  the  de fec t  environment. This can be t e s t e d  only by comparison 
with  experiment and indeed equat ion (15) has been s u r p r i s i n g l y  success fu l  a t  
p red ic t ing  some reconstructed su r face  geometries 1501. 

Bond d i s t o r t i o n s  and recons t ruc t ions  can give r i s e  t o  charge t r a n s f e r  which 
int roduces  Coulomb i n t e r a c t i o n s  t h a t  a r e  not included i n  equat ion (15). Although 
these  i n t e r a c t i o n s  would be screened by valence e l e c t r o n s  t h e i r  e f f e c t  is  t o  
reduce t h e  degree of charge t r a n s f e r  which i n  tu rn  a f f e c t s  the  r e s u l t a n t  atomic 
configurat ion.  In  p r i n c i p l e ,  these  e f f e c t s  could be taken account of by making 
t h e  intra-atomic t i g h t  binding matr ix  elements charge dependent, a s  i n  ref 1241. 

An express ion f o r  the  fo rce  on an atom is  obtained by d i f f e r e n t i a t i n g  equat ion 
(13) with  respec t  t o  an atomic coordinate .  Chadi 1511 has shown how t h e  Hellmann 
Feynman theorem can be used t o  ob ta in  a simple express ion f o r  t h e  d e r i v a t i v e  of 
t h e  band s t r u c t u r e  energy. Using t h i s  method he ca lcu la ted  a re laxed s t r u c t u r e  
of the  C=9 (221), 38.94°/[1~0]  symmetrical tilt boundary i n  S i  1521. 

Chadi's formulat ion f o r  s-p covalent s o l i d s  has some s i m i l a r i t i e s  with t h a t  used 
by Masuda and Sato 1541 t o  c a l c u l a t e  d i s l o c a t i o n  core  s t r u c t u r e s  i n  b.c.c. 
t r a n s i t i o n  metals.  These authors  a l s o  express the  t o t a l  energy a s  a sum of a band 
s t r u c t u r e  term ( a r i s i n g  from the d band only) and a shor t  range repu l s ive  
i n t e r a c t i o n .  The band s t r u c t u r e  energy con t r ibu t ion  is  formulated i n  r e a l  space 
using the  l o c a l  dens i ty  of s t a t e s  on each atom, and i n t e g r a t i n g  the  one-electron 
energies  t o  the  Fermi l eve l .  The l o c a l  dens i ty  of s t a t e s  is approximated by a 
Gaussian f i t t e d  t o  t h e  second moment 1551 and the  ddo, ddx and dd6 t i g h t  binding 
i n t e r a c t i o n s  a r e  assumed t o  vary exponent ia l ly  with  the  in te ra tomic  dis tance.  
The assumption of a Gaussian l o c a l  d e n s i t y  of s t a t e s  o b l i t e r a t e s  a l l  the  s t r u c t u r e  
which t h i s  important func t ion  contains.  The assumption could be avoided by using 
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t h e  ' recurs ion method' /56/ t o  c a l c u l a t e  the  l o c a l  dens i ty  of s t a t e s  /57/. 
Al te rna t ive ly ,  one could use  the  Hellmann-Feynman f o r c e s  /51/ t o  give an exact 
express ion i n  t h e  framework of t h e  d-band t i g h t  binding Hamiltonian, without 
making any assumption about the  l o c a l  dens i ty  of s t a t e s .  W e  a l s o  note  t h a t  
Harrison /53/ has presented arguments, based on muffin t i n  o r b i t a l  theory,  f o r  an 
inverse  f i f t h  power dependence of the  d-d t i g h t  binding i n t e r a c t i o n s  on 
in te ra tomic  dis tance.  

F i n a l l y  we mention t h e  use of valence f o r c e  f i e l d s  (e.g. /58/) t o  s tudy g r a i n  
boundary s t r u c t u r e s  i n  covalent ly  bonded s o l i d s  /59,60/. I n  t h i s  approach t h e  
t o t a l  energy is expressed a s  a sum of s t r a i n  energy terms (bond s t r e t c h i n g ,  
bending and possibly  t o r s i o n )  and bond breaking energies  wi th  the  pe r fec t  c r y s t a l  
a s  the  reference configurat ion.  Valence f o r c e  f i e l d s  have enjoyed considerable  
success  i n  desc r ib ing  phonon d i spers ion  r e l a t i o n s  f o r  the  pe r fec t  c r y s t a l  /58/. 
However, t h e i r  app l i ca t ion  t o  s i t u a t i o n s  involving l a r g e  atomic displacements is  
l imi ted  by the  f a c t  t h a t  they do not take i n t o  account e l e c t r o n i c  
rehybr id iza t ion .  For example, Harrison /61/ has shown t h a t  the  2x1 
recons t ruc t ion  of the  S i  (111) su r face  is  due t o  a balance between a ne t  energy 
gain from rehybr id iza t ion  of the  dangling hybrids ,  accompanying the  buckling of 
t h e  su r face ,  and an energy penal ty  r e s u l t i n g  from the  d i s t o r t i o n .  Nevertheless,  
t h e  valence fo rce  f i e l d  approach is expected t o  be r e l i a b l e  when t e t r a h e d r a l  
bonding is preserved, a s  i n  r e f .  /59/. 

5 - CONCLUSIONS 

Norm-conserving pseudopotent ia l  combined with  the  l o c a l  dens i ty  f u n c t i o n a l  
formalism a r e  c u r r e n t l y  the  most accura te  method of desc r ib ing  t h e  ground state 
e l e c t r o n i c  s t r u c t u r e  of su r faces  and i n t e r f a c e s .  I n  p r i n c i p l e ,  t o t a l  energy 
c a l c u l a t i o n s  f o r  a d ive r se  range of heterophase and homophase i n t e r f a c e s  can be 
performed with t h i s  formalism, but i n  many cases  the  s i z e  of the  c a l c u l a t i o n  is 
p r o h i b i t i v e l y  l a r g e  f o r  the  cur ren t  generat ion of computers. However, it has 
been argued /62/ t h a t  underestimation of the  band gap by -50%, by desc r ip t ions  
using t h e  l o c a l  dens i ty  func t iona l  approximation, impl ies  s i m i l a r  e r r o r s  f o r  t h e  
predicted pos i t ions  of de fec t  energy l e v e l s  i n  the  fundamental gap. I n  s i l i c o n ,  
f o r  example, t h i s  would imply a maximum e r r o r  of 9.3eV f o r  the  de fec t  energy 
l e v e l s  p red ic ted  by the  most accura te  ca lcu la t ions .  Semi-empirical LCAO methods, 
such a s  the  empi r i ca l  t i g h t  binding method, can provide a good dea l  of q u a l i t a t i v e  
i n s i g h t ,  with a r e l a t i v e l y  smal l  ca lcu la t ion .  Recent improvements on the  usual  
t i g h t  binding scheme were mentioned i n  s e c t i o n  2 and an e f f i c i e n t  method of 
c a l c u l a t i n g  fo rces  on atoms i n  the  t i g h t  binding scheme was r e f e r r e d  t o  i n  s e c t i o n  
4. 

ACKNOWLEDGEMENTS 

I am g r a t e f u l  t o  Drs.K.W.Lodge and J.C.H.Spence and Professor  J.W.Christian,F.R.S. 
f o r  t h e i r  comments on the  manuscript. This research was funded by the  Royal 
Society  through a 1983 Univers i ty  Research Fellowship. 

REFERENCES 
1. P.Hohenberg and W.Kohn, Phys.Rev. 136, B864 (1964); W.Kohn and L.J.Sham, 

ib id .  140, A1133 (1965). - 
2. .J.C.Slater, Phys.Rev. 81, 385 (1951). 
3. G.P.Srivastava, ~ h e o r ~ T f  Localised S t a t e s  i n  So l ids  meeting, Univers i ty  

College London A p r i l  1984, t o  be published i n  Phi1.Mag.B. 
4. J.Korringa, Physica 2, 392 (1947); W.Kohn and N.Rostoker, Phys.Rev. 94, 1111 

(1954). 
5. T.L.Loucks, Augmented Plane Wave Method (Benjamin, New York, 1967). 



6. O.K.Anderson, Phys.Rev.B 11, 3060 (1975); 0.K.Anderson and O.Jepsen, Physica 
91B 317 (1977); J.E.Miiller, R.O.Jones and J.Harris, J.Chem.Phys. 2, 1874 
-2 

(1983). 
7. K.H.Johnson, Adv.Quant.Chem. 7, 143 (1973). 
8. C.L.Briant and R.P.Messmer, ~kl.~a~.=, 569 (1980); Acta metall. 30, 457 

(1982), 30, 1811 (1982); M.E.Eberhart, K.H.Johnson and R.M.Latanision, Acta 
metall. 32, 955 (1984). 

9. J.C.Phillips and L.Kleinman, Phys.Rev. 116, 287 (1959). 
10. C.Herring, Phys.Rev. 57, 1169 (1940). 
11. M.L.Cohen and V.Heine, Solid State Physics 6 ,  38 (1970). 
12. M.SchlGter, J.R.Chelikowsky, S.G.Louie and M.L.Cohen, Phys.Rev. Lett. 2, 

1385 (1975); M.L.Cohen, Adv. in Electronics and Electron Phys. 2, 1 (1980); 
M.SchlGter in Festkiirperprobleme, Adv. in Solid State Phys. 18, 155 
(1978). 

13. G.B.Bachelet, D.R.Hamann and M-Schliiter, Phys.Rev.B 26, 4199, (1982); 
D.R.Hamann, M.SchlGter and C.Chiang, Phys.Rev.Lett. 63, 1494 (1979). 

14. D.W.Bullett, Solid State Physics 2, 129 (1980). 
15. J.Callaway, Energy Band Theory, Academic Press, New York (1964). 
16. J.C.Slater and G.F.Koster, Phys.Rev. 96, 1498 (1954). 
17. D.J.Chadi and M.L.Cohen, Phys.Stat.Sol.(b) 68, 405 (1975). 
18. P.O.LSwdin, J.Chem. Phys. 2, 365 (1950). 
19. J.Bernholc and S.T.Pantelides, Phys.Rev.B 18, 1780 (1978). 
20. J.B.Krieger and P.M.Laufer, Phys.Rev.B 3, 4063 (1981). 
21. P.W.Anderson, Phys.Rev.Lett. 2, 13 (1968); Phys.Rev.E, 25 (1969). 
22. S.G.Louie, Phys.Rev.B 2, 1933 (1980) 
23. J.E.Northrup, M.L.Cohen, J.R.Chelikowsky, J.Spence and A.Olsen, Phys.Rev. B 6 

4623 (1981). 
24. F.D.M.Haldane and P.W.Anderson, Phys.Rev.B 2, 2553 (1976). 
25. J.A.Pople and D.L.Beveridge, Approximate Molecular Orbital Theory, New York: 

McGraw-Hill, (1970). 
26. A.H.Harker and F.P.Larkins, J.Phys.C 12, 2487 (1979). 
27. M.J.Kelly, Solid State Physics, 35, 296 (1980); R.B.Laughlin and 

J.D.Joannopoulos, Physics of SiO, and its interfaces, ed. S-T-Pantelides, 
Pergamon, New York, p.321 (1978); - . - 

28. F.Yndurain and J.D.Joannopoulos, Phys.Rev. B. 2, 2957 (1975); C.Pisani, 
R.Dovesii and P.Ugliengo, Phys.Stat.So1. (b) 116, 249 (1983); A.R.Williams, 
P.J.Feibelman and N.D.Lang, Phys.Rev. B 26, 5433 (1982); G.A.Benesh and 
J.E.Inglesfield, J.Phys .C 17, 1595 (1984r 

29. A.G.Milnes and D.L.Feucht, Heterojunctions and Metal Semiconductor Junctions, 
Academic Press, New York (1972). 

30. S.G.Louie and M.L.Cohen, Phys.Rev.B 2, 2461 (1976). 
31. 1.P.Batra and F.Herman, J.Vac.Sci. Technol. g, 1080 (1983); I.P.Batra, 

J.Vac.Sci. Technolg, 558 (1983). 
32. J.Pollmann and S.T.Pantelides, Phys.Rev.B 18, 5524 (1978); ibid 21, 709 

(1980). 
33. H.S.Greenside and D.R.Hamann, Phys.Rev.B 23, 4879 (1981). 
34. D.W.Bullett, J.Phys.C 14, 4521 (1981); D.W.Bullett and M.L.Cohen, J.Phys.C 10 

2083 (1977). 
35. D-Vanderbilt and S.G.Louie, J.Vac.Sci.Techno1. g ,  723 (1983). 
36. G.B.Bachelet and M.Schliiter, J.Vac.Sci.Techno1, z, 726 (1983). 
37. J.N.Schulman and T.C.McGi11, J.Vac.Sci. Technol 15, 1456 (1978). 
38. L.F.Mattheiss and J.R.Pate1, Phys-Rev. B 3, 5384 (1981). 
39. T.Kunjunny and D.K.Ferry, Phys.Rev.B 24, 4593 (1981). 
40. W.E.Pickett, S.G.Louie and M.L.Cohen, Phys.Rev.B 17, 815 (1978). 
41. J-Pollmann and A.Mazur, Thin Solid Films 104, 257 (1983). 
42. J.Pollmann, Festkiirperprobleme, Adv.in Sol.State Phys. 2, 117 (1980). 
43. M.T.Yin and M.L.Cohen, Phys.Rev.B 6, 5668 (1982); D.Gliitze1, B.Segal1 and 

O.K.Andersen, Sol.Stat.Commun. 36, 403 (1980). 
44. J.Ihm and J.D. Joannopoulos, Phys.Rev.B 24, 4191 (1981). 
45. P.K.Lam and M.L.Cohen, Phys.Rev.B. 2, 4224 (1981); V.L.Moruzzi, J.F.Janak 

and A.R.Williams, Calculated Electronic Properties of Metals, Pergamon Press, 
New York (1978). 



C4-358 JOURNAL DE PHYSIQUE 

46. J-Ihm, A.Zunger and M.L.Cohen, J.Phys.C 12, 4409 (1979). 
47. G.B.Bachelet, H.S.Greenside, G.A.Baraff and M-Schlfiter, Phys.Rev.B 2, 4745 .- --- . 

(lY81). 
48. J.Ihm and M.L.Cohen, Phys.Rev.B 2, 1527 (1980). 
49. J.Ihm and J.D.Joannopoulos, Phys.Rev.B 26 4429 (1982). 
50. D.J.Chadi, Phys.Rev.B 2, 2074 (1979); ~ i ~ s . ~ e v . ~ e t t .  42, 43 (1979). 
51. D.J.Chadi, Phys.Rev.B 29, 785 (1984). 
52. R.M.Thompson and D.J.Chadi, Phys.Rev.B 29. 889 (1984). 
53. ~ . ~ . ~ a r r i s o n ,  E lec t ron ic  ~ t r u c i u r e  and Xe Proper t i es  of So l ids ,  W.H.Freeman 

and Co., San Francisco (1980). 
54. K.Masuda and A.Sato, Phi1.Mag.B 37, 531 (1978); A.Sato and K.Masuda, 

Phi1.Mag.B 43, 1 (1981). 
55. F.Cyrot-Lackmann, Adv.Phys. 2, 393 (1967). 
56. R.Haydock, Sol id  S t a t e  Physics, 35, 216 (1980). 
57. 1.M.Boswarva and D.M.Esterling, J.Phys.C 15, L729 (1982). 
58. P.N.Keating, Phys.Rev. 145, 637 (1966); J.E.Sinclair,  Phil.Mag. 31, 647 

(1975); S.L.Altmann, A.Lapiccirella,  K.W.Lodge and N.Tomassini, J.Phys.C 2, 
5581 (1982). 

59. R.C.Pond, D.J.Bacon and A.M.Bastaweesy, Inst.Phys.Conf.Ser.No.67, 253 (1983). 
60. H.-J.M6ller, Phi1.Mag.A 63, 1045 (1981). 
61. W.A.Harrison, Surf.Sci. 55, 1 (1976). 
62. M. Lannoo, J.Phys.C x, 3137 (1984). 

DISCUSSION 

O.K. Andersen; A comment: Your s ta tement  t h a t  t h e  most accura te  way o f  performing 

dens i ty  func t iona l  c a l c u l a t i o n s  is t o  use norm-conserving pseudopotent ia ls  is no t  

t rue .  The use o f  pseudopotent ia ls  is an a d d i t i o n a l ,  and i n  my opinion o f ten  

unnecceeessary approximation. There exist many a l l  e lec t ron  c a l c u l a t i o n s  where 

t h i s  approximation is not  made. Besides, t h e  vas t  major i ty  o f  dens i ty  func t iona l  

c a l c u l a t i o n s  f o r  t r ans i t ion- ,  rare ear th-  or a c t i n i d e  systems have n o t  made use  o f  

t h e  pseudopotential approximation b u t  were performed with a l l  e lec t ron  methods 

such a s  t h e  KKR-, LMTO-, ASW-, LAPW-, o r  LCAO. 

p. Neumm How much would t h e  complexity o f  dens i ty  func t iona l  methods be 

increased by t r e a t i n g  f i n i t e  temperature s i t u a t i o n s  (compared t o  c l a s s i c a l  

molecular dynamic ca lcu la t ions )?  

A.P. Sutton: If t h e  c a l c u l a t i o n s  were c a r r i e d  o u t  se l f -cons i s ten t ly  it would b e  

f a r  too  l a r g e  ( a t  t h e  present  t ime) .  However, t h e  f o r c e  on an atom can be quickly 

ca lcu la ted  by t h e  empir ical  t ight-binding t o t a l  energy scheme (Chadi ls  scheme) and 

Newton's equat ions o f  motion could be solved i n  a molecular dynamics s imulat ion 

using t h i s  force.  

D.P. D i V i n c e n z o :  Does t h e  l o c a l  stress tensor  remain a phys ica l ly  meaningful 

quan t i ty  i n  a theory containing non-pairwise i n t e r a c t i o n s  ( f o r  example, t h e  LCAO 

technique)? 



A.P. Sutton: I be l ieve  it does. There is a quantum mechanical s t r e s s  theorem, 

which is s i m i l a r  t o  t h e  Hellmann-Feynman theorem, due t o  Nielsen and Martin. 

V. Vitek: The "asymetrytt i n  t h e  t o t a l  energy c a l c u l a t i o n s  o f  t h e  band s t r u c t u r e  

ca lcu la t ions  is t r e a t e d  very c a r e f u l l y  while t h e  repulsive p a r t  is t r e a t e d  using a 

simple p a i r  p o t e n t i a l  is unsa t i s fac tory .  I f e e l  t h a t ,  a t  l e a s t  i n  metals ,  

s t r u c t u r a l  aspec t s  o f  d e f e c t s  a r e  o f ten  cont ro l led  more by t h e  p a i r  p o t e n t i a l  p a r t  

than by t h e  band s t r u c t u r e  p a r t .  Is t h e  s i t u a t i o n  d i f f e r e n t  i n  covalent ly bonded 

s o l  ids? 

A.P. Sutton: I agree with you t h a t  a l o t  more physics seems t o  go i n t o  t h e  band 

s t r u c t u r e  energy than t h e  remaining terms i n  t h e  empir ical  t i g h t  binding t o t a l  

energy expression. Certainly i n  covalent  s o l i d s  t h e  change i n  t h e  band s t r u c t u r e  

energy is very important because o f  rehybridizat ion.  I n  t r a n s i t i o n  metals  t h e  

s h o r t  range repuls ive  p o t e n t i a l  may well be equal ly important a s  t h e  band 

s t r u c t u r e  energy, and it should depend s trongly on interatomic separat ion a t  l e s s  

than f i r s t  neighbour separat ion.  

J.R. Smith; Comment t o  question by Vitek. I n  t h e  case o f  t r a n s i t i o n  metals ,  our 

se l f -cons i s ten t  a l l -e lec t ron  ca lcu la t ions  o f  sur face  energ ies  i n d i c a t e  t h a t  t h e  

sum of  t h e  eigenvalues is only a f r a c t i o n  of  t h e  t o t a l  energy. 

S.G. Comet t o  question by Vitek: The sum o f  eigenvalues term is an 

important element i n  Chadigs empir ical  tight-binding t o t a l  energy scheme which 

goes beyond pairwise in te rac t ions .  This  term allows f o r  t h e  rehybridizat ion o f  t h e  

bonds a t  d i f f e r e n t  geometries provided t h a t  they a r e  no t  f a r  from t h e  bulk 

environment. 

K.L. Merkle; To what ex ten t  can t h e  dens i ty  func t iona l  approach be appl ied t o  

ion ic  s o l i d s  and s p e c i f i c a l l y  can d i f f e r e n t  charge s t a t e s  a t  t h e  boundary be 

t rea ted?  

A.P. Sutton: There is no d i f f i c u l t y  a t  a l l  i n  t r e a t i n g  ion ic  s o l i d s  when t h e  l o c a l  

densi ty approach is combined with (say)  norm-conserving pseudopotentials.  Provided 

t h e  ca lcu la t ion  is c a r r i e d  out  se l f -cons i s ten t ly ,  d i f f e r e n t  charge s t a t e s  can be 

t r e a t e d  accurately.  


