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Abstract

In practical applications of pattern recognition, there are often different features extracted from raw data
which needs recognizing. Methods of combining multiple classifiers withdifferent features are viewed as a
general problem in various application areas of pattern recognition. In thispaper, a systematic investigation
has been made and possible solutions are classified into three frameworks, i.e. linear opinion pools, winner-
take-all and evidential reasoning. For combining multiple classifiers with different features, a novel method
is presented in the framework of linear opinion pools and a modified training algorithm for associative switch
is also proposed in the framework of winner-take-all. In the framework of evidential reasoning, several
typical methods are briefly reviewed for use. All aforementioned methods have already been applied to
text-independent speaker identification. The simulations show that results yielded by the methods described
in this paper are better than not only the individual classifiers’ but alsoones obtained by combining multiple
classifiers with the same feature. It indicates that the use of combining multiple classifiers with different
features is an effective way to attack the problem of text-independent speaker identification.

Keywords: Combination of multiple classifiers, different features,linear opinion pools, evidential reasoning,
winner-take-all, maximum likelihood learning, EM algorithm, associative switch, text-independent speaker
identification.

1 Introduction

Recently, the combination of multiple classifiers has been viewed as a new direction for the development of
highly reliable pattern recognition systems, in particular, optical character recognition (OCR) systems. Prelim-
inary results indicate that combination of several complementary classifiers leads to classifiers with improved
performance [5, 53, 61, 68, 69]. There are at least two reasons justifying the necessity of combining multiple
classifiers. First, for almost any one of the current patternrecognition application areas, there are a number of
classification algorithms available developed from different theories and methodologies. Usually, for a specific
application problem, each of these classifiers could reach acertain degree of success, but maybe none of them
is totally perfect or at least anyone of them is not so good as expected in practical application. Second, for
a specific recognition problem, there are often numerous types of features which could be used to represent
and recognize patterns. These features are also represented in very diversified forms and it is rather hard to
lump them together for one single classifier to make a decision. As a result, multiple classifiers are needed to
deal with the different features [5, 68, 69, 71]. It also results in a general problem how to combine those clas-
sifiers with different features to yield the improved performance. The basic idea underlying the combination
of multiple classifiers is that a consensus is made somehow based upon the results of multiple classifiers for
a classification task using an elaborate combination scheme. So far, there have been extensive studies on the
combination of multiple classifiers [1, 10, 20, 27, 35, 68]. Among these researches, possible solutions to the
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combination may be classified into three frameworks, i.e. linear opinion pools, winner-take-all and evidential
reasoning. In the framework oflinear opinion pools, the combination schemes make the final decision through
the use of a linear combination of multiple classifiers’ results. In regard to the linear coefficients or weights
for combination, there are two kinds of methods for assigning values to linear coefficients or weights [35], i.e.
weights asveridical probabilities[36, 45, 65, 67] andminimum error weights[16, 17, 30, 50]. In the frame-
work of winner-take-all, a device calledassociative switchis used in the process of classification to choose
the classification result of a specific classifier for a specific input pattern [69]. Since the combination scheme
always chooses only one classifier among several classifiersto use its result as the final decision for a specific
input pattern, the chosen classifier could be viewed as a winner and the style of the combination method is
similar to the principle of winner-take-all in the unsupervised learning paradigm [31, 37]. In the framework of
evidential reasoning, for an input pattern, the output of each individual classifier is regarded as an evidence or
an event and the combination scheme makes the final decision based upon a method of evidential reasoning or
a principle of voting [2, 5, 20, 26, 40, 53, 68].

The so-calleddifferent featuresproblem refers to that there are numerous types of features which can be
extracted from the same raw data for a classification task. Therefore, several different feature sets are available
for a given data set. Based upon each one of these feature sets, a classifier or several different classifiers can be
trained for the same classification task. It results in the existence of multiple classifiers with different features
for the same classification task. As a result, the problem of combining multiple classifiers with different fea-
tures is how to develop a scheme of combining these classifiers with different features to produce an improved
result for the classification task. In the current techniques, it is found that most of methods in the framework of
evidential reasoning could be directly applied to combine multiple classifiers with different features since the
final decision is made merely by combining the classifiers’ results using an evidential reasoning method or a
voting principle regardless of the types of input (feature vector) to classifiers. In the framework of winner-take-
all, the combination scheme,associative switch, could also combine multiple classifiers with different features
by using the mapping or coding of different features as the input of the associative switch instead of differ-
ent features themselves [69]. Using such techniques, the considerably better classification results have been
produced in the field of OCR by combining multiple classifierswith different features [5, 68, 69]. In the frame-
work of linear opinion pools, it is possible to directly use the methods with minimum error weights to combine
multiple classifiers with different features since the weights could be achieved by performing regression merely
based upon the information of classifiers’ errors regardless of types of input (feature vector) to each classifier
[16, 17, 30, 50]. Unfortunately, it is difficult to use the existing techniques with weights as veridical proba-
bilities [36, 45, 65, 67] for handling the problem since in these methods the achievement of linear coefficients
usually depends upon the input (feature vector) to each classifier. Recent researches show that the techniques
with weights as veridical probabilities can achieve considerably good results in the applications to combination
of multiple classifiers with thesame feature[65, 67]. In this paper, we present a novel linear combination
scheme with weights as veridical probabilities to extend the state-of-the-art techniques for combining multiple
classifiers withdifferent features. In addition, we also propose a modified training method for the associative
switch [69] in the framework of winner-take-all in order to yield better performance.

Speaker identificationis the process of determining from which of the registered speaker when a given
utterance comes. Furthermore, speaker identification systems can be eithertext-independentor text-dependent.
By text-independent, we refer to that the identification procedure should work for any text in either training
or testing [28]. This is a different problem than text-dependent speaker identification, where the text in both
training and testing is the same or is known. Speaker identification is a rather hard task since a speaker’s
voice always changes in time. In particular, text-independent speaker identification is more difficult than text-
dependent speaker identification since a text-independentspeaker identification system has to use elaborate
techniques to capture the speaker’s individual characteristics regardless of the contents carried in the speech,
while in text-dependent speaker identification the use of simple template matching techniques can directly
exploit the voice individuality associated with each phoneme or syllable. In this paper, only text-independent
speaker identification is considered. There have been extensive studies in speaker identification so far. In
general, the technique of speaker identification includes feature extraction and classification. With respect to
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feature extraction, many kinds of individual features covering from the characteristics of vocal cords to speech
spectrum have already been investigated and turned out to beuseful to speaker identification [3, 4, 18, 21,
22, 23, 24, 28, 34, 44, 60, 70]. Unfortunately, none of those features is perfect for robustness so that there is
less agreement on which parameterization of the speech spectrum to use for features [18, 24, 28, 52, 49]. In
addition, some researchers intended to lump two or more features together into a composite feature [24, 43,
44, 48]. However, the performance of the systems based upon the composite features was not significantly
improved. Furthermore, to a certain extent, the use of composite features results in thecurse of dimensionality
problem. In particular, the problem becomes quite serious when the techniques of neural computing with time-
delay [6, 8, 9, 13, 62] are used. On the other hand, several kinds of classifiers have been also applied in
speaker identification [9, 18, 24, 28, 49, 63]. These classifiers include distance classifiers [3, 4, 25, 33, 42],
neural network classifiers [6, 7, 8, 11, 12, 13, 14, 19, 32, 46,47, 54] and classifiers based upon parametric or
non-parametric density estimation [28, 29, 52, 57, 59]. Since there are many kinds of features and classifiers,
speaker identification becomes a typical task which needs tocombine multiple classifiers with different features
for robustness. Unlike the aforementioned techniques usedin speaker identification, both the proposed and
some existing methods are systematically investigated in this paper for text-independent speaker identification
by combining multiple classifiers with different features.Experimental results demonstrate the effectiveness of
these combination methods and indicate that the use of combining multiple classifiers with different features
is a promising way for a text-independent speaker identification system to yield the significantly improved
performance.

The remainder of the paper is organized as follows. Section 2presents a novel method of combining
multiple classifiers with different features in the framework of linear opinion pools. Section 3 describes a
modified training algorithm for the associative switch in the framework of winner-take-all and section 4 briefly
reviews some existing combination methods in the frameworkof evidential reasoning for use in our work.
Section 5 presents the applications of the aforementioned combination methods in text-independent speaker
identification and illustrates experimental results. Conclusions are drawn in the final section.

2 A Linear Combination Method for Different Features

In this section, we present a novel method of combining multiple classifiers withdifferent featureson the basis
of the work in [65, 67] which can merely combine multiple classifiers with thesame feature. In the method,
a generalized finite mixture model based upon different features is proposed and the corresponding learning
algorithms are presented by maximum likelihood estimationwith an EM algorithm.

2.1 A Generalized Finite Mixture Model for Different Features

For a sampleD in a data setS0 withM classes,� = f1; 2; � � � ;Mg, we assume that there areP (P > 1) feature
vectors which can be independently extracted from the sample D calledx1(D); � � � ;xP (D). For simplicity,
hereafter, we shall rewrite theseP feature vectors asx1; � � � ;xP . Accordingly, we may employN (N � P )
classifiers,e1; � � � ; eN , to learn the classification task using features extracted from raw data inS0, respectively,
in which the input of the classifierej is the feature vectorxpj (j = 1; � � � ; N ; 1 � pj � P ). Given pattern
classes with the labelsCi (i = 1; � � � ;M ), we consider such classifiers that for an inputxpj , the output of a
classifierej is as follows,~pj(xpj ) = [pj1(xpj ); � � � ; pjM(xpj )]T ; pjk(xpj ) � 0; MXk=1 pjk(xpj ) = 1 (1)

wherepjk(xpj ) denotes the probability that the sampleD belongs toCk recognized by the classifierej with
the input vectorxpj , andxpj denotes a feature vector of the sampleD with its form of representation being a
vector, a string or whatever else. The direct instances of such classifiers include those based upon parametric or
non-parametric density estimation. Indeed, there are someclassifiers, e.g. distance classifiers or neural network
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classifiers, which output a vector~uj(xpj ) = [uj1(xpj ); � � � ; ujM (xpj )]T without satisfyingujk(xpj ) � 0 andPMk=1 ujk(xpj ) = 1. Fortunately, these outputs can be transformed into the form in Eq.(1) using a functiong(s) [65], that is, pjk(xpj ) = g[ujk(xpj )]PMt=1 g[ujt(xpj )] k = 1; � � � ;M (2)

whereg(s) � 0. There are various forms of the functiong(s) such asg(s) = s; g(s) = 1=s; g(s) = e�s org(s) = s2; g(s) = 1=s2; g(s) = e�s2 according to whether or notujk(xpj ) � 0 (k = 1; � � � ;M).
For an input-output pairfxpj ;yg, wherey = [y1; � � � ; yM ]T andyk being a binary value (yk 2 f0; 1g) as

well as satisfying
PMk=1 yk = 1, a classifierej with the input vectorxpj specifies a distribution given byP (yjxpj ; �j) = MYk=1[pjk(xpj j�j)]yk (3)

where�j is the set of parameters of the classifierej and has been already fixed after the classifier was trained
on the data setS0. For a fixedxpj , it is reduced to a generalized Bernoulli distribution, while for a fixedy, we

can achieve a distribution specified by one ofpjk(xpj j~�j)’s.
For combining multiple classifiers with different features, another data setS1 is necessary for training a

combination scheme. For an input-output pair(D;y) in S1, the feature vectorxpj (1 � j � P ) is used as the
input of the classifierej . Moreover, we assume that there are priors� = f�ij(xi); �i(D)g (i = 1; � � � ; P ; j =1; � � � ; N ) for each classifierej (j = 1; � � � ; N) so that we can define a generalized finite mixture distribution
for the pair(D;y) asP (yjD;�) = NXj=1 h PXi=1 �i(D)�ij(xi)iP (yjxpj ; �j) = NXj=1 PXi=1 �i(D)�ij(xi) MYk=1[pjk(xpj j�j)]yk (4)

where�ij(xi) � 0; �i(D) � 0; PNj=1 �ij(xi) = 1,
PPi=1 �i(D) = 1. xpj (1 � pj � P ) still denotes

the input vector of the classifierej . The generalized finite mixture distribution leads to a new combination
scheme for dealing with different features. The combination scheme consists ofP combination subschemes
(respectively corresponding toP different features) in which�ij(xi) refers to the linear coefficient produced
by subschemei based upon the the feature vectorxi for the classifierej , while �i(D) refers to the a priori
probability that for the sampleD the ith subscheme is used to produce the linear coefficients for making the
final decision in the combination scheme.

In Eq.(4), those priors�ij(xi) 2 � (i = 1; � � � ; P ; j = 1; � � � ; N) are conditional on input vectorsxi (i =1; � � � ; P ). As a result, we assume that�ij(xi) = �ijP (xi; 'ij)PNr=1 �irP (xi; 'ir) ; �ij � 0; NXj=1�ij = 1; i = 1; � � � ; P; j = 1; � � � ; N: (5)

whereP (xi; 'ij) � 0 is a parametric function and, in particular, can be given by Gaussian distributionP (xi; 'ij) = P (xi;mij;�ij) = 1(2�)ni2 j�ij j 12 expf�12(xi �mij)T��1ij (xi �mij)g (6)

whereni is the dimension ofxi and'ij = (mij;�ij) is the set of all parameters in Gaussian distribution. In
the combination scheme, thus, the information from the outputs of classifiers, the desire labely and different
input vectorsxi (i = 1; � � � ; P ) are jointly considered for combination. In Eq.(4), however, �ij(xi) and�i(D) (i = 1; � � � ; P ; j = 1; � � � ; N) are still unknown and need learning from samples inS1. We shall propose
a maximum likelihood learning method to determine these priors in the sequel. Suppose that those priors have
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been already determined, for an unknown input sampleD, P (yjD) can be computed byPk(D) = P (yk = 1jD;�) = NXj=1 PXi=1 �i(D)�ij(xi)pjk(xpj ); k = 1; � � � ;M: (7)

Using Eq.(7), the decision rule is defined asE(D) = ( k if Pk(D) = max1�i�M Pi(D) � TM + 1 otherwise
(8)

where0 < T < 1 is a predefined threshold.E(D) is the final decision andE(D) = M + 1 denotes that the
sampleD is rejected.

2.2 Maximum Likelihood Learning with EM Algorithm

For a classification task, we assume that there areN classifiers which have been trained withP different fea-
tures extracted from raw data in the data setS0. Given another data setS1 = f(D(t);y(t)) t = 1; � � � ; Tg (ob-
served data), usingP different features extracted from samples inS1, parameters� = f�ij(xi); �i(D)g (i =1; � � � ; P ; j = 1; � � � ; N) are estimated by maximizing the log-likelihoodL = TXt=1 logP (y(t)jD(t);�) = TXt=1 log h NXj=1 PXi=1 �i(D(t))�ij(x(t)i )P (y(t)jx(t)pj ; �j)i (9)

wherex(t)pj (1 � pj � P ) denotes the input vector of classifierej at timet. For the log-likelihood, we adopt an
EM algorithm [15] to estimate all parameters in� by introducing a set of indicators asmissing datato observed
data. Fori = 1; � � � ; P andj = 1; � � � ; N , these indicators are defined asI(t)i = ( 1 if the linear coefficients are determined by subschemei0 otherwiseI(t)j = ( 1 if y(t) is generated from classifiersej .0 otherwise

where
PPi=1 I(t)i = 1 and

PNj=1 I(t)j = 1 (t = 1; � � � ; T ). Thus, the complete data consists of both the observed
data and the missing data.

An EM algorithm first finds the expected value of the complete-data likelihood. For the observed data and
the proposed mixture model, theExpectation step(E-step) computes the following expectation of the complete
log-likelihood at thesth iteration using Bayes’ ruleE[I(t)i ; I(t)j jX ] = P (I(t)i = 1; I(t)j = 1jy(t);D(t);�(s))= Pj(y(t)jx(t)pj ; �j)�(s)ij (x(t)i )�(s)i (D(t))PNj=1PPi=1 �(s)i (D(t))�(s)ij (x(t)i )Pj(y(t)jx(t)pj ; �j) (10)E[I(t)i jX ] = P (I(t)i = 1jy(t);D(t);�(s))= PNj=1 Pj(y(t)jx(t)pj ; �j)�(s)ij (x(t)i )�(s)i (D(t))PNj=1PPi=1 �(s)i (D(t))�(s)ij (x(t)i )Pj(y(t)jx(t)pj ; �j) (11)
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That is, the a posteriori probabilities are obtained as follows,h(s)i (y(t)jx(t)i ) = E[I(t)i jX ]; h(s)ij (y(t)jx(t)i ) = E[I(t)i ; I(t)j jX ]: (12)

To simplify the computation in theMaximization step(M-step), a trick in [66, 67] is used to rewrite Eq.(4) into
the following equivalent formP (y;D) = P (yjD;�)P (xi; ') = NXj=1 PXi=1 �i(D)�ijP (xi; 'ij)P (yjxpj ; �j); (13)

whereP (xi; ') = PNr=1 �irP (xi; 'ir). Using Eq.(13), the task of Maximization step (M-step) is tosolve the
following separate optimal problems fori = 1; � � � ; P; j = 1; � � � ; N:'(s+1)ij = argmax'ij TXt=1 NXj=1 PXi=1 h(s)ij (y(t)jx(t)i ) logP (xi; 'ij) (14)�(s+1)ij = argmax�ij TXt=1 NXj=1 PXi=1 h(s)ij (y(t)jx(t)i ) log �ij; s:t: NXj=1�ij = 1; �ij � 0: (15)�(s+1)i = argmax�i TXt=1 PXi=1 h(s)i (y(t)jx(t)i ) log �i; s:t: PXi=1 �i = 1; �i � 0: (16)

Accordingly, the EM algorithm for training the proposed combination scheme is summarized as

1. Initialization at s = 0
For i = 1; � � � ; P andj = 1; � � � ; N , set�(s)i = 1P and�(s)ij = 1N as well as initialize randomly'i1 = 'i2 = � � � = 'iN subject to�(s)ij (xi) = 1N (j = 1; � � � ; N).

2. The EM procedure at s> 0
(1)E-step. For each pair(D(t);y(t)), compute the a posteriori probabilitiesh(s)i (y(t)jx(t)i ) andh(s)ij (y(t)jx(t)i )(i = 1; � � � ; P ; j = 1; � � � ; N) using Eq.(10) and Eq.(11).
(2) M-step. Find a new estimate fori = 1; � � � ; P; j = 1; � � � ; N based upon the following updating
formulae: �(s+1)i = 1T TXt=1 h(s)i (y(t)jD(t)) (17)m(s+1)ij = 1PTt=1 h(s)ij (y(t)jx(t)i ) TXt=1 h(s)ij (y(t)jx(t)i )x(t)i (18)�(s+1)ij = 1PTt=1 h(s)ij (y(t)jx(t)i ) TXt=1 h(s)ij (y(t)jx(t)i )[x(t)i �m(s+1)ij ][x(t)i �m(s+1)ij ]T (19)�(s+1)ij = 1T TXt=1 h(s)ij (y(t)jx(t)i ) (20)�(s+1)ij (x(t)i ) = �(s+1)ij P (xi;m(s+1)ij ;�(s+1)ij )PNr=1 �(s+1)ir P (xi;m(s+1)ir ;�(s+1)ir ) (21)

3. Repeat Step 2 until a predefined ‘stop’ condition is satisfied.
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3 A Modified Associative Switch for Different Features

For combining multiple classifiers, the basic idea underlying the combination in the framework of winner-take-
all is to choose the one with the best result fromN classifiers as the winner and to make the final decision by
using its result for a specific sample if there is at least one classifier to classify the sampleD correctly. When
there is no classifier to classify the sampleD correctly, the combination scheme will reject it. To complete the
task of choosing a classifier for each sample, a device calledassociative switchhas been proposed [69]. The
associative switch is composed ofN knobsswj (j = 1; � � � ; N ) with eachswj installed on the output channel
of classifierej to decide whether or not it is chosen as the winner for the current sample, i.e. whether or not
to allow its output pass through to become the final decision.For an input sampleD, thus, the output of each
knob is given by ld = ( lj if swj = \on00M + 1 if swj = \off 00 (22)

whereld is the class label of the input sampleD determined by the decision maker. Accordingly,N knobs are
controlled by the output of thewinner-take-all combination mechanism(WTA-CM). Assume that output of the
WTA-CM is denoted asc = [c1; � � � ; cN ] (0 � cj � 1; j = 1; � � � ; N). The behavior of eachswj is determined
as follows swj = ( \on00 whenj = argmax1�k�N ck andcj � T\off 00 otherwise

(23)

whereT is a predefined threshold and usually0:5 < T < 1. To combine multiple classifiers with different
features, for an unlabeled sampleD, the WTA-CM also needs an input to determine the behavior of the switch.
For this purpose, we adopt an encoding mechanism to produce amappingor codingof the sampleD , M(D),
as the input of the WTA-CM. Like the encoding mechanism in [69], here,M(D) is just the label vector
consisting ofN labels produced by individual classifiers i.e.M(D) = [l1; � � � ; lN ] for the sampleD. When
different features of an unlabeled sampleD are input to individual classifiersej (j = 1; � � � ; N), M(D) will
also be input to the WTA-CM for recalling codec which determines the behavior ofN knobs so as to either
select one of outputs ofN classifiers as the final labelld or block all the output channel of individual classifiers
and assignM + 1 to ld. Such a WTA-CM could be implemented by any existing artificial neural networks
with the type of heteroassociative memory. In this paper, wesimply use a three-layered multilayer perceptron
(MLP) architecture to implement the WTA-CM.

The key task in the learning process of the associate switch is the design of the desired output for training
the MLP used as the WTA-CM on a data setS1. Once we have the desired output the training procedure is the
application of an existing learning algorithm such asbackpropagation algorithm[55] on the training setS1. To
design the appropriate desired output of the MLP used as the combination scheme, we first define a criterion for
selecting a winner when there are several classifiers to givethe correct result for a specific sample. We stipulate
that the output of each classifier has the standard form in Eq.(1). If the output of a classifier does not satisfy the
form in Eq.(1), it can be transformed into the standard form using Eq.(2). For a sampleD, thus, each classifierej (j = 1; � � � ; N) with the input vectorxpj (1 � pj � P ) has the output~pj(xpj ) = [pj1(xpj ); � � � ; pjM (xpj )].
Among thoseM components of~pj(xpj ), we can find two components in the following waypjk1(xpj ) = max1�k�M pjk(xpj ); pjk2(xpj ) = max1�k�M;k 6=k1 pjk(xpj ): (24)

As a result, we define the criterion of selecting winner as follows,j� = argmaxj2� �p(j)(xpj ); �p(j)(xpj ) = pjk1(xpj )� pjk2(xpj ): (25)

where� is a set of all classifiers that output the correct label for a specific sampleD. That is, the classifierej� will be chosen as the winner. Assume that a sampleD in S1 should belong to classk 2 � and classifierej(xpj ) = lj (j = 1; � � � ; N ; 1 � pj � P ) as well asc(d)j [M(D)] is thejth component of the desire output of
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WTA-CM for the sampleD. Using the criterion defined in Eq.(25), we present a method to produce the desired
output of the MLP used as the WTA-CM for the following three different cases:

Case 1. If lj 6= k for j = 1; � � � ; N , i.e. there is no individual classifier giving a correct classification, then we

assignc(d)j [M(D)] = 0, j = 1; � � � ; N .

Case 2. If there is only onelj� = k (1 � j� � N), i.e. there is only one individual classifier giving the correct
classification, then forj = 1; � � � ; N , we letc(d)j [M(D)] = ( 1 whenj = j�0 otherwise

Case 3. If there is a subsetID � f1; � � � ; Ng andlj = k for eachj 2 ID, i.e. there is more than one individual
classifier giving the correct result, then forj = 1; � � � ; N , we letc(d)j [M(D)] = ( 1 whenlj = k andj = argmaxi2ID �p(i)(xpi)0 otherwise

wherexpi (1 � pi � P ) is a feature vector extracted from the sampleD and used as the input vector
of classifierei (i = 1; � � � ; N). If there is more than one classifier inID satisfying bothj 2 ID andj = argmaxi2ID �p(i)(xpi), moreover, then we arbitrarily or randomly choose only one of these
classifiers as the winner, sayj0. As a result, we letc(d)j [M(D)] = ( 1 whenlj0 = k andj0 = argmaxi2ID �p(i)(xpi)0 otherwise

4 Combination Methods Based on Evidential Reasoning

The combination methods based upon evidential reasoning have been extensively studied and already applied in
the field of OCR [5, 53, 61, 68, 69]. The basic idea underlying the methods is that the result of each individual
classifier is regarded as an evidence or an event and the final decision is made by consulting all combined
classifiers with a method of evidential reasoning or evidence integrating. The methods of evidential reasoning
(integrating) are usually based upon voting principle, Bayesian theory and Dempster-Shafer evidence theory.
In this section, we briefly review some methods in [68] which have been applied to the experiments of text-
independent speaker identification reported in this paper.In the sequel, the original representation in [68] will
be rewritten for the purpose of combining multiple classifiers with different features.

4.1 A Combination Method in Bayesian Formalism

In order to combine multiple classifiers with different features in Bayesian formalism, the error of each classifier
must be taken into consideration. As a result, the error of each classifiersej may be described by itsconfusion
matrix [68], PTj , as follows, PTj = 2666664 n(j)11 n(j)12 : : : n(j)1M n(j)1(M+1)n(j)21 n(j)22 : : : n(j)2M n(j)2(M+1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n(j)M1 n(j)M2 : : : n(j)MM n(j)M(M+1)
3777775 (26)

for j = 1; � � � ; N ; where each rowi corresponds to classi, Ci, and each columnl corresponds to the eventej(xpj ) = l (l 2 �SfM + 1g). Thus, an elementn(j)il denotes thatn(j)il samples belonging toCi have been
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assigned a labell by classifierej . For an eventej(xpj ) = l of an error-bearing classifierej , its truth has
uncertainty. With the knowledge of its confusion matrixPTj , such an uncertainty could be modeled by the
conditional probabilities that propositionsD 2 Ci (i = 1; � � � ;M) are true under the occurrence of the eventej(xpj ) = l is as follows, P (D 2 Cijej(xpj ) = l) = n(j)ilPMi=1 n(j)il (27)

With N classifierse1; � � � ; eN , we shall haveN matricesPT1; � � � ; PTN . When these classifiers are used on
feature vectors extracted from the sampleD, N eventsej(xpj ) = lj (j = 1; � � � ; N ; lj 2 �SfM + 1g)
will happen. An integrated belief valuebel(�) is defined according to Bayesian formula and the conditional
probabilities [68] as follows, bel(i) = QNj=1 P (D 2 Cijej(xpj ) = lj)PMi=1QNj=1 P (D 2 Cijej(xpj ) = lj) (28)

where
PMi=1 bel(i) = 1 sinceD 2 Ci (i = 1; � � � ;M) are mutually exclusive and exhaustive.bel(i) becomes

the combination scheme which collects evidence of combinedclassifiers with different features and integrates
them for making final decision. Depending upon thesebel(i) values, therefore, the final decision is made by
combining multiple classifiers with different features as follows,E(D) = ( k if bel(k) = maxi2� bel(i) � TM + 1 otherwise

(29)

where0 < T � 1 is a predefined threshold.

4.2 A Combination Method Based on Dempster-Shafer Theory

The Dempster-Shafer (D-S) theory of evidence [58] has been applied for combining multiple classifiers [41, 53,
68]. In the method used in our work, the combination is made inthe situation that the recognition, substitution
and rejection rates of each individual classifier are merelynecessary as prior knowledge [68].

In the current problem, there are theM exhaustive and mutually exclusive propositionsA = D 2 Ci 8i 2�, which denote that an input sampleD comes from classi with the labelCi, and the universal proposition
is � = fA1; � � � ; AMg. When applied toP (1 � P � N) feature vectors extracted from the sampleD,N classifiers, saye1; � � � ; eN , will produceN evidencesej(xpj ) = lj (j = 1; � � � ; N ; 1 � pj � P ) with
each classifierej(xpj ) = lj denoting that the sampleD is assigned a labellj 2 �SfM + 1g by classifierej with the input vectorxpj . Given thatj; �j are the recognition rate and the substitution rate of classifierej , respectively. Usuallyj + �j is less than one due to the rejection action. For each classifier ej = lj, iflj 2 �, one could have uncertain beliefs that the propositionAlj = D 2 Clj is true with a degreej and is
false with a degree�j; if lj = M + 1 (i.e. D is rejected by classifierej with the input vectorxpj ), one has
no knowledge about anyone of theM propositionsAi = D 2 Ci; 8i 2 �, which could be viewed as the full
support of the universal proposition�. To combine multiple classifiers with different features, we must discard
some unnecessary evidences and special cases which includethe evidencesej(xpj ) = lj with lj = fM + 1g
and the cases of the recognition ratej = 1 and the substitution rate�j = 1. All these cases make the
combination unnecessary. After ruling out the aforementioned evidences and special cases, we can concentrate
on the general cases that there areN 0 evidencesej(xpj ) = lj with 0 < j < 1; 0 � �j < 1 (j = 1; � � � ; N 0).
For combination, we first collect the evidences into groups with those impacting the same proposition in each
group, and then combine the evidences in the each group, respectively. Let us denotem(�) and bel(�) as
basic probability assignment(BPA) function andbelief value in the D-S theory [58], respectively. For all the
evidencesej(xpj ) = lj (j = 1; � � � ; N 0), suppose that amongj1; � � � ; jN 0 there areN1 � min(M;N 0) different
labels, sayl01; � � � ; l0N1 , thus all theN 0 evidences are divided intoN1 groups, sayE1; � � � ; EN1 , in which eachej(xpj ) = lj is put to groupEk if ej(xpj ) = lj = l0j. For each groupEj, a combined BPAmEj can be
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obtained by recursively applying the combination rule in the D-S theory [58] to BPA’smj1 ; � � � ;mjr provided
by ej1(xpj1 ); � � � ; ejr(xpjr ) since all evidencesej1(xpj1 ) = l0j ; � � � ; ejr(xpjr ) = l0j . That is,m2 =m1 �mj2 ; m3 =m2 �mj3 ; � � � ; mr =mr�1 �mjr : (30)

Next, we further combine the BPA’smEj (j = 1; � � � ; N1) into a final combined BPAm =mE1 �mE2 � � � � �mEN1 (31)

and then to calculate the correspondingbel(Ai) andbel(+Ai) for 8i 2 � based upon the final BPAm. The
combination in Eq.(31) can be calculated with a fast computing method in [68].

On the basis of the belief values,bel(Ai) andbel(+Ai) (i = 1; � � � ;M), the decision rule is defined asE(D) = ( k if �bel(Ak) = maxi2��bel(Ai) � TM + 1 otherwise
(32)

where0 < T < 1 and�bel(Ai) = bel(Ai)�bel(+Ai) which reflects the pure total support by the propositionAi.
4.3 A Combination Method Using Voting Principle

The committee voting principle is a general method to make a consensus by consulting several opinions. If
each opinion could be viewed as an evidence, then the processof making a consensus will be regarded as the
process of evidential reasoning. There have been several combination methods based upon the different voting
principles [61, 68]. For a sampleD, each classifierej (j = 1; � � � ; N) produces a result of classification based
upon one kind of feature extracted from the sampleD, sayxpj (1 � pj � P ), i.e. ej(xpj ) = i. We consider
the eventej(xpj ) = i as an evidence and represent it with following formEj(D 2 Ci) = ( 1 if ej(xpj ) = i andi 2 �0 otherwise

(33)

According to themajority voting principlethat the consensus is made only if there are more than a half of
people in the committee who have the same opinion, the decision rule is defined asE(D) = ( k if ES(D 2 Ck) = maxi2�ES(D 2 Ci) > TM + 1 otherwise

(34)

whereN2 � T < N is a predefined threshold andES(D 2 Ci) = NXj=1Ej(D 2 Ci); i = 1; � � � ;M: (35)

5 Applications of Combination Methods to Text-Independent Speaker Identi-
fication

In this section, we present applications of all combinationmethods described in this paper to text-independent
speaker identification. First, we describe the speech database and feature selection. Then individual classi-
fiers used in the combination is described. It is followed by the results of individual classifiers and a specific
combination. As a case study, finally, the results for comparison are also reported.
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5.1 Speech Database, Feature Selection and Performance Evaluation

5.1.1 The Database

There is no standard database (benchmark) to evaluate speaker identification systems [44], though the DARPA
TIMIT database which was originally designed to evaluate automatic speech recognition systems is often bor-
rowed to evaluate speaker identification systems. The database for experiments reported in this paper is a subset
of the standard speech database in China. This set represents 20 speakers of the same (Mandarin) dialect. Un-
like the DARPA TIMIT database in which all utterances were recorded in the same session, the utterances in
the database were recorded during three separate sessions.In the first session, 10 different phonetically rich
sentences were uttered by each speaker. The average length of the sentences is about 4.5 seconds. In the second
and the third sessions, 5 different sentences are uttered byeach speaker, respectively. The average length of the
sentences recorded in the second and the third sessions is about 4.4 and 5.0 seconds, respectively. All utterances
were recorded in a quiet room and sampled at 11.025 kHz sampling frequency in 16 bit precision.

Some researchers have used the TIMIT database to evaluate their speaker identification systems and achieved
the identifying accuracies close to 100% [6, 7, 8, 32]. However, it is not sufficient to claim that such systems
are robust since there is little variation of speakers’ characteristics carried in voices recorded in the same ses-
sion. Actually, the performance of a speaker identificationsystem should be evaluated by testing utterances
recorded in different sessions [4, 22, 28, 29, 43, 44, 52, 59,60]. As a result, in the experiments, the training
set or Set-1 consists of 10 sentences recorded in the first session to train all individual classifiers. In addition,
5 sentences recorded in the second session are used as the training data orcross-validationdata (Set-2) to train
the combination schemes except the one based upon the votingprinciple and the test set or Set-3 is composed
of 5 sentences recorded in the third session for testing bothindividual classifiers and combination methods
described in the paper.

5.1.2 Feature Selection

Although Wolf outlined a set of desirable attributes on the chosen features for speaker recognition [64] more
than 20 years ago, unfortunately, it is highly unlikely to find any set of features which simultaneously has all
those attributes in practice [4, 18, 21, 22, 24, 28, 44, 49, 52, 56]. As a result, several features have already been
investigated [4, 21, 22, 28, 34, 63]. The main outcome of the many feature selection studies was that features
which representpitch and thespeech spectrumwere the most effective for speaker identification. However,
there is less agreement on which parameterization of the speech spectrum to use for features. Common spectrum
representations for speaker identification are linear predictive coefficients and their various transformations
(cepstral coefficients and PARCOR coefficients etc.) as wellas the cepstrum and its variants such as Mel-scale
cepstrum [4, 52, 56, 64]. As a result, we select four common features for the experiments, i.e.linear predictive
coding coefficients(LPCC), linear predictive coding cepstrum(LPC-CEP),cepstrum(CEPS) andMel-scale
cepstrum(MEL-CEP) [51].

On the other hand, it is generally agreed that the voiced parts of an utterance, especially vowels and nasal,
are more effective than the unvoiced parts for text-independent speaker identification [4, 52, 56, 64]. In exper-
iments, therefore, only the voiced parts of a sentence are kept regardless of their contents by using a simple
energy measuring method. The length of the Hamming analysiswindow is 64 ms without overlapping. It should
be noted that the size of the analysis window is slightly larger than the commonly used sizes (normally16 � 32
ms) since it has been found that the identification performance is degraded with a normal analysis window [32].
Whenever the short-time energy of a frame of the sentence is higher than a predefined threshold, spectral fea-
tures will be calculated. Furthermore, the samples are pre-emphasized by the filterH(z) = 1 � 0:97z�1 and
24-orderLPCC,24-orderLPC-CEP,20-orderCEPS and20-orderMEL-CEP are derived from the processed
samples. For utterances of all 20 speakers, total numbers offeature vectors are 10057 frames in Set-1, 4270
frames in Set-2 and 4604 frames in Set-3, respectively.
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5.1.3 Performance Evaluation

The evaluation of a speaker identification experiment is conducted in the following manner [52]. After feature
extraction, the test speech is to produce a sequence of feature vectors denoted asf~f1; � � � ; ~ftg. The sequence
of feature vectors is divided into overlapping segments ofS feature vectors. The first two segments from a
sequence would be Segment 1z }| {~f1; ~f2; � � � ; ~fS ~fS+1; ~fS+2; � � � ~f1; Segment 2z }| {~f2; ~f3; � � � ; ~fS ; ~fS+1 ~fS+2; � � �
A test segment length of 6.4 seconds would correspond toS = 100 feature vectors for a 6.4 ms frame rate. In
the experiments reported in this paper, we chooseS = 100; accordingly, total numbers of segments are 2290
in Set-2 and 2624 in Set-3, respectively, for utterances of all 20 speakers. Each segment ofS vectors is treated
as a separate test utterance and identified using the classification procedures of either individual classifiers or
the combination of multiple classifiers. Using a segment, the system produces either an identifying result or
a rejection. The above steps are repeated for test utterances from each speaker in the population. The final
performance evaluation is then computed according to the identifying rate, rejection rate and substitution rate.
In the sequel,Identification, Substitution and Rejectionis the abbreviations foridentifying rate, substitution
rate andrejection rate.Accordingly, theReliability is defined asReliability = Identi�cation100% � Rejection (36)

In the experiments, each speaker has approximately equal amount of testing speech so that the performance
evaluation is not biased to any particular speaker.

5.2 Individual Classifiers

Given a sequence of feature vectors,f~xsg, produced from an unknown speaker, the next task of the speaker
identification system is to classify that sequence as havingcome from one of the speakers in the known pop-
ulation. As mentioned in the introduction of this paper, there are various classifiers which have already been
used in speaker identification [6, 7, 11, 13, 19, 25, 28, 32, 33, 46, 47, 52, 54, 59]. For the same purpose as
the selection of common features, we choose four benchmark classifiers commonly used in speaker identifica-
tion [9, 18, 24, 28], i.e.distance classifier, vector quantization, multilayer perceptronandGaussian mixture
model.

5.2.1 The Distance Classifier

The long term averagingwas an early method widely adopted for text-independent speaker identification. the
basic idea underlying the methods is the comparison of an average computed on test data to a collection of
stored averages developed for each of the speakers in training [42]. As a result, the distance classifiers play
a prominent role for classification in the methods. In the methods, each speaker’s voice characteristics are
modeled by the average over all the feature vectors obtainedfrom samples of the person’s voice (training
vectors),f~x(i)t gTit=1 (i = 1; � � � ;K), as such,~�(i) = 1Ti PTit=1 ~x(i)t . Then for classification, the average feature

vector over the complete test utterance,f~x0sgSs=1, is computed as~m = 1S PSs=1 ~x0s and compared to each
speaker’s model using a distance classifier as follows,d(~m; ~�(i)) = (~m� ~�(i))TW (i)(~m� ~�(i)); i = 1; � � � ;K: (37)

whereW (i) is a matrix used to allow different weighings to different directions in the feature space. For a refer-
ence group ofK speakers, the test utterance is identified with speakerk only if k = argmin1�i�K d(~m; ~�(i)).
With respect to the matrixW (i) in Eq.(37), there are various forms which result in the existence of multiple
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distance classifiers [3, 25, 28, 42]. In the experiments reported in this paper, the matrixW (i) has the following
form: W (i) = ��1i ; �i = 1Ti TiXt=1(~x(i)t � ~�(i))(~x(i)t � ~�(i))T ; i = 1; � � � ;K: (38)

5.2.2 Vector Quantization

As a non-parametric model, thevector quantization(VQ) classifier was applied to speaker identification [59, 38]
and has since been the benchmark classifier for text-independent speaker identification systems. Typically, a
speaker is modeled by a VQ codebook of32 � 128 vectors derived using the LBG algorithm [39]. The
clustering and recognition are carried out using the distance measure in Eq.(37) with the matrixW (i) (i =1; � � � ;K) in Eq.(38). The distance between a test vector~x0s and theith speaker’s codebook ofC template
vectors,f~�1; � � � ; ~�Cg, is the distance of~x0s to the closest template,di(~x0s) = min1�j�C d(~x0s; ~�j) (39)

The implicit segmentation and acoustic class comparison are performed simultaneously by finding a closest
template in a speaker’s codebook and using that distance as the speaker similarity measure. Classification of
a sequence of test vectors,f~x0sgSs=1, is done by finding the speaker codebook producing the minimum average
distance, which for theith speaker’s codebook is defined as�di = 1S SXs=1 di(~x0s); i = 1; � � � ;K: (40)

For a reference group ofK speakers, the test utterance is identified with speakerk only if k = argmin1�i�K �di.
In the experiments, for each speaker, the codebook consistsof 32 vectors and the matrixW (i) (i = 1; � � � ;K)
in Eq.(39) is available from Eq.(38).

5.2.3 The Multilayer Perceptron

As supervised classifiers, neural networks have recently become popular and have been used for speaker iden-
tification [6, 7, 9, 11, 13, 46, 47, 54]. Neural networks learncomplex mappings between inputs and outputs
and are particularly useful when the underlying statisticsof the considered task are not well understood. The
multilayer perceptron(MLP) is a type of neural network that has grown popular over the past several years. The
MLP can be applied to speaker recognition as follows. First,the feature vectors are gathered for all speakers in
the population. For a reference group ofK speakers, a target vector is designed so that theith component of
the target vector corresponds to all feature vectors belonging to theith speaker(i = 1; � � � ;K) and it is labeled
as “one” and the components for the remaining speakers are labeled as “zero” in the target vector. Thus, the
MLP can be trained in the supervised manner for speaker identification. After training, for a test vector denoted
as~x0s, the MLP produces an output vector~O(~x0s) = [O1(~x0s); � � � ; OK(~x0s)]. Accordingly, for a sequence of test
vectors denoted asf~x0sgSs=1, the test utterance is identified with speakerk only if k = argmax1�i�K �Oi, where�Oi = 1S PSs=1Oi(~x0s); i = 1; � � � ;K:

In the experiments reported in the paper, the three-layeredfully connected MLP is used and the 2-foldcross-
validationtechnique [50] is employed for finding an appropriate architecture of the MLP for the considered task.
As a result, the numbers of neurons in the hidden layer cover from 32 to 36 which depend upon the dimension
of chosen feature vectors. As usual, the number of neurons inthe input layer is the dimension of a feature vector
used as the input (In the experiments reported in this paper,the number of neurons in the input layer is either
20 or 24.) and the number of neurons in the output layer is the population of speakers in the system. (In the
experiments reported in this paper, there are 20 neurons in the output layer.) The backpropagation algorithm is
used for training the MLPs [55].
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5.2.4 Gaussian Mixture Model

As a parametric model, theGaussian mixture model(GMM) was more recently applied to text-dependent
speaker identification [52] and has demonstrated excellentperformance for short test utterances. The basic idea
underlying the GMM method lies in that the distribution of feature vectors extracted from a person’s speech is
modeled by a GMM density. For a feature vector denoted as~x0s, the mixture density is defined asP (~xsj
i) = MXj=1�(i)j P (i)j (~xs); i = 1; � � � ;K: (41)

The density is a weighted linear combination ofM component uni-modal Gaussian densities described in
Eq.(6),P (i)j (~xs), each parameterized by a mean vector,~�(i)j , and covariance matrix,�(i)j . Collectively, the pa-

rameters of a speaker’s density model are denoted as
i = f�(i)j ; ~�(i)j ;�(i)j g. In this paper, diagonal covariance
matrices are used like the work in [52]. Given a sequence of feature vectors from a person’s training speech,
maximum likelihood estimates of the model parameters are obtained using the EM algorithm [15, 52]. For a
reference group ofK speakersK = f1; � � � ;Kg represented by models
1; � � � ;
K , the objective is to find
the speaker model which has the maximum of a posteriori probability for the input vectors,f~x0sgSs=1. Using
logarithms and the assumed independence between observations, the test utterance is identified with speakerk
only if k = argmax1�i�KPSs=1 logP (~x0sj
i) in which eachP (~x0sj
i) (i = 1; � � � ;K) is given in Eq.(41).
In the experiments reported in the paper, 32 components(M = 32) is used in the mixture model described in
Eq.(41).

5.3 Results of Individual Classifiers and The Optimal Correspondency

First of all, we apply four chosen benchmark classifiers individually on each of four chosen common features
for the text-independent speaker identification task. As mentioned above, the speech data in Set-1 were used
for training each individual classifier. Since four featuresets are available from speech data in Set-1, each
individual classifier was respectively trained on the four feature sets. As a result, each individual classifier will
have four results corresponding to four feature sets when the speech data in Set-3 were used for testing. In the
experiments, several thresholds are used to reject uncertain results and the best identifying result is obtained by
trial and test. In this paper, thebest identifying resultyielded by a classifier or a method of combining multiple
classifiers on a fixed test set is defined as the one with themaximal identifying rate. After four classifiers are
respectively trained on four feature sets of speech data in Set-1, the best identifying results of four individual
classifiers by testing speech data in Set-3 are shown in Table1–4.

For convenience, we abbreviate names of combination methods described in this paper as follows. The
linear combination method described in section 2 is called LIN-COM-DIF and the modified associative switch
presented in section 3 is called M-ASSOC-SW. As for the methods described in section 4, the combination
methods based upon Bayesian theory, Dempster-Shafer evidence theory and the voting principle are called
BAYES, D-S and VOTING, respectively. In order to combine multiple classifiers with different features using
LIN-COM-DIF and M-ASSOC-SW, the output of each classifier needs transforming into the standard form
described in Eq.(1) using Eq.(2). As a result, two functionsare chosen for the purpose as follows. The outputs
of the MLP classifier and the GMM classifier are processed by the functiong(s) = s and the outputs of the
distance classifier and the VQ classifier are processed by thefunctiong(s) = 1=s. In the experiments of the M-
ASSOC-SW method, the architecture of the MLP used for selecting a winner is a three-layered fully connected
neural network with 4 input neurons, 4 hidden neurons and 4 output neurons and the standard backpropaga-
tion algorithm was used to train the MLP. Except the VOTING method, in the experiments, the speech data
in Set-2 is employed to train each combination scheme or provides the a priori knowledge for combination,
i.e. the training of each subscheme in the LIN-COM-DIF and the winner-take-all combination mechanism in
the M-ASSOC-SW as well as the achievement of the confusion matrices in the BAYES and performance of
each individual classifier (recognition rate and substitution rate) used in the D-S. In the VOTING method, the
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combination is directly fulfilled in the test set. (Actually, the test results on Set-2 may be helpful to the selection
of an appropriate rejection rate during testing on Set-3). In the sequel, all results reported were obtained by
testing speech data in Set-3.

In the current problem of combination, there are four different classifiers which were respectively trained
on four different feature sets. It results in16 possible cases for combination. We call each of such casescor-
respondencydefined as the corresponding relation between those combined classifiers and their input features
for a specific combination. For instance,K individual classifiers,classifier-1,� � �,classifier-K, are respectively
trained onK feature sets,feature-1,� � �,feature-K. If theseK classifiers are combined somehow after the train-
ing of K individual classifiers finishes, such a corresponding relation betweenK classifiers and their input
features, i.e.classifier-kwith feature-k(k = 1; � � � ;K), will be called a correspondency. Moreover, the corre-
spondency which can yields the best identifying result is called optimal correspondency. We have exhaustively
investigated all 16 correspondencies using all combination methods described in section 2-4. For each combi-
nation method, 10 rejection thresholds which are uniformlydistributed over the appropriate intervals defined
in decision rules in Eq.(7), Eq.(23), Eq.(29), Eq.(32) and Eq.(34) were also selected to find the best identifying
result by trial and test. As a result, We found an optimal correspondency from 16 possible correspondencies on
the current speech database and the optimal correspondencyis listed in Table 5. Using the optimal correspon-
dency, we found that all combination methods described in the paper could yield the best identifying results. As
a result, the best identifying results produced by different combination methods on the optimal correspondency
and the corresponding rejection thresholds are shown in Table 6.

For the purpose of comparison, we have done the experiments on the optimal correspondency using the
original associative switch in [69] and the proposed methodin section 3. In [69], several methods were proposed
for producing the desired output of the MLP used for selecting a winner. In the experiments, we exhaustively
used those methods in [69] and only the best identifying result is reported here. We call the original associative
switch ASSOC-SW and the best identifying results produced by the M-ASSOC-SW and ASSOC-SW are shown
in Table 7. It is evident from the simulation that the modifiedassociative switch outperforms the original one.

5.4 The Results for Comparison

As mentioned above, there are 16 possible correspondencies. In addition, there are several methods of com-
bining multiple classifiers available in this paper. Although we have exhaustively done experiments on all
correspondencies, we cannot report all of experimental results due to the limited space. For the purpose of
comparison, we merely report some typical experiments for exploring different combinations. It should still be
noted that several thresholds have been used in combinations of classifiers and only best identifying results are
reported here.

Since there are four results of each classifier on four features of the same raw data, it is natural to consider
such a correspondency to use the features such that individual classifiers can respectively achieve the best
identifying result. According to results reported in Table1–4, we could achieve the correspondency listed
in Table 8. For convenience, the correspondency between classifiers and features is called correspondency-
1. Accordingly, the results of correspondency-1 using different combination methods are shown in Table 9.
However, its performance is slightly worse than the optimalcorrespondency’s.

To investigate the complementarity among different features, the experiments of combining classifiers (the
same type) with four different features have been conducted. In the experiments, one kind of classifier is chosen
and respectively trained with four different features of raw data. Due to the limited space, in Table 11, we
merely report the results of so-called correspondency-2 listed in Table 10. For other similar correspondencies,
the results of other kinds of classifiers chosen in this paperare quite similar to the results on correspondency-2.

We have also conducted some experiments for combining four different classifiers with the same feature.
The circumstance often occurs in most of pattern recognition problems. For convenience, correspondency-
3, correspondency-4 and correspondency-5 denote correspondencies listed in Table 12–14, respectively. In
addition, it was difficult to obtain better results than the best one of the individual classifier reported in Table 4
(the GMM classifier with the feature MEL-CEP) by combining four classifier with the feature CEPS. Therefore,
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the results of combining classifiers with the feature CEPS isnot reported here. In addition, it is worth noting that
in the circumstance of multiple classifiers with the same feature the LIN-COM-DIF method is degenerated into
the method in [65]. That is, it is just the case that there is the unique�1 and the value�1 is always one in Eq.(4).
Here, we still call the method LIN-COM-DIF for consistency.Accordingly, the results of correspondency-3,
correspondency-4 and correspondency-5 are shown in Table 15–17, respectively.

On the basis of all experimental results, it is evident that the proposed method called LIN-COM-DIF could
achieve the improved results for all cases. The method called BAYES could also achieve the satisfactory results
for all cases except the correspondency-3, which is consistent with other applications of the BAYES method
[50, 68].

6 Conclusions

We have described several methods of combining multiple classifiers with different features and their appli-
cation to text-independent speaker identification In particular, we classify the state-of-the-art techniques for
combining multiple classifiers into three frameworks. The methods in the same framework share the similar
principle for combination. Based upon the experimental results, we have demonstrated that the performance
of the text-independent speaker identification system is significantly improved and the methods of combining
multiple classifiers with different features described in this paper outperform not only the individual classifiers
but also the methods of combining multiple classifiers with the same feature. Moreover, it is evident from
simulations that the proposed linear combination method outperforms other methods described in the paper.
However, there are two open problems in the combination of multiple classifiers with different features. One
is that there is no analysis of value of information from dependent classifiers in the case of different features
as input though the topic has been recently discussed in the case of the same feature as the input of dependent
classifiers [35]. The other is that for a given task an effective method of searching for an optimal correspon-
dency on available classifiers and different features will be needed to be developed though the exhaustive way
might work as it did in the paper. We shall explore these problems in our ongoing research.
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Table 1: The results(%) of the distance classifier

Feature (Input) Identification Substitution Rejection Reliability
LPCC 74.46 18.19 7.35 80.37

LPC-CEP 74.80 13.38 11.82 84.83
CEPS 64.66 25.50 9.84 71.72

MEL-CEP 76.03 16.46 7.51 82.20

Table 2: The results(%) of the vector quantization classifier

Feature (Input) Identification Substitution Rejection Reliability
LPCC 73.33 14.44 13.23 83.36

LPC-CEP 88.30 3.20 8.50 96.51
CEPS 80.87 16.50 2.63 83.05

MEL-CEP 88.49 1.30 10.21 98.55

Table 3: The results(%) of the multilayer perceptron classifier

Feature (Input) Identification Substitution Rejection Reliability
LPCC 88.57 6.93 4.50 92.74

LPC-CEP 86.93 8.16 4.91 91.43
CEPS 65.05 22.33 12.62 74.44

MEL-CEP 83.75 5.10 11.15 93.27

Table 4: The results(%) of the Gaussian mixture model classifier

Feature (Input) Identification Substitution Rejection Reliability
LPCC 86.32 6.97 6.71 92.53

LPC-CEP 91.65 2.82 5.53 97.02
CEPS 81.67 11.09 7.24 88.04

MEL-CEP 91.73 1.37 6.90 98.53

Table 5: The optimal correspondency on classifiers and features

Classifier Distance-Classifier VQ MLP GMM

Feature (Input) LPCC MEL-CEP LPC-CEP MEL-CEP
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Table 6: The results(%) of the optimal correspondency usingdifferent combination methods

Method Rejection-Threshold Identification Substitution Rejection Reliability
LIN-COM-DIF 0.1 97.33 0.00 2.67 100.0
M-ASSOC-SW 0.6 94.78 5.22 0.00 94.78

BAYES 0.9 97.07 0.00 2.93 100.0
D-S 0.6 96.38 1.64 1.98 98.33

VOTING 2 95.58 0.69 3.73 99.28

Table 7: The results(%) of the optimal correspondency usingM-ASSOC-SW and ASSOC-SW

Method Identification Substitution Rejection Reliability
ASSOC-SW 93.25 6.75 0.00 93.25

M-ASSOC-SW 94.78 5.22 0.00 94.78

Table 8: Correspondency-1 on classifiers and features

Classifier Distance-Classifier VQ MLP GMM

Feature (Input) MEL-CEP MEL-CEP LPCC MEL-CEP

Table 9: The results(%) of correspondency-1 using different combination methods

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 97.17 1.23 1.60 98.75
M-ASSOC-SW 93.87 4.69 1.45 95.25

BAYES 96.80 3.20 0.00 96.80
D-S 94.13 2.36 3.61 97.56

VOTING 93.75 0.91 5.34 99.04

Table 10: Correspondency-2 on classifiers and features

Classifier MLP MLP MLP MLP

Feature (Input) LPCC LPC-CEP CEPS MEL-CEP

Table 11: The results(%) of correspondency-2 using methodsof combining classifiers

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 93.80 6.12 2.08 95.79
M-ASSOC-SW 91.03 8.47 0.5 91.49

BAYES 91.99 7.89 0.12 92.10
D-S 89.38 6.93 3.69 92.73

VOTING 88.87 6.30 4.83 93.38
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Table 12: Correspondency-3 on classifiers and the feature

Classifier Distance-Classifier VQ MLP GMM

Feature (Input) LPCC LPCC LPCC LPCC

Table 13: Correspondency-4 on classifiers and the feature

Classifier Distance-Classifier VQ MLP GMM

Feature (Input) LPC-CEP LPC-CEP LPC-CEP LPC-CEP

Table 14: Correspondency-5 on classifiers and the feature

Classifier Distance-Classifier VQ MLP GMM

Feature (Input) MEL-CEP MEL-CEP MEL-CEP MEL-CEP

Table 15: The results(%) of correspondency-3 using methodsof combining multiple classifiers

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 92.77 5.40 1.83 94.50
M-ASSOC-SW 89.22 8.46 2.32 91.34

BAYES 77.25 16.04 6.71 82.80
D-S 91.05 5.60 3.35 94.21

VOTING 90.58 4.62 4.80 93.47

Table 16: The results(%) of correspondency-4 using methodsof combining multiple classifiers

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 95.29 3.53 1.18 96.43
M-ASSOC-SW 91.86 6.46 1.68 93.43

BAYES 96.11 3.89 0.00 96.11
D-S 91.27 6.59 2.14 93.27

VOTING 92.98 2.78 4.24 97.10

Table 17: The results(%) of correspondency-5 using methodsof combining multiple classifiers

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 96.50 2.54 1.96 98.43
M-ASSOC-SW 93.15 6.85 0.00 93.15

BAYES 95.20 4.76 0.04 95.23
D-S 94.13 4.80 1.07 95.15

VOTING 91.12 0.91 7.97 99.01
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