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Abstract

In practical applications of pattern recognition, there are often diffegattifes extracted from raw data
which needs recognizing. Methods of combining multiple classifiers diffarent features are viewed as a
general problem in various application areas of pattern recognition. lpapier, a systematic investigation
has been made and possible solutions are classified into three frameveorlksear opinion pools, winner-
take-all and evidential reasoning. For combining multiple classifietts aifferent features, a novel method
is presented in the framework of linear opinion pools and a modifieditrgialgorithm for associative switch
is also proposed in the framework of winner-take-all. In the framé&vadrevidential reasoning, several
typical methods are briefly reviewed for use. All aforementioned methags hlready been applied to
text-independent speaker identification. The simulations show thatsgslided by the methods described
in this paper are better than not only the individual classifiers’ but@i&s obtained by combining multiple
classifiers with the same feature. It indicates that the use of combiniltgplawlassifiers with different
features is an effective way to attack the problem of text-independent speakéfitdtion.

Keywords Combination of multiple classifiers, different featuréaear opinion pools, evidential reasoning,
winner-take-all, maximum likelihood learning, EM algdwib, associative switch, text-independent speaker
identification.

1 Introduction

Recently, the combination of multiple classifiers has beéewed as a new direction for the development of
highly reliable pattern recognition systems, in particutgotical character recognition (OCR) systems. Prelim-
inary results indicate that combination of several com@etary classifiers leads to classifiers with improved
performance [5, 53, 61, 68, 69]. There are at least two resagmtifying the necessity of combining multiple
classifiers. First, for almost any one of the current patteaognition application areas, there are a number of
classification algorithms available developed from défertheories and methodologies. Usually, for a specific
application problem, each of these classifiers could reamrtain degree of success, but maybe none of them
is totally perfect or at least anyone of them is not so goodxgeaed in practical application. Second, for
a specific recognition problem, there are often numerousstyg features which could be used to represent
and recognize patterns. These features are also représantery diversified forms and it is rather hard to
lump them together for one single classifier to make a datisks a result, multiple classifiers are needed to
deal with the different features [5, 68, 69, 71]. It also fesin a general problem how to combine those clas-
sifiers with different features to yield the improved penfance. The basic idea underlying the combination
of multiple classifiers is that a consensus is made somehsedbapon the results of multiple classifiers for
a classification task using an elaborate combination sch&udar, there have been extensive studies on the
combination of multiple classifiers [1, 10, 20, 27, 35, 68Jnéng these researches, possible solutions to the



combination may be classified into three frameworks, imedr opinion pools, winner-take-all and evidential
reasoning. In the framework ¢ihear opinion poolsthe combination schemes make the final decision through
the use of a linear combination of multiple classifiers’ tesuln regard to the linear coefficients or weights
for combination, there are two kinds of methods for assignialues to linear coefficients or weights [35], i.e.
weights asveridical probabilities[36, 45, 65, 67] andgninimum error weights[16, 17, 30, 50]. In the frame-
work of winner-take-al] a device calledassociative switclis used in the process of classification to choose
the classification result of a specific classifier for a spedifput pattern [69]. Since the combination scheme
always chooses only one classifier among several clasdifierse its result as the final decision for a specific
input pattern, the chosen classifier could be viewed as aewiand the style of the combination method is
similar to the principle of winner-take-all in the unsupeed learning paradigm [31, 37]. In the framework of
evidential reasoningfor an input pattern, the output of each individual classiis regarded as an evidence or
an event and the combination scheme makes the final deciasmdlupon a method of evidential reasoning or
a principle of voting [2, 5, 20, 26, 40, 53, 68].

The so-calledifferent featuregproblem refers to that there are numerous types of featukéshwean be
extracted from the same raw data for a classification taskréfbre, several different feature sets are available
for a given data set. Based upon each one of these featura stassifier or several different classifiers can be
trained for the same classification task. It results in thsetemce of multiple classifiers with different features
for the same classification task. As a result, the problenpoflining multiple classifiers with different fea-
tures is how to develop a scheme of combining these classifigh different features to produce an improved
result for the classification task. In the current technguieis found that most of methods in the framework of
evidential reasoning could be directly applied to combindtiple classifiers with different features since the
final decision is made merely by combining the classifiersules using an evidential reasoning method or a
voting principle regardless of the types of input (featueeter) to classifiers. In the framework of winner-take-
all, the combination schemassociative switghcould also combine multiple classifiers with differenttieas
by using the mapping or coding of different features as tipaitirof the associative switch instead of differ-
ent features themselves [69]. Using such techniques, theiderably better classification results have been
produced in the field of OCR by combining multiple classifietth different features [5, 68, 69]. In the frame-
work of linear opinion pools, it is possible to directly u$etmethods with minimum error weights to combine
multiple classifiers with different features since the viiggcould be achieved by performing regression merely
based upon the information of classifiers’ errors regasdtggypes of input (feature vector) to each classifier
[16, 17, 30, 50]. Unfortunately, it is difficult to use the sting techniques with weights as veridical proba-
bilities [36, 45, 65, 67] for handling the problem since irs¢le methods the achievement of linear coefficients
usually depends upon the input (feature vector) to eackifilrs Recent researches show that the techniques
with weights as veridical probabilities can achieve coasdly good results in the applications to combination
of multiple classifiers with thesame featurd65, 67]. In this paper, we present a novel linear combimatio
scheme with weights as veridical probabilities to exteraldtate-of-the-art techniques for combining multiple
classifiers withdifferent featuresIn addition, we also propose a modified training method fier dssociative
switch [69] in the framework of winner-take-all in order taid better performance.

Speaker identificatioms the process of determining from which of the registeredagpr when a given
utterance comes. Furthermore, speaker identificatiomsystan be eithéext-independentr text-dependent
By text-independent, we refer to that the identificationgedure should work for any text in either training
or testing [28]. This is a different problem than text-deghemt speaker identification, where the text in both
training and testing is the same or is known. Speaker ideati@in is a rather hard task since a speaker’s
voice always changes in time. In particular, text-indemgndpeaker identification is more difficult than text-
dependent speaker identification since a text-indepensjggaker identification system has to use elaborate
techniques to capture the speaker’s individual charatiesi regardless of the contents carried in the speech,
while in text-dependent speaker identification the use wipte template matching techniques can directly
exploit the voice individuality associated with each phoeeor syllable. In this paper, only text-independent
speaker identification is considered. There have been sixtestudies in speaker identification so far. In
general, the technique of speaker identification includesuire extraction and classification. With respect to



feature extraction, many kinds of individual features eongfrom the characteristics of vocal cords to speech
spectrum have already been investigated and turned out tsdfel to speaker identification [3, 4, 18, 21,
22, 23, 24, 28, 34, 44, 60, 70]. Unfortunately, none of thesdures is perfect for robustness so that there is
less agreement on which parameterization of the speeclrgpeto use for features [18, 24, 28, 52, 49]. In
addition, some researchers intended to lump two or moreifestogether into a composite feature [24, 43,
44, 48]. However, the performance of the systems based umpodmposite features was not significantly
improved. Furthermore, to a certain extent, the use of caitgdeatures results in thrirse of dimensionality
problem. In particular, the problem becomes quite serioienithe techniques of neural computing with time-
delay [6, 8, 9, 13, 62] are used. On the other hand, severdkkir classifiers have been also applied in
speaker identification [9, 18, 24, 28, 49, 63]. These classifinclude distance classifiers [3, 4, 25, 33, 42],
neural network classifiers [6, 7, 8, 11, 12, 13, 14, 19, 32446 54] and classifiers based upon parametric or
non-parametric density estimation [28, 29, 52, 57, 59].c8ithere are many kinds of features and classifiers,
speaker identification becomes a typical task which needartoine multiple classifiers with different features
for robustness. Unlike the aforementioned techniques irssgeaker identification, both the proposed and
some existing methods are systematically investigatedisnpaper for text-independent speaker identification
by combining multiple classifiers with different featuré&xperimental results demonstrate the effectiveness of
these combination methods and indicate that the use of camgbmultiple classifiers with different features
is a promising way for a text-independent speaker identifinasystem to yield the significantly improved
performance.

The remainder of the paper is organized as follows. Sectigme8ents a novel method of combining
multiple classifiers with different features in the framelvef linear opinion pools. Section 3 describes a
modified training algorithm for the associative switch ie firamework of winner-take-all and section 4 briefly
reviews some existing combination methods in the framevadrkvidential reasoning for use in our work.
Section 5 presents the applications of the aforementioetbmation methods in text-independent speaker
identification and illustrates experimental results. Gosions are drawn in the final section.

2 A Linear Combination Method for Different Features

In this section, we present a novel method of combining iplelttlassifiers withdifferent featuresn the basis

of the work in [65, 67] which can merely combine multiple déigrs with thesame featureln the method,

a generalized finite mixture model based upon differentufeatis proposed and the corresponding learning
algorithms are presented by maximum likelihood estimatiith an EM algorithm.

2.1 A Generalized Finite Mixture Model for Different Features

For a sample) in a data sef, with M classes]’ = {1,2,---, M}, we assume that there afe( P > 1) feature
vectors which can be independently extracted from the saptalledx; (D), --,xp (D). For simplicity,
hereafter, we shall rewrite thege feature vectors as;, - - -, xp. Accordingly, we may emplow (N > P)
classifiersey, - - -, en, to learn the classification task using features extractad faw data irSy, respectively,
in which the input of the classifier; is the feature vectox,, (j = 1,---,N; 1 < p; < P). Given pattern
classes with the label§; (i = 1,---, M), we consider such classifiers that for an ingyt, the output of a
classifiere; is as follows,

M
ﬁj(xpj) = [pjl(xpj)a e aij(XPj)}Ta pjk(xpj) >0, ijk(xpj) =1 (1)
k=1

wherep;.(x,,) denotes the probability that the samglebelongs toC), recognized by the classifier; with

the input vector,,, andx, denotes a feature vector of the samplavith its form of representation being a
vector, a string or whatever else. The direct instancesdi slassifiers include those based upon parametric or
non-parametric density estimation. Indeed, there are stewssifiers, e.g. distance classifiers or neural network



classifiers, which output a vectar (x,,) = [u;i(xy,), -+, ujnm(xp,;)]" without satisfyingu;,(x,,) > 0 and
oM, ujr(xp,) = 1. Fortunately, these outputs can be transformed into thw forEq.(1) using a function
g(s) [65], that is,

glujk(xp,)]

Zt 1 9[u7t(xp])}

whereg(s) > 0. There are various forms of the functigiis) such agj(s) = s, g(s) = 1/s, g(s) = e * or
g(s) = s%, g(s) =1/s%, g(s) = e~ according to whether or nat;,(x,,) > 0 (k =1, -, M).

For an input-output paifx,,y}, wherey = [y1,- - cyv|T andyy being a binary valuey, € {0,1}) as
well as satisfyinngM:1 yr = 1, aclassifiel; with the input vectoix,,. specifies a distribution given by

pjk(xpj) =1 M (2)

M
|X;D]7 H pjk ij ‘0 (3)

wheref; is the set of parameters of the classifierand has been already fixed after the classifier was trained
on the data sef,. For a fixedx,_, it is reduced to a generalized Bernoulli distribution, lgtor a fixedy, we
can achieve a distribution specified by onegf(x,, 16,)’s.

For combining multiple classifiers with different featuresiother data sef; is necessary for training a
combination scheme. For an input-output gd, y) in Sy, the feature vectox,, (1 < j < P)is used as the
input of the classifiee;. Moreover, we assume that there are pridrs- {«;;(x;), 5i(D)} (i =1,---,P; j =
1,---, N) for each classifiee; ( = 1,---, N) so that we can define a generalized finite mixture distriloutio
for the pair(D,y) as

ol M
Y|D <I> Z [Zﬁz Om X; ] Y|Xp]a ZZ,@Z a” xl H[pjk(xpjw,i)]yk (4)
I=1 j=1i=1 he1

whereq;;(x;) > 0, Bi(D) > 0, S a(xi) = 1, 72, Bi(D) = 1. x,, (1 < p; < P) still denotes
the input vector of the classifier;. The generalized finite mixture distribution leads to a n@mnbination
scheme for dealing with different features. The combimatoheme consists @ combination subschemes
(respectively corresponding B different features) in whicl;;(x;) refers to the linear coefficient produced
by subscheme based upon the the feature vecigrfor the classifiere;, while g;(D) refers to the a priori
probability that for the sampl® theith subscheme is used to produce the linear coefficients faimmgahe
final decision in the combination scheme.

In Eq.(4), those priorsy;;(x;) € ® (i =1,---,P;j = 1,---, N) are conditional on input vectoss; (i =
1,---, P). As aresult, we assume that

NijP(xi, 045)
Zi\f:] AirP(Xia (pir)’

Aij >0, me_l i=1,---,P, j=1,---,N. (5)

@ij(x;) =

whereP(x;, p;;) > 0 is a parametric function and, in particular, can be given lyi§sian distribution

P(x;, i) = P(x;,mgj, ¥i5) = % eXP{—l(Xz’ —m;;)" 5 (x; — myj)} (6)
(2m) 2 [Xy5]2 2 '

wheren; is the dimension ok; andy;; = (m;;, ¥;;) is the set of all parameters in Gaussian distribution. In

the combination scheme, thus, the information from the wistpf classifiers, the desire labebhnd different

input vectorsx; (¢ = 1,---,P) are jointly considered for combination. In Eq.(4), howewey;(x;) and

Gi(D) (i=1,---,P;5=1,---,N) are still unknown and need learning from sample§;inWe shall propose

a maximum likelihood learning method to determine theserpiin the sequel. Suppose that those priors have



been already determined, for an unknown input sampl€’(y|D) can be computed by

Pk(D) :P(yk :1‘D7@ ZZIBZ azy X p]k(xp]) k= 17"'7M' (7)
j=11i=1

Using Eq.(7), the decision rule is defined as

o k |f Pk(D) = ma)qSiSM PZ(D) Z T
E(D) = { M+1 otherwise (8)

where0 < T' < 1 is a predefined thresholdZ (D) is the final decision an& (D) = M + 1 denotes that the
sampleD is rejected.

2.2 Maximum Likelihood Learning with EM Algorithm

For a classification task, we assume that thereNdassifiers which have been trained withdifferent fea-
tures extracted from raw data in the dataSgt Given another data s&f = {(D"),y")t =1,..., T} (ob-
served daty using P different features extracted from samplesSi parameter® = {«;;(x;), 3;(D)} (i =
1,---,P;j=1,--- N) are estimated by maximizing the log-likelihood

L= ZMP zmﬂzz@ e () Py ]x{1), 6)] 9)

t=1 j=1li=1

wherexg) (1 < p; < P) denotes the input vector of classifigrat timet. For the log-likelihood, we adopt an
EM algorithm [15] to estimate all parametersdrby introducing a set of indicators asissing datao observed
data. Fori=1.---,Pandj = 1,---, N, these indicators are defined as

o _ )1 if the linear coefficients are determined by subschéme
¢ 10 otherwise

o1 if y is generated from classifiess.
0 otherwise

wherey” | 1) = 1 andy" i, IJ(.") =1(t=1,---,T). Thus, the complete data consists of both the observed
data and the missing data.

An EM algorithm first finds the expected value of the compldaga likelihood. For the observed data and
the proposed mixture model, tixpectation stefE-step) computes the following expectation of the congplet
log-likelihood at thesth iteration using Bayes’ rule

e 1V1x) = Pl =1,1 = 11y, D), ()
PO )a e (00) 0
s B DO () Py ) 05)
Elrlx) = P’ =1jy", D", o)

YX Py O x), 05)al (7)) (D)
YN 8P (D)al () Py (y®)xy), 6))

(11)



That is, the a posteriori probabilities are obtained a®¥ed,

Oy = B xS y®1xYy = Bt 1t

ij 01020, (12)

To simplify the computation in th®laximization stegM-step), a trick in [66, 67] is used to rewrite Eq.(4) into

the following equivalent form
N P
P(y,D) = P(y|D,®)P(x;, ¢ :ZZ )‘7]P XH‘Pu) (Y‘ijaej)a (13)

whereP(x;,0) = SN | i, P(xi, ¢ir). Using Eq.(13), the task of Maximization step (M-step) ist¢dve the
following separate optimal problems foe=1,---, P, j=1,---, N.

T N P
et = argmax Y30 3 h (v x(”) log Pxi, 1) (14)
P ==
T N P N
)\Z(;H —argmaxZZZhS log)\” s.t. Z)\”fl Aij > 0. (15)
Aij t=1j=11i=1 j=1
T P
ﬁ(H—l —?)Lrgmaxz:z:hgg logﬁ,, s.t. Zﬁ,_l G; > 0. (16)
Bi t=11=1

Accordingly, the EM algorithm for training the proposed dairmation scheme is summarized as

1. Initialization ats =0
Fori=1,---,Pandj=1,---,N, setﬁi(s) =+ andAEj) = + as well as initialize randomly

pi1 = iz = -+ = pin Subject tOozg';)(xi) =L (G=1,--,N).
2. The EM procedure at s> 0

(1) E-step Foreach paitD("), y()), compute the a posteriori probabilitias’” (y(* x\?) andhgj) (y®)x!

(1=1,---,P; j=1,---,N) using Eq.(10) and Eq.(11).

t))

(2) M-step. Find a new estimate far=1,---,P, j = 1,---, N based upon the following updating

formulae:
s+] 1 a (s
TZM (17)
(s+1) _ 4 (s) (t)
mls Z hzs z (18)
’ Zf 1 hz7 ( ! Z
T
(s+1) _ 1 (8) (<, (1) 1By 1 (1) (s+1)77..(%) (s+1)7
i Z by (1% )% — my [ — my (19)
! Zf 1h” (¥ (t)|x('t)) t=1 ’ ! !
AT Zm7 x| (20)

(s+1) ] (s+1) «(s+1)
(s+1) (X(t)) Aij P(x;, m;; X ) 21)
(3

al S S S
7 SN A P, mED 5ty

r

3. Repeat Step 2 until a predefined ‘stop’ condition is satisfi




3 A Modified Associative Switch for Different Features

For combining multiple classifiers, the basic idea undagyihe combination in the framework of winner-take-
all is to choose the one with the best result frahclassifiers as the winner and to make the final decision by
using its result for a specific sample if there is at least dasstfier to classify the sample correctly. When
there is no classifier to classify the samplecorrectly, the combination scheme will reject it. To contpléhe
task of choosing a classifier for each sample, a device cabiedciative switclhas been proposed [69]. The
associative switch is composed &fknobssw; (j = 1.---, N) with eachsw; installed on the output channel
of classifiere; to decide whether or not it is chosen as the winner for theectirsample, i.e. whether or not
to allow its output pass through to become the final deciskmr.an input samplé, thus, the output of each
knob is given by

B l; if sw; = “on”
ld - { M +1 |f sw; = “Off” (22)

wherel, is the class label of the input samgledetermined by the decision maker. Accordinghy,knobs are
controlled by the output of theinner-take-all combination mechanigiWTA-CM). Assume that output of the
WTA-CMis denoted ag = [c1,---,cn] (0 <¢; <1; j=1,---,N). The behavior of eackw; is determined
as follows

“on'! whenj = arg maxi <<y ¢ ande; > T

S0 { “of f"  otherwise (23)

whereT is a predefined threshold and usudllyy < T < 1. To combine multiple classifiers with different
features, for an unlabeled samgde the WTA-CM also needs an input to determine the behavidnetvitch.
For this purpose, we adopt an encoding mechanism to prodo@pingor codingof the sampleD , M (D),

as the input of the WTA-CM. Like the encoding mechanism in ][6®re, M (D) is just the label vector
consisting ofV labels produced by individual classifiers i.#1(D) = [l1,---,ln] for the sampleD. When
different features of an unlabeled samgleare input to individual classifiers; (j = 1,---, N), M (D) will
also be input to the WTA-CM for recalling coadewhich determines the behavior &f knobs so as to either
select one of outputs d¥ classifiers as the final labg] or block all the output channel of individual classifiers
and assignVf + 1 to l;. Such a WTA-CM could be implemented by any existing artifici@ural networks
with the type of heteroassociative memory. In this papersimly use a three-layered multilayer perceptron
(MLP) architecture to implement the WTA-CM.

The key task in the learning process of the associate swsttteidesign of the desired output for training
the MLP used as the WTA-CM on a data gt Once we have the desired output the training procedureeis th
application of an existing learning algorithm suchbaskpropagation algorithnfb5] on the training sef;. To
design the appropriate desired output of the MLP used asothéioation scheme, we first define a criterion for
selecting a winner when there are several classifiers totlyeszeorrect result for a specific sample. We stipulate
that the output of each classifier has the standard form i(LEdf the output of a classifier does not satisfy the
form in Eq.(1), it can be transformed into the standard fosimg Eq.(2). For a samplP, thus, each classifier
ej (j =1,-++, N) with the input vecto,, (1 < p; < P) has the outpuf;(x,,) = [pj1(Xp, ), Pjnm (Xp,)].
Among thoseM components of;(x,, ), we can find two components in the following way

Pjky (ij) = ]gllcagXijk(ij )7 Djks (ij) - ]Skrﬁn]\%,)i#kl pjk(xpj ) (24)
As a result, we define the criterion of selecting winner ako¥as,
j* = arg rynea/%( Ap(j) (XP]' ), Ap(j) (XPJ') = Djk: (XPJ') — Djk, (ij )- (25)

whereA is a set of all classifiers that output the correct label fopecffic sampleD. That is, the classifier
e;- Will be chosen as the winner. Assume that a saniple S; should belong to class € I' and classifier

ej(xp,) =1 (j=1,---,N; 1 <p; < P)as well a9:§d) [M(D)] is thejth component of the desire output of



WTA-CM for the sampleD. Using the criterion defined in Eq.(25), we present a metbgataduce the desired
output of the MLP used as the WTA-CM for the following thre&efient cases:

Casel. IfI; #kforj =1,---,N,ie. there is no individual classifier giving a correct sléisation, then we
assigne\ [M (D) = 0,5 =1,---,N.

Case 2. Ifthereisonly oné;- =k (1 < j* < N), i.e. there is only one individual classifier giving the @atr
classification, then fof = 1,---, N, we let

1 whenj = j*

otherwise
Case 3. Ifthereisasubsetp C {1,---, N} andl; = k for eachj € Ip, i.e. there is more than one individual
classifier giving the correct result, then fpe=1,-- -, N, we let

D A1(D)] = { 1 whenl; =k andj = arg maxicr,, ApD(x,,)
0 otherwise

wherex,,, (1 < p; < P) is a feature vector extracted from the samplend used as the input vector
of classifiere; (i = 1,---, N). If there is more than one classifier I satisfying bothj € I, and

j = argmaxjer, Ap(i)(xpi), moreover, then we arbitrarily or randomly choose only oh¢hese
classifiers as the winner, say As a result, we let

1 whenl;, = k andj’ = arg max;ecz,, Ap® (x,,)
otherwise

4 Combination Methods Based on Evidential Reasoning

The combination methods based upon evidential reasonieldeen extensively studied and already applied in
the field of OCR [5, 53, 61, 68, 69]. The basic idea underlylmgmethods is that the result of each individual
classifier is regarded as an evidence or an event and the fig@ich is made by consulting all combined
classifiers with a method of evidential reasoning or evigeintegrating. The methods of evidential reasoning
(integrating) are usually based upon voting principle, &agn theory and Dempster-Shafer evidence theory.
In this section, we briefly review some methods in [68] whicvér been applied to the experiments of text-
independent speaker identification reported in this pdpahe sequel, the original representation in [68] will
be rewritten for the purpose of combining multiple class#ieith different features.

4.1 A Combination Method in Bayesian Formalism

In order to combine multiple classifiers with different feags in Bayesian formalism, the error of each classifier
must be taken into consideration. As a result, the error ofi gassifiers:; may be described by itsonfusion
matrix [68], PTj, as follows,

niy o Ny 1M "27(M+1)
G 0) () (7)
PT; ng  ny 3 "27(M+1) (26)
”5\31)1 ”S\if)Q n%?M ng\i[)(M+1)
for j = 1,---, N; where each row corresponds to class C;, and each columh corresponds to the event

ei(x,.) = € TU{M + 1}). Thus, an element'’) denotes that!”’ samples belonging t6; have been
() =1 (1 eTU Th | ¥ g hat/) les bel 6; have b

i



assigned a label by classifiere;. For an evenk;(x,,) = [ of an error-bearing classifier;, its truth has
uncertainty. With the knowledge of its confusion matf¥’;, such an uncertainty could be modeled by the
conditional probabilities that propositiori3 € C; (i = 1,---, M) are true under the occurrence of the event
ej(xp,) = lis as follows,
()
U]
v )
=1 n£l7)

P(D S Ci|€j(ij) = l) = (27)

With N classifiersey, - - -, ex, we shall haveV matricesPT, - - -, PTx. When these classifiers are used on
feature vectors extracted from the sample N eventse;(x,,) = I; (j = 1,---,N; I; € TU{M + 1})

will happen. An integrated belief value:l(-) is defined according to Bayesian formula and the conditional
probabilities [68] as follows,

P(D € Cilej(xy,) = 1)
>, Hj 1 P(D € Cilej(xp;) = 1)

bel(i) = (28)

where>" M bel(i) = 1 sinceD € C; (i = 1,---, M) are mutually exclusive and exhaustivel (i) becomes
the combination scheme which collects evidence of combiteskifiers with different features and integrates
them for making final decision. Depending upon thésg:) values, therefore, the final decision is made by
combining multiple classifiers with different features akdws,

B k if bel(k) = max;ep bel(i) > T
E(D) = { M +1 otherwise (29)
where0 < T < 1 is a predefined threshold.

4.2 A Combination Method Based on Dempster-Shafer Theory

The Dempster-Shafer (D-S) theory of evidence [58] has bppheal for combining multiple classifiers [41, 53,
68]. In the method used in our work, the combination is madaérsituation that the recognition, substitution
and rejection rates of each individual classifier are memelyessary as prior knowledge [68].

In the current problem, there are thé¢ exhaustive and mutually exclusive propositiohs= D € C; Vi €
I, which denote that an input sample comes from clas$ with the labelC;, and the universal proposition
is® = {A;,---, Ay }. When applied toP (1 < P < N) feature vectors extracted from the sample
N classifiers, say, ---, ey, will produce N evidences;(x,,) = I; (j = 1,---,N; 1 < p; < P) with
each classifier;(x,,) = I; denoting that the samplP is assigned a labél, € ' U{M + 1} by classifier
e; with the input vectorx,,,. Given thaty;, ¢; are the recognition rate and the substitution rate of diassi
e;, respectively. Usuallyy; + ¢; is less than one due to the rejection action. For each classifi= [;, if
l; € T, one could have uncertain beliefs that the proposition= D € Cj, is true with a degree; and is
false with a degree;; if [; = M + 1 (i.e. D is rejected by CIaSSIerf] with the input vectorx, ), one has
no knowledge about anyone of ti¢ propositions4; = D € C;, Vi € T', which could be viewed as the full
support of the universal propositid. To combine multiple classifiers with different feature® must discard
some unnecessary evidences and special cases which iticideidences;(x,,) = I; with [; = {M + 1}
and the cases of the recognition rate = 1 and the substitution rate; = 1. All these cases make the
combination unnecessary. After ruling out the aforememttbevidences and special cases, we can concentrate
on the general cases that there Afeevidences:j(x,,) = [; with0 < v; <1, 0<¢; <1(j = 1,---,N').
For combination, we first collect the evidences into groujitk #hose impacting the same proposition in each
group, and then combine the evidences in the each groupeatsgy. Let us denoten(-) and bel(-) as
basic probability assignmerfBPA) function andbeliefvalue in the D-S theory [58], respectively. For all the
evidences;j(x,,) =1; (j = 1,---, N'), suppose that among, - - - , jy there areV; < min(M, N') different
labels, say,---,l,, thus all theN' evidences are divided intty; groups, say¥, - - -, Ey,, in which each
ej(xp;) = lj is put to groupEy if e;(x,,) = I; = l;. For each group?;, a combined BPAmp; can be



obtained by recursively applying the combination rule i@ BxS theory [58] to BPAsn; ,---, m; provided
by ej, (xp;, ), -+, €5, (Xp;,) since all evidences;, (x; ) =17, -+, e, (xp, ) = 1}. Thatis,

my = my O my,, M3 =my P my, -+, M =m,;_1 5 my,. (30)
Next, we further combine the BPAis1 1, (j =1,---, Ny) into a final combined BPA
m=mp, ®mpg, - Smp, (32)

and then to calculate the correspondirg(A;) andbel(— A;) for Vi € T' based upon the final BP&. The
combination in Eq.(31) can be calculated with a fast conmguthethod in [68].
On the basis of the belief valuds;l(A;) andbel(— A;) (i = 1,---, M), the decision rule is defined as

B(D) = { M+1 otherwise (32)
where) < T' < 1 andAbel(A;) = bel(A;) — bel(— A;) which reflects the pure total support by the proposition
A;.

4.3 A Combination Method Using Voting Principle

The committee voting principle is a general method to makersensus by consulting several opinions. |If
each opinion could be viewed as an evidence, then the profesaking a consensus will be regarded as the
process of evidential reasoning. There have been sevardiination methods based upon the different voting
principles [61, 68]. For a sample, each classifie¢; (j = 1,---, N) produces a result of classification based
upon one kind of feature extracted from the samplesayx,, (1 < p; < P), i.e. e;(x,;) = i. We consider
the evenk;(x,,) = i as an evidence and represent it with following form

1 if ej(xp;) =diandi € I

0 otherwise (33)

E]‘(D € CZ) = {

According to themajority voting principlethat the consensus is made only if there are more than a half of
people in the committee who have the same opinion, the dedigle is defined as

k if ES(D € Ck) = maX;er ES(D € 07) >T

E(D) = { M +1  otherwise (34)
Where% < T < N is a predefined threshold and
N
Eg(DeC))=> E;j(DeC;), i=1---,M. (35)

J=1

5 Applications of Combination Methods to Text-Independent Speaker lenti-
fication

In this section, we present applications of all combinatioegthods described in this paper to text-independent
speaker identification. First, we describe the speech datahnd feature selection. Then individual classi-
fiers used in the combination is described. It is followed gy tesults of individual classifiers and a specific

combination. As a case study, finally, the results for consparare also reported.

10



5.1 Speech Database, Feature Selection and Performance Evaluation
5.1.1 The Database

There is no standard database (benchmark) to evaluateespdaftification systems [44], though the DARPA
TIMIT database which was originally designed to evaluat®matic speech recognition systems is often bor-
rowed to evaluate speaker identification systems. The dsgglior experiments reported in this paper is a subset
of the standard speech database in China. This set repeX®apeakers of the same (Mandarin) dialect. Un-
like the DARPA TIMIT database in which all utterances wereoreled in the same session, the utterances in
the database were recorded during three separate seskicihe first session, 10 different phonetically rich
sentences were uttered by each speaker. The average létiggtsentences is about 4.5 seconds. In the second
and the third sessions, 5 different sentences are uttereddiyspeaker, respectively. The average length of the
sentences recorded in the second and the third sessiormuisdalh and 5.0 seconds, respectively. All utterances
were recorded in a quiet room and sampled at 11.025 kHz sagnjpéquency in 16 bit precision.

Some researchers have used the TIMIT database to evalaatsggbaker identification systems and achieved
the identifying accuracies close to 100% [6, 7, 8, 32]. Hoeveit is not sufficient to claim that such systems
are robust since there is little variation of speakers’ abtaristics carried in voices recorded in the same ses-
sion. Actually, the performance of a speaker identificasyatem should be evaluated by testing utterances
recorded in different sessions [4, 22, 28, 29, 43, 44, 52689, As a result, in the experiments, the training
set or Set-1 consists of 10 sentences recorded in the fisbeas train all individual classifiers. In addition,

5 sentences recorded in the second session are used asring wiata orcross-validationdata (Set-2) to train
the combination schemes except the one based upon the ypoiiregple and the test set or Set-3 is composed
of 5 sentences recorded in the third session for testing inolikidual classifiers and combination methods
described in the paper.

5.1.2 Feature Selection

Although Wolf outlined a set of desirable attributes on the chosen feafiorespeaker recognition [64] more
than 20 years ago, unfortunately, it is highly unlikely todfiany set of features which simultaneously has all
those attributes in practice [4, 18, 21, 22, 24, 28, 44, 4956 As a result, several features have already been
investigated [4, 21, 22, 28, 34, 63]. The main outcome of thayfeature selection studies was that features
which represenpitch and thespeech spectrurwere the most effective for speaker identification. Howgver
there is less agreement on which parameterization of trecsmpectrum to use for features. Common spectrum
representations for speaker identification are linear iptied coefficients and their various transformations
(cepstral coefficients and PARCOR coefficients etc.) as agthe cepstrum and its variants such as Mel-scale
cepstrum [4, 52, 56, 64]. As aresult, we select four commatufes for the experiments, iknear predictive
coding coefficient¢LPCC), linear predictive coding cepstrufl.PC-CEP),cepstrum(CEPS) andVel-scale
cepstrum(MEL-CEP) [51].

On the other hand, it is generally agreed that the voiced diran utterance, especially vowels and nasal,
are more effective than the unvoiced parts for text-inddpan speaker identification [4, 52, 56, 64]. In exper-
iments, therefore, only the voiced parts of a sentence grerkgardless of their contents by using a simple
energy measuring method. The length of the Hamming anakyaow is 64 ms without overlapping. It should
be noted that the size of the analysis window is slightlydathan the commonly used sizes (normally~ 32
ms) since it has been found that the identification perforeas degraded with a normal analysis window [32].
Whenever the short-time energy of a frame of the sentencigliehthan a predefined threshold, spectral fea-
tures will be calculated. Furthermore, the samples areeprphasized by the filtef (z) = 1 — 0.972~! and
24-orderLPCC, 24-order LPC-CEP,20-order CEPS and20-order MEL-CEP are derived from the processed
samples. For utterances of all 20 speakers, total numbdeanfre vectors are 10057 frames in Set-1, 4270
frames in Set-2 and 4604 frames in Set-3, respectively.
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5.1.3 Performance Evaluation

The evaluation of a speaker identification experiment igloated in the following manner [52]. After feature
extraction, the test speech is to produce a sequence ofdeagators denoted a{s"], ‘e ,ﬁ}. The sequence
of feature vectors is divided into overlapping segments$ déature vectors. The first two segments from a
sequence would be

Segment 1 Segment 2
——f -
fi, fas s fs fsg1, fsq2, Ji, f2 f3, - s fsy fsq1 fsqa, -

A test segment length of 6.4 seconds would corresporfl£0100 feature vectors for a 6.4 ms frame rate. In
the experiments reported in this paper, we cha®se 100; accordingly, total numbers of segments are 2290
in Set-2 and 2624 in Set-3, respectively, for utterancedl @espeakers. Each segment®¥ectors is treated
as a separate test utterance and identified using the aasisifi procedures of either individual classifiers or
the combination of multiple classifiers. Using a segmer#,system produces either an identifying result or
a rejection. The above steps are repeated for test utterdrma each speaker in the population. The final
performance evaluation is then computed according to thetiiying rate, rejection rate and substitution rate.
In the sequeljdentification, Substitution and Rejectigthe abbreviations foidentifying rate, substitution
rate andrejection rate.Accordingly, theReliability is defined as

Identification

Reliability =
eliability 100% — Rejection

(36)

In the experiments, each speaker has approximately equairanof testing speech so that the performance
evaluation is not biased to any particular speaker.

5.2 Individual Classifiers

Given a sequence of feature vectofs,}, produced from an unknown speaker, the next task of the speak
identification system is to classify that sequence as hasamge from one of the speakers in the known pop-
ulation. As mentioned in the introduction of this paper,réhare various classifiers which have already been
used in speaker identification [6, 7, 11, 13, 19, 25, 28, 3248347, 52, 54, 59]. For the same purpose as
the selection of common features, we choose four benchntaskifiers commonly used in speaker identifica-
tion [9, 18, 24, 28], i.e.distance classifier, vector quantization, multilayer mg@ttonandGaussian mixture
model

5.2.1 The Distance Classifier

Thelong term averagingvas an early method widely adopted for text-independerakgredentification. the
basic idea underlying the methods is the comparison of arageecomputed on test data to a collection of
stored averages developed for each of the speakers inngaii2]. As a result, the distance classifiers play
a prominent role for classification in the methods. In thehmods, each speaker’s voice characteristics are
modeled by the average over all the feature vectors obta‘lmd samples of the person’s voice (training
vectors), {xt Vi i =1,---,K), as such,u = &~ Zt . Then for classification, the average feature

vector over the complete test utterande?,}?_,, is computed asn = + %, #, and compared to each
speaker’'s model using a distance classmer as follows,

d(m, i) = (i — @)W (i — i), =1, K. (37)
whereW (V) is a matrix used to allow different weighings to differentaditions in the feature space. For a refer-

ence group oK speakers, the test utterance is identified with spelkenly if & = arg min;<;< s d(m, i),
With respect to the matri%¥ () in Eq.(37), there are various forms which result in the exise of multiple

12



distance classifiers [3, 25, 28, 42]. In the experimentsntefdan this paper, the matri¥’ (*) has the following
form:

@ — @@ - @’ =1, K. (38)

5.2.2 Vector Quantization

As a non-parametric model, thrector quantizatiofVQ) classifier was applied to speaker identification [59, 38
and has since been the benchmark classifier for text-indieperspeaker identification systems. Typically, a
speaker is modeled by a VQ codebook3af ~ 128 vectors derived using the LBG algorithm [39]. The
clustering and recognition are carried out using the diestameasure in Eq.(37) with the matiX () (i =
1,---,K) in Eq.(38). The distance between a test veatpand theith speaker’'s codebook @ template

vectors {ji1,- - -, lic}, is the distance of’, to the closest template,
4i(7,) = | min, d(F,, i) (39)

The implicit segmentation and acoustic class compariserparformed simultaneously by finding a closest
template in a speaker’'s codebook and using that distandeeagpeaker similarity measure. Classification of
a sequence of test vectofs?, }2_,, is done by finding the speaker codebook producing the mimiraverage
distance, which for théth speaker’'s codebook is defined as

1

For areference group df speakers, the test utterance is identified with spelakety if & = arg min;<;< d;.
In the experiments, for each speaker, the codebook comsi8® vectors and the matri’ () (i = 1,. .., K)
in Eq.(39) is available from EQq.(38).

5.2.3 The Multilayer Perceptron

As supervised classifiers, neural networks have recentigrne popular and have been used for speaker iden-
tification [6, 7, 9, 11, 13, 46, 47, 54]. Neural networks leaomplex mappings between inputs and outputs
and are particularly useful when the underlying statistitthe considered task are not well understood. The
multilayer perceptrorfMLP) is a type of neural network that has grown popular oliergast several years. The
MLP can be applied to speaker recognition as follows. Fin&t feature vectors are gathered for all speakers in
the population. For a reference groupfgfspeakers, a target vector is designed so thaittheomponent of
the target vector corresponds to all feature vectors bahgnig theith speakefi = 1,---, K) and it is labeled

as “one” and the components for the remaining speakers laedelh as “zero” in the target vector. Thus, the
MLP can be trained in the supervised manner for speakerifbation. After training, for a test vector denoted
asi’,, the MLP produces an output vecto(i,) = [01(Z.), - - -, O (i,)]. Accordingly, for a sequence of test
vectors denoted ag’, }5_,, the test utterance is identified with speakemly if & = arg max; <;<x O;, where
O;= ¢35, 0i(&,); i=1,---, K.

In the experiments reported in the paper, the three-layfeitdconnected MLP is used and the 2-falobss-
validationtechnique [50] is employed for finding an appropriate aagtitre of the MLP for the considered task.
As a result, the numbers of neurons in the hidden layer cawen B2 to 36 which depend upon the dimension
of chosen feature vectors. As usual, the number of neurahimput layer is the dimension of a feature vector
used as the input (In the experiments reported in this papemumber of neurons in the input layer is either
20 or 24.) and the number of neurons in the output layer is tpilation of speakers in the system. (In the
experiments reported in this paper, there are 20 neuroteinutput layer.) The backpropagation algorithm is
used for training the MLPs [55].
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5.2.4 Gaussian Mixture Model

As a parametric model, th€aussian mixture mod€lGMM) was more recently applied to text-dependent
speaker identification [52] and has demonstrated excedierfbrmance for short test utterances. The basic idea
underlying the GMM method lies in that the distribution oéfere vectors extracted from a person’s speech is
modeled by a GMM density. For a feature vector denoted,athe mixture density is defined as

P(Z,|) Za i=1,--,K. (41)

The den5|ty is a weighted linear combination Jaf component uni-modal Gau53|an densities described in
Eq.(6), P ( s), each parameterized by a mean veqréﬂ, and covarlance matn)E . Collectively, the pa-

rameters of a speaker’s density model are denotéel as {a' ,ug , } In this paper, diagonal covariance
matrices are used like the work in [52]. Given a sequence aitife vectors from a person’s training speech,
maximum likelihood estimates of the model parameters atairdd using the EM algorithm [15, 52]. For a
reference group oK speakersC = {1,---, K} represented by modef3,, -- -, Q, the objective is to find
the speaker model which has the maximum of a posteriori fitityafor the input vectors{i’.}5_,. Using
logarithms and the assumed mdependence between obsesydtie test utterance is |dent|f|ed with speaker
only if k = argmax;<;<x 35, log P(7.]Q;) in which eachP(i,|Q;) (i = 1,---,K) is given in Eq.(41).
In the experiments reported in the paper, 32 compongvits= 32) is used in the mixture model described in
Eq.(41).

5.3 Results of Individual Classifiers and The Optimal Correspondency

First of all, we apply four chosen benchmark classifiersvialtially on each of four chosen common features
for the text-independent speaker identification task. Astioeed above, the speech data in Set-1 were used
for training each individual classifier. Since four featw&ts are available from speech data in Set-1, each
individual classifier was respectively trained on the feeattire sets. As a result, each individual classifier will
have four results corresponding to four feature sets wherspleech data in Set-3 were used for testing. In the
experiments, several thresholds are used to reject uirteetsults and the best identifying result is obtained by
trial and test. In this paper, theest identifying resulfielded by a classifier or a method of combining multiple
classifiers on a fixed test set is defined as the one witlmidnémal identifying rate After four classifiers are
respectively trained on four feature sets of speech datatrl Sthe best identifying results of four individual
classifiers by testing speech data in Set-3 are shown in Taldle

For convenience, we abbreviate names of combination msttledcribed in this paper as follows. The
linear combination method described in section 2 is calldé-COM-DIF and the modified associative switch
presented in section 3 is called M-ASSOC-SW. As for the nashdescribed in section 4, the combination
methods based upon Bayesian theory, Dempster-Shafemeeidbeory and the voting principle are called
BAYES, D-S and VOTING, respectively. In order to combine tiplé classifiers with different features using
LIN-COM-DIF and M-ASSOC-SW, the output of each classifieed® transforming into the standard form
described in Eqg.(1) using Eq.(2). As a result, two functiareschosen for the purpose as follows. The outputs
of the MLP classifier and the GMM classifier are processed byfuihctiong(s) = s and the outputs of the
distance classifier and the VQ classifier are processed dytiséong(s) = 1/s. In the experiments of the M-
ASSOC-SW method, the architecture of the MLP used for selget winner is a three-layered fully connected
neural network with 4 input neurons, 4 hidden neurons andtgubineurons and the standard backpropaga-
tion algorithm was used to train the MLP. Except the VOTINGtmogl, in the experiments, the speech data
in Set-2 is employed to train each combination scheme orighesvthe a priori knowledge for combination,
i.e. the training of each subscheme in the LIN-COM-DIF arelilinner-take-all combination mechanism in
the M-ASSOC-SW as well as the achievement of the confusiaticea in the BAYES and performance of
each individual classifier (recognition rate and substitutate) used in the D-S. In the VOTING method, the
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combination is directly fulfilled in the test set. (Actualthe test results on Set-2 may be helpful to the selection
of an appropriate rejection rate during testing on Set-8)the sequel, all results reported were obtained by
testing speech data in Set-3.

In the current problem of combination, there are four déferclassifiers which were respectively trained
on four different feature sets. It results i possible cases for combination. We call each of such aases
respondencylefined as the corresponding relation between those conhblassifiers and their input features
for a specific combination. For instanck, individual classifiersclassifier-1. - - classifier-K are respectively
trained onK feature setdeature-1. - - feature-K If theseK classifiers are combined somehow after the train-
ing of K individual classifiers finishes, such a corresponding imabetweenk classifiers and their input
features, i.eclassifier-kwith feature-k(k = 1, -- -, K), will be called a correspondency. Moreover, the corre-
spondency which can yields the best identifying result iedaptimal correspondencye have exhaustively
investigated all 16 correspondencies using all combinatiethods described in section 2-4. For each combi-
nation method, 10 rejection thresholds which are unifordistributed over the appropriate intervals defined
in decision rules in Eq.(7), Eq.(23), Eq.(29), Eq.(32) angd(&4) were also selected to find the best identifying
result by trial and test. As a result, We found an optimal egpondency from 16 possible correspondencies on
the current speech database and the optimal correspondeligtgd in Table 5. Using the optimal correspon-
dency, we found that all combination methods describedap#per could yield the best identifying results. As
a result, the best identifying results produced by diffemmbination methods on the optimal correspondency
and the corresponding rejection thresholds are shown ite&ab

For the purpose of comparison, we have done the experimentseooptimal correspondency using the
original associative switch in [69] and the proposed meiha#ction 3. In [69], several methods were proposed
for producing the desired output of the MLP used for selegctirwinner. In the experiments, we exhaustively
used those methods in [69] and only the best identifyingltésteported here. We call the original associative
switch ASSOC-SW and the best identifying results produgetthe® M-ASSOC-SW and ASSOC-SW are shown
in Table 7. It is evident from the simulation that the modifeessociative switch outperforms the original one.

5.4 The Results for Comparison

As mentioned above, there are 16 possible correspondericiesidition, there are several methods of com-
bining multiple classifiers available in this paper. Altighbuwe have exhaustively done experiments on all
correspondencies, we cannot report all of experimentalltseslue to the limited space. For the purpose of
comparison, we merely report some typical experimentsxplaging different combinations. It should still be
noted that several thresholds have been used in combiraifariassifiers and only best identifying results are
reported here.

Since there are four results of each classifier on four featof the same raw data, it is natural to consider
such a correspondency to use the features such that indivadassifiers can respectively achieve the best
identifying result. According to results reported in Taldle4, we could achieve the correspondency listed
in Table 8. For convenience, the correspondency betweeasifitas and features is called correspondency-
1. Accordingly, the results of correspondency-1 usinged@ht combination methods are shown in Table 9.
However, its performance is slightly worse than the optiotatespondency’s.

To investigate the complementarity among different fezguthe experiments of combining classifiers (the
same type) with four different features have been condudietthe experiments, one kind of classifier is chosen
and respectively trained with four different features ofvrdata. Due to the limited space, in Table 11, we
merely report the results of so-called correspondencygt2diin Table 10. For other similar correspondencies,
the results of other kinds of classifiers chosen in this papequite similar to the results on correspondency-2.

We have also conducted some experiments for combining fiffereht classifiers with the same feature.
The circumstance often occurs in most of pattern recognigimblems. For convenience, correspondency-
3, correspondency-4 and correspondency-5 denote corrdepoies listed in Table 12—-14, respectively. In
addition, it was difficult to obtain better results than thesstbone of the individual classifier reported in Table 4
(the GMM classifier with the feature MEL-CEP) by combiningifelassifier with the feature CEPS. Therefore,
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the results of combining classifiers with the feature CER®igeported here. In addition, it is worth noting that
in the circumstance of multiple classifiers with the saméuiesthe LIN-COM-DIF method is degenerated into
the method in [65]. Thatis, itis just the case that thereésuhique3; and the valug, is always one in Eq.(4).
Here, we still call the method LIN-COM-DIF for consistendiccordingly, the results of correspondency-3,
correspondency-4 and correspondency-5 are shown in TablE7] respectively.

On the basis of all experimental results, it is evident thatgroposed method called LIN-COM-DIF could
achieve the improved results for all cases. The methoddcBIeYES could also achieve the satisfactory results
for all cases except the correspondency-3, which is camistith other applications of the BAYES method
[50, 68].

6 Conclusions

We have described several methods of combining multiplsstiars with different features and their appli-
cation to text-independent speaker identification In paldr, we classify the state-of-the-art techniques for
combining multiple classifiers into three frameworks. Thetheds in the same framework share the similar
principle for combination. Based upon the experimentaliltsswe have demonstrated that the performance
of the text-independent speaker identification systemgisifscantly improved and the methods of combining
multiple classifiers with different features describedhispaper outperform not only the individual classifiers
but also the methods of combining multiple classifiers with same feature. Moreover, it is evident from
simulations that the proposed linear combination methddestorms other methods described in the paper.
However, there are two open problems in the combination dfiphel classifiers with different features. One

is that there is no analysis of value of information from degent classifiers in the case of different features
as input though the topic has been recently discussed irefeaf the same feature as the input of dependent
classifiers [35]. The other is that for a given task an efiectnethod of searching for an optimal correspon-
dency on available classifiers and different features welhbeded to be developed though the exhaustive way
might work as it did in the paper. We shall explore these @wots in our ongoing research.
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Table 1: The results(%) of the distance classifier

Feature (Input) Identification Substitution Rejection iRaility

LPCC 74.46 18.19 7.35 80.37
LPC-CEP 74.80 13.38 11.82 84.83
CEPS 64.66 25.50 9.84 71.72
MEL-CEP 76.03 16.46 7.51 82.20

Table 2: The results(%) of the vector quantization clagsifie

Feature (Input) Identification Substitution Rejection iBaility

LPCC 73.33 14.44 13.23 83.36
LPC-CEP 88.30 3.20 8.50 96.51
CEPS 80.87 16.50 2.63 83.05
MEL-CEP 88.49 1.30 10.21 98.55

Table 3: The results(%) of the multilayer perceptron cliessi

Feature (Input) Identification Substitution

Rejection iRaility

LPCC 88.57 6.93 4.50 92.74
LPC-CEP 86.93 8.16 491 91.43
CEPS 65.05 22.33 12.62 74.44
MEL-CEP 83.75 5.10 11.15 93.27

Table 4: The results(%) of the Gaussian mixture model diassi

Feature (Input) Identification Substitution Rejection iRaility

LPCC 86.32 6.97 6.71 92.53
LPC-CEP 91.65 2.82 5.53 97.02
CEPS 81.67 11.09 7.24 88.04
MEL-CEP 91.73 1.37 6.90 98.53

Table 5: The optimal correspondency on classifiers and festu

Classifier Distance-Classifier VQ

MLP GMM
Feature (Input) LPCC

MEL-CEP LPC-CEP MEL-CEP
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Table 6: The results(%) of the optimal correspondency ugdifigrent combination methods

Method Rejection-Threshold Identification Substitution ejéttion Reliability
LIN-COM-DIF 0.1 97.33 0.00 2.67 100.0
M-ASSOC-SW 0.6 94.78 5.22 0.00 94.78

BAYES 0.9 97.07 0.00 2.93 100.0

D-S 0.6 96.38 1.64 1.98 98.33
VOTING 2 95.58 0.69 3.73 99.28

Table 7: The results(%) of the optimal correspondency uBir§SSOC-SW and ASSOC-SW

Method Identification  Substitution Rejection Reliability
ASSOC-SW 93.25 6.75 0.00 93.25
M-ASSOC-SW 94.78 5.22 0.00 94.78

Table 8: Correspondency-1 on classifiers and features

Classifier Distance-Classifier VQ MLP GMM
Feature (Input) MEL-CEP MEL-CEP LPCC MEL-CEP

Table 9: The results(%) of correspondency-1 using diffecembination methods

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 97.17 1.23 1.60 98.75
M-ASSOC-SW 93.87 4.69 1.45 95.25

BAYES 96.80 3.20 0.00 96.80

D-S 94.13 2.36 3.61 97.56
VOTING 93.75 0.91 5.34 99.04

Table 10: Correspondency-2 on classifiers and features

Classifier MLP MLP MLP MLP
Feature (Input) LPCC LPC-CEP CEPS MEL-CEP

Table 11: The results(%) of correspondency-2 using metbbdembining classifiers

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 93.80 6.12 2.08 95.79
M-ASSOC-SW 91.03 8.47 0.5 91.49

BAYES 91.99 7.89 0.12 92.10

D-S 89.38 6.93 3.69 92.73
VOTING 88.87 6.30 4.83 93.38
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Table 12: Correspondency-3 on classifiers and the feature

Classifier Distance-Classifier

vQ

MLP GMM

Feature (Input) LPCC

LPCC LPCC LPCC

Table 13: Correspondency-4 on classifiers and the feature

Classifier Distance-Classifier

VR

MLP

GMM

Feature (Input) LPC-CEP

LPC-CEP LPC-CEP LPC-CEP

Table 14: Correspondency-5 on classifiers and the feature

Classifier Distance-Classifier

VQ MLP

GMM

Feature (Input) MEL-CEP

MEL-CEP MEL-CEP MEL-CEP

Table 15: The results(%) of correspondency-3 using metbbdembining multiple classifiers

Method Identification  Substitution Rejection Reliability
LIN-COM-DIF 92.77 5.40 1.83 94.50
M-ASSOC-SW 89.22 8.46 2.32 91.34

BAYES 77.25 16.04 6.71 82.80

D-S 91.05 5.60 3.35 94.21
VOTING 90.58 4.62 4.80 93.47

Table 16: The results(%) of correspondency-4 using metbbdembining multiple classifiers

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 95.29 3.53 1.18 96.43
M-ASSOC-SW 91.86 6.46 1.68 93.43

BAYES 96.11 3.89 0.00 96.11

D-S 91.27 6.59 2.14 93.27
VOTING 92.98 2.78 4.24 97.10

Table 17: The results(%) of correspondency-5 using metbbdembining multiple classifiers

Method Identification Substitution Rejection Reliability
LIN-COM-DIF 96.50 2.54 1.96 98.43
M-ASSOC-SW 93.15 6.85 0.00 93.15

BAYES 95.20 4.76 0.04 95.23

D-S 94.13 4.80 1.07 95.15
VOTING 91.12 0.91 7.97 99.01
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