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Abstract: In this study, we aimed to implement information obtained and refined from garden
elements in heritage conservation, monitoring, and management to precisely construct an information
model of classical Chinese gardens, including information on the garden entity, garden space, and
garden attributes, etc., and to improve the management efficiency of classical Chinese royal gardens.
Three-dimensional laser scanning technology and point cloud information were used to accurately
collect and process digital information from classical Chinese royal gardens. After classifying
and processing the point cloud data, correlations therein could be further assessed and used to
greatly improve the accuracy and management efficiency of spatial information. To provide a
more convenient solution for the subsequent conservation and management of landscape heritage,
a method for establishing a three-dimensional digital information database and a full life-cycle
application management platform for classical Chinese royal gardens is proposed in this research.
This method has broad applications for the digital conservation and management of cultural heritage.

Keywords: classical Chinese royal gardens; 3D digital information; cultural heritage; conserva-
tion; management

1. Introduction

The digitalization of information is an important scientific means for conserving,
restoring, and passing on cultural heritage. The digital reconstruction of cultural heritage
sites involves the complete collection, integration, and modeling of their geometric shapes,
colors, postures, history, etc., constituting the basis of digital archiving for cultural her-
itage [1,2]. Terrestrial laser scanning mainly consist of a scanning mirror and a servo motor,
allowing them to be flexible and portable for the quick, thorough, and precise collection of
3D geometric information about the surface features of heritage sites. This technology is
widely used in engineering construction, construction supervision, urban 3D model recon-
struction, earthwork measurements, landslide monitoring, cultural heritage conservation,
industrial facility measurements, crime scene investigations, accident scene reconstruction,
and other fields [3]. As far as cultural heritage is concerned, TLS have been widely applied
in the measurement, monitoring, and conservation of historical sites, cave temples, ancient
buildings, etc. [4–8].

Traditional Chinese gardens are an important part of the nation’s cultural heritage,
among which the imperial gardens from the Qing Dynasty at the Summer Palace are
considered a world cultural heritage site. As an important extension of 3D digitaliza-
tion, point cloud directly supports the digital sampling, virtual restoration, 3D recon-
struction and archiving, etc. of cultural heritage sites [9–12]. The digital collection and
archiving of Chinese traditional gardens has evolved; however, many important elements
make up the artificial and natural features of Chinese royal gardens, including various
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forms and complex classification objects such as water bodies, rocks, plants, buildings,
topography, historical information, etc. As a consequence, the diverse settings, complex
morphological structures, target occlusion and overlapping, large spatial density differ-
ences, etc. are common problems in the classification of 3D point clouds for this type of
cultural heritage site [13–19].

Traditionally, a garden heritage analysis is carried out using manual methods, es-
pecially in the survey phase. Combining triangulation and digital photogrammetry, the
geometric and the texture/material properties of a garden element can be obtained; this in-
formation can then be digitized on a 2D platform, and a 3D model can be produced. At the
same time, a historical analysis can be performed, examining past sources, documentation,
and all other existing information [20].

The current trend, however, is to combine digital photogrammetry with laser scanning,
as described in many articles [21–30]. Digital photogrammetry is based on the triangulation
principle [25,30], as the images produced are taken from different viewpoints [30]. Combin-
ing this with laser scanning allows for the capture of high-resolution photographs of the
materials’ textures [31,32] and, as a consequence, information on any material degradation.
The photographs need to be postprocessed, which is normally possible with software.
However, combining laser scanning and digital photogrammetry can be difficult, as both
devices must be properly calibrated; therefore, error propagation is likely to occur [31].
This method consists of taking photographs while moving the camera continuously, trying
to detect convergent images, and then digitally reconstructing the geometry [32]. Some
terrestrial laser scanners (TLS) are based on the triangulation principle as well [25,31,33].
They produce a point cloud of the scanned object [28], which needs to be postprocessed
and then transformed into a 3D model [28,34]. Point cloud postprocessing is still a time-
consuming task [34–36], even if some attempts have been made to speed it up [29,35]. TLS
can be integrated with a geographic information system (GIS) to geo-locate the scanned
object using Cartesian coordinates, and to analyze the geospatial data. The latest techniques
use unmanned aerial vehicles (UAV, commonly known as drones) combined with GIS to
scan the surroundings. These techniques are particularly useful when the landscape is
connected to the building being studied, as previously used for the Borobudur Temple [35].

TLS outputs are point clouds and need to be processed before building the BIM
model [37]. No specific heritage-related issues have been found in this practice; how-
ever, building a BIM model is a propaedeutic task. The most common operations are
the following:

• Noise elimination [8,25,38], which consists of detecting and eliminating scanned items
that are not part of the case study;

• Point cloud registration [18,28,34,35], which consists of merging different point clouds
of the same object, derived from different scanning sessions; and

• Meshing, which consists of creating triangulated surfaces to be turned into 3D models
afterwards, performed using specific software [34].

This task is long and elaborate, but some attempts have been made to automate
it [24,25,29,34,39]. Research on automation has been intense, as this would allow for
quicker and cheaper surveys to be performed when applied to the heritage sector. More-
over, an architect/restorer charged with digitizing and conserving a heritage building
would struggle to manually postprocess points cloud by themselves. These tasks are
not particularly straightforward, and very often, specific photogrammetry knowledge is
required. For instance, Garagnani developed a new plug-in, called Green Spider, which
helps in the automation of importing point clouds [24,27,28]. Green Spider imports select
points of a point cloud and transforms them into snaps (i.e., reference points), allowing the
bonds to be retraced and converted into 3D smart objects. Practically, Green Spider allows
the user to select which points of the cloud are needed and converts them into masses
(i.e., 3D undefined objects). These masses can then be imported in any 3D modelling
platform—after being embedded with semantic information, such as materials, dimensions,
etc.—and then inserted into the BIM model as “families”, i.e., categories of similar objects.



Sustainability 2022, 14, 4108 3 of 21

Other attempts at automating postprocessing have also been made. In 2014,
Oreni et al. [30–36,39] developed a methodology using Non-Uniform Rational Basis Splines
(NURBS). NURBS allows for modelling based on vector extraction from point clouds using
mathematical functions. Another example is the Cloud-to-BIM-to-FEM method, which is
not exactly an automation process, but rather, a procedure that converts point clouds into
BIM and then simulates the structural behavior using the Finite Element Method (FEM).

Until now, few attempts have been made to assess the conditions of heritage sites
(which could be defined as an assessment of the state of conservation of an object in view
of its desired uses) using BIM. Hypothetical reconstructions of ruins/damaged build-
ings [28,40] and stratigraphic depictions [32,41] have been made, but evidently, assessing
their condition is a difficult task, as the interpretational skills of professionals play an
important role in such tasks [33,38]. In practice, the outcome of condition assessments
strongly depends on the experience and rigorousness of the professionals involved.

The abovementioned experiments are elective, even if they do not completely solve
the BIM integration problem, as conversions from volumetric objects (i.e., simple digital
masses) to “smart” (i.e., parametric) ones are complicated for people without a strong IT
background. However, they represent an important achievement and a potential starting
point for further research [6].

Below, we review the research issues that have emerged in relation to heritage science.

• Survey techniques: different methods have been used, from traditional approaches to
advanced automated methods, such as TLS integrated with GIS, digital photogram-
metry, and UAVs. Using these methods, a point cloud digitally representing a real
building is obtained. However, a common problem is optimizing the conversion from
point clouds to 3D models. The exportation step is still difficult and time-consuming,
even if some attempts have been made to automate this process.

• Point clouds: the latest survey techniques used to build a heritage model present
the data in a point cloud format, which has the capacity to capture very fine details;
however, this conversion to a 3D model is also intricate and time-consuming. Fur-
ther research is needed to identify which LoD is required to facilitate different tasks
(analysis, monitoring, and recording the conditions).

• Parametric smart object libraries are an attempt to square the circle: to create general-
izable objects that can represent the individual features of historic buildings. Their
advantage is that they contain virtual representations of existing constructive elements
that only need to be modelled once. Their parametric nature provides a great advan-
tage, as they can be modified and updated as needed, e.g., with maintenance, changes,
new discoveries, etc. Parametric libraries can also contain different kinds of objects:
constructive elements, architecture-language components, constructive techniques, etc.
Two main libraries have been constructed so far: HBIM and JHBIM, which is a specific
HBIM extension for Old Jeddah. These libraries were created following the procedural
modelling rules and were coded with GDL scripts to automatically create elements that
are based on shape grammars. Nevertheless, using parametric smart object libraries
can be slightly restrictive; if a specific architectural style is not present in parametric
libraries, they need to be manually modified. As new libraries for historical styles are
developed, new research will be needed to identify the limitations of this approach.

• Unified visualization between 3D model and metadata: the most advantageous feature
of BIM for heritage science is perhaps its ability to link 3D models to metadata.
Interesting experiences have been reported in the use of video game engines to perform
virtual tours of 3D models populated with related metadata. However, research is
urgently needed in the development of a heritage-specific technology that can sustain
and display heritage science information, including historical data, the conditions of
the site, environmental parameters, risks to the materials, and forecasts.

From the findings and remarks on previous research, we conclude that further research
is needed. Specifically, future work should focus on how to (visually) unify 3D smart
models and metadata; how to automate importing processes (from point clouds to 3D
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smart models); and how to include the conditions, risks, environmental parameters, and
forecasts in the model.

Life-cycle management will continue to be important in the landscape heritage of a
site until the site eventually degrades over time due to research activities, such as surveying
and mapping, recording, protection, and monitoring; therefore, we propose a digital
platform for gathering complete information on heritage sites for integrated information
management [38,42–45], as consolidating this information helps in the protection, research,
and utilization of heritage sites. This life-cycle management method can help establish a
professional collaborative platform for landscape heritage conservation and more accurately
integrate its history, current situation, intervention, and management information with
future development and applications. It greatly promotes the optimization, reorganization,
and social sharing of landscape heritage information [41,46,47]. In this paper, the Jianxin
Courtyard, a typical classical Chinese royal garden, was taken as an example. A TLS was
used to digitally collect information about this site, and a ground laser point cloud was
used to classify and extract the garden elements. Then, our life-cycle management method
was used for follow-up monitoring and management [2,16]. With improvements in digital
technologies, the simultaneous improvement of the methods and concepts used in the
conservation and management of landscape heritage is urgently needed.

2. Materials and Methods
2.1. Methodological Approach

As our aims were (i) to implement the information obtained and refined from garden
elements, (ii) to improve heritage protection, monitoring, and management, (iii) to accu-
rately construct an information model of classical Chinese gardens, including information
on the garden entity, garden space, and garden attributes, and (iv) to improve the life-cycle
management efficiency of classical Chinese royal gardens, we constructed an information
model based on methods applied in and data obtained from surveying and mapping
Beijing royal gardens. Additionally, classifying garden elements such as garden buildings,
ancient trees, water revetments, paving sketches, and mountains and stones can provide
support for the management of classical Chinese gardens [17]. Reclassifying the elements
of classical Chinese gardens based on the information model is also in accordance with
traditional landscape architecture theory, surveying and mapping practice theory, and the
relevant requirements of historical garden conservation. Additionally, putting forward
a universal classification system is helpful in further systematizing the study of classical
Chinese gardens and in facilitating the application and management of information.

A metric and documentary analysis of the garden of a particular historical, architec-
tural, or archaeological site of interest can be divided into the following phases:

• Historical analysis; surveying and 3D metric data processing; identification of the
characteristic elements and their modelling;

• Digitization of semantic, documentary, and graphic information; point cloud data
processing based on the garden element characteristics of a Chinese royal garden; and
informatization, conservation, and management of garden elements;

• Construction of a cultural heritage protection platform and application of the 3D
information system. Figure 1. showed the flowchart for building a database of
classical Chinese royal gardens.

2.2. Materials and Equipment

• The ground 3D laser scanning equipment used in this study was a Focus 3D X 330,
a phase 3D laser scanner based on pulse ranging from the FARO Company. The
equipment used was a type of high-speed 3D scanner with an ultralong measuring
distance that can scan objects 330 m away under direct sunlight, with a measuring
speed of 976,000 points per second, an actual error ±2 mm, and a scanning range of
360◦ horizontally and 300◦ vertically.
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• A digital camera allowed us to employ oblique photogrammetry and to provide color
in the point cloud generated by the scanner. We used a SONY A7R4 and a tripod to
maintain the same camera location and angle. The scanning site is shown in Figure 2.

Figure 1. Flowchart for building a database of classical Chinese royal gardens.

Figure 2. Scanning operation.

2.3. Data Collection and Site Survey
2.3.1. Historical Analysis and Site Location

Before conducting the study, drawings of and relevant information about the study site
were collected. The collection and analysis of existing drawings and files are helpful in fully
understanding the historical changes, garden layout, landscape relationship, and level of
surveying and mapping conducted for such gardens within the last century. Additionally,
a number of previous maps of the site were scanned and collected, as shown in Figure 3
(a. Jianxin Courtyard in the “Map of Jingyi Garden” by QING Gui and SHEN Huan et al., in
the 1780s; b. Jianxin Courtyard in the “Yangshilei” Xiangshan Site Map from 1800; c. plan
of Jianxin Courtyard in the “History of Chinese Classical Gardens” by ZHOU Wei quan
in 1999; d. general plan of the Jianxin Courtyard renovation from Beijing Construction
Engineering Architecture Design Institute in 2006; e. 3D point cloud scans from different
locations). Furthermore, in combination with the site survey, the actual situations in the
gardens were observed and compared with existing information.
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Figure 3. Jianxin Courtyard historical maps collection and scanning mapping display in
different periods.

2.3.2. Optimization of the Site Layout Method

According to the Venice Charter (1964), Florence Charter (1982), Nara Declaration on
Authenticity (1994), Xi’an Declaration (2005) and other documents, conservation efforts
for historical sites are gradually being expanded, and these methods of conservation
are no longer restricted to only the historical sites themselves, but rather, focus on the
overall relationship between the heritage sites and their surrounding environments. In
areas with complex topographies and abundant garden elements, many measurements
from multiple angles at different points are necessary due to mutual occlusions of the
measured objects. Then, images must be superimposed to obtain a complete result. After
obtaining multisite data, complete spatial information is obtained by combining computer
and manual identification of the feature points. Figure 4 shows a scan of the distribution of
points in the Jianxin Courtyard. Figure 5 presents a Space Partition Point Cloud Map of the
Jianxin Courtyard.

2.3.3. Garden-Wide Data Acquisition for the Jianxin Courtyard

The surveying and mapping conducted for this study not only include the digital sur-
veying and mapping of various garden elements in the Jianxin Courtyard, but also consider
the surrounding environment. A total of 102 sites were surveyed using noncontact 3D laser
scanning, including the outside environment, garden buildings, vegetation information,
water bodies, and rockery space. The point cloud quality was set to 1/8 and 3x, and the
point distance was set to 12.272 mm to improve the scanning efficiency. The point cloud
quality was then set to 1/4 and 3x, and the point distance was set to 6.136 mm to obtain the
details and complete texture information. The scanner has a built-in 70 megapixel digital
camera, which could take digital photos of the whole site after scanning at each site to
record RGB information within the scanning range.
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Figure 4. Scan of the distribution of points for Jianxin Courtyard.

Figure 5. Point cloud map of the space partition in Jianxin Courtyard.

The point cloud data of 102 sites in Jianxin Courtyard obtained through the above steps
were imported into a classification software for preprocessing and point cloud registration,
the processing of which specifically comprised the following steps:

Firstly, data importing and data preprocessing. The above site files were preprocessed,
and the color photos taken by scanners in the field were matched with the point cloud data
from the site, thereby providing RGB values for each scanning site.

Secondly, point cloud registration: automatic registration processing was performed,
and the software automatically extracted feature points according to the coincidence rate of
each site. The ICP (Iterative Closest Point) algorithm was used to accurately splice adjacent
sites and minimize the error function value. The maximum error of this point cloud splicing
was 11.1 mm, and the midpoint error was 9.7 mm, where the registration results allowed a
midpoint error ≤ 15 mm, which can be used as the baseline for subsequent studies.

The 3D real scenic point cloud model of Jianxin Courtyard Garden obtained from the
above steps can be further explored in supporting software, such as viewing, box selection,
and deletion. To facilitate docking with subsequent processing, the garden-wide 3D point
cloud model of the Jianxin Courtyard was transformed into the XYZ text format of an
ordered point cloud, that is, each line of the exported file contained a scanning point,
and the file of each scanning point was determined based on its three direct coordinates
and their functional relationship. The model can fully represent the characteristics of
various elements in the Jianxin Courtyard and the overall spatial layout of the garden. A
garden-wide point cloud model of the Jianxin Courtyard is shown in Figure 6. We can
also carry out basic measurements and other operations on the point cloud model of the
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Jianxin Courtyard Garden and obtain information on the relevant attributes of the garden
space and elements; for example, the Jianxin Courtyard covers an area of 5257 m2, with the
greatest lengths being 62.05 m from north to south and 84.72 m from east to west, and with
a water body area of 655 m2. Details of the rockery volume, plant number, building area,
etc. of each part are shown below.

Figure 6. Garden-wide orthogonal maps from the point cloud model of the Jianxin Courtyard.

After obtaining a garden-wide 3D point cloud model of the Jianxin Courtyard, current
high-resolution point cloud orthogonal maps, high-resolution TIF overview maps, etc.
that truly and objectively reflect the internal and external conditions and can be used for
the overall spatial pattern analysis of gardens, garden monitoring, and other purposes
can be further automatically generated, thereby greatly facilitating subsequent zoning,
classification, conservation, and management.

2.4. Basic Processing of Various Garden Elements of the Jianxin Courtyard

To complete the transformation of the point cloud model into a surface model, the
reverse engineering software Geomagic was used to process the above data and provide
solutions for any model acquisition problems in the landscape elements, such as incom-
plete rockery drawings, the pursuit of natural modeling, irregular structures, and almost
impossible traditional forward modeling. The main processing steps included performing
dot coloring, selecting disconnected items, removing isolated points in vitro, unifying
sampling, packaging, filling a single hole, deleting nails, examining the elements using a
grid doctor, and exporting the models.

For noise caused by rough surfaces, low surface reflectivity, or long scanning distances,
it was necessary to adjust the distance or increase the characteristic points or target points
of certain measured objects. For any errors generated by the scanner itself, insufficient accu-
racies, or slight vibrations during scanning, the parameters could be adjusted. Additionally,
we manually deleted unwanted data caused by accidental noise from people, trash cans,
birds, etc.

2.5. Sampling and Processing Method for Garden Element Characteristics

Since different garden elements have their own characteristics, adopting processing
methods and parameter settings according to such characteristics is necessary. If the shape
of the building is regular and the surface is smooth, only curvature sampling parameters
that are too high are needed, e.g., a curvature sampling rate of 65%. In contrast, if the shape
of rockery is irregular, e.g., there are many potholes on the surface, the details need to be
preserved as much as possible, or more suitable sampling parameters are needed, i.e., a
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curvature sampling rate of 95%. However, due to the sparse point clouds in branchlets and
leaves, plants may lose multiple feature points when connections are removed. (Table 1)

Table 1. Table of experimental values of the rockery cloud sampling rate of the Jianxin Courtyard.

Sampling Rate of Rockery Points

Curvature
Sampling Rate

Curvature
Sampling Rate of 35%

Curvature
Sampling Rate of 65%

Curvature
Sampling Rate of 85%

Curvature
Sampling Rate of 95%

Number of points 1,917,808 3,561,643 4,657,533 5,205,478
Number of triangles 3,705,153 6,820,175 8,411,795 9,906,289

Number of holes 3711 9024 13,031 14,278

Encapsulation result

The 3D real-life model of the Jianxin Courtyard encapsulated in the above steps was
created based on information from various garden elements, and was finally exported
in the STL format, which is common for conventional 3D models, using the Geomagic
software platform. Additionally, this file can be used as the basic spatial data file in the
study of classical garden information models, and can be added to multiple platforms
for subsequent use elsewhere. The encapsulation process for rockery points is shown in
Figure 7.

Figure 7. Encapsulation process for rockery points.

By rationalizing the classification of garden information, semantic information about
the surface features can be extracted more accurately. Separated elements are convenient
for subsequent management and application, and can be processed specifically for the
purpose of a study, which is convenient for the standardization of database records and
management methods.



Sustainability 2022, 14, 4108 10 of 21

In the march towards the conservation of classical Chinese garden heritages and 3D
digital systematization, the methods applied in and data obtained from surveying and
mapping Beijing royal gardens can serve as the basis for the construction of an information
model. Additionally, classifying garden elements such as buildings, ancient and famous
trees, water revetments, paving sketches, and mountains and stones can provide support
in the management of classical Chinese gardens.

3. Results and Discussion
3.1. Results of the Element Classification
3.1.1. Element Classification

Considering that the results of surveying and mapping should accurately reflect the
characteristics of a building, the spatial information obtained for ancient Chinese royal
gardens is classified on the basis of the basic garden elements. The main contents include the
following categories: water body, plant, environment, rockery, architecture, transportation,
and others, as shown in Table 2 below. The classification results of the garden-wide point
cloud elements are shown in Figure 8. The resultant two-dimensional plan diagram is
shown in Figure 9.

Table 2. Classification of basic garden elements in royal gardens.

Information Category Specific Contents

Water body Water body, revetment, slope protection,
facilities, etc.

Plant Trees, shrubs, vines, bamboos, herbs, etc.

Environment Outside terrain, outside transportation, other
outside elements, etc.

Rockery Rockeries, stacked stones, etc.

Architecture Building monomers, structures, decorations,
interior pavements, etc.

Transportation Garden roads, sites, etc.
Others Interior furnishings, sketches, etc.

Figure 8. Classification results of garden-wide point cloud elements.
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Figure 9. The resulting two-dimensional plan.

3.1.2. Classification Collection and Processing Results

• Filter extraction and manual refinement of ground points Ground point filtering is
a primary step in 3D laser point cloud processing; it is also a prerequisite for the
reasonable classification of other surface features. In this classification, an improved
progressive encryption triangulation filtering algorithm was adopted, in which the
computer constructs a triangulation network with the maximum building size as the
parameter for the initial ground points, and iterative encryption is continuously carried
out. In the experiment, we found that, because of the complex terrain conditions,
the many buildings and the high plant coverage rate of the Jianxin Courtyard, the
automatic filtering results of ground points based on building size parameters could
not meet the experimental requirements, so quadratic surface filtering was applied
instead. In this method, the point cloud is meshed, the lowest point of the mesh in
a certain size range is selected to build a quadric surface, and the distance between
the point cloud and the fitting surface in the calculation range are compared with
the set distance threshold; this method is more suitable for an environment with
topographic relief such as in the Jianxin Courtyard Garden, and can obtain more
complete information about the ground points. When dealing with a high-precision
point cloud model, manual checking and editing are carried out at the same time.
Polygon and profile editing are used to select and refine the point cloud with TIN
filtering, and the point clouds mistakenly divided into ground points are classified
according to their attributes. The process of manual refinement of a ground point
cloud is shown in Figure 10.

• Rockery Point Cloud Processing Information Considering the particularities of rockery
elements, the exclusion method can be adopted for the fine classification of rockery
spaces, and the remaining parts can be obtained after extracting other elements [45].
The irregularities of the rockery structure and the complexity of the topographic
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relief in the Jianxin Courtyard caused overlap in the rockery foundation and ground,
which led to the rockery point cloud being mistakenly divided into ground points
and to the root system of large trees caused by the combination of rockery elements
and plant elements being misjudged as rockery points. On the basis of automatic
classification, it was necessary to artificially refine the selection and to convert it
into rockery points according to the classification of attributes. According to the
data processing, the corresponding rockery information was obtained, as shown in
Figure 11 and Table 3 below.

• Fine differentiation of vegetation monomer information from the Jianxin Courtyard
The method of plant segmentation mainly follows the top-down segmentation of an
airborne Lidar point cloud and the down-top segmentation of a ground laser Lidar
point cloud. Through ground laser scanning, we could clearly identify trunks in the
gardens, so the attributes except DBH for a single tree could be measured. Before
single tree segmentation, the filtering and normalization of ground points in the
Jianxin Courtyard were necessary to prevent elevations such as undulating terrain
from influencing single plant segmentation. In addition to big trees such as Sophora
japonica and Pinus tabulae, there were also many shrubs with a smaller DBH and
crown breadths, which were easy to ignore. Therefore, during actual operations,
it was necessary to reduce the minimum threshold for elevation in the DBH point
cloud (the default minimum in the software is 1.2m) and to adjust the maximum
threshold (the default minimum in the software is 1.4m) accordingly, so that the data
covered all possible DBH dimensions of plants, which was beneficial to automatic
identification by the software and for avoiding subsequent manual fitting due to
size mismatches. After dividing single trees based on point cloud data, unique color
correspondences and ID information were assigned to each tree and a seed point file
CSV was generated simultaneously, which could be superimposed onto the point
cloud and present information on the attributes of each plant in the garden more
intuitively. Figure 12 showed the point classification and single tree division of garden-
wide plants in the Jianxin Courtyard. Table 4. showed the statistical table of plant
information from Zone A in the Jianxin Courtyard. In our study, a total of 116 trees in
the Jianxin Courtyard were obtained. The plant with the largest DBH was 0.962 m; the
plant with the smallest DBH was 0.051 m; the plant with the largest crown breadth
was 23.854 m; the plant with the smallest crown breadth was 0.546 m; the plant with
the largest height was 11.912 m; and the plant with the smallest height was 1.299m.

• Garden-wide building monomer separation Relative to the terrain, rockery, and vege-
tation elements, the garden architecture is more regular regarding its overall compo-
sition, and its classification was relatively simple. For convenience in classification,
the ground points, rockery points, and plant points could be close to reduce occlusion,
and the remaining point clouds could be observed by rotation and then classified
from unclassified points to building points, using a profile tool or a polygon selection
tool. A garden-wide architectural point cloud classification and orthogonal map of the
Jianxin Courtyard is shown in Figure 13.

Figure 10. Polygon and profile editing are used to select and refine the point cloud with TIN filtering
and manual refinement of a ground point cloud.
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Figure 11. Rockery point cloud information model after automatic selection, attribute classification
and manual refinement selection.

Figure 12. Point classification and single tree division of garden-wide plants in the Jianxin Courtyard.

Figure 13. Classification results of the garden-wide architectural point cloud of the Jianxin Courtyard.
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Table 3. Processing information for the rockery point cloud.

Mountain Preview Projected Area
/m2

Surface Area
/m2

Rockery Volume
/m3

5.9941 14.3998 7.7295

321.3985 825.1359 1194.1027

350.7361 932.2432 1187.3004

21.6262 58.2563 52.265

482.0896 1072.2976 248.29

Table 4. Statistical table of plant information from Zone A in the Jianxin Courtyard.

Statistics for the Plant Information from Zone A of the Jianxin Courtyard

Tree ID X Y Tree Height DBH Crown
Diameter Crown Area Crown

Volume

1 1877.96 254.988 9.38 0.666 9.366 68.896 300.514
2 1881.71 253.501 6.182 0.058 5.873 27.087 92.033
3 1885.647 248.68 10.5 0.962 13.413 141.299 721.399
4 1885.714 251.668 2.723 0.216 2.737 5.883 10.4
5 1884.294 253.254 2.302 0.082 1.929 2.923 4.008
6 1893.42 215.085 2.378 0.247 3.047 7.293 11.777
7 1894.236 220.025 9.594 0.452 7.174 40.421 207.195
8 1886.011 249.834 3.261 0.096 1.343 1.417 0.73
9 1891.506 214.464 2.174 0.12 0.642 0.324 0.389
10 1877.48 252.606 6.739 0.065 7.526 44.486 185.014
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Figure 14. The whole landscape data development process for Chinese royal gardens.

3.2. Garden Elements in 3D Data Information Management

Currently, the most advanced and effective information management technologies
in the field of cultural heritage information management are geographic information
systems (GIS) and building information models (BIM) [3,7,46], between which the BIM
has clear advantages in the management of information about objects such as building
monomers and components, which can be split into the internal and external structures of
a building, and can provide information on its materials and dimensions [41,47]. However,
for the spatial geographical environment outside the building and the interrelations among
other elements, the GIS platform is also needed for information management. This study
combined BIM and GIS for information management of the Jianxin Courtyard, using the
GIS for system management and BIM for model construction and information management
of the architecture and its construction.

The creation of an information model includes garden entity information, spatial
information, and attribute information. In this paper, the Arc GIS software was used to
construct an information model of the Jianxin Courtyard. From the perspective of attribute
information, it was necessary to first encode the spatial information of the Jianxin Courtyard;
to clarify the names, categories, related sources and accurate information of elements; and
to form several Excel files including basic information, historical changes in the garden,
elemental information, etc. Relevant basic information can then be retrieved and used at
any time through information model hyperlinks, allowing interaction between people and
information models. As for spatial information, realizing the management of all garden
elements in the Jianxin Courtyard Garden relies on a 3D real-life model thereof. According
to the above classification operations, the process includes the following categories:

• Garden architecture objects: graphic data were drawn and stored based on the surface
data type. After opening attribute information from the surface data, it was linked to
all of the basic information contained in the element code and the 3D real-life model.

• Garden water objects: graphic data were drawn and stored based on the surface data
type to realize a visual representation of the water information. Because the ground
3D laser scanner could not collect echoes when scanning and mapping the water body,
it was necessary to manually establish the shape and depth of the water body when
establishing a real-life model for subsequent management.

• Plant objects: graphic data were drawn and stored based on the point data type.
Ancient trees are a very important part for combing through the history of gardens. In
the above classification operations, the plant elements in the Jianxin Courtyard were
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segmented. In this study, the positions of ancient trees were located point by point in
the 3D real-life model of the Jianxin Courtyard, and such information included the
basic attribute information about ancient trees such as position, DBH, crown breadth,
and tree height.

• Rockery objects: graphic data were drawn and stored based on the surface data type.
The types of rockeries in the Jianxin Courtyard could be classified into single peaks,
pavilion hills, terrace hills, pool hills, etc., which were combined with other garden
elements in a variety of ways.

The establishment of a 3D information model of the garden will serve many purposes.
The system can allow information queries, information editing, measurements and analyses,
exhibitions, and other functions. In addition to accurate information about the landscape
of a heritage site, this system will also incorporate nonmaterial information such as climate
information, social elements, historical memories, cultural activities, animal activities, etc.
into the construction of the heritage landscape information model. The basic value of the
site and the nonmaterial information that can be excavated with a deeper impact on cultural
significance were determined by means of historical literature crawling and a public survey
questionnaire. Then, the corresponding technical methods could be adopted to multiply the
amount of information acquired and to give it historical and humanistic emotional value.
In the context of the current era, the study of information technology in classical gardens is
particularly important for their conservation. In addition to using information management
technologies such as BIM and GIS in the conservation and management phases, based on
the characteristics of classical gardens, which encompasses many scopes and time spans,
the 3D visualization of classical gardens should be studied separately to propose methods
that can better integrate this information.

The construction of a digital heritage information platform for cultural heritage in-
volves integrating cultural heritage information, status data, and various databases so that
cultural heritage stakeholders can easily access heritage information and share the data
and values they have obtained. Using the new platform to integrate heritage information
resources and to integrate historical and current data can improve the ability of multiple
parties to understand cultural heritage comprehensively and plan holistically.

The platform mainly covers information service tools such as: dynamic data from
heritage, historical, and cultural information; application steps; information dissemination
tools; and information collection tools. It not only supports the display and dissemination
of existing information on cultural and historical landscapes, but also captures and records
information on historical landscapes held by different stakeholders. It includes diverse data
applications, such as dynamic monitoring data of cultural heritage based on the Internet of
Things, which provides comprehensive dynamic monitoring and sharing of information
on the current state of the cultural heritage environment.

Based on a variety of information service tools, the principle of disaggregated informa-
tion supply is used to provide customized data content and usage for different stakeholders.
This mainly includes the application of cultural heritage data services based on GIS, the
application of urban history visualization based on hypertext preprocessing technology,
multimedia GIS-based public data collection applications, etc.

The main advantages of using this management system are as follows.
The shift from one-way heritage information release to multidimensional information

interactions and strengthened interactions based on human perspective. The interaction
among multidimensional information becomes a digital cultural heritage information
service [40,48–51].

Development from standardized information integration to customized information
modules to promote landscape value recognition. Digital heritage information services for
cultural and historical landscapes fully recognize the diversity of heritage stakeholders and
the importance of multiple values for the conservation and development of cultural and
historical landscapes [52].
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Emphasis on the cultivation of digital heritage information and the promotion of
public participation in heritage conservation decisions. In addition to an emphasis on the
construction of digital heritage information services, the ability of the general public to
apply digital technology to participate in practice has been increased at all levels.

Transformation from an “information service” to a “knowledge service”, which helps
build consensus on cultural heritage development. Digital models of cultural and historical
landscapes are gradually transforming from “heritage information services” to “heritage
knowledge services” [37,53].

3.3. Application of 3D Information System

Based on digitized heritage archives, the cultural heritage application management
platform was built to go beyond the traditional concept of a “heritage database”; as such, it
is no longer limited to the integration and one-way distribution of heritage information.
It also allows for the exploration of a more active and creative digital cultural heritage
information service model. Digital heritage information services are jointly constructed
by both the host and the client. Local governments, as the driving force of information
services, not only provide comprehensive and scientific heritage information, but also
continuously explore innovative ways and tools for information dissemination, and thus,
also play the role of a coordinator. Additionally, landscape heritage stakeholders, as the
objects of information services, are no longer just passive recipients of heritage information,
but are increasingly involved in the landscape heritage information and knowledge creation
processes. The holistic, dynamic, relevant, local, and value-driven concepts advocated
by the cultural heritage multidimensional management platform can be fully reflected in
this management model. Additionally, the inclusiveness, flexibility, and systemic nature
of digital technology are necessary to achieve innovation in cultural heritage information
services.

Large-scale digitalization and informatization, which are being improved day by
day, have gradually developed from a “digital city” to a “smart city”, which brings about
important opportunities for the digital preservation of cultural heritage. On the one hand,
the focus of research and practice on heritage information services needs to expand from
the construction of heritage data platforms to a more inclusive and comprehensive heritage
knowledge service system to better coordinate the relationship between heritage conser-
vation and urban development. On the other hand, heritage information services need
to dialectically look at the issue of standardization and individualization, paying atten-
tion to the construction of relevant standards and norms for digital heritage information,
while fully considering the individualization, localization, and technological innovation of
heritage information service platforms and exploring heritage information service mod-
els and data structures. In addition, the heritage information service platform needs to
(i) highlight the main stakeholders; (ii) to strengthen participation and contributions to
the collection, organization, and dissemination of information on heritage sites; and (iii)
to promote the continuation and development of the heritage value of urban historical
landscape. Figure 14 shows the development and application route of full-cycle landscape
data from Chinese royal gardens. Figure 15 shows the real-time cloud interaction between
mobile and computer information for users with different needs.
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Figure 15. Real-time cloud interaction between mobile and computer information.

4. Conclusions

This study explained how to collect and classify 3D digital information from classical
Chinese royal gardens, how to construct an information model of these gardens, and how
to use these results and methods for to the conservation, management, and subsequent
application of cultural heritage. By integrating existing theories and methods, and based
on the characteristics and research needs of classical Chinese royal gardens, we suggested a
digital method that can be used for the management and application of cultural heritage in
such sites. Methods for the digital identification and collection of information used for the
construction of an information model of classical Chinese royal gardens, the fine splitting
and integration of garden data, the information protection and management of garden
elements, and the subsequent development and application space are proposed. These
methods are not only useful for the conservation of classical Chinese royal gardens, but also
for overcoming the limitations of traditional classical Chinese garden surveys and studies;
they are also applicable to other, similar cultural heritage studies or projects. By establishing
a collaborative digital platform for landscape heritage conservation, the history, status,
intervention, and management of gardens can be organically integrated, transforming
landscape heritage from a passive to an active and systematic form of conservation. It
can also provide a reference for subsequent cultural heritage conservation and digital
development efforts.
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