
Applied Intelligence (2023) 53:20382–20401
https://doi.org/10.1007/s10489-023-04545-0

Methods of managing the evolution of ontologies
and their alignments

Marcin Pietranik1 · Adrianna Kozierkiewicz1

Accepted: 24 February 2023
© The Author(s) 2023

Abstract
Nowadays, none can expect that knowledge about some part of reality will not change. Consequently, a representation of
such evolving knowledge (for example, ontologies) also changes. Such changes entail that applications incorporating such
knowledge may become compromised and yield wrong results. An example of such an application is ontology alignment
which can be informally described as a set of connections between two ontologies. Those connections mark elements from
two ontologies that relate to the same parts of reality. In changing one of the corresponding ontologies, such connections may
become invalid. One may designate the ontology alignment once again from scratch for altered ontologies. However, such
an approach is time and resource-consuming. The paper comprehensively presents our ontology evolution and alignment
maintenance framework. It can be used to preserve the validity of ontology alignment using only the analysis of changes
introduced to maintained ontologies. The precise definition of ontologies is provided, along with a definition of the ontology
change log. A set of algorithms that allow revalidating ontology alignments have been built based on such elements.

Keywords Ontology alignment · Ontology evolution · Knowledge management

1 Introduction

A widely known informal definition created by Thomas
Gruber states that ontology is a formal description of a
shared conceptualization of a domain of discourse. In other
words, for some selected areas of knowledge, it is possible
to create multiple different decompositions into basic
objects (referred to as concepts). Additionally, definitions of
various interactions in which these objects may participate
can be added. In consequence, two separately developed
ontologies may significantly differ in many different details,
although describing the same universe of discourse.

Adrianna Kozierkiewicz is contributed equally to this work.

� Marcin Pietranik
marcin.pietranik@pwr.edu.pl

Adrianna Kozierkiewicz
adrianna.kozierkiewicz@pwr.edu.pl

1 Faculty of Information and Communication Technology,
Wroclaw University of Science and Technology,
Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland

Matching the contents of two ontologies is crucial if there
is a requirement to provide methods for communicating
between two knowledge-based systems that incorporate
ontologies as a backbone. This problem is a broadly
discussed topic called ontology alignment or ontology
mapping [9]. A common approach to the described problem
assumes that the aligned ontologies do not change in
time. In other words, no alteration is applied to them by
their authors. Such an approach significantly simplifies
the task, entailing that once an alignment between two
ontologies is designated, it will not need any further
maintenance. However, in many application domains, such
an assumption is not plausible. It is impossible to expect
that no modification will be introduced to ontologies that
participate in communication between two knowledge-
based systems. Therefore, it is also impossible to expect
that the designated alignment will not become invalid due to
the changes in the mapped ontologies. When some aligned
ontologies change, their alignment may be designated again
from scratch. However, processing whole ontologies can be
very time-consuming, especially when such ontologies are
large [26].

In this paper, we want to concentrate on answering
two questions. The first one focuses on identifying a
situation when ontologies evolved significantly enough

/ Published online: 12 April 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-023-04545-0&domain=pdf
http://orcid.org/0000-0003-4255-889X
mailto: marcin.pietranik@pwr.edu.pl
mailto: adrianna.kozierkiewicz@pwr.edu.pl

Methods of managing the evolution...

to possibly invalidate their alignment. The second one
addresses updating the existing alignment of two ontologies
using only the information about their evolution.

In the initial stages of our work, we started with the
essential elements - by analyzing what kind of information
can be included within ontologies and how they can be
expressed. We distinguished three types of elements present
within ontologies that allow us to organize the content of
ontologies into a level of concepts, a level of relations, and
a level of instances.

The first one concerns defining the aforementioned basic
objects occurring within the selected universe of discourse.
These objects represent a common class of elements, for
example, a person, a book, or an article. Such elements
may interact with other elements, for example a person
writes a book, which contains articles. Definitions of these
interactions form a level of relations. A final level of
instances contains definitions of particular materializations
of concepts. For example, an instance of a concept Person
can be John or Mary.

According to the described structuring of ontologies,
the ontology alignment framework can only complete if it
allows for mapping and integrating ontologies on each of the
described levels. These mechanisms have been developed in
our previous publications [12], forming a consistent Frame-
work for Ontological Knowledge Integration (referred to
further as FOKI). This foundation has been extended and
adjusted to manage the evolution of ontologies and their
alignments. The following paper is a broad overview of
this framework and an extensive summary of our earlier
work.

The main contribution is built on detailed definitions of
ontologies and their elements and how to track changes
that may be applied to them. We have developed a set of
consistent algorithms that allow revalidation and updating
ontology alignments in case one of the mapped ontologies
evolve. Using the proposed methods may assert that the
maintained alignment never becomes obsolete.

What is worth emphasizing is that the primary purpose
of all of the procedures presented in this article is not to
outperform any ontology alignment method in terms of
the correctness of designated mappings. The base approach
to ontology mapping uses whole ontologies to select
elements that relate to the same objects from their domain.
The algorithms described in this article address different
issues. Their main goal is updating the ontology alignment
designated before any changes have been introduced to
ontologies utilizing only information about introduced
changes. They are expected to return the alignments with at
least similar quality (according to some assumed measures)
to the ones designated by processing whole ontologies from
scratch using some ontology alignment systems.

Providing this contribution includes a broad experimental
verification of the developed methods, which incorporates
two novel ontology alignment quality assessment measures
[29]. They are used in conjunction with a widely accepted
dataset provided by the Ontology Alignment Evaluation
Initiative [4], which are considered a state of the art
benchmarks for verifying any ontology-related tools.

The remainder of the paper is as follows. In the
next part, an overview of related works in the fields
of ontology alignment and ontology evolution is given.
Section 3 contains mathematical foundations of our work.
The main contribution of the following article can be
found in Section 4, which is split into two subsections.
The first one presents the criteria for updating ontology
alignments. These elements have been previously described
in our earlier article [22] and are included for clarity
reasons. The second contains algorithms that can be used
to achieve this goal, which has been introduced earlier in
[21, 23, 24]. However, this paper provides a more detailed
explanation of developed methods, focusing on their
evaluation. The verification of the presented methods is
provided in Section 5. The experimental results include
data collected from a dedicated environment that calculates
the quality of concept alignments using novel measures
developed in our previous article [29]. An overview of
our upcoming research plans and a summary are given in
Section 6.

2 Related works

As a flexible knowledge representation method, ontologies
have been helpful in many applications. They allow
describing the complexity of knowledge - relations,
hierarchies, and other dependencies between objects or
concepts. However, the content of some ontology may
need to be updated due to changing requirements that
appear in the real world. Such changes must be reflected in
created ontologies by introducing and maintaining changes
over time without purging them. Therefore, methods of
managing the ontology evolution process are highly valued.
If some evolving ontology is mapped into another ontology
(using ontology alignment techniques), their evolving
content inevitably affects the mappings between them,
thus entailing that such mapping needs to be revalidated.
Obviously, the alignment can be designated from scratch.
A better approach would be based only on analyzing
changes introduced to ontologies and updating only affected
mappings, thus maintaining them. However, it is only
possible to develop such an approach with reliable methods
of managing ontology evolution. Therefore, This section of
the article overviews the two research fields: (i) methods of

20383

M. Pietranik and A. Kozierkiewicz

managing the ontology evolution process and (ii) methods
of maintaining alignment between evolving ontologies.

2.1 Methods of managing the ontology
evolution process

One of the most prominent applications where managing
the ontology evolution process was crucial is structuring
genomes. Research on this topic is conducted by The
Gene Ontology Consortium, which focuses on developing
Gene Ontology (GO) [6] - a part of the Open Biomedical
Ontologies (OBO) [34]. Several publications are addressing
the issues related to temporal changes applied to these
ontologies. In [15], authors identified several scenarios
during which the created Gene Ontology (GO) may
change. Predefined post-processing procedures and clean-
up rules assert the consistency of the final version of
evolving ontology. Similar research, but focusing on topic-
independent ontologies, may be found in [7].

Updating and revalidating evolving biomedical ontology
mappings is the main topic of [2]. The authors provided a set
of refinement algorithms based on calculating similarities
between added concepts and their neighborhoods in the final
state of ontology. The verification has been performed using
a domain ontology named Logical Observation Identifiers
Names and Codes (LOINC) in English and Spanish variants.
However, the evaluation addressed only several added
mappings without analyzing their quality.

Authors of [34] describe the approach to organizing
cooperative work on included ontologies and coordinating
changes applied to them over time. This approach differs
from the one proposed in this paper because it does not
incorporate the history of changes applied to ontologies.
Therefore, if some error is introduced to ontology, it is
impossible to recover the ontology to its previous state.

In [20], authors present a comprehensive approach to
ontology evolution. The research addresses the automatic
detection of ontology changes, then a method for rewriting
queries that may be sent to evolving ontologies is presented.
Those rewrites are classified into two groups: the ones that
may be soundly performed automatically and those that
require user involvement. In the latter case, the authors
provide the best over-approximations of processed queries.
The presented approach significantly reduced ontology
maintenance costs.

The approach presented in [31] tackles the problem
from a different perspective. Changes applied to some
ontology in its consecutive versions are used to create a
graph of relevance. This graph orders versions of ontology
not in terms of their chronology, but relevancy, computed
based on four criteria: conceptualization, usage frequency,
abstraction, and completeness. A tool called Consistology

is described - it was developed to aid users in managing
ontology evolution.

In [36], authors propose a systematic solution based on
an adaptation of OWL2 language by introducing a notion of
time to support temporal versioning of the ontology schema.
Therefore, only the evolution on the level of the concept
is addressed. The methods proposed in this paper broadly
treat ontologies by covering all of the levels of abstraction
described in Section 1.

In [1], a completely different approach to maintaining
ontology evolution can be found. Authors reject solutions
based on versioning of ontologies by defining the so-
called Historical Knowledge Graph, which is knowledge
from all versions of an ontology unified in a single graph.
Such a solution relieves maintenance procedures from
analyzing subsequent versions and tracking changes. All
the expressed knowledge is freely available, simplifying
inference processes. The downside of such approach is
the necessity of storing and maintaining rapidly expanding
ontology, which may become cumbersome.

A survey of different types of changes that may appear
in ontologies and their semantical implications can be found
in [8]. The research can be treated as preliminary work to
perform the analysis of the evolution of not only ontologies
but also their alignment. A broad description of related
issues may be found [10]. The continuation of this research
can be found in [11]. It includes a comprehensive approach
to determining differences between two states of the same
ontology, focusing on providing the invertibility of applied
modifications. The proposed algorithms were evaluated
using large life science ontologies- the Gene Ontology [6]
and the NCI Thesaurus [33].

2.2 Methods of maintaining alignment
between evolving ontologies

Preliminary research on maintaining ontology alignment
under ontology evolution can be found in [30], where
authors identified different types of changes that can be
applied to ontologies. On top of such classification, the
authors provide an overview of potential change operations
that may be applied to ontology alignment. The proposed
approach is verified using large biomedical ontologies.
The obtained results are analyzed both quantitatively
and qualitatively.

In [35], a method for updating ontology alignments
is presented. Hover, the presented method addresses
only mapping new concepts added to the managed
ontologies, and no revalidation of mappings connecting
altered concepts is performed. The element which differs
from the framework presented in this article is a set of
criteria utilizing the degree of significance of changes

20384

Methods of managing the evolution...

introduced to ontologies. The developed functions can
answer the question of when the alignment revalidation
should happen since the ontology alteration may not always
be equally significant. In other words, revalidating ontology
alignments may not be necessary for every small change in
the mapped ontology. To the best of our knowledge, there is
very little research on related issues, and a similar approach
has only been developed in [27]. However, the authors
focus not on ontologies but on a similar tool known as the
Knowledge Graphs. Authors provide tools for predicting the
impact of their changes. Similarly, tracking the evolution of
Knowledge Graphs is a subject of [17].

Research from [3] describes a method for identifying the
most critical attributes present within mapped and evolving
concepts. Authors claim that only changes in these attributes
should be followed by ontology mapping reconciliation
to assert consistent ontology maintenance. The presented
approach is significantly different from the ideas provided
in this article. Our work treats ontologies holistically and
does not focus on atomic elements.

The authors of [25] focus on the inter-organizational
environment for engineering ontologies. The DOGMA-
MESS system is described, which allows for scal-
able, community-driven collaboration on ontologies. The
approach is based on ontology alignment and mean-
ing negotiation based on user involvement. A substantial
amount of research addresses the issue of user experience
and very little to automatize the whole process. Such a
feature vastly differs from the ideas presented in this article.

To the best of our knowledge, the most comprehensive
approach to managing the evolution of ontology alignment
can be found in [18] and its continuation in [19]. Authors
focus on detecting changes in ontologies (both on schema
and instance level) to find potential inconsistencies that
may be accidentally introduced. These inconsistencies are
addressed by applying so-called deduced changes to keep
the ontology in a consistent state. In [18], a set of recovery
and roll-back algorithms can be found, while in [19],
authors provide mapping reconciliation algorithms that use
the change history log. The authors’ work is similar to
the following article. However, in our work, we have
separated algorithms that process changes in concepts,
instances, and relations, while in [18, 19], ontologies are
always treated as a whole structure. Such an approach,
despite its holistic nature, has a few disadvantages. First,
the integrated solution is complicated to deploy in any
distributed environment. Ontologies must always be treated
as indivisible wholes. Therefore, even minimal changes in
ontologies cannot be quickly processed and addressed, but
the comprehensive procedure must be executed every time.

Secondly, the split algorithms proposed in this article can
handle different types of ontology changes independently
from each other. Even if those changes affect one another,

they will still be tracked and resolved. However, if they do
not affect each other, the proposed decoupling entails higher
solution flexibility. Third, it is impossible to track potential
weaknesses of the procedure that may appear on different
levels of ontologies. In other words, one cannot say if the
proposed solution process changes that appear on the level
of concepts with the same effectiveness as changes on the
level of instances.

Finally, our framework is equipped with change signifi-
cance measures that can be used to track how many and how
extensive changes have been applied to ontologies. With
such functions, it is easy to compare their outcomes with
some assumed significance threshold value, making it easy
to decide if the designated alignment between the main-
tained ontologies needs revalidation. In other words, the
defined functions can be used as criteria for triggering fur-
ther actions. To the best of our knowledge, in the literature,
there is no ontology alignment maintenance framework that
approaches the field in such a holistic way.

3 Basic notions

3.1 Ontology definition

We define a pair (A,V), where A is a set of attributes
describing objects and V is a set of valuations of such
attributes (their domains), where: V = ⋃

a∈A Va . This pair
defines the so-called ”closed world” on top of which it is
possible to define the (A, V)-based ontology as a quintuple:

O = (C, H, RC, I, RI) (1)

where:

• C is a finite set of concepts,
• H is a concepts’ hierarchy, a distinguished relation

between concepts,
• RC represents a set of concepts relations RC =

{rC
1 , rC

2 , ..., rC
n }, n ∈ N , such that every rC

i ∈ RC (i ∈
[1, n]) is a subset of a cartesian product, rC

i ⊂ C × C ,
• I is a set of instances’ identifiers,
• RI = {rI

1 , rI
2 , ..., rI

n } is a set of relations between
concepts’ instances.

A set of all (A, V)-based ontologies will be denoted as
Õ. Each concept c of the set C has a following structure:

c = (idc, Ac, V c, I c) (2)

where:

• idc is an identifier of the concept c,
• Ac denotes a set of its attributes, (Ac ⊂ A)
• V c represents a set of attributes domains, where V c =⋃

a∈Ac

Va ,

20385

M. Pietranik and A. Kozierkiewicz

• I c is a set of concepts’ c instances.

Attributes from set A alone carry no explicit meaning.
They can only be interpreted if they are part of some
chosen concept. Moreover, when the same attribute is
included as a part of several different concepts, its meaning
may vary from one concept to another. To achieve this
level of expressivity without restricting the use of the
same attribute in multiple concepts, introduce a notion of
attributes semantics. We assume the existence of a set DA,
which contains atomic descriptions of attributes and a sub-
language (LA

S) of the propositional calculus consisting of
elements from DA and basic logic operators (conjunction,
disjunction, and negation). To grant attributes meaning, we
define a function:

SA : A × C → LA
S (3)

It assigns a logic sentence from LA
S to attributes when

they are included in a specific concept. It can increase the
expressiveness of bare attributes or define constraints on
the attribute values. For better understanding consider an
attribute birthday within a concept Person. The following
semantics can be defined: SA(birthday, P erson) :
day of birth ∧ month of birth ∧ year of birth ∧
age ∧ zodiac sign. Providing values of the function SA

manually is extremely time-consuming and error-prone.
We have developed a semi-automatic method in our other
publications (e.g., [13]), however, describing it falls outside
the scope of the following article.

The overall semantic of a concept c is given by its
context. Formally it can be defined as a conjunction of the
semantics of its attributes:

ctx(c) = SA(a1, c) ∧ SA(a2, c) ∧ ... ∧ SA(an, c) (4)

The set I from (1) contains identifiers of instances that
can be assigned to concepts from the set C. Formally, these
assignments are expressed using the set I c from (2), which
members are tuples of the form:

i = (idi, vi
c) (5)

where: idi is an identifier, and vi
c is a vector of values of

type V c and vi
c gives the instance i specific valuations of

attributes included in the concept c.
By Ins(c) we denote a set of identifiers of instances of

a concept c, formally: Ins(c) = {idi | (idi, vi
c) ∈ I c}.

The reverse function Ins−1 given an instance identifier
returns a subset of concept set to which it has been assigned,
formally: Ins−1(i, C) = {c | c ∈ C ∧ i ∈ c}. Therefore,
the set I containing instances identifiers has the property
∀c∈CIns(c) ⊆ I .

The next element in ontologies are relations between
concepts. The set RC is responsible for describing which
concepts can be connected. Similarly to concepts, relations
from the set RC have no semantics. Therefore, by analogy to

LA
S , we define a set DR with atomic descriptions of relations

and a sub-language LR
S of the propositional calculus built

from the content of DR and logic operators of conjunction,
disjunction, and negation. This allows us to introduce a
function SR : RC → LR

S that assigns a logic sentence from
LR

S to a relation from the set.
Every relation rC

j connecting two concepts from the

set RC has a corresponding relation rI
j in the set RI . It

contains pairs of instances of concepts that are linked by
the relation rC

j . It is denoted using the same index j. Such
an approach allows us to define what exactly is connected
easily. For example, If we consider relation from the set
RC i.e. is married it can connect two concepts like i.e.
Man and Woman. A corresponding relation from the set RI

describes connections of specific instances. For example, a
pair (John, Ann) would indicate that John (an instance of a
concept Man) is a husband of Ann (an instance of a concept
Woman).

The hierarchy of concepts H is a distinguished relation
between concepts, representing a rooted tree. For clarity
purposes, it is excluded from the set RC , despite being
similarly defined as H ⊂ C × C. Its elements must
meet some specific constraints. A pair of concepts c1 =
(idc1 , Ac1 , V c1 , I c1) and c2 = (idc2 , Ac2 , V c2 , I c2) can
only be included in H only if:

1. |Ac2 | ≥ |Ac1 |
2. ∀a ∈ Ac2∃a′ ∈ Ac1 : SA(a, c2) =⇒ SA(a′, c1)

3. Ins(c2) ⊆ Ins(c1)

If a pair of concepts (c1, c2) is included in H we can
refer to these two concepts as connected with a subsumption
relation, entailing that c2 is a subclass of c1. Obviously
such relation is transitive, therefore, if there exists a chain
of concepts c1, . . . , cn such that ∀i∈[1,n−1](ci, ci+1) ∈ H

then obviously a pair (c1, cn) also fulfils conditions for
subsumption, thus we can write c1 ← cn.

In the set C there exists an abstract concept Thing
with a structure defined according to (2) as {T hing,∅, ∅,⋃

id∈I

{(id,∅)}}. It is a root of hierarchy H , and all other

concepts are its subclasses. It allows us to introduce a notion
of depth of ontology O denoted as Depth(O), which can be
calculated as the depth of the tree represented by the concept
hierarchy H .

Similarly, for a particular concept c ∈ C by
Depth(O, c), we will denote the length of the shortest
path in the tree (represented by the concept hierarchy
H) from the abstract class Thing to the given concept c.
Subtree(O, c) denotes a set containing all of the concepts
descendants from c, which formally fulfills the following
conditions:

1. ∀c′∈Subtree(O,c)c ← c′

20386

Methods of managing the evolution...

2. ¬∃c′ ∈ C \ Subtree(O, c) : c ← c′

As described above, our ontology model consists of
several elements: concepts, relations, and instances. All
these elements, along with their integration methods, form a
Framework for Ontological Knowledge Integration (further
referred to as FOKI). In this paper, we present the extension
of the FOKI framework with the method of managing
ontologies’ evolution and their alignments.

In the real world, expecting some ontology to remain
static throughout its maintenance is impossible. Informally
speaking, some changes will have to be applied sooner or
later, and the particular ontology will evolve. Therefore,
we need to introduce a notion of time. In further parts of
the following article, an ordered set of discrete moments
in time, representing a timeline of every evolving ontology,
will be denoted as T L = {tn | n ∈ N}. T L(O) will
denote a subset of T L, containing only moments in which
the ontology O has changed. A version of the ontology O
at time tm ∈ T L(O) will be denotes as O(m). When two
versions of one ontology are available O(m−1) and O(m) to
represent the fact that the former is earlier than the latter,
we will use the following notation: O(m−1) ≺ O(m). It
can also be used for particular elements of ontologies e.g.
c(m−1) ≺ c(m) denotes that c(m−1) is earlier than c(m).
An ontology O in its initial state is denoted as O(0) =
(C(0), H (0), RC(0), I (0), RI (0)).

The above assumptions allow us to define an ontology
repository - a sequence of versions of a particular ontology.
Formally:

Rep(O) =
{

O(m) | m ∈ T L(O)

}

(6)

3.2 Ontology change log

To express changes that appeared while maintained
ontologies evolve, we need a tool that can tell us what
changed when. For this task, we define an ontology log
which provides a complete picture of changes applied to
some ontology. It is defined as a set of results of diff

functions, calculated for every pair of subsequent ontology
versions from the timeline T L(O):

Log(O) =
{〈

diffC(O(m−1), O(m)),

diffI (O
(m−1), O(m)),

diffRC (O(m−1), O(m))
〉
| m ∈ T L(O) \ {0}

}

(7)

The function diffC takes as input two states of the set
of ontology concepts (C(m−1) and C(m)). It returns a triplet
of sets - a set of concepts added to the ontology, a set of

concepts removed from it, and a set of altered concepts
(which includes pairs of the same concept in its earlier and
later state):

diffC(O(m−1), O(m)) =
〈

newC(C(m−1), C(m)),

delC(C(m−1), C(m)),

altC(C(m−1), C(m))

〉

(8)

where:

1. newC(C(m−1), C(m)) = C(m) \ C(m−1)

2. delC(C(m−1), C(m)) = C(m−1) \ C(m)

3. altC(C(m−1), C(m)) =
{

(c(m−1), c(m)) | c(m−1) ∈

C(m−1) ∧ c(m) ∈ C(m) ∧ ctx(c(m−1)) �= ctx(c(m))

}

On the instance level, the function diffI cannot be solely
based only tracking changes of the set I. This set contains
only instance identifiers and, according to (2), concrete
values of instances (materializations of particular concepts)
are defined within structures of concepts. Thus, the function
diffI must treat the ontology O in a more holistic manner.
It takes as input two versions of sets of concepts and
instances, and analogous to (8) returns three sets. The first
contains instance identifiers added to the ontology or newly
assigned to some concept. The second set obtains instance
identifiers removed from the ontology or which assignments
to some concept have been deleted. The third set contains
identifiers of instances which valuations in some concepts
have been altered. It also provides concepts to which such
instance has been assigned in their earlier and later versions.
Formally, diffI is defined as follows:

diffI (O
(m−1), O(m)) =

〈

newI (I
(m−1), C(m−1), I (m), C(m)),

delI (I
(m−1), C(m−1), I (m), C(m)),

altI (I
(m−1), C(m−1), I (m), C(m))

〉

(9)

where:

1. newI (I
(m−1), C(m−1), I (m), C(m)) ={

i | (i ∈ I (m) ∧ i /∈ I (m−1)) ∨ (Ins−1(i, C(m−1)) =

∅ ∧ Ins−1(i, C(m)) �= ∅)

}

2. delI (I
(m−1), C(m−1), I (m), C(m)) ={

(i | i ∈ I (m−1) ∧ i /∈ I (m)) ∨ (Ins−1(i, C(m−1)) �=

∅ ∧ Ins−1(i, C(m)) = ∅)

}

20387

M. Pietranik and A. Kozierkiewicz

3. altI (I
(m−1), C(m−1), I (m), C(m)) ={

(i, c(m−1), c(m)) | i ∈ c(m−1) ∧ i ∈ c(m) ∧ vi
c(m−1) �=

vi
c(m)

}

On the level of relations, the function diffRC takes as
its input the set of concept relations RC in its earlier and
later state. It designates three sets describing relations added
to the ontology, relations removed from the ontology, and
changed concepts’ relations. Formally it is defined below:

diffRC (O(m−1), O(m)) =
〈

newRC (RC(m−1), RC(m)),

delRC (RC(m−1), RC(m)),

altRC (RC(m−1), RC(m))

〉

(10)

where:

1. newRC (RC(m−1), RC(m)) = RC(m) \ RC(m−1)

2. delRC (RC(m−1), RC(m)) = RC(m−1) \ RC(m)

3. altRC (RC(m−1), RC(m)) =
{

(r(m−1), r(m)) | r(m−1) ∈
RC(m−1) ∧ r(m) ∈ RC(m) ∧ |r(m−1)∩r(m)|

|r(m−1)∪r(m)| �= 1 ∨
SR(r(m−1)) �= SR(r(m)))

}

3.3 Ontology alignment

Informally speaking, for communication using two or more
ontologies, some ”bridge” is needed, which allows finding
connections between considered ontologies. In other words,
between two independent (A, V)-based ontologies O1 =
(C1, H1, RC1 , I1, R

I1) and O2 = (C2, H2, R
C2 , I2, R

I2)

there exist a set of correspondences, called alignment,
defined in the following way:

Align(O1, O2) = {AlignC(O1, O2), AlignI (O1, O2),

AlignR(O1, O2)} (11)

Of course, it is possible to determine the separate
set of correspondences for each ontology level (concepts,
instances, and relations). However, we do not consider
the alignment of instance relations. The reason for that is
twofold - first, instances are a materialization of concepts in
independent ontologies. Therefore, their relations are tightly
bound to these ontologies, and mapping them does not carry
any particular meaning. Secondly, the Ontology Alignment
Evaluation Initiative does not provide any test datasets
that could be used to verify the algorithms addressing the
alignment of instance relations.

Formally, we define an ontology alignment on the
concept level as a set containing tuples in the following
form:

AlignC(O1, O2) = {(c1, c2) | c1 ∈ C1 ∧ c2 ∈ C2

∧λC(c1, c2) ≥ TC} (12)

where:

• c1, c2 are concepts from O1 and O2 respectively,
• λC(c1, c2) is a value of a degree to which concept c1

can be aligned into the concept c2, a vast majority
of alignments between two ontologies include only
mappings of concepts that are equivalent with 100%
certainty.

• TC represents an assumed threshold

The alignment on the instance level is a set of sets of
alignments of instances belonging to two already aligned
concepts:

AlignI (O1, O2) = {ALO1,O2(c1, c2) | (c1, c2)

∈ AlignC(O1, O2)} (13)

where:

• ALO1,O2(c1, c2) = {(i1, i2) | i1 ∈ c1 ∧ i2 ∈ c2 ∧
λI (v

i1
c1 , v

i2
c2)) ≥ TI }

• λI denotes a degree to which the instance i1 can be
aligned to i2,

• TI is some assumed threshold

The alignment on the relation level is defined as follows:

AlignR(O1, O2) = {(r1, r2) | r1 ∈ RC1 ∧ r2 ∈ RC2

∧λR(r1, r2) ≥ TR} (14)

where:

• λR is a degree to which relation r1 can be aligned to r2,
• TR denotes the assumed value of threshold

All alignment definitions can be extended by using a
superscript to introduce the aspect of time. For example,
Align(O

(m)
1 , O

(n)
2) denotes an alignment of ontologies

O1 and O2 in their respective states in time m and n

(m, n ∈ T L).

4 Updating ontology alignment

4.1 Measuring the degree
to which ontologies change

In this section article, to simplify the notation, we will skip
the the indexes that describe moments in time, and by O and
O’ we will denote an ontology O and its elements from (1)
in its previous and current states respectively.

20388

Methods of managing the evolution...

Ontologies may evolve. However, the changes made in
the ontology may have different impacts. Some changes
may have a significant influence on existing mappings,
and some of them may be marginal. It means that even
if we observe many changes applied to ontologies, these
changes do not necessarily entail that alignments between
such ontologies are no longer valid.

The function diff can be used to designate the
evolution of some ontology, however, it does not show how
significantly such ontology changed. The first contribution
of our research is developing a tool that can be used to verify
if alignment revalidation is required. For each ontology
level, we define a function that reflects a degree of change
significance. On the level of concepts, such function �C

must meet postulates defined below:

• P1. �C(C, C′) ∈ [0, 1]
• P2. �C(C, C′) = 0 ⇐⇒ diffC(O, O ′) = 〈∅, ∅, ∅〉
• P3. �C(C, C′) = 1 ⇐⇒ diffC(O, O ′) = 〈C′, C, ∅〉

The first postulate states that the values of the function
�C must come from a range [0,1]. Two further postulates
address edge conditions. P2 addresses a situation in which
the change significance is minimal (equal to 0). Such a situ-
ation occurs if no modification on the concept level has been
applied - no new concepts have been added, no concepts
have disappeared, and no concepts have been modified.

P3 addresses the opposing situation to P2. The value
of change significance is maximal (equal to 1) only if the
ontology has completely changed. Such a situation takes
place only when all old concepts have been deleted (hence
the first component of diffC equals C) and all present
concepts are new (hence the second component of diffC

equals C′). If every concept from the earlier state has been
removed and every concept from the newer state is new, then
no modifications have been applied. Therefore, the third
component of diffC is an empty set.

The degree of changes applied to concepts can be
calculated in the following way:

�C(C, C′) =
| newC(C, C′) | + | delC(C, C′) | + ∑

(c,c′)∈altC(C,C′)
ds(ctx(c), ctx(c′))

| C′ | + | delC(C, C′) | (15)

The denominator in the (15) will always be higher the
numerator thus making PsiC meets P1. If no changes
has been applied to concepts diffC(O, O ′) = 〈∅, ∅, ∅〉
then the nominator will equal 0 and in consequence the
whole equation will also equals 0 thus P2 will be met.
If every concept from the ontology has been changed
(diffC(O, O ′) = 〈C′, C, ∅〉) then the nominator and the
denominator will be equal. In such situation the value of
(15) would be equal to 1, which fulfils P3.

A function ds , used in the above equation, determines a
distance between two logic formulas. At first, it transforms
both input formulas to the disjunctive normal form (DNF).
It allows treating the rewritten formulas as sets of groups
of symbols. It is possible to calculate a Jaccard’s distance
measure between two such groups. The function ds creates
a cartesian product of groups from both input formulas and
calculates a distance for each pair. The final result is an
average of partial values distance. For details, please refer
to our previous publication [28].

A function �I , which calculates a degree of change
significance on the level of instances, accepts sets of con-
cepts C and C′ as its input. This is enforced by the factthat

changes applied to instances do not cover only additions
or removals of instance identifiers from the set I , but also
changes in valuations of instances. These changes are tightly
bound to concept definition - namely, values of vi

c from (5).
The function �I must meet the following postulates:

• P1. �I (I, C, I ′, C′) ∈ [0, 1]
• P2. �I (I, C, I ′, C′) = 0 ⇐⇒ diffI (O, O ′) =〈

∅, ∅, ∅
〉

• P3. �I (I, C, I ′, C′) = 1 ⇐⇒ diffI (O, O ′) =〈

I ′, I, ∅
〉

P1 states that the values of the function �I must come
from a range [0,1]. P2 considers a situation where the signif-
icance of a change equals 0 (minimal value). This situation
occurs when no alteration has been introduced to the consid-
ered ontology. The last postulate P3 addresses the opposite
situation - it occurs if all instances from the initial state have
been deleted and all instances from the last state are new.

The final formal definition of �I from (16) can be found
below:

�I (I, C, I ′, C′) =
| newI (I, C, I ′, C′) | + | delI (I, C, I ′, C′) | + ∑

(i,c,c′)∈altI (I,C,I ′,C′)
dist (vi

c, v
i
c′)

| I ′ | + | delI (I, C, I ′, C′ | (16)

20389

M. Pietranik and A. Kozierkiewicz

It utilizes a helper function dist, which calculates a
distance between two vectors of values that represent
instances according to the definition on (5). Those vectors’
contents are heterogenous and may include values from
different domains (e.g., integers, captions, decimals). Thus,
it is impossible to provide a generic definition of dist,
which must be customized for every concept structure
in maintained ontology to compare instances of those
concepts. Some examples may be found in [14].

The denominators of all three components of the (16) are
the same, which allows us to treat the whole expression as a
sum of their nominators divided by the denominator. It will
always be a higher value, thus making PsiC meets P1. If
no changes has been applied to instances diffI (O, O ′) =
〈∅, ∅, ∅〉 then the nominator will equal 0 and in consequence
the whole equation will also equals 0 thus P2 will be met.
Suppose every instance from the ontology has been changed
either by completely altering existing ones or removing all
of them and adding new ones. In that case, the nominator
and the denominator will be equal. In such situation the
value of (16) will equal 1, which fulfils P3.

The last function �R , which provides the means to
estimate how significantly relations have changed, must
meet the following postulates:

• P1. �R(RC, RC′
) ∈ [0, 1]

• P2. �R(RC, RC′
) = 0 ⇐⇒ diffRC (O, O ′) =〈

∅, ∅, ∅
〉

• P3. �R(RC, RC′
) = 1 ⇐⇒ diffRC (O, O ′) =〈

RC′
, RC, ∅

〉

The first postulate P1 states that the values of the function
�R must be constrained to the range [0,1]. P2 addresses a
situation where the degree of the significance of change is
minimal - no new relation has appeared, no relation has been
removed, and no relation has changed.

The last postulate P3 considers a situation when the
ontology has been wholly modified on the level of relations-
every relation from the earlier state has been deleted, and
every relation in a later state is new. Therefore, the value of
the function should be maximal.

�R is defined according to (17).

�R(RC, RC′
) = | newRC (RC, RC′

) |+| delRC (RC, RC′
) |

| RC′ | + | delRC (RC, RC′
) |

+

∑

(r,r ′)∈alt
RC (RC,RC′

)

ds(SR(r), SR(r ′))

| RC′ | + | delRC (RC, RC′
) |

(17)

Identically as (16) the (17) can be treated as one expres-
sion due the identical denominators of its components. This

denominator will always be higher than the numerator, thus
making PsiR meets P1. If no changes has been applied to
relations diffRC (O, O ′) = 〈∅, ∅, ∅〉 then P2 will be met
because the nominator will equal to 0, making the whole
expression equals 0. Suppose every relation from the ontol-
ogy has been changed. In that case, the nominator and the
denominator will be equal, making the whole expression
equal to 1. This property asserts that �R meets P3.

While maintaining two ontologies and their alignment,
when a particular measure (�C, �I or �R) surpasses some
assumed threshold (due to the significant changes applied to
aligned ontologies), then the appropriate procedure should
be used to ensure the validity of the alignment. The choice
of these threshold values depends on specific ontology
applications and the required level of sensitivity. The choice
of these thresholds would produce very different results,
and the legitimate question of how to better set their
values naturally arises. However, we claim that it is very
domain dependent and lies beyond the scope of this article.
However, the flexibility of having three different functions
describing different types of changes in ontologies may
prove helpful in various use cases.

4.2 Methods for updating ontology alignment

This section presents algorithms for updating ontology
alignment based on the evolution of mapped ontologies. The
procedures may be treated as subsequent steps to calculating
the degree of change significance described earlier.

The following section will be split into subsections
dedicated to concepts, instances, and relations. Every
presented algorithm takes as an input a result of a
comparison of two states of the source ontology O1 and O ′

1
(utilising functions diffC , diffI , diffR) and a mapping
Align(O1, O2) between the source ontology (in its initial
state O1) and a target ontology O2. All algorithms return
the updated and revalidated alignment Align(O ′

1, O2)

compatible with the latest versions of given ontologies.

4.2.1 Updating ontology alignment on the level of concepts

As easily seen in (8), ontology evolution may involve adding
new concepts and modifying or deleting them. Therefore,
preserving the validity of the alignment AlignC(O1, O2)

and ensuring its correctness in time AlignC(O ′
1, O2)

can be divided into three sub-procedures. The first one
(Algorithm 1) is a simple procedure of removing all of the
mappings that connect concepts deleted from the ontology
O. Its computation complexity is low and dependent only on
the size of delC(C1, C

′
1), therefore, we can claim that this

complexity is linear.
Algorithm 2 addresses adding new concepts to the

ontology O1. Such concepts must be compared with

20390

Methods of managing the evolution...

Algorithm 1 Removing stale mappings of deleted concepts from the
existing alignment.

concepts from the target ontology O2 and checked if they
can be aligned. We accomplish this goal by creating an
additional set containing concepts mappings taken from the
cartesian product of concepts added to O1 and concepts
from O2 for which the alignment degree function λC is
higher than the given threshold τ . We incorporate the
concept alignment degree function λC (Line 2) developed in
our earlier publications [28]. However, the method may be
replaced with any ontology mapping tool from the literature
(e.g., [32]). The algorithm requires comparing all added
concepts with concepts from the target ontology, therefore,
we can claim that the final complexity of Algorithm 2 is not
higher than polynomial. Since the size of newC(C1, C

′
1) is

usually small and significantly lower than the size of C2,
therefore the efficiency of the algorithm is satisfactory.

Algorithm 2 Adding new mappings to concept alignment.

Algorithm 3 addresses the issue of changes applied to
structures of concepts. Their new state may entail one
of three three situations. The first involves alignments
of a particular, changed concept, which may no longer
be correct and therefore, must be removed. This issue is
addressed in Lines 4-5 where mappings are checked if
the value of their alignment degree changed significantly
enough (Line 4). If that is the case, then such mappings are
removed (Line 5). The second situation addresses violating
taxonomic completeness of mappings, which states that if
some concept taken from the ontology has a predecessor
within the concepts’ hierarchy, then they can be both
mapped to a concept from the second ontology. If such

a situation occurs then the alignment must be completed
(Lines 7-11). The opposite situation is checked in Lines
12-15 where the algorithm removes from the alignment
excessive mappings of concepts between which there are no
taxonomical connections. In Line 16 the algorithm checks
all previously unprocessed concepts (track of which is held
using C̃2 initialised in Line 6) from the target ontology
for any additional mapping which should be added to the
final alignments.

The described procedure is the most complex. It requires
checking if altered concepts from the source ontology O1

can be mapped into concepts from the target ontology O2,
which entails processing the set of its concepts. Therefore,
its complexity is not higher than polynomial with regard
to the number of concepts in both ontologies. However,
the number of altered concepts in the source ontology O1

is usually much smaller than the set of concepts in the
target ontology O2. Thus, we can claim that the algorithm
depends only on the number of concepts in the target
ontology O2.

Algorithm 3 Updating alignments of modified concepts.

20391

M. Pietranik and A. Kozierkiewicz

4.2.2 Updating ontology alignment on the level of instances

The Algorithm 4 addresses the issue of changes applied to
instances of concepts and how they affect their mappings. It
requires three elements as input:

1. the instance alignment between a source ontology
O1 in its earlier state and the target ontology O2:
AlignI (O1, O2) = {ALO1,O2(c1, c2) | (c1, c2) ∈
AlignC(O1, O2)}

2. the current state AlignC(O ′
1, O2) of the alignment on

the concept level
3. the result of the difference function on the concept level

diffC(O1, O
′
1)

Initially (Lines 2-3), the algorithm deletes alignments
of instances of removed concepts. Next (Line 4-8), the
algorithm generates a set of concept pairs added to the
source ontology mapped with concepts from the target
ontology. Their instances are checked to see if they can
be aligned with each other. Then, the algorithm processes
changes applied to the source ontology (Line 9-10)- for
every modified concept, a set of corresponding alignments
is designated. Every iteration (Lines 11-24) checks if a
current concept has attributes removed or added. The
mapping degree function λI is used, and its outcome is
compared with a threshold. In Lines 29-33, the algorithm
removes alignments of instances that have been removed.
The final section of the algorithm (Lines 34-41) checks
if earlier alignments of the altered instance are incorrect
- if so, they are removed. The algorithm also checks if
any added concepts’ instances can be aligned to instances
of corresponding concepts in the target ontology, and the
updated alignment is returned (Line 42).

To process instances and their valuations in particular
concepts, the algorithm must analyze both a set of instances
and a set of concepts. Obviously, they are narrowed down
only to instances in which valuations have changed. Such
operation entails relatively high complexity with regard to
the number of changed instances from the ontology change
log, sizes of sets of concepts, and sizes of sets of instances.
Since the size of the change log is usually not very big,
we can claim the algorithm’s complexity is quadratic. It
depends only on the sizes of the two latter sets.

4.2.3 Updating ontology alignment on the level of relations

The algorithm that updates the ontology alignment on
the relation level AlignR(O1, O2) to its new state
AlignR(O ′

1, O2) can be divided into three scenarios: (i)
removing stale mappings; (ii) revalidating and updating
preserved mappings; (iii) adding new mappings.

The first scenario presented on Algorithm 5 addresses an
issue concerning relations that have been removed from the

source ontology. Consequently, all their mappings should
also be removed (Lines 3). The described algorithm is a
straightforward procedure with a small, linear computation
complexity. It depends only on the size of the set of deleted
relations, which is usually relatively small.

Since modifying relations within a source ontology and
adding new relations entail finding new mappings for
such relations, the last two scenarios can be implemented
in one procedure, which is presented on Algorithm 6.

Algorithm 4 Updating ontology alignment on the instance level.

20392

Methods of managing the evolution...

Algorithm 4 (continued)

Algorithm 5 Removing stale mappings of deleted relations from the
existing alignment.

The algorithm begins (Lines 3-6) by designating a set of
alignments of modified relations (Line 3), which are fed to
the appropriate alignment function. The calculated result is
confronted with some assumed threshold. If the criterion is
not met, such a relation pair is removed from the alignment.
Then, the algorithm designates a set of relations from the
source ontology which were modified but previously not
aligned with any relation from the target ontology (Line 5).
This set is then summed with a set of new relations added
to the source ontology (Line 6). We do not consider adding
new alignments involving previously aligned relations since

we assume that the alignment of two ontologies before one
evolved is considered sound and complete.

The algorithm starts (Line 7) to search for any new
mappings. It is possible to incorporate any alignment
procedure - for simplicity, in this paper, we use a mapping
method created in our previous publication [28]. It is built
on top of a distance function, also used in (17), which can be
used to compare relation semantics. The algorithm iterates
through the set of relations from the target ontology (Line
8). Every relation is checked if the degree to which it can
be aligned to the relation from the target ontology is higher
than a threshold value (Line 9). New mappings are added to
the alignment (Line 10). The algorithm also adds mappings
of relations that are more general than the current one (Lines
13-17).

The algorithm must compare every relation added to
or changed in the source ontology with every relation in
the target ontology. The alterations of the source ontology
are usually relatively small. Therefore, the algorithm’s
complexity depends mainly on the number of relations in
the target ontology but is not higher than quadratic.

5 Experimental verification

5.1 Evaluation procedure

Ontology Alignment Evaluation Initiative (OAEI) [37] is a
non-profit organization that, since 2004, has hosted annual
campaigns evaluating ontology matching technologies.
These recurring events are based on a provided benchmark
dataset, consisting of a large number of ontologies grouped
into thematic sets (referred to as “tracks”) along with
the pre-prepared reference alignments, which are treated
as the only correct. Alignments designated by campaign
participants are confronted with those reference alignments,
which allows for calculating Precision, Recall, and F-
measure [5].

The provided dataset is widely accepted in the literature
as a state-of-the-art benchmark. Therefore, we have also
chosen to use it to verify the methods proposed in
Section 4.2. However, we have found several limitations of
the approach proposed by OAEI when attempting to use it
in the context of ontology evolution.

Firstly, we noticed that the OAEI’s benchmarks are
focused solely on the concept level of ontologies. Issues
concerning the level of relations and instances are treated
very vaguely. There exist a track pre-prepared solely for the
level of instances, however, the artificially introduced com-
plexity (e.g., translating attribute values into different lan-
guages) renders it inappropriate in the scenario of ontology
evolution. Moreover, to the best of our knowledge, no other
ontology dataset focused on relations or instances exists.

20393

M. Pietranik and A. Kozierkiewicz

Algorithm 6 Revalidating the existing and adding new mappings of
relations.

Secondly, we expected that the benchmark data would
change and evolve each year to simulate real-world
applications of ontologies and reflect constantly changing
business requirements. However, no such changes were
introduced in the dataset provided by OAEI - only new
benchmark ontologies have been added to the pool.

The two limitations entailed that we could not directly
use datasets provided by OAEI in our experiment. Therefore
we decided to propose a different approach. At first,
we selected a “Conference Track” [39] from the OAEI
dataset, which includes 16 ontologies from the domain
of conference organization. Then, we applied a series of
semi-random changes using a set of pre-prepared evolution
scenarios. The modification of the ontology can consist of
3 different operations: adding a new concept and removing
or modifying an existing concept. Removing a concept
does not require any additional explanations. The indicated
number of concepts is chosen in a random way and simply
deleted from the ontology. Adding a new concept is more
complicated because this operation requires preserving a

general sense and consistency of the ontology. For this
purpose, we have selected one ontology related to the
conference and the indicated number of concepts have
been copied from the chosen to the evolving ontology. As
it was mentioned in Section 3.2 by the modification of
concepts we understand the changes made in their structure
in terms of their contexts. In our experiment, we apply
random mutation to the concepts’ structure by adding or
removing attributes. Similarly to the adding concepts, the
attributes from the related ontology are drawn and added to
the evolving ontology. The process of removing attributes is
self-explanatory.

The number and type of alteration depend on the aim of
the experiment. In the first one, the number of modifications
has been directly indicated by predefined experimental
scenarios. The purpose of the second one is to verify how the
number of modifications in source ontologies influences the
alignments. Thus, in the subsequent steps, we applied more
changes by adding new concepts. In the beginning, only a
10% change has been applied and in the end, the number
of concepts in the source ontology has been doubled. The
last experiment applied a scenario based on adding 10
related concepts.

These changes resulted in different versions of initial
ontologies, which can be treated as a simulation of ontology
evolution. We split the experiment into three parts. Each
phase started by designating an initial alignment between
different ontologies. We used the LogMap system [16],
[38], which according to OAEI is one of the most
prominent alignment systems. Next, for each modified
ontology pair their initial alignment has been revalidated
using algorithms proposed in Section 4.2 which were then
compared with a mapping determined from scratch using
LogMap. The main idea of the experiment is presented
in Fig. 1.

At this point, we needed to decide which ontology
alignment assessment method we should use to evaluate
obtained mappings. The most widely used Precision, Recall,
and F-measure cannot be used since there is no reference
alignment. Moreover, such reference alignment cannot be
created manually due to the random nature of the introduced
changes. Naturally, a small portion of alignments could be
computed manually by domain experts, and those can then
be used for evaluation, however, such an approach is always
biased and may render inconclusive results.

Therefore, we needed a method that does not require
a pre-prepared reference alignment. We claim that when
two similarly-sized alignments of ontologies need to be
compared without knowing what correct correspondences
are, it is worth analyzing the properties of mapped concepts
and their placement within ontologies. Based on such
information, it is possible to judge the quality of these
alignments. Thus, we used a novel approach to assessing

20394

Methods of managing the evolution...

Fig. 1 The general idea of the
experiment

ontology mappings to evaluate the quality of alignments
collected during the experimental verification. It was
proposed in our previous publication [29] and includes two
measures ξD and ξC . Both have been useful compared to the
most widely used Precision, Recall, and F-measure. Here,
we will only provide baseline definitions for completeness
purposes; for details, please refer to [29].

The first one, ξD , utilizes a criterion based on the depth
of classes in the hierarchy of mapped ontologies. It is
built on top of an obvious remark that states that the
deeper a concept is placed within a taxonomy, the more
detailed its description and the more refined knowledge it
expresses. This entails that finding correspondences of such
elements is more complicated than finding mappings of
classes located shallow in the hierarchy. Therefore, we claim
that alignments of concepts deeper in the hierarchy should
be treated as more valuable than alignments of general
concepts, which represent generic facts.

Formally, the depth-based measure ξD which reflects the
described considerations, is defined in the following way:

ξD(O1,O2, AlignC(O1,O2))

=
∑

(c1,c2)∈AlignC(O1,O2)

γD (O1,O2, AlignC(O1,O2), (c1, c2))

(18)

where γD is defined as follows:

γD(O1,O2, AlignC(O1,O2), (c1, c2))

=
⎧
⎨

⎩

1
Depth(O1)−Depth(O1,c1)+1 + 1

Depth(O2)−Depth(O2,c2)+1
if (c1, c2) ∈ AlignC(O1,O2)

0 otherwise
(19)

As with every tool, this also has some limitations. Let
us assume the existence of a specific concept that has been
split into two neighboring concepts located at the same level
of the taxonomy. Suppose the mapping is enriched with
two mappings of such new concepts. In that case, they will
be treated as equally relevant due to the position of the
connected concepts in the hierarchy. The proposed measure

will, therefore, not take into account the enrichment of the
description in the ontology. However, this is directly due to
its specificity based on the depth of the hierarchy.

The second measure ξC is based on the continuity of
mapped classes. Lets assume a situation in which we have
two alignments of ontologies O1 = (C1, H1, R

C1 , I1, R
I1)

and O2 = (C2, H2, R
C2 , I2, R

I2). The first one contains
entries with concepts from O1 that belong to the same
subtree in H1. A second alignment contains concepts from
O1, which are spread across the hierarchy H1. In other
words, one of the given alignments connects concepts from
O1, which are closely clustered.

In contrast, the second alignment connects concepts
that are likely unrelated. Assuming the existence of a
reference alignment, both competing alignments could have
comparable values of Precision and Recall. However, the
former alignment should be treated as more valuable from
the user’s point of view. In other words, when an alignment
contains mappings of unrelated classes, it may look chaotic
and incoherent. In contrast, a smaller alignment that covers
a focused ontologies fragments (from the taxonomic point
of view) can bring more benefits to the end user.

In order to define ξC we introduce some auxiliary
notions:

• Subtree(O1, AlignC(O1, O2)) denotes a set of sub-
trees of concepts from the ontology O1 that participates
in the alignment AlignC(O1, O2). It is calculated using
the formula:

Subtree(O1, AlignC(O1, O2)) =
⋃

(c1,c2)∈AlignC(O1,O2)

{Subtree(O1, c1)}

(20)

• γC(t) =| t |2 is the rating function that scores a
given subtree with a certain number of points, where
|t | is the number of classes in subtree t . The square in
the definition of γC is used to increase the difference
between scores obtained by two subtrees.

20395

M. Pietranik and A. Kozierkiewicz

Having the above, we defined the measure ξC in the
formula below:

ξC(O1, O2, AlignC(O1, O2))

=
∑

t∈SubT rees(O1,AlignC(O1,O2))

γC(t)+
∑

t∈SubT rees(O2,AlignC(O1,O2))

γC(t),

(21)

Additionally, along with the measures ξD and ξC we have
used the accuracy measure, which indicates how similar
results are determined by both approaches. It is calculated
as the number of common concept mappings between two
ontologies divided by the number of all mappings found by
both methods:

Accuracy = | AlignLogMap(O ′
1,O2) ∩ AlignFOKI (O

′
1,O2) |

| AlignLogMap(O ′
1,O2) ∪ AlignFOKI (O

′
1, O2) |

(22)

The measures defined on (18) and (21) form a novel
framework for assessing the quality of ontology alignment.
Due to the limited space available, we cannot present either
example or their comprehensive analysis. For details, please
refer to [29].

Reference alignments and measures of Precision, Recall,
and F-measure are the ideal solution when some initial
tests of ontology alignments are performed (like the ones
organized by OAEI). This makes such an approach unusable
in the context of this article since there are neither reference
ontologies nor reference alignments created to simulate
ontology evolution and assess the updated versions of their
mappings.

Bear in mind that none of the measures defined on (18),
(21) and (22) are not intended to assess the correctness
of mappings. They can be used to assess a mapping
quality based on the taxonomic structure of participating
ontologies. Therefore, using ξD and ξC to verify algorithms
from Section 4.2 emphasizes that the main purpose of
all of the developed procedures is not outperforming any
baseline ontology alignment methods in terms of Precision,
Recall, and F-measure. Their fundamental goal is updating
the ontology alignment designated before any changes
have been introduced to ontologies. They are expected to
return alignments with at least similar quality to the ones
designated from scratch by ontology alignment systems
that require processing whole ontologies. In other words,
the main goal of the experiment illustrated in Fig. 1 is
simulating ontology evolution and comparing the quality
of updated alignments (in terms of defined measures ξC ,
ξD and Accuracy) with alignments designated from scratch
by LogMap.

In the first part of the experimental procedure, we
wanted to check how different changes in source ontologies
influence changes in alignment. For this purpose, we
applied different types of modification in source ontologies,
like adding new concepts, removing existing concepts, or
modifying them. The second part of the experiment aims to
observe how the different number of modifications in the
source ontologies affects the final alignment. In the last part,
we examine alterations in different source ontologies.

5.2 Different type of modifications
in the source ontology

In the first experiment, we aimed to verify how different
modifications of a source ontology influence the alignments
between two ontologies. The experiment was composed of
several steps. Initially, for two ontologies, an alignment
between them has been created using LogMap. Then we
applied random alterations to the source ontology according
to predefined scenarios. After applying the modifications,
we have launched the algorithms from Section 4.2 in order
to adjust the initial alignments. Simultaneously, a new
alignment has been designated once more using LogMap.
All alignments have been compared using the assessment
functions ξD and ξC , and the accuracy measure.

In the procedure we used the the Conference Track
[39] from OAEI datasets. It contains 16 ontologies from
the conference organization domain. Due to heterogenous
character of origin of these ontologies, they are suitable
for ontology matching task. Moreover, the nature of the
domain is simple to understand, which allows for easy initial
verification of the obtained results. From the whole set
we have randomly chosen the CMT1 ontology as a target
ontology, and the confOf 2 ontology as a source ontology.
The collected results for different scenarios are presented
in Table 1.

This experiment allows us to compare alignments
designated from scratch by LogMap and the FOKI
framework. The accuracy values from Table 1 showed that
both approaches determined different sets of mappings. The
assessment of the alignment quality determined by both
methods has been estimated by the defined measures ξD and
ξC . Therefore, we collected four samples of data: LogMap
ξD , LogMap ξC , FOKI ξD and FOKI ξC . In this experiment
we wanted to statistically verify two hypothesis stating that:
(i) means of LogMap ξD and FOKI ξD are equal; and (ii)
means of LogMap ξC and FOKI ξC are equal.

In order to achieve this goal, we assumed the significance
level α = 0.05. Then some prerequisites had to be
checked. Firstly, we verified if the samples LogMap ξD ,

1http://oaei.ontologymatching.org/2021/conference/data/cmt.owl
2http://oaei.ontologymatching.org/2021/conference/data/confof.owl

20396

http://oaei.ontologymatching.org/2021/conference/data/cmt.owl
http://oaei.ontologymatching.org/2021/conference/data/confof.owl

Methods of managing the evolution...

Table 1 Different scenarios for a single pair of ontologies

Scenario LogMap ξD LogMap ξC FOKI ξD FOKI ξC Accuracy

No changes 2.949 16.00 2.949 16.00 1.000

Removing 5 concepts 1.699 8.00 1.699 8.00 1.000

Adding 5 related concepts 4.250 29.00 3.550 23.00 0.889

Modifying 5 concepts 2.366 14.00 1.699 10.00 0.571

Adding and removing 5 concepts 3.466 22.00 2.099 13.00 0.625

Adding and modifying 5 concepts 3.333 22.00 2.633 17.00 0.666

Modifying and removing 5 concepts 1.116 6.00 0.450 4.00 0.333

Adding, removing and modifying 5 concepts 2.183 16.00 0.850 9.00 0.333

Removing 20 concepts 1.283 4.00 1.283 4.00 1.000

Adding 20 related concepts 3.199 17.00 3.449 18.00 0.778

Modifying 20 concepts 1.700 8.00 0.450 6.00 0.222

Removing 40 concepts 0.000 0.00 0.000 0.00 1.000

Adding 40 related concepts 3.883 20.00 2.783 15.00 0.462

LogMap ξC , FOKI ξD and FOKI ξC come from the normal
distribution. We have used the Shapiro-Wilk test. For all
data, we received p−value greater than 0.05 and statistical
test values: 0.971, 0.971, 0.974, 0.978, respectively, which
allows us to conclude that all the samples come from the
normal distribution. Then, we used the Fisher test, which
confirmed the equality of variances of samples LogMap ξD

and FOKI ξD (F = 1.079, p − value = 0.89) and the
equality of variances of samples LogMap ξC and FOKI ξC

(F = 1.575, p − value = 0.43).
Eventually, we have chosen the t-test. For samples of

LogMap ξD and FOKI ξD we obtained t − value = 1.22
and p − value = 0.234. For samples ξC and FOKI ξC we
obtained t − value = 1.01 and p − value = 0.32. Such
results confirm that using the FOKI framework determines
mappings of at least not worse quality than LogMap in terms
of the assumed quality measures ξD and ξC .

5.3 Different number of modifications
in the source ontology

The result obtained in the second experiment showed
how modifications of the source ontology influence the
alignments. Identically as in the Section 5.2 we used the
the Conference Track [39] from OAEI datasets, which
includes 16 ontologies from the conference organization
domain. From those 16 ontologies, we randomly chose two
ontologies different than the ones used in the experiment
described in Section 5.2 - the edas3 and ekaw4 have been
picked respectively as the source and the target ontology.

The source ontology has been modified randomly by
applying increasing changes in the subsequent steps. In the

3http://oaei.ontologymatching.org/2021/conference/data/edas.owl
4http://oaei.ontologymatching.org/2021/conference/data/ekaw.owl

beginning, only a 10 % change has been applied, and in the
end, the number of concepts in the source ontology has been
doubled. The obtained results are presented in Table 2.

The results presented in Table 2 confirmed the hypothesis
that the number of alterations in source ontologies does
not influence the alignments determined by our approach
and LogMap. The very high accuracy measure proves
it. Identically as in the experiment from Section 5.2 we
collected four samples of data: LogMap ξD , LogMap ξC ,
FOKI ξD and FOKI ξC . All the statistical analyses have
been done for the assumed significance level α = 0.05.

Initially, we checked the normality distribution of all of
them, obtaining the p − value greater than the assumed
significance level α = 0.05 and statistic values respectively
equal to: 0.93, 0.951, 0.859, 0.856. This proved that the
samples LogMap ξD , LogMap ξC , FOKI ξD and FOKI ξC

come from the normal distribution.
Next, we checked the variances of considered samples

using the Fisher test. For the pair of samples LogMap ξD

Table 2 Different number of modification in the source ontology edas

Amount of
changes

LogMap ξD LogMap ξC FOKI ξD FOKI ξC Accuracy

10% 7.095 210.00 7.095 210.00 1.00

20% 7.879 229.00 7.879 229.00 1.00

30% 8.079 254.00 8.079 254.00 1.00

40% 8.412 259.00 8.888 277.00 0.952

50% 8.495 275.00 8.721 268.00 0.913

60% 8.495 275.00 8.721 268.00 0.913

70% 8.579 294.00 8.255 294.00 0.920

80% 9.371 318.00 8.538 273.00 0.926

90% 9.371 318.00 8.538 273.00 0.926

100% 8.705 298.00 8.538 273.00 0.962

20397

http://oaei.ontologymatching.org/2021/conference/data/edas.owl
http://oaei.ontologymatching.org/2021/conference/data/ekaw.owl

M. Pietranik and A. Kozierkiewicz

and FOKI ξD the test yielded values p − value = 0.49
and F = 1.61. For the pair LogMap ξC and FOKI ξC we
obtained values p −value = 0.287 and F = 2.09. It allows
us to claim that the variances of tested samples are equal.

Eventually, all of the t-test requirements were met. The
t-test calculated for samples LogMap ξD and FOKI ξD

equals 0.45 (with a p − value equal to 0.656). For samples
LogMap ξC and FOKI ξC the t-test yielded value equal to
0.805 (and the p − value = 0.43). Thus, we cannot reject
the hypothesis that LogMap and our approach determine
mappings with the same quality in terms of the assumed
quality measures ξD and ξC .

5.4 Different source ontologies

In the last experiment, we have chosen one target ontology
conf Of . We have applied the same modifications in the
remaining ontologies from the conference track. The altered
ontologies have served as source ontologies according to
Fig. 1. The obtained results are presented in Table 3.

Analogous to the prior experiments, we have used the
accuracy measure, which showed that both approaches
determined a similar, but not identical, set of mappings. The
assessment of the quality of the alignment determined by
both methods has been estimated by the measures ξD and ξC

defined in Section 5.1, which provided us with four samples
LogMap ξD , LogMap ξC , FOKI ξD and FOKI ξC . As in
Sections 5.2 and 5.3 all the statistical analyses have been
made for the significance level of α = 0.05.

In the first step, we checked the normality distribution
of samples. The Shapiro-Wilk test returned values higher
than the assumed α for samples LogMap ξD and FOKI
ξD (0.4625 and 0.2, respectively), which proves that both
samples come from the normal distribution. However, the

p − value calculated for samples LogMap ξC and FOKI
ξC are lower than the assumed α. It allows us to claim that
those samples do not come from the normal distribution.

The Fisher test confirmed the equality of variances of
samples LogMap ξD and FOKI ξD . It yielded a value the
F = 1.0663 and the p−value = 0.91, which consequently
allowed us to use the t-test. The collected result of the
test is equal to 0.21. The p − value = 0.983 proves that
both compared methods determined aliments with the same
quality concerning the measure ξD .

For non-normal samples LogMap ξC and FOKI ξC , we
used the non-parametric Mann-Whitney U test. We have
obtained p − value equal 0.729. It means that the LogMap
and the FOKI both determine mappings with statistically
equal quality in terms of the measure ξC .

5.5 Discussion

All of the conducted experiments and collected results
unequivocally show that the procedures described in
Section 4 of the following paper return promising results. As
shown in Tables 1, 2 and 3, they do not strictly outperform
LogMap in terms of Accuracy, a measure based on the depth
of classes or measure based on the continuity of mapped
classes. However, we statistically proved that our approach
determines mappings not worse in terms of the assumed
quality measures ξD and ξC than LogMap.

The analysis of Table 1 allows us to check our approach
for edge cases. If nothing has changed or almost all concepts
have been removed, Accuracy equals 1. Additionally, our
approach gives entirely consistent results to LogMap in
case of removing concepts. The ontology evolution scenario
based on adding concepts is a more complicated procedure;
therefore, both verified methods differ slightly. However,

Table 3 Different source ontologies

Source ontology LogMap ξD LogMap ξC FOKI ξD FOKI ξC Accuracy

confious 1.233 26.000 1.233 24.000 0.648

conference 9.555 157.000 9.412 144.000 0.770

cmt 6.983 39.000 6.983 39.000 0.875

crs 7.683 100.000 7.683 100.000 0.875

edas 9.017 94.000 9.017 94.000 0.552

ekaw 11.845 220.000 11.845 220.000 0.700

iasted 5.726 55.000 5.726 55.000 0.530

linklings 4.833 45.000 6.117 47.000 0.500

micro 7.667 61.000 7.467 54.000 0.840

MyReview 8.117 55.000 8.117 55.000 0.830

OpenConf 7.567 48.000 6.983 44.000 0.550

paperdyne 7.767 57.000 7.850 55.000 0.710

pcs 5.950 44.000 5.950 44.000 0.810

sigkdd 6.250 43.000 6.083 40.000 0.860

20398

Methods of managing the evolution...

in our previous work [22], we have noticed that LogMap
does not consider attributes and their modifications in its
alignment determination process. Thus, LogMap and our
developed procedure are significantly different in the case
of concept modification.

Table 2 gives us rather apparent indications that the
more changes applied, the smaller value of Accuracy
(alignments determined by our approach and LogMap
differ more), and the higher value of quality measures
ξD and ξC . These quality measures are based on the
depth of classes and the continuity of mapped classes,
respectively. Their higher value means more specific and
valuable alignment. Adding a new concept enriches the
ontology, which entails richer alignment. This part of the
experiment also demonstrated the usefulness of defined
quality measures in situations where Precision, Recall, and
F-measure can not be calculated because of the absence of
the reference alignment.

The alignments determined by tested methods are
sometimes not consistent. We can conclude that the bigger
the source ontology, the more significant the difference
between alignments. Table 3 contains ontologies with
different numbers of concepts - from 14 to 141. A higher
Accuracy value has been reached for smaller ontologies
with a number of concepts lower than 30 (e.g., CRS, PCS, or
CMT) than for bigger ontologies with a number of concepts
higher than 100 (e.g., Iasted, Edas).

In conclusion, our results allow us to claim that it is
possible to update ontology alignment using only infor-
mation about the evolution of ontologies and not whole
ontologies. This property can be very valuable in practical
applications of ontologies. Re-launching alignment proce-
dures from scratch can be too time-consuming, proving
the usefulness of the developed procedures, which can be
especially important if the size of ontologies is big.

6 Future works and summary

In this paper, we describe an expansion of our Framework
for Ontological Knowledge Integration (FOKI) with novel
methods for maintaining ontology alignment during the
evolution of mapped ontologies. We have created the set
of algorithms, for the levels of concepts, relations, and
instances that can assert and preserve the validity of
mappings of two ontologies. Consequently, there is no need
to conduct an ontology mapping procedure from scratch if
any of the participating ontologies change.

The developed algorithms were experimentally verified
using the state-of-the-art dataset provided by the Ontology
Alignment Evaluation Initiative. The collected results were
evaluated using two novel approaches to assessing the
quality of ontology alignments- the measure built on top of

the criterion based on the depth of the mapped classes and
the measure involving the criterion based on the continuity
of mapped classes. The experiments showed the usefulness
of our framework, which has been proved by the statistical
analysis of the collected results. Our methods return high-
quality alignments, similar to baseline ontology alignment
methods.

Our upcoming research involves incorporating fuzzy
logic into our framework. We intend to use it to designate
alignments between two ontologies. During the alignment
process, the interpretation of similarity between elements
from ontologies is not always clear. High or low values
of similarity or alignment degree measure between two
elements from two ontologies do not always support a
decision about their alignment. Fuzzy inference rules allow
for overcoming the issue of such uncertainty.

Furthermore, we plan to extend the experiments to ana-
lyze the proposed approach’s scalability. Using relatively
small ontologies from the OAEI datasets proved the useful-
ness of our ideas, however, using more large-scale datasets
is an obvious next step of our research.

Acknowledgements This research project was supported by grant No.
2017/26/D/ST6/00251 from the National Science Centre, Poland.

Declarations

All authors certify that they have no affiliations with or involvement in
any organization or entity with any financial interest or non-financial
interest in the subject matter or materials discussed in this manuscript.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Cardoso SD, Da Silveira M, Pruski C (2020) Construction and
exploitation of an historical knowledge graph to deal with the
evolution of ontologies. Knowl-Based Syst 105508

2. Destro JM, Reis JC, Torres R, Ricarte I (2019) Ontology Changes-
Driven Semantic Refinement of Cross-Language Biomedical
Ontology Alignments. SeWeBMeDa@ISWC

3. Dinh D, Reis JC, Pruski C, Silveira M, Reynaud C (2014)
Identifying relevant concept attributes to support mapping
maintenance under ontology evolution. J Web Semant 29:53–66

4. Euzenat J, Meilicke C, Stuckenschmidt H, Shvaiko P, Trojahn
C (2011) Ontology alignment evaluation initiative: six years of

20399

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

M. Pietranik and A. Kozierkiewicz

experience. In: Journal on data semantics XV. Springer, Berlin,
pp 158–192

5. Euzenat J (2007) Semantic precision and recall for ontology
alignment evaluation. Ijcai 7:348–353

6. Gene Ontology Consortium (2019) The gene ontology resource:
20 years and still GOing strong. Nucleic Acids Res 47(D1):D330–
D338

7. Groß A, Hartung M, Thor A, Rahm E (2012) How do computed
ontology mappings evolve? - A case study for life science
ontologies. EvoDyn@ISWC

8. Flouris G, Manakanatas D, Kondylakis H, Plexousakis D,
Antoniou G (2008) Ontology change: classification and survey.
Knowl Eng Rev 23(2):117

9. Harrow I, Balakrishnan R, Jimenez-Ruiz E, Jupp S, Lomax J, Reed
J, Romacker M, Senger C, Splendiani A, Wilson J, Woollard P
(2019) Ontology mapping for semantically enabled applications.
Drug Discov Today 24(10):2068–2075

10. Hartung M, Kirsten T, Rahm E (2008) Analyzing the evolution of
life science ontologies and mappings. In: International workshop
on data integration in the life sciences. Springer, Berlin, pp 11–27

11. Hartung M, Groß A, Rahm E (2013) COnto–Diff: generation of
complex evolution mappings for life science ontologies. J Biomed
Inform 46(1):15–32

12. Hnatkowska B, Kozierkiewicz A, Pietranik M (2020) Semi-
Automatic Definition of attribute semantics for the purpose of
ontology integration. IEEE Access 8:107272–107284

13. Hnatkowska B, Kozierkiewicz A, Pietranik M, Truong HB (2022)
Hybrid approach to designating ontology attribute semantics. In:
Conference on computational collective intelligence technologies
and applications. Springer, Cham, pp 351–363

14. Hnatkowska B, Kozierkiewicz A, Pietranik M (2022) Fuzzy logic
framework for ontology instance alignment. In: International
conference on computational science. Springer, Cham, pp 653–
666

15. Huntley RP, Sawford T, Martin MJ, O’Donovan C (2014) Under-
standing how and why the Gene Ontology and its annotations
evolve: the GO within UniProt. GigaScience 3(1):2047–217X

16. Jiménez-Ruiz E, Grau BC, Zhou Y (2011) LogMap 2.0: towards
logic-based, scalable and interactive ontology matching. In:
Proceedings of the 4th international workshop on semantic web
applications and tools for the life sciences, pp 45–46

17. Keshavarzi A, Kochut KJ (2020) KGDiff: Tracking the evo-
lution of knowledge graphs. In: 2020 IEEE 21st International
Conference on Information Reuse and Integration for Data
Science (IRI), Las Vegas, NV, USA, vol 2020, pp 279–286,
https://doi.org/10.1109/IRI49571.2020.00047

18. Khattak AM, Latif K, Lee S (2013) Change management in
evolving web ontologies. Knowl-Based Syst 37:1–18

19. Khattak AM, Pervez Z, Khan WA, Khan AM, Latif K, Lee SY
(2015) Mapping evolution of dynamic web ontologies. Inf Sci
303:101–119

20. Kondylakis H, Plexousakis D (2013) Ontology evolution without
tears. J Web Semant 19:42–58

21. Kozierkiewicz A, Pietranik M (2019) Updating ontology align-
ment on the concept level based on ontology evolution. In:
Welzer T, Eder J, Podgorelec V, Kamišalić Latifić A (eds)
Advances in Databases and Information Systems. ADBIS 2019.
Lecture Notes in Computer Science, vol 11695. Springer, Cham,
https://doi.org/10.1007/978-3-030-28730-6 13

22. Kozierkiewicz A, Pietranik M (2019) Triggering ontology
alignment revalidation based on the degree of change significance
on the ontology concept level. In: Abramowicz W, Corchuelo
R (eds) Business information systems. BIS 2019. Lecture notes
in business information processing, vol 353. Springer, Cham,
https://doi.org/10.1007/978-3-030-20485-3 11

23. Kozierkiewicz A, Pietranik M (2020) Updating ontology align-
ment on the relation level based on ontology evolution. In: Pro-
ceedings of the 15th international conference on evaluation of
novel approaches to software engineering - Volume 1: ENASE,
2020, pp 241–248, https://doi.org/10.5220/0009142002410248

24. Kozierkiewicz A, Pietranik M, Nguyen LTT (2020) Updating
ontology alignment on the instance level based on ontology
evolution. In: Hartmann S, Küng J, Kotsis G, Tjoa AM, Khalil
I (eds) Database and expert systems applications. DEXA 2020.
Lecture notes in computer science, vol 12392. Springer, Cham,
https://doi.org/10.1007/978-3-030-59051-2 20

25. de Moor A, De Leenheer P, Meersman R (2006) DOGMA-MESS:
a meaning evolution support system for interorganizational
ontology engineering. In: Schärfe H, Hitzler P, Øhrstrøm P (eds)
Conceptual structures: inspiration and application. ICCS 2006.
Lecture notes in computer science, vol 4068. Springer, Berlin,
https://doi.org/10.1007/11787181 14

26. Ochieng P, Kyanda S (2018) Large-scale ontology matching:
state-of-the-art analysis. ACM Comput Surv (CSUR) 51(4):1–
35

27. Pernischova R (October 2019) The butterfly effect in knowledge
graphs: predicting the impact of changes in the evolving web of
data Doctoral consortium at ISWC 2019, auckland, 26 october
2019 - 30

28. Pietranik M, Nguyen NT (2014) A Multi-atrribute based
framework for ontology aligning. Neurocomputing 146:276–290.
https://doi.org/10.1016/j.neucom.2014.03.067

29. Pietranik M, Kozierkiewicz A, Wesolłowski M (2020) Assessing
ontology mappings on a level of concepts and instances. IEEE
Access 8:174845–174859

30. Reis JC, Pruski C, Silveira M, Reynaud C (2014) Understanding
semantic mapping evolution by observing changes in biomedical
ontologies. J Biomed Inf 47:71–82

31. Sassi N, Jaziri W, Alharbi S (2016) Supporting ontology
adaptation and versioning based on a graph of relevance.
J Exp Theor Artif Intell 28(6):1035–1059. https://doi.org/10.
10800952813X.2015.1056239

32. Shvaiko P, Euzenat J, Jiménez-Ruiz E, Cheatham M, Hassanzadeh
O (2018) 2018 CEUR Workshop proceedings 2288. In: Proceed-
ings of the 13th International Workshop on Ontology Matching
co-located with the 17th International Semantic Web Confer-
ence, OM@ISWC 2018, Monterey, CA, USA, October 8, 2018.
CEUR-WS.org 2018

33. Sioutos N, de Coronado S, Haber MW, Hartel FW, Shaiu WL,
Wright LW (2007) NCI Thesaurus: a semantic model integrating
cancer-related clinical and molecular information. J Biomed Inf
40(1):30–43

34. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W,
Lewis S (2007) The OBO foundry: coordinated evolution of
ontologies to support biomedical data integration. Nat Biotechnol
25(11):1251–1255

35. Yamamoto VE, dos Reis JC (2019) Updating ontology alignments
in life sciences based on new concepts and their context. In:
SeWeBMeDa@ ISWC, pp 16–30

36. Zekri A, Brahmia Z, Grandi F, Bouaziz R (2017) Temporal
schema versioning in τOWL: a systematic approach for the
management of time-varying knowledge. J Decis Syst 26(2):113–
137

37. http://oaei.ontologymatching.org/
38. https://www.cs.ox.ac.uk/isg/tools/LogMap/
39. http://oaei.ontologymatching.org/2021/conference/

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

20400

https://doi.org/10.1109/IRI49571.2020.00047
https://doi.org/10.1007/978-3-030-28730-6_13
https://doi.org/10.1007/978-3-030-20485-3_11
https://doi.org/10.5220/0009142002410248
https://doi.org/10.1007/978-3-030-59051-2_20
https://doi.org/10.1007/11787181_14
https://doi.org/10.1016/j.neucom.2014.03.067
https://doi.org/10.10800952813X.2015.1056239
https://doi.org/10.10800952813X.2015.1056239
http://oaei.ontologymatching.org/
https://www.cs.ox.ac.uk/isg/tools/LogMap/
http://oaei.ontologymatching.org/2021/conference/

Methods of managing the evolution...

Dr. Marcin Pietranik received
his M.Sc and Ph.D degrees in
computer science in 2008 and
2014 respectively and since
2016 he is an assistant pro-
fessor in Wrocław Univer-
sity of Science and Technol-
ogy. His scientific interests
span across knowledge inte-
gration and topics related to
ontology management (espe-
cially ontology evolution and
ontology alignment). He has
authored or co-authored over
45 articles and co-organized
several conferences. He also
has practical background and
a strong experience in modern
web technologies used within
medical projects.

Prof. Adrianna Kozierkiewicz
is an associate professor at
Wroclaw University of Sci-
ence and Technology. She
received her Ph.D in 2011 and
D.Sc. in 2022. Her research
interests include ontologies,
knowledge management, rec-
ommendation systems, con-
sensus theory and other artifi-
cial intelligence applications.
She is an author and coau-
thor of over 70 publications in
prestigious journals and pro-
ceedings of international con-
ferences. She is also an editor

of a book entitled: “Modern approaches for intelligent information and
database systems”. She has also been a chair of several conferences,
member of program committee of many conferences and member of
review boards of some journals. For her research projects, she has been
awarded with a few scholarships and grants.

20401

	Methods of managing the evolution...
	Abstract
	Introduction
	Related works
	Methods of managing the ontology evolution process
	Methods of maintaining alignment between evolving ontologies

	Basic notions
	Ontology definition
	Ontology change log
	Ontology alignment

	Updating ontology alignment
	Measuring the degree to which ontologies change
	Methods for updating ontology alignment
	Updating ontology alignment on the level of concepts
	Updating ontology alignment on the level of instances
	Updating ontology alignment on the level of relations

	Experimental verification
	Evaluation procedure
	Different type of modifications in the source ontology
	Different number of modifications in the source ontology
	Different source ontologies
	Discussion

	Future works and summary
	Declarations
	References

