
Methods of Symmetric Cryptanalysis

Dmitry Khovratovich

Microsoft Research Redmond, USA

July 1, 2011

Introduction

Cryptography is the science of hiding information. It is now a part of the computer science
formally, though first cryptographers appeared thousands years before the computer. The art
of recovery of the hidden information, or cryptanalysis, appeared in the very beginning, and is
still one of the most intriguing part of cryptography.

Cryptanalysis starts with a search for a weakness in a cryptosystem, for a flaw that
was missed by its designer. An encrypted message must not reveal any information about its
origin, so the cryptosystem must make it look as random as possible. Any mistake, any missed
property may become a target for a cryptanalyst and a starting point for a compromise of the
cryptosystem’s security — a break.

This survey is devoted to the cryptanalysis of symmetric primitives. Historically, by a
symmetric encryption we understand that all the parties have the same information needed for
encryption and decryption, with block and stream ciphers as the most famous examples. A
block cipher transforms a large block of data with an algorithm parametrized by a secret key.
A stream cipher expands a secret key into arbitrarily long sequence, which is mixed with a data
stream.

Hash functions convert a data string to a fixed-length hash value, which serves as an
integrity certificate. Though hash functions do not encrypt, they are designed similarly to
block ciphers. Message authentication codes (MAC) produce a hash value using a secret key, so
they are between ciphers and hash functions. As a result, the cryptanalysis of hash functions
and MACs employs methods that were initially developed for the analysis of block ciphers.

Ciphers, hash functions and MACs process arbitrarily long data streams, the access to
which is sequential. This leads to the principle of an iterative design, where data is divided into
blocks, and each block is processed by an algorithm with a fixed-length input. Such algorithms
for hash functions are called compression functions. In contrast, by a block cipher we mean a
primitive with a fixed-length input, which is used to encrypt arbitrary long data in a mode of
operation.

We are primarily interested in the methods that are used in attacks on at least two
different primitives. Cryptanalysis is often described as a cloud of non-related and dedicated
attacks, which can be used only once. We introduce it in a more structured way.

i

ii

Contents

I Framework 1

1 Block ciphers 3

1.1 Attack goals . 3

1.2 Attack scenarios . 4

2 Hash functions 7

2.1 Attack goals . 7

2.2 Attack scenarios . 10

II Methods 13

3 Analysis of nonlinear transformations 17

3.1 Linear cryptanalysis . 17

3.2 Differential cryptanalysis . 19

3.3 Primitives with modular additions . 20

3.4 Algebraic attacks . 22

3.5 Data-dependent operations . 25

4 Attacks on byte- and word-oriented primitives 27

4.1 Multiset attacks . 27

4.2 Truncated differentials . 31

4.3 Rebound attack . 33

5 Attacks on schedule and injection 39

5.1 Meet-in-the-middle . 39

5.2 Advanced meet-in-the-middle . 42

5.3 Local collision . 46

5.4 Schedule tricks . 49

6 Decomposition and combined attacks 51

6.1 Start from the middle . 51

6.2 Boomerang attacks . 52

6.3 Combined attacks . 54

6.4 Impossible differentials . 56

6.5 Multi-branch functions . 57

iii

7 Representation and structure of a primitive 59
7.1 Slide attacks . 59
7.2 Invariants . 60
7.3 Fix and guess: simplifying the primitive . 63
7.4 Ladder tricks: exploiting parallelism . 65

8 Proper use of probabilistic patterns 67
8.1 Find a good pattern . 67
8.2 Key recovery . 69
8.3 Attacks on compression functions . 72
8.4 Search for conforming executions . 72
8.5 Speeding up the attack . 75
8.6 Solving equations . 77
8.7 Unique attacks . 78

Bibliography 79

iv

Part I

Framework

1

Chapter 1

Block ciphers

A block cipher E(K,P) ≡ EK(P) is a bijective transformation (encryption) of an n-bit plaintext
P under a k-bit key K, where k and n are the parameters. The result of the encryption is called
a ciphertext.

In sections 1.1 and 1.2 we consider various attack goals and scenarios. For various scenarios
we consider a generic attack, i.e., an attack that is universal for every cipher with the same
dimensions. A cipher is secure as long as a generic attack is the best in terms of complexity.

Contents

1.1 Attack goals . 3

1.2 Attack scenarios . 4

1.1 Attack goals

Confidentiality violation

If a block cipher is used for confidentiality purposes, the most typical attack is the reveal of the
hidden information. An attack procedure is formally divided into three phases. In the offline
phase of the attack an adversary possesses only the description of the cipher, and is able to do
precomputations. In the online phase, the adversary is given access to some plaintext-ciphertext
pairs (data) and have specific time and memory resources.

In the challenge phase the adversary must recover the plaintext given access only to a
ciphertext. We assume she has to find a secret key for that purpose, i.e. to mount a key-recovery
attack.

If only a part of the key is found (partial key recovery), the attack is still considered
dangerous, because the remaining part of the key is usually found with just a bit more sophis-
ticated technique. Even if we find those key bits by exhaustive search, the total computational
complexity is smaller than that of the exhaustive search.

Intuitively, a good cipher with a fixed secret key should behave like a random permutation.
A widespread (though informal) notion of a distinguisher stands for an algorithm that provide
evidence that a cipher behaves non-randomly.

A distinguisher serves not only as a certificate of a weakness, but also as a base for
an advanced attack. A typical example is the following. Given a cipher, we collect as many
plaintexts and ciphertexts as required by the distinguisher. Then we guess a part of the key so
that the encryption process can be partly undone, and apply the distinguisher to a set of pairs
〈 encrypted plaintext, partly decrypted ciphertext〉. If the guess is correct, the distinguisher
succeeds, otherwise it should fail.

3

In a differential attack (Section 3.2) the property is defined as a fixed difference in a pair
of plaintexts (∆P) or ciphertexts (∆C). A differential distinguisher typically claims that the
proportion of pairs with particular differences (∆P,∆C) is significantly higher than in a random
permutation.

Security. In terms of the total computational complexity, the best key recovery attack is a
simple exhaustive key search, which recovers a key with probability p after p2k cipher calls.
Therefore, a block cipher is called secure against a key recovery attack, if the average compu-
tational complexity of the best attack is equivalent to 2k−1 or more cipher calls.

The complexity of the exhaustive search is concentrated in the online phase, but little
precomputation is required. It is also possible to balance the complexity between two phases in
tradeoff attacks [Hel80,Oec03,BMS05,BBS06].

Attacks on high-level constructions

Block ciphers are extensively used as building blocks in high-level constructions. There exist
blockcipher-based pseudo-random generators, stream ciphers, MACs and hash functions. In
some constructions, i.e. in compression functions, a key of the block cipher is not considered
secret and fixed. Furthermore, an attacker might be able to observe and even change a key in
an attack on the whole construction.

Clearly, what is undesirable from a block cipher depends on the construction where it
is used. The construction is usually proved to be secure to an attack A, assuming that the
underlying cipher is an ideal cipher, i.e. is a set of randomly chosen permutations. An ideal
cipher with n-bit plaintext and k-bit key implements 2k (out of (2n)!) permutations over Zn

2 .
An adversary is given access to both encryption and decryption devices, and a key, a plaintext,
and a ciphertext can be chosen by him. E.g., for the Davies-Meyer mode any universal (working
for any cipher) collision-finding algorithm fails with high probability if it makes less than 2n/2

queries to both devices [BRS02].

As a result, a property that is unlikely to find for an ideal cipher, is a potential violation
of the whole construction. However, due to complicated nature of some properties, it is hard to
compare a “non-randomness” attack with generic attacks.

Complexity issues

The applicability of an attack depends not only on the type of freedom that the adversary
possesses in the online phase, but also on the total computational complexity of the attack.
A practical attack on a cipher clearly implies that it should not be used for confidentiality
purposes.

Though practical attacks are rare, users prefer to be aware of any weaknesses in a cipher
that may lead to an attack in future. As a response to these practical needs, the cryptographic
research community considers purely theoretical attacks valid if they demonstrate an undesirable
property of a cipher. Here by a theoretical attack we mean an attack that can not be mounted
in the real world due to high time or data complexity, memory requirements, or the protocol
restrictions.

1.2 Attack scenarios

The attack scenarios are grouped according to the power of an adversary in the online phase.
When the adversary is restricted in encryption, decryption or viewing results, we call this a

4

data treatment parameter. When we restrict the adversary’s influence on the key K, it is a key
treatment parameter.

1.2.1 Data treatment

In practice an adversary is limited in the access to the results of encryption and decryption.
According to these limits, attacks are classified as follows.

The weakest adversary has access only to encrypted messages and to statistical informa-
tion about the plaintext: the frequency of letters, the length of the message, etc.. Such an attack
is called a ciphertext-only attack. A few ciphertext-only attacks exist [BK98a], but widely used
ciphers are rarely affected.

If an adversary has access to both plaintexts and ciphertexts, it is a known-plaintext attack.
If he is also able to encrypt arbitrary plaintexts, it is a chosen-plaintext attack. Analogously, if
he can decrypt arbitrary ciphertexts, it is a chosen-ciphertext attack.

We also consider adaptive and non-adaptive attacks. In the adaptive attack an adversary
is able to choose his encryption or decryption queries during the online phase, while in the
non-adaptive attack he prepares the queries in advance.

1.2.2 Single secret key

Regarding the key treatment, the single secret key scenario is the most popular. It is a typical
scenario for attacks on block cipher as an encryption primitive. A cipher is considered secure in
the single secret key scenario, if there is no key recovery algorithm faster than the exhaustive
search, i.e. with computational complexity smaller than 2k−1 encryptions on average.

1.2.3 Related keys

In the related-key attack an adversary is able to decrypt and encrypt not only under the key K,
but also with keys f1(K), f2(K), . . . , fr(K), which are called related keys. The relation mappings
fi are chosen by the adversary. The first related-key attacks dealt with simple mappings:
rotations [Bih94] and bit flips [KSW97]. Recent attacks on AES [BK09] exploit dedicated
relations, where the fixed difference is applied to subkeys, but not to original keys. These
attacks were later called related-subkey attacks [BDK+10].

Related-key attacks are used in the attacks on the protocols that use ciphers as a building
block and derive their keys in an unsecure way [TWP07]. Related-key attacks, in contrast to
open-key attacks (Section 1.2.4), recover a secret parameter of the protocol.

Definition problems. It is hard to formalize the security against related-key attacks. The
problem is that several key relations admit trivial attacks with low complexity, which apply to
any cipher [BK03]. Even worse, for any given cipher it is easy to define a relation that leads
to a trivial attack on this particular cipher, e.g. the relation f(K) = EK(1). To rule out this
class of attacks, one may try to restrict the set of relations that are “admissible”, e.g. to forbid
the relations that employ the internal operations of the cipher. The disadvantage is that such
a restriction also kills already approved related-subkey attacks like [BKN09].

Another idea is to consider related-key attacks only as an application to high-level con-
structions that use a cipher as a building block. Therefore, each related-key attack enlarges the
set of protocols, which are insecure if instantiated with a particular cipher.

5

Number of keys. The number of related keys used in the attack is also an important
parameter. Earlier related-key attacks on AES [BDK05b, KHP07] employ 64 keys with a
simple relation in order to get a pair with a desirable relation. We notice that the generic
time/memory/data/key tradeoff attack [BMS05] recovers one of T keys with complexity 2n/T
for an n-bit block cipher.

1.2.4 Open-key model

The key is not secret in the recently appeared open-key model, where the key and the plaintext
are almost equivalent inputs. So far, the most common analysis in the open-key model is
to construct so called evasive property, which explicitly links plaintexts and ciphertexts (see
examples in Section 2.1). This property must be difficult to find for an ideal cipher as well as
for other dedicated ciphers, but not for a particular cipher. It can also serve as a certificate of
“non-ideal’ behavior’ of the cipher.

The open-key model can be split into two sub-models. The first is the known-key model,
where a key is known but fixed in advance. A cipher is now a permutation, which should behave
as a random permutation. The second type is the chosen-key model, where both a key and a
plaintext can be chosen by the adversary. In the chosen-key model a cipher is viewed as a set of
independently chosen permutations and is compared to an ideal cipher. The chosen-key model
is the closest to the model where hash functions are investigated.

6

Chapter 2

Hash functions

Contents

2.1 Attack goals . 7

2.2 Attack scenarios . 10

Hash functions in cryptography are primarily used for data integrity and message au-
thentication purposes. They map a string M (message) of arbitrary length into a fixed-length
output h = H(M), referred to as a hash value, or simply hash.

Since a hash function must process inputs of arbitrary length, it is typically constructed
as an iteration of a compression function (further denoted by E) with a fixed-length input and
output. Probably, the first cryptographic scheme of this kind was proposed by Rabin [Rab78]:
the message M is split into blocks m0||m1||m2 · · ·mk, which are keys of a block cipher (DES in
Rabin’s scheme). The first block and a pre-fixed initial value (IV) are compressed into the first
chaining value

CV1 = Em0
(CV).

Then we define
CVi = Emi−1

(CVi−1), and H(M) = CVk+1.

Many dedicated hash functions (e.g., the MD-family) are not based on block ciphers
formally, but incorporate many blockcipher-specific ideas, particularly the message schedule
(key schedule in block ciphers). The main class of hash functions that do not use any schedule
is sponge functions [BDPA07] and their derivatives [BDPA06,KRT07], where a message block
is simply injected into the chaining value by XORing or substitution and is not used elsewhere:

IVi = F (IVi−1 ⊕mi−1), H(M) = FinalTransformation(IVk+1).

A variant of hash function, where mi is concatenated with the chaining value, and then the
output is truncated, is actually a modification of the sponge construction:

IVi = Trunc(F (IVi−1||mi−1)), H(M) = FinalTransformation(IVk+1).

The security requirements to a hash function depend on the application where it is used.
In the following sections we discuss the most popular applications and attack scenarios.

2.1 Attack goals

In this section we discuss the goals of attacks on hash functions. We use an application-based
approach, i.e. we consider the most popular applications and formalize attacks that violates
their security.

7

Forgery

Hash functions are widely used in signature schemes, where digital signatures are applied to the
hash of the string:

Signature = S(H(M)).

If an adversary finds an alternative message M ′ producing the same hash value H(M), this may
compromise the scheme. A pair of inputs (M,M ′) that are mapped to the same value is called
a collision.

If M is fixed in the attack, the adversary has to find a second preimage, which is a harder
problem. Since the domain of hash function is larger than its range, both collisions and second
preimages are unavoidable in the information-theoretic sense. As a result, the security of a hash
function is formulated in the computational-complexity sense:

• It should be computationally infeasible to find two messages resulting into a same hash
value (collision resistance): H(M1) = H(M2), M1 6= M2;

• It should be computationally infeasible to find the second message giving the same hash
(second-preimage resistance): given M find M ′ such that H(M) = H(M ′).

It is easy to prove that collision resistance implies second-preimage resistance.

An authentication scheme can be also based on a message authentication code (MAC),
which computes a hash of the message using a key K:

MACK(M) = F (K,M),

where F is a hashfunction-based transformation. The key must be chosen by the parties in
advance.

The key recovery and a collision for MAC are natural threats for an authentication scheme.
Also, a MAC of (M1||M2) should not be computed from a MAC of M1 nor M2. Otherwise an
adversary is able to predict the code having no key (length-extension property):

MAC(M1||M2)
?
= F (MAC(M1),M2).

Recovery of secret information

Hash functions are widely used for the password protection. An application stores not passwords
themselves, but hashes of the passwords:

PasswordList← H(Password).

As a result, if the hash file is captured by an adversary, she has to invert a hash function in
order to get a valid password. In other words, the adversary is given an image I, and she has
to find a preimage to P such that H(P) = I. We note that a preimage does not have to be an
original password.

Therefore, for a good hash function it should be computationally infeasible to recover a
message from the hash (preimage resistance): given v find M such that H(M) = v.

Proof of knowledge

Hash functions are used in proof of knowledge protocols, where a participant proves the knowl-
edge of some information Q by committing the hash of this information and disclosing the

8

preimage in the last step of a protocol. The participant has some freedom in choosing the
message by taking arbitrary nonce r or adding garbage bits:

Q → Message M → H(M) = I.

An adversary who does not possess the knowledge but wants to forge the proof, has to
find a valid preimage to I which contains Q. However, since the adversary is able to choose the
committed value, she might be able to compute it in a way that simplifies the search. Therefore,
the attack is weaker than regular preimage attack. A generic attack with complexity slightly
higher than 2n/2, which works for any iterative hash function, was demonstrated in 2006 [KK06].
However, there is little evidence on how to attack a single call of a compression function.

Violation of randomness

Hash functions are also used in pseudo-random generators and key derivation protocols. These
applications assume that the output of a hash function has random behavior, i.e., the hash
function should simulate a randomly chosen function. Therefore, any non-randomness property
of the hash function may violate the security requirements of the protocol.

However, the theory of cryptography does not answer the question which function is not
random, it can only prove inability to distinguish a member of a large family from a randomly
chosen function. While we can theoretically do this for a cipher as it is parametrized by a key,
we can not do this for a given hash function with no secret input, nor for a cipher with a fixed
key. What we can do is to demonstrate a property that should not be present in an ideal cipher
(or a hash function). Concrete examples are given in Section 2.2.

Violation of security proofs

The security level of a hash function is often based on the security of its low-level components.
For example, some modes of SHA-3 candidates [BCCM+09,Riv08,FLS+08] are provably secure
assuming some properties of the underlying primitive. Therefore, any attack that violates such
property is a reasonable object for cryptanalysis. A hash function can be also based on one or
several permutations, which are compared with a random permutation.

Secutity of some hash functions is provided only by the finalization procedure, which
does not operate on a message input [KRT07,BDPA06]. We can say that such primitives are
explicitly based on weak blocks.

Comparison of designs

A rather weak attack on a hash function is still relevant if it allows to compare the security
of different designs that are equally resistant to basic attacks such as key recovery or collision
search.

Iterative block ciphers can be compared by the number of broken rounds. However,
there is no consensus on which security margin is sufficient, and how to compare ciphers with
different number of rounds. The same approach fails for hash functions, which is clear since
many competitive designs have been proposed for the SHA-3 competition.

A new tendency is to compare the strength of attacks that can be applied to the original,
non-reduced version of a primitive. As a good hash function and a block cipher should behave
as a random function (or permutation), we can measure how far the investigated primitive is
from a random function. Again, there is little evidence on how to define a “non-randomness”
property properly.

9

2.2 Attack scenarios

In this section we classify attack scenarios by the constraints imposed to an adversary.

Fixed output difference

An adversary is given a difference D and has to find

M 6= M ′” H(M)⊕H(M ′) = D.

If D = 0 we call the pair (M,M ′) a collision pair. A generic collision attack is widely known
as the birthday attack. The birthday paradox states that among 23 randomly chosen people
there likely to exist two with the same birthday. More generally, randomly chosen

√
2N (out

of possible N) elements are unlikely to be all different, because there are N possible pairs.
Therefore, as first was noted by Yuval [Yuv79], one can generate a collision for an n-bit hash
function by hashing and sorting about 2n/2 messages. There also exist memoryless modifications
of this method, which are only marginally slower (Section 5.1).

There are several weaker definitions of the collision, which aim to find a weakness in a
primitive compared to a random function. Two messages produce a near-collision if they collide
only in a part of the hash value. A t-bit near-collision refers to messages colliding in t bits.
Clearly, the birthday attack would need ≈ 2t/2 evaluations of the hash function. A near-collision
in a compression function might become a regular collision in a hash function, if the output is
modified with a kind of a feedforward. The application of this principle to multi-block collisions
is described in Section 8.4.

Since any, even accidentally found, collision violates the property of collision resistance,
the definition of the latter seems to be incomplete. However, the only way to formalize it
further is to introduce a concept of a family of hash functions [RS04] such that a collision-
search algorithm would succeed for any family member. So far, there is no consensus on how
to put designs like SHA-2 into this concept.

There is a link between the collision resistance of compression functions and hash func-
tions. Merkle and Damg̊ard [Mer89,Dam89] proved that if the compression function is collision-
resistant, and the last message block contains the message length, then the resulting hash
function is collision-resistant. Therefore, it is reasonable to attack compression functions, and
afterwards extend the results to the whole hash function. However, in the attack on the com-
pression function an adversary have more freedom, since there is no fixed initial value. As a
result, attacks on compression functions are relatively hard to convert to full-scale attacks.

Fixed output

An adversary is given I and has to find M such that H(M) = I. This is a typical preimage
search problem. A good hash function with an n-bit output should be resistant to preimage
attacks with complexity significantly less than 2n. This is what we expect of a random function
with the same output size.

If the hash function is based on the iteration of compression functions E(IV,M), we
distinguish between preimages to the compression function and to the hash function itself. A
preimage (IV ′,M) for a compression function, if IV ′ 6= IV0, is called a pseudo-preimage. There
are several ways to compute a preimage for the n-bit hash function given many pseudo-preimages
(Section 5.1), keeping the total complexity below 2n.

A second preimage search, when we know an M ′ : H(M ′) = I, is typically easier than
the preimage search, since other techniques (mostly differential based) can be applied. Another
advantage is that a primitive can be attacked from both ends: an adversary is able to construct

10

a valid computation from the very beginning while in the preimage search he is restricted to
the given hash value.

Restrictions on input

The restrictions on input values are additional constraints used in the previous scenarios. A
typical hash function has only one admissible initial value IV0, which is a significant restriction
on the attack. In the compression function setting we do not have a restriction on inputs
formally, but we can distinguish different types of attack by the amount of control over the IV
input. The following taxonomy is used in collision attacks:

Initial value 1 Initial value 2 Name

IV0 IV0 Collision

IV′ IV′′ Pseudo-collision

IV IV Semi-free-start collision

where IV, IV′, IV′′ are pairwise different and not equal to IV0.
All these versions of collisions can be combined, resulting in a pseudo-near-collision, a

free-start collision, etc.. If there is an algorithm that finds this type of collisions faster than for
a random function, it is considered a weakness.

It is also worth to consider collision attacks, where some parts of the message block (or
previous message blocks) are restricted. This is quite common in attacks on real protocols, such
as X.509 [SLdW07, SSA+09] and PostScript [DL05]. Another application is the search for a
meaningful collision, where both colliding messages contain valid information blocks.

Combined input/output relations

The most “non-random” (or evasive) properties introduced so far are primitive-independent.
Informally, we should not figure out which cipher is attacked just by looking at the property,
so these attacks are considered valid and universal. Certainly, the most interesting properties
are those convertible to real attacks such as key recovery or collision.

The evasive properties, constructed in recent papers, correspond to following primitive-
independent problems:

• Given a permutation p, find a k-sum to zero of (x||p(x)) [KR07].

• Given a permutation p and constraints on both input and output space, find x such that
both x and p(x) satisfy these constraints [Kho09b].

• Given a permutation, try to find t input pairs such that their difference is zero in i bits,
and difference in their outputs is zero in j bits [GP10].

• Given a block cipher, try to find t input 〈key, plaintext〉 pairs that have and produce equal
difference [BKN09];

• Given an n-bit function, try to find t input pairs such that the corresponding output
differences belong to a vector space of dimension k < n [LMR+09].

The papers referenced above also provide with a description of a generic algorithm and its
complexity.

One of these relations, the so-called CICO problem, deserves a separate paragraph. We
consider the problem of finding a relation

f(x) = y , (2.1)

11

such that the first q bits of x and y are fixed to some pre-determined value (e.g., to zero),
q ≤ min(n,m). Bruteforce search, which works for any f , requires about 2q computations of f .
This bound holds as well when n = m and when f is invertible.

One expects that for a good transformation, this problem should have the same workload.
A more general problem has been proposed by the designers of Keccak [BDPA09]. As-

sume that n = m and define X ⊆ {0, 1}n as a set of possible inputs and Y ⊆ {0, 1}n as a set of
possible outputs. Then find a solution to Equation (2.1) with (x, y) ∈ X × Y .

12

Part II

Methods

13

This part describes the state of the art of modern cryptanalysis, with concentration on
block ciphers and hash functions. In each chapter we introduce an idea and then demonstrate
how it can be converted to one of attacks from Part I.

Chapter 3 is devoted to probabilistic patters —properties that hold in nonlinear trans-
formations with some probability. Famous linear and differential cryptanalysis methods fit this
framework. Chapter 4 describes methods that are specific for primitives that work with small
blocks: bytes and words. We show how to use this level of abstraction to obtain more efficient
properties than in bit-oriented primitives. Chapter 5 explains how to exploit the fact that
the output of the transformation is shorter then its input due to some of form of schedule or
injection. Here non-bijectivity of transformations play an important role in the analysis.

Then we abstract from the details of transformations and consider primitives on the high
level. Chapter 6 demonstrates how to decompose a primitive into smaller parts, so that for which
part the most efficient pattern is applied. Chapter 7 discusses how to change and exploit the
high-level structure of a primitive, and how to derive structure-dependent invariants. Finally,
in Chapter 8 we explain how to use all the methods in the most efficient way, and introduce
several tricks that speed up an attack.

15

16

Chapter 3

Analysis of nonlinear
transformations

This chapter is devoted to the statistical analysis of nonlinear transformations. The concept
is to find properties that hold with reasonably high probability. These properties can be used
in various scenarios: key recovery in block ciphers, collision attacks on hash functions, and
nonrandomness certificates. They can be used alone or in conjunction with other properties.

Statistical analysis works with probabilistic patterns, which are defined for a function f ,
an input property A, and an output property B. We say that a pattern holds with probability
p if

P

[

A f−→ B
]

= p.

Linear and differential cryptanalysis are widely known examples of probabilistic patterns
and will be discussed in the following sections. We introduce them separately for more concrete
explanation, though they may be fit into a single framework like in [Vau96].

Contents

3.1 Linear cryptanalysis . 17

3.2 Differential cryptanalysis . 19

3.3 Primitives with modular additions . 20

3.4 Algebraic attacks . 22

3.5 Data-dependent operations . 25

3.1 Linear cryptanalysis

The idea of linear cryptanalysis is to approximate non-linear components with linear functions.
A linear approximation is a linear relation between input and output bits of a transformation.
Formally, given a function f , we find boolean vectors (masks) u and v such that

u ·X = w · f(X)

holds with probability 1/2+ε for reasonably high |ε|. Here · is the inner dot-product. If f = fK
is a keyed function, the relation is supposed to involve bits of K as well:

u ·X ⊕ w · fK(X) = v ·K. (3.1)

17

In the attack on DES [Mat93] the S-box S5 was approximated with relation (0, 0, 0, 1) ·X =
(1, 1, 1, 1) ·S5(X), which holds with probability 1/2− 5/16. As a result, the following approxi-
mation holds for the round function F :

X15 ⊕ FK(X)7 ⊕ FK(X)18 ⊕ FK(X)24 ⊕ FK(X)29 = K22,

where indices refers to bits.
A natural question is how to derive equations of form (3.1) for the whole primitive. First,

we find approximations for each round, such that masks (ui, vi, wi) can be connected:

ui+1 = wi,

i.e. the output bit mask coincides with the input bit mask of the next round. The sequence

u1
v1−→ u2

v2−→ · · · vr−→ wr

is called a linear characteristic, or a linear trail. A set of characteristics with common plain-
text and ciphertext masks is called a linear hull (analogue to a differential). The bias of the
approximation is given by the following observation.

Proposition 1 (Piling-up lemma) [Mat93] Let X1, . . . , Xn be n statistically independent
Boolean random variables with P[Xi = 0] = 1/2 + εi. Then

P[X1 ⊕X2 ⊕ · · · ⊕Xn = 0] =
1

2
+

1

2

∏

i

(2εi).

Under some independence assumptions, we sum all the approximations and derive that

⊕

i

(

ui ·Ai ⊕ wi ·Ai+1 ⊕ vi ·Ki
)

= 0 =⇒

=⇒
⊕

i

vi ·Ki ⊕ u1 ·A1 ⊕ wRAr+1 =⇒ u1 ·P ⊕ wRC =
⊕

vi ·Ki = v ·K,

holds with probability 1/2(1 +
∏

(2ε)i) = 1/2 + ε. Here Ki is the i-th subkey.

Formalization. More formal approach to linear cryptanalysis deals with the correlation C of
function f instead of probabilities:

C(f) =
{x | f(x) = 0} −# {x | f(x) = 1}

2n
,

where n is the dimension of the domain of f .
Then we either approximate v ·K with u ·x⊕v · fK(x) (procedure called Algorithm 1 due

to [Mat93]), or use the imbalance of u ·x⊕ v · fK(x) as a statistical distinguisher (Algorithm 2).
The complexity of both variants depends on the correlation of the latter value:

Cf (u,w) = C (u ·x⊕ w · fK(x)) ,

which is also called the potential of the linear hull (u,w). Evaluation of the potential is difficult,
since all trails that start from u and end with w (denoted by U(u,w) or simply U) contribute
to the potential:

C (u ·x⊕ w · fK(x)) =
∑

U(u,w)

∏

r

C
(

ur ·x⊕ ur+1G(x,Ki)
)

,

18

where G is the round function. Therefore, the potential is key-dependent. Ciphers like DES
and Serpent have a single dominating trail whose correlation is the largest term in the sum. As
a result, these ciphers are suitable for Algorithm 1 where key bits are derived explicitly from
the approximation.

In contrast, ciphers like PRESENT yield many trails with similar correlation value, which
makes a straightforward application of Algorithm 1 difficult (see [RN11] as an example). On
the other hand, Algorithm 2 needs the potential value evaluating. We have to use the property
specific for key-alternating ciphers:

Cf (u,w) =
∑

U

(−1)s(U,K)|Cf (U)|, (3.2)

where the trail correlation Cf (U) is independent of the key and is computed as a multiplication
of the round correlations (also key-independent). Therefore, linear trails add or subtract to the
total correlation, depending on the key [DR02] (see also discussion in [Lea11] on this topic).
If the trail correlations are equal, the potential distribution can be approximated with the
normal distribution [Lea11]. If the round keys are assumed independent, we have the following
expression for the potential value averaged over all keys [DR02, p.106]:

E

[

(Cf (u,w))
2
]

=
∑

U

(Cf (U))2 . (3.3)

If the round keys are dependent and linear, each pair of trails contributes to the expected
potential in a separate term as soon as the signs (−1)s(U,K) are equal for all keys, which occurs
mainly if the trails are abundant [DWS10]. For the non-linear key schedule the similar condition
is less restrictive but still unlikely [DR02, p.108]. As a result, the approximation (3.3) is valid
in the most of cases.

Extensions An extension to this idea is the use of multiple linear hulls simultaneously [JR94,
BCQ04], which was later generalized to multidimensional linear approximations [HN10,HN11].
In the latter attack we approximate an m-bit function f and use 2m−1 correlations C(af), a ∈
Zm
2 for the discrete probability distribution table, a generalization of the regular correlation.

The properties we have presented earlier generalize to the multidimensional linear cryptanalysis,
though the attack procedure becomes more complicated. The data complexity is determined
by the capacity Cap:

Cap(f) =
∑

a∈Zm
2
,a 6=0

C2(af).

The method led to the best attack on PRESENT [Cho10].
Another extension is the use of arbitrary functions instead of a linear sum. The parti-

tioning cryptanalysis [HM97] and non-linear approximations [KR96,SK98] are examples of this
idea. However, the use is still limited due to lack of good approximations and small advantage
over the basic attack.

3.2 Differential cryptanalysis

The idea of the differential cryptanalysis is to consider the ⊕-difference

∆⊕P = P1 ⊕ P2 (3.4)

between plaintexts P1 and P2, and its propagation through nonlinear and linear transformations
of a primitive. Besides the ⊕-difference, the ⊞-difference is also useful for the analysis of

19

primitives with modular addition (Section 3.3). Further generalizations of difference are mostly
theoretical.

The differential over a transformation F is a probabilistic pattern that maps an input
difference ∆I and an output difference ∆O:

∆I
F−→ ∆O.

The differential probability (DP) is the number of ordered pairs with input difference ∆I and
output difference ∆O divided by the total number of pairs with difference ∆I :

DPF (∆I ,∆O) = #{{x, y} | x⊕ y = ∆I and F (x)⊕ F (y) = ∆O}/2n,
where n is the output length.

The first differential attacks on iterative primitives dealt with characteristics (also called
trails) — connected short differentials:

∆1
f1→ ∆2;

∆2
f2→ ∆3;

· · ·
∆k−1

fk−1→ ∆k.

=⇒ ∆1
f1→ ∆2

f2→ · · · fk−1→ ∆k.

One can omit restrictions on the intermediate differences and get a differential over a whole

transformation: ∆1
F→ ∆k.

The differential probability should be high enough to demonstrate a design weakness.
For a random function the number of pairs following a differential is a random variable with
the binomial distribution (in some cases can be approximated by the Poisson distribution) and
with mean 2n−m, where n is the input length and m is the output length [DR05]. Since the
number of ordered pairs with fixed difference is 2n, a differential probability is expected to be
around 2−m. Therefore a differential with a higher probability is a potential weakness, because
a random mapping is unlikely to have high probability for the same differential.

However, the probability of a differential and even of a characteristic is quite hard to
compute even for iterative transformations, though there exist good estimates under reasonable
assumptions. Intuitively, a characteristic probability should be close to the multiplication of
the probabilities of its internal differentials (so called expected differential probability, or EDP).
In practice, this assumes independence between the inputs of the round function, which is not
the case for many ciphers, and is hard to prove for the others. The situation is worse for
iterative block ciphers, where each round gets a portion (or a function) of a key as an input.
The differential probability, evidently, depends on the actual key value.

The best way to avoid the key influence is to consider key-alternating ciphers, where
the round key is XORed to the internal state before each application of the round function,
and the round function does not use the key. If round keys are independent, then DP =
EDP for any fixed key (the same result holds in the Markov cipher theory [LM91]), otherwise
the differential probability is a stochastic variable whose distribution has a mean equal to
EDP [DR05]. For several old hash functions, such as the SHA family, the computation of the
differential probability is hard, and the practice often compromises theoretical estimations.

3.3 Primitives with modular additions

Modular addition is a widely used operation in software-oriented primitives. The addition is
fast in software, and is one of the fastest non-linear operations available to a designer. Though
S-boxes are better in terms of nonlinearity, they are slower in the implementation.

20

Most significant bits in the addition arguments do not influence least significant bits of the
result, which makes the diffusion unbalanced. As a countermeasure, designers combine addition
with rotation or shift in order to balance the diffusion. Several primitives involve only three
operations: addition, rotation and XOR, so they are called ARX primitives.

Most of analysis of addition-based systems has been done in the framework of differential
cryptanalysis.

3.3.1 Additive differentials

If the modular addition is the only nonlinear (over F2) operation in a primitive, it is natural
to consider modular differences instead of XOR differences. The modular difference passes the
addition with probability 1, but passes the XOR non-deterministically. Also, several attacks on
the ARX primitives specify characteristics on the bit level, where additive differentials are less
suited. It was demonstrated that the analysis with additive differentials benefits rather from
non-symmetric treatment of arguments than from the properties of the modular addition [CR06].

The bit level and the non-symmetric treatment of arguments were incorporated in a
universal bit condition — a two-argument boolean function f(x, y), that outputs 1 if (x, y) is
good pair for the difference propagation. Then every bit condition in the differential trail can
be expressed with this function.

3.3.2 Linearization

If the ⊕-difference has low weight, it propagates through addition with relatively high proba-
bility. This property leads to the idea of constructing differential trails with linearization —
replacement of all additions with XORs, and computing difference propagation in the linearized
primitive. The probability of the resulting trail is determined by the total weight of differences
entering former additions.

Let us explain how to choose the input difference. The internal variables in the lin-
earized version are just linear functions of the input. Therefore, the internal variables fulfill the
equations of a linear code, and low-weight conditions on the variables can be translated into a
low-weight condition on the codeword. The search for a low-weight codeword is a hard problem
in the generic case, though several probabilistic algorithms exist [Leo88,Ste88,CC98], and they
were applied in real attacks [PRR05,MP05].

3.3.3 Tools

Types of differences

Let us abbreviate the modular difference (x − x′) by ∆+x, and the ⊕-difference (x ⊕ x′) by
∆⊕x. Since there is no bijective mapping between these types of differences, we introduce
signed bitwise difference:

∆±x = ∆±(x, x′) = (xn−1 − x′n−1, . . . , x0 − x′0).

The next theorem links modular and ⊕-difference.

Theorem 1 ([Dau05]) Let ∆±x be the signed bitwise difference between two elements of Fn
2 .

Then the ⊕-difference ∆⊕x and the modular difference ∆+x are uniquely determined.

21

Differential analysis: xdp+

We consider the differential properties of modular addition (⊞, see also [LM01] and the extensive
treatment in [Wal03]). The probability that ⊕-differences α and β are transformed by ⊞ to the
⊕-difference γ, is defined in the following way:

xdp+(α, β → γ) = Px,y

[(

(x⊕ α) + (y ⊕ β)
)

⊕
(

x+ y
)

= γ
]

.

There is a simple condition whether the xdp+ is equal to 0:

for some i ∈ [0;n− 1] αi−1 = βi−1 = γi−1 6= αi ⊕ βi ⊕ γi.

Here α−1 = β−1 = γ−1 = 0. If the differential is “good”, then let q be the number of positions
i 6= n− 1 where the triple (αi, βi, γi) has both one and zero. Then

xdp+(α, β → γ) = 2−q.

Differential analysis: adp+

The situation is more complicated for ⊕. If the arguments x and y of ⊕ have additive difference
α and β, then the probability that x⊕ y has difference γ is defined as follows:

adp⊕(α, β → γ) = Px,y

[(

(x+ α)⊕ (y + β)
)

−
(

x⊕ y
)

= γ
]

.

Proposition 2 [Wal03] There exists an algorithm with complexity O(n) that computes adp⊕.

The idea is to map each triplet (αi, βi, γi) to a matrix of constant size so that the value of adp⊕

can be computed by multiplication of n such matrices.
One may also apply the graph approach to benefit from the sparsity of the matrices and

mitigate the memory issues possibly caused by the size of matrices. The graph approach is based
on the concept of S-functions [MVCP10]. An S-function accepts n-bit words a1, a2, . . . , ak and
produces an n-bit word b and a list of states {S[i]} in the following way:

(bi, S[i+ 1]) = f(a1[i], a2[i], . . . , ak[i], S[i]), 0 ≤ i ≤ n− 1, S[0] = 0. (3.5)

The functions f are not necessarily the same, but the states S[i] must have constant size. The
modular addition is represented by a simple S-function, where b is the sum, and S[i] is the carry
produced at position i− 1.

To compute adp⊕, we first represent a pair of additions as a single S-function with k = 4
and S[i] consisting of three carries c1[i], c2[i], c3[i] that occur in the first output, in the second
output, and in the output difference, respectively. The output b is the modular output differ-
ence. Then we build a graph with 8n vertices, each representing a possible value of S[i] (eight
combinations for each of n bits). Next, for each i we connect vertices S[i] with S[i+1] by edges
according to Equation (3.5) and taking the edges whose bi is equal to the desired γi. Finally,
we compute the number of paths from S[0] to S[n], which is the number of inputs producing
the output difference γ, and divide it by 4n to derive adp⊕.

This approach can be adapted for computing the number of possible differences. It can
be also reformulated in terms of non-determinite automata [LT11].

3.4 Algebraic attacks

In this section we introduce attacks that are based on the algebraic representation of a primitive.

22

3.4.1 High-order differentials

The ⊕-difference (Eq. 3.4) is closely related to the notion of a derivative in the continious
analysis. Therefore, it is natural to consider high-order differentials as an application of the
high-order derivative. A k-order derivative ∆δ1,δ2,...,δk of a function f is the sum

⊕

ci∈{0,1}

f(x⊕ c1δ1 ⊕ c2δ2 ⊕ · · · ⊕ ckδk).

As for continuous functions, a k-order derivative of a boolean polynomial of degree < k is
constant.

In contrast to the regular differential, which works with pairs, we iterate and compare 2k

states. However, the condition ∆δ1,δ2,...,δk(f) = c, being imposed on the inputs, is too weak and
can not be traced with high probability through several non-linear transformations. As a result,
the high-order differentials are not used as a statistical pattern. Instead, a high-order derivative
is computed only once for the output of the whole transformation. If the transformation has low
algebraic degree, a derivative of reasonably high order may provide a distinguisher. Original
paper by Knudsen [Knu94] dealt with the Feistel ciphers, whose round function is a quadratic
polynomial.

Apparently few real primitives have round functions, which are expressed by low-degree
polynomials. As a result, high-order differentials are rarely applied (see attacks on MISTY1
[TSSK08] and Camellia [HSK02]). The property that a particular set of states sums to a constant
has been also used in the Square/integral/multiset attack (Section 4.1), where it appears as a
distinguishing property (the weakest one) of a permutation. However, in the multiset attack the
origin of this property is different — it derives from the fact that the list of the output values
contains all the possible values exactly once.

3.4.2 Low-degree distinguishers

The fact that a function has low degree may be used for both attacks and distinguishers,
depending on the setting. A notable example is the second preimage attack on Hamsi [DS11b].
The idea of the Hamsi attack is to exploit low-degree polynomials that produce the image bits of
the compression function. Not only the degree of these polynomials is low, but also the diffusion
of the Hamsi round function is slow. As a result, the attacker is able to evaluate particular
output bits of the compression function on all 232 message words faster than by 232 calls of the
compression function. However, the total complexity gain is rather small, and the authors had
to enhance the attack by taking the IV into account.

High-order differentials are also used as zero-sum distinguishers for a permutation [AM09].
Indeed, assume that both the input and the output of a permutation are low-degree polynomials
of an intermediate state S:

I = f1(S), O = f2(S),

where S can be a single word or a set of boolean variables (with some of them fixed to constant).
If

max (deg f1, deg f2) < k,

then one constructs 2k inputs that sum to zero and their outputs sum to zero as well. It is easy
to prove that this problem for a random n-bit permutation can not be solved in less than in
2

n

2k calls. Therefore, if k is small enough, this property demonstrates non-ideal behavior of the
permutation. An algorithm for the generalized birthday problem by Wagner [Wag02] provides

a significantly higher upper bound (2
n

1+k). Note that degree estimates can be improved if a
primitive has an SPN design with S-boxes of small degree [WHYK10,BCC11,DL11].

23

If the adversary restricts to a particular large k, she gets a weaker scenario. However,
the high-order method may now outperform the generalized birthday algorithm and similar
attacks [BM97]. Note that with k close to n the partition of the full domain into zero-sums may
be described efficiently [BCC11].

3.4.3 Cube attacks

Cube attacks [DS09] can be viewed as an extension to high-order differentials. Now we sum
over different inputs in order to get a linear function of secret parameters. Let us consider
a function fK(x) of a vector-variable x and a parameter K. Consider also an index set I =
{i1, i2, . . . , ik} ⊆ {1, . . . , n} and factorize fK by XI = xi1xi2 · · ·xik :

fK(x) = XI · pK(x) + qK(x).

If no monomial in qK contains XI , the sum of fK over cube I is equal to pK , which is called a
superpoly :

⊕

I

fK(x) = pK(x).

If pK has degree one as a function of K, i.e. it is linear, the monomial XI is called a maxterm.
Given sufficiently many linear relations, we solve the linear system and find K.

The main challenge in cube attacks is the search for an appropriate maxterm, which is
typically heuristic. First, the complexity of the attack grows exponentially with the size of I,
so maxterms should be as short as possible. The main principle of the maxterm search is to fix
I randomly, and then add indices to it unless the superpoly becomes linear. If the superpoly is
reduced to a constant, we restart the search.

Another problem is that few block ciphers and hash functions have elegant algebraic
representation (MD6 and Keccak are exceptions). As a result, a cryptanalyst has to consider
the primitive as a black-box. He tries different maxterms and apply linearity tests in order to
detect linear superpolys. The procedure was called a cube tester [ADMS09]. The cryptanalyst
has to check each candidate maxterm before the attack, which clearly limits all the attacks
to those having practical complexity. Various heuristics such as greedy algorithms and other
optimization tools are well applied to cube testers [Sta10].

Dynamic cubes. The dynamic cube attack [DS11a] is an extension to the basic attack with
the following improvements. First, we work with a more general expression of fK :

fK(x) = P1P2 + P3,

where Pi are (almost) arbitrary polynomials of K and x. The second improvement is that we
guess the key bits and adapt the cubes to sum over for each guess. During the attack we try
all possible guesses and sums to nullify P2 and thus work with reduced P3. This method is by
all means ad-hoc and less generic, and has higher requirements to the algebraic representation
of a primitive.

Another problem is that due to the key guess the attack loses its deterministic behavior.
As a result, a cryptanalyst puts significant effort to figure out the success rate and the time
complexity of the attack. The latter parameter, in contrast to traditional probabilistic attacks,
depends greatly on the algebraic representation. Even worse, the details that lead to the attack
may also lead to the increase in time complexity as they are explicitly non-random. It is unclear
yet whether the parameters of the recent attacks are estimated correctly [DGP+11].

24

3.4.4 Other attacks

The key recovery and collision search problems can be expressed in terms of solving systems
of nonlinear equations. Therefore, generic methods for nonlinear system solving, like Gröbner
basis methods [CLO07] and their weaker adaptations XL and XSL [CKPS00, aJP02], can be
applied. However, the complexity of these algorithms appears to be exponential for generic
systems, and there is little evidence how to convert any such attack to practica

3.5 Data-dependent operations

The data-dependent operations are one of the most controversial design concepts. We say that
an operation is data-dependent, if it is expressed as a family of functions indexed by input
data. The examples are key-dependent S-boxes, key- and message-dependent rotations and
permutations. The advantage of data-dependent operations is that its statistical and diffusion
properties are largely unknown to the attacker, so that she can not predict the behaviour of the
primitive on a large set of data.

On the other hand, the advantage quite often converts to the disadvantage. Indeed,
if the statistical property is key-dependent, then by statistical parameters of a sample yield
information about the key. The main difficulty of the analysis is hence the extraction of those
properties and relating them to a particular key group.

Another problem is that some keys may be weak since they produce weak operations.
The cipher IDEA injects short subkeys by both multiplication and addition. The early analysis
demonstrated that subkeys 1 and −1 eliminate the effect of multiplication and hence make the
full cipher perfectly linear [DGV93].

An SPN design PrintCipher precedes each S-box with a key-dependent permutation. The
S-box difference distribution table has several entries α → α,wt(α) = 1, among those with
the highest probability. As a result, the best differential trail works with one-bit differences,
whose positions are determined by the key-dependent permutation. Then the adversary simply
encrypts pairs of plaintexts differing in one bit and check if the ciphertext pairs also differ in
one bit. The right pair provides information on the actual trail and hence on the key [ALZ11].
This approach can be generalized to ciphers, whose S-boxes are key-dependent and have weak
differential properties [BKLT11].

The primitive ARMADILLO is based on input-dependent permutations. In several set-
tings an adversary has control over a part of the input, and hence know the permutation pa-
rameters up to a large extent. Furthermore, the adversary can manipulate the diffusion in the
internal state by controlling the permutation parameters, and hence perform meet-in-the-middle
and other types of attack rather easy [ABNP+11].

The hash function DynamicSHA family employs message-dependent word rotations. An
adversary finds the message values that yield the best differential trails in terms of probability
and collision construction [ADIP09].

25

26

Chapter 4

Attacks on byte- and word-oriented
primitives

We distinguish bit-oriented primitives (the most famous example is DES) from byte- and word-
oriented primitives, which operate rather on bytes and words than on bits. The main difference
is the existence of bytewise operations, e.g. S-box layers, and the abscence of bit-oriented
transformations such as bit transpositions.

The main property exploited in byte-oriented attacks is that bijective bytewise operations
preserve variation in a single byte. The variation is a non-zero difference in the differential
cryptanalysis and a multiset in multiset attacks. An attacker follows the variation through a
primitive easily, because the diffusion is provided only by inter-byte operations, such as mixing
layers. As a result, both the analysis and the design are simplified.

Contents

4.1 Multiset attacks . 27

4.2 Truncated differentials . 31

4.3 Rebound attack . 33

4.1 Multiset attacks

4.1.1 Definitions

The first multiset attack was named the square attack [DKR97], because it was applied to the
block cipher SQUARE. The idea is quite simple: consider a set Λ of internal states such that
they differ in only one byte i0 and this byte takes all possible values, i.e. there are 28 states.
Formally,

∀(x, y) ∈ Λ

{

xi0 6= yi0 ;

xi = yi ∀i 6= i0.

If a bytewise bijective transformation (e.g., a layer of S-boxes) is applied to Λ, the property
still holds. Diffusion makes other bytes active, though these bytes might not take all possible
values. Two rounds of SQUARE (and AES) make all the bytes active, and each byte takes all
possible values. Now we show to get a quite powerful distinguisher from this fact.

We provide the notation by Biryukov and Shamir [BS01] as the most complete. A multiset
of m-bit values is an unordered tuple, where values can repeat. Consider, for example, 1000
ciphertexts, and the first byte in each ciphertext. Then the 1000 corresponding values form

27

a multiset. A set of k-byte internal states, produced of different inputs, is a block of 8-bit
multisets: some bytes may get the same values.

A multiset has property C (constant) if it consists of repetitions of the same value. A
multiset has property E (even) if each value occurs an even (or zero) number of times. Properties
C and E are preserved by arbitrary functions.

A multiset of m-bit values has property P (permutation) if it contains exactly once each
of the 2m possible values. Property P is preserved by arbitrary bijective function.

A multiset has property B (balanced) if the XOR of all values is zero. Any multiset with
property E or P also has property B.

A multiset has property D (dual) if it has property P or property E.

4.1.2 Properties

The properties of multisets can be illustrated on SASAS [BS01], a scheme that alternates layers
of S-boxes with affine transformations, and AES (Figure 4.1).

Denote by Sk a block of k word multisets with property S. Consider a multiset PCk−1

where each multiset enters a bijective S-box. The multiset is preserved by the first S-box layer
(see properties in Section 4.1.1).

Let us prove that the next layer, which is an affine transformation, keeps the weaker
property Dk, i.e. permutation or even in all the words. Indeed, a word W is a linear function
of k variables. All but one of these variables are constant: W = Lx + B where x is the word
with property P . For each W the equation either has no solution, or 2t solutions, i.e. the
word has property D. In the case of AES the linear transformation of the first round converts
PC15 to P 4C12, then it is preserved by S-boxes, and then transformed to P 16 by the linear
transformation of the next round.

Notice that the second layer of S-boxes in SASAS preserves Dk. However, we have to
weaken the property so that it is preserved by an affine transformation. Since D implies ()
B, we now consider a multiset Bk. The third S-box layer in AES preserves the multiset P 16.

The second A-transformation in SASAS preserves Bk since the B-condition is linear. No
simple property is preserved by the last S-box layer, but it is enough to construct a distinguisher.
For AES the third linear transformation makes all bytes balanced (B), and the resulting 3-round
pattern is called an integral [KW02]:

SASAS : PCk−1 S→ PCk−1 Dk A→ Dk S→ Dk Bk A→ Bk;

AES : PC15 S→ PC15 P 4C12 A→ P 4C12 S→ P 4C12 P 16 A→ P 16 S→ P 16 B16 A→ B16.

4.1.3 Extensions

High-order integrals. If an integral is a union of integrals, it is called a high-order inte-
gral [KW02]. The point is that a high-order integral can be longer than its elements. If we
extend the AES integral one round back, we get a multiset M , where four bytes take 256 ran-
domly looking values. However, a set of 224 different such multisets form a P 4 multiset in these
bytes. As a result, we get a 4-round high-order integral, which ends with a B16 multiset, now
for 232 texts. For versions of Rijndael with larger (160 bits and more) blocks it is possible to
construct a 16-round integral [JdFP05].

Applications to non-SPN structures. Multiset attacks can be applied also to Feistel
schemes [HQ01] and bit-oriented transformations [ZRHD08]. The principles are exactly the
same, no new property is introduced, and the attacks are rather based on slow diffusion of the

28

SASAS AES

C

S

P

S

P

C

S

C

C

S

C

. . .C

S

C C

A

S S S SS

D D DD D

D D DD D

A

B B BB B

. . .

. . .

P C C C

C C C

C C C

C C C

C

C

C

SB, SR

P C C

C C C

C C C

C C C

C

C

C

MC

P C C C

C C C

C C C

C C C

P

P

P

AK, SB, SR

P C C C

C C P

C P C

P C C

C

C

C

MC

P

P P PP

P P P

P P P

P P P P

P

P

P P PP

P P P

P P P

P P P P

P

AK, SB, SR

MC

B B B B

B B B B

B B B B

B B B B

C

Figure 4.1: Multisets for SASAS and AES.

primitives, than on the non-trivial property of operations. The fact that an S-box preserves
property P still remains the key element of any multiset attack. Behaviour of multisets in
Feistel schemes with slow diffusion is also described via permutation polynomials [LSLQ10].

Multisets can be used also in primitives with modular additions and multiplications, like
IDEA [DST04,BDK07] and SNOW3G [BPSZ10]. It is easy to prove that P ⊞ C gives P , and
similarly P ⊙ C gives P .

4.1.4 Functional collision

The functional collision method was designed for AES [GM00] and for the long time remained
the best attack on 7 rounds of AES-128. The idea of the method is the following. Consider
some internal variable x as a function of plaintext P with key K as a parameter:

x = fK(P).

Assume that P can be splitted into three groups: one byte y, a group Z, and a group U of the
other bytes such that x as a parameterized function of y and Z can be expressed as

x = gK,U (h0(y), h1(Z), h2(Z), . . . , ht(Z)) ,

where hi are different functions, and
t < 2 · |Z|. (4.1)

Also, h0 can be a vector-function. Then there exist Z ′ 6= Z ′′ such that hi(Z
′) = hi(Z

′′). As a
result, last t arguments of g are equal for different Z, so

fK(y, Z ′′) ≡ fK(y, Z ′′),

29

and the two functions, that define x, are equal as well.

This is a very powerful distinguisher, since after such pair (Z ′, Z ′′) is found, the property
holds for 28 values of y.

Applications to AES. The variable x in AES is an arbitrary byte of A4 (the internal state
after 3 rounds and the SubBytes operation) and y is an arbitrary byte of the plaintext. For the
sake of simplicity, let both of them be the byte a0,0 in the state. Then Z is the other three bytes
in the same column of the plaintext: a1,0, a2,0, a3,0. Here Z is chosen so that all the four bytes
are shifted to different columns and affect each other only in the second round by the linear
transformation.

As a result, any diagonal byte bi,i in the input of the third round is defined as follows:

bi,i = si(y)⊕ hi(Z),

and

x = gK(b0,0, b1,1, b2,2, b3,3).

Now check the condition of Equation 4.1. The diagonal bytes bi,i are formed of t = 32 bits, and
the length of Z is 24. Thererfore, there exist two different Z ′ and Z ′′ such that bi,i collide as a
function of y:

si(y)⊕ hi(Z) ≡ si(y)⊕ hi(Z
′′).

Due to the birthday paradox, such a pair exist among any 216 different Z. Since y is also a
function of four input bytes of the fourth round, this gives a 4-round property. It was used for
the 7-round attack [GM00], and later for a 8-round attack on a wider-block version [GM08].

plaintext key

x

Z const Ky

F

x

fK(y, Z)

∃Z ′ 6= Z ′′ : fK(y, Z ′) ≡ fK(y, Z ′′)

plaintext key

Figure 4.2: Outline of the functional collision attack.

Regroupment of inputs. The variable x can be also expressed as a function of one variable y,
which is parameterized by a set of constants, derived from the key and the plaintext:

x = fC1,C2,...,Ck
(y).

The number k of constants can be decreased by a careful rewriting of the formula. Gilbert and
Minier [GM00] proved that 9 constants (some of them are fixed by U) determine an input byte

30

to the third round. A simple attack first guesses the constants (factor 23k to the complexity),
evaluates x, partially decrypts the last rounds, and check whether the decryption results match
the evaluation. To increase the number of attacked rounds some more key bytes must be
guessed. The main problem with this method is that the number of constants grows very fast
and quickly exceeds the key size, which is the complexity limit.

A 4-round property initially required 25 constants [DS08], and was applicable to AES-256
only. A better idea is to use an (intentionally disordered) multiset and compute the difference
between functions of different plaintexts. As a result, a new property requires fewer constants
and apparently fits into a precomputed table of size 2184, which leads to an attack on AES-
192 [DKS10a]. Another improvement has been proposed in [WLH10].

The paper [DKS10a] also carries a nice explanation of the set of constants and how they
are derived. We denote by xij the value of the byte a0,0 in the AES state Xi

j in the beginning
of round j, 0 ≤ j ≤ 9, in the i-th encryption, 0 ≤ i ≤ 255, where the plaintexts differ only in
a0,0. Then the multiset {xij ⊕ x0j}1≤i≤255 is fully determined by

• the full state X0
2 ,

• four bytes of X0
1 ,

• and four bytes of the subkey added after round 2.

We first prove that the set of all Xi
2 determines the multiset, and then prove that this set is

determined by the nature of the plaintext structure and the four bytes of X0
1 .

Meet-in-the-middle view. Since the attack is not based on probabilistic events, it may
be viewed as a verification of a specific property in the middle of the cipher. Since different
key bytes are involved in the partial encryption and decryption, some researchers classify these
attacks as meet-in-the-middle attacks [DS08,WLH10].

4.2 Truncated differentials

The main principle of the analysis with truncated differentials is to abstract from concrete
values of differences and consider only sets of differences. For example, we may group all the
non-zero byte differences into a single set, considering only active and non-active bytes. The
first analysis was made by Knudsen as early as in 1994 [Knu94], though truncated differentials
were of limited use while most ciphers were bit-oriented. While diffusion on the bit level may be
relatively slow, on the byte level it can be faster, which makes the probabilistic pattern shorter
and, thus, less powerful.

The idea is quite simple. Let S be a state of n bytes, and f be a bijective bytewise
transformation (e.g., an S-box layer). Consider a pair of states (S, S′) with difference only in
byte 0. Then (f(S), f(S′) differ in byte 0 and collide in other bytes with probability 1. As a
result, the confusion layer does not mix active and non-active bytes. Thus, it is easy to study
and exploit the properties of the diffusion layer.

It is natural to use structures (Section 8.4) instead of pairs in the truncated differential
analysis. In the previous example a structure with 28 states, that differ in byte 0, contains 215

pairs, each passing the S-box layer.

4.2.1 On the edges of characteristics

Truncated differentials are often used on the edges of differential trails, where they replace
regular differential trails. Examples include AES differential trails [BK09], which have regular

31

difference in the middle and truncated ones on the edges. Regular differences are truncated
in the last rounds, where no restriction is put on the output difference of active S-boxes. In
the forward direction this happens deterministically, while the backward transformation ∗ → δ
holds with probability 2−8. Also, this approach weakens the output filter, so the number of
candidate pairs (or quartets) increases.

On the plaintext side we submit a structure such that positions with active S-boxes in the
first round get sufficiently many values. The precise formula involves the diffusion parameters
of the primitive and is quite complicated (see [BDK02] for the case of the boomerang attack),
so we consider a simple case. Let one plaintext byte be active with unknown difference, and let
it be converted to a fixed difference δ after the key whitening and an S-box layer. Then we get
an equation of type S(x + k) = S(x′ + k) + δ, where k is the key, and (x, x′) is the plaintext
byte pair. Evidently, there are 28 (out of 216) pairs satisfying the equation. A structure with
this active byte would have 28 plaintexts, so 28 right pairs come out of the first round.

Summarizing, the truncated differentials help to keep the probability over the 2−n barrier,
but increase the data complexity and the number of candidate pairs for the filtering step.

SubBytes

ShiftRows
MixColumns

RCSBAC

ShiftRows
MixColumnsSB

1

2

SubBytes

Figure 4.3: Truncated differentials in the 2-round AES trail. Black cells are truncated (arbi-
trary) differences.

4.2.2 Throughout the primitive

If the diffusion on the word level is relatively slow, truncated differentials may be traced through-
out the primitive. A good example is a truncated AES differentialwith the following number of
active S-boxes:

1
Round−→ 4

Round−→ 16.

The differential can be preceded by 4
Round−→ , resulting in

4
Round,P=2−24

−→ 1
Round−→ 4

Round−→ 16,

which is used in boomerang attacks [Bir04].

The cipher Crypton has weaker diffusion, so as many as 8 rounds were attacked with
truncated differentials [MG00].

In general, however, truncated differentials quickly spread to the whole internal state
due to the diffusion, and this happens faster than for fixed differentials. It is undesirable in

32

attacks on block ciphers, but is tolerated in the attacks on hash functions, such as the rebound
attack 4.3.

Attacks on stream-based hashes

Truncated differentials were successfully applied to word-oriented hash functions, such as Ra-
dioGatun [Kho08] and Grindahl [Pey07, Kho09a]. These primitives process relatively small
message blocks with a compression function, which is also not assumed to be ideal and, thus,
has exploitable differentials. The message block can be chosen arbitrarily, which gives addi-
tional freedom (see Section 8.4). A compression function might not provide full diffusion (e.g.,
in Grindahl one active byte affects only four bytes after one call), so the truncated differentials
are often used.

The idea of most attacks is to use message freedom to control the difference inside the
round function.

4.2.3 Extensions

Symmetric differences

Several operations were found to be suited for symmetric differentials, where differences are
either 00 · · · 0 or 11 · · · 1. Intra-word rotations and XORs convert symmteric to symmetric.
Also, symmetric differences “shrink” all the words to bits, thus making the exhaustive search
for the best trails much more efficient. In contrast to simple truncated differences, getting a
zero difference out of symmetric differences is deterministic.

For example, the analysis of RadioGatun, whose internal state has 75 words, with sym-
metric differences is reduced to an analysis of a 75-bit primitive, so a round differential can be
described as a 75-bit word (+ 3 bits from the message injection). The trail search is now simpli-
fied, so the best trail for RadioGatun spans for more than 100 rounds [FP09]. Other examples
are attacks on Arirang [GMK+09], where the symmetric difference is traced through the AES
S-box, on Panama [RRPV01,DA07], and on Blake, where it is invulnerable to rotations [GM09].

Linear truncated differences

Another extension is the use of differences that form a linear space R ⊂ Fn
2 . The space of

differences is larger compared to the symmetric differentials, but the aero-difference is still
produced deterministically. In [Kho08] the dimension of the difference space is chosen to op-
timize the complexity of the meet-in-the-middle attack. The point is that a large dimension
increases the probability of a differential, while a small dimension increases the probability of
the meet-in-the-middle event.

4.3 Rebound attack

The main idea of the rebound attack [MRST09] is to find solutions for the most expensive
part of a truncated differential trail. These solutions may be used for constructing collisions,
near-collisions, or any other certificates of non-randomness.

The outline of the attack is as follows:

• Construct a truncated differential trail;

• Find sufficiently many regular differential trails for the most expensive part of the trun-
cated trail.

33

• Construct a solution (pairs of iterations) conforming to these regular trails (inbound
phase).

• Check if it conforms to the remaining part of the truncated trail (outbound phase).

We consider the primitives that alternate layers S of non-linear S-boxes with some linear
transformations A (SPN structure):

Sin
i

Si→ Sout
i

Ai→ Sin
i+1

Si+1→ Sout
i+1

Ai+1→ Sin
i+2,

where Sin
i and Sout

i the internal state before and after the i-th layer S, respectively. Let S0 have
the highest number W of active S-boxes in the trail.

The simplest variant of the attack works as follows. We construct many regular trails
for A−1:

∆Sout
−1

A−1→ ∆Sin
0

just by following the truncated-differential trail. Since there are only linear operations in this
part, the trails have probability 1. Similar trails are constructed for A0. Then we look for a
pair of trails, such that each active S-box in S0 gets admissible input and output differences
(δI , δO) (non-zero entries in the difference distribution table). Typical S-boxes have two and
more solutions for a random pair (δI , δO) with probability 1/2, and no solutions with the same
probability. Summarizing for all active S-boxes, one of 2W differentials

∆Sin
0

S0→ ∆Sout
0

has non-zero probability and, thus, produces 2W solutions (Figure 4.4). Then each solution is
propagated in both directions and is checked whether it conforms to the full truncated trail.

A solution for the dense part A−1 → S0 → A0 is computed with average complexity,
though the total complexity is 2W at least. As a result, we exclude the active S-boxes in S0

from the probabilistic phase of the attack.

S
−1 S0

S1affine affine

Sin

0
Sout

0

Sout

−1
Sin

1

difference difference

values

values values

valuesvalues

Steps:

I

II

III

IV

Figure 4.4: Rebound attack.

The attack has many optimizations.

34

4.3.1 Gradual difference filtering

The differences in the inbound phase can be matched gradually as follows [MPRS09]. Assume
that A is applied separately to q-byte vectors of the internal state (e.g. the AES MixColumns
is applied to 4-byte columns). For the sake of simplicity, let this subtransformation convert one
active byte in Sout

−1 is converted to q active bytes in Sin
0 . Then we try 28 possible differences for

this byte, compute q bytes of ∆Sin
0 and derive a 1-bit restriction for each corresponding byte of

∆Sout
0 , which implies a total q-bit restriction on ∆Sin

1 . As a result, we try only 27 assignments
for one of ∆Sin

1 bytes, compute back to ∆Sout
0 , and get new restrictions on the ∆Sin

0 , and so
on. In the end we construct all possible solutions for S0.

This approach was generalized and improved by Naya-Plasencia in [NP11], which is an
extension of her matching trick in [KNPRS10]. The internal state is splitted into groups of
bytes/words so that the differences can be matched and sieved in parallel.

4.3.2 Injection as a source of freedom

Assume that there is an injection from the key or message schedule between Ai and Si+1:

Sin
i

Si→ Sout
i

Ai→ · ⊕K→ Sin
i+1,

and K can be chosen independently.
Then both layers S0 and S1 may have the maximal number of active S-boxes, and we

construct solutions as follows. First, we find regular differential trails for A−1 and A1. Then we
assign a random value to the internal state Sout

1 , and compute the difference backwards through
S1 up to S0. Due to the injection value, which is not fixed yet, Sout

0 is unknown. However, each
active word in S0 gets input and output differences. We find a solution if it exists, and connect
it to S1 by fixing an appropriate value of K.

This idea can be extended to more layers, if there are several injections that can be chosen
independently.

4.3.3 Multiple inbound phases

The inbound phase can be mounted in different parts of the truncated trail independently if
the S-box layers in these phases are not fully active. Starting from the solutions for Si and Sj ,
we meet in an intermediate state and filter out incompatible pairs. The remaining solutions are
computed through the remaining part of the truncated trail (Figure 4.5).

Formally, assume that W bytes are active in both layers Si and Sj , and 2W solutions are
constructed in each inbound phase. The solutions are computed to a middle point P where
they match in q bits. Since a solution is a pair of states, the matching condition is a 2q-bit
condition. Then 22W−2q valid solutions remain after the meet-in-the-middle .

In the rebound attack on the full Lane [MNPN+09], two layers of the differential trail have
16 (out of 32) active S-boxes. Then 288 solutions are constructed for Si, and 296 solutions for
Sj . The solutions match between Si and Sj in 64 bits. As a result, 288+96−128 = 256 solutions
are constructed for Si → · · · → Sj .

The non-active bytes of the trail can be used as additional source of freedom. If they
are not affected by both inbound phases to be merged, the number of solutions just increases.
Otherwise these bytes are used to construct a solution for one of inbound phases [SLW+10].

Finally, the internal state may be so large that several inbound phases run in parallel.
If the merging conditions are linear (which is typically the case), we get an equation of the
following form:

S1 ⊕ S2 ⊕ · · · ⊕ Sk,

35

where Si are the solutions in values to different inbound phases. A solution to the equation
may be produced by the generalized birthday algorithm [Wag02], as done in the attack on
ECHO [Sch10].

Rebound 1 Rebound 2

Rebound 3

- difference

- value

Figure 4.5: Merging solutions in the rebound attack. We find solutions in the inbound phases
1 and 2 and match them in the phase 3.

4.3.4 Extending the inbound phase

One may also construct all the admissible differential paths that span over several S-layers,
and only afterwards construct a solution in values. This approach is based on the following
assumption that holds for most of S-boxes.

Assumption 1 If the probability of the n-bit S-box non-zero differential δI → δO is 2r−n, the
right pairs for the differential are affine functions of an r-bit variable:

∃A,C, b, d : ∀x, y : (x, x⊕ δI)
S→ (y, y ⊕ δO) ∃u ∈ F r

2 : x = Au⊕ b, y = Cu⊕ d,

where A and C are matrices, and b and d are vectors.

This holds for any S-box, if r = 1, and for the AES S-box, if r = 2.
Clearly, the observation holds for a group of active S-boxes, if it holds for each of them.

However, it does not hold for non-active S-boxes. Assume that S0 consists only of active S-boxes.
Then any right pair for the differential trail the following system holds:

{

Sin
0 = C ·X +D;

Sout
0 = C ′ ·X +D′,

where C,C ′ are matrices, and X,D,D′ are vectors. Due to the same principle, the states Sout
−1

and Sin
1 belong to affine spaces (denote them respectively by Q and Q′) as right pairs (solutions)

to S−1 and S1 layer differentials. The values for non-active S-boxes in these layers are described
as 8-bit variables (there is no need to have a single variable for both input and output values
in these layers). Since the layers are connected with a linear function A, we get two matrix
conditions:

{

A1(C ·X +D) ∈ Q;
(A0)

−1 (C ′ ·X +D′) ∈ Q′,

36

which is a system of linear equations. Its solution is a solution of the three-layer section of the
trail with probability 1.

It is also possible to exploit slow diffusion in the message schedule, and thus add one
more layer to the inbound phase. In the attack on the full Whirlpool [LMR+09] the similarity
between internal rounds and schedule rounds was exploited, so that the solution was constructed
for four layers: S0, S1, S2 and S3.

In the first step we produce 264 solutions for both S0 and S3. Then for each pair of solutions
(G0, G3) we construct an equation of form f(G0, G3,M0,M1,M2), where Mi are message blocks
injected between S0 and S3. Then the authors prove that the equation can be divided into 8
independent equations, which can be solved separately. Together, the solutions define Mi. Note
that this approach would fail if the diffusion in the message schedule were better.

Super S-boxes. Another idea is to exploit non-ideal diffusion by grouping parts of the internal
state into so-called Super S-boxes [DLP+09]. Super S-boxes are the smallest blocks, which are
not mixed with each other during one round. For example, an AES Super S-box is a column in
the MixColumn transformation. The rebound attack treats the round as a set of Super S-boxes,
thus covering one more round in the inbound phase [GP10,LMR+09]. However, this approach
requires more memory for precomputed Super S-box difference tables.

Super S-boxes also provide several levels of difference granularity. The first attacks used
fully active Super S-boxes, while the recent ones also consider Super S-boxes, whose inputs are
partially active. It may reduce the number of active S-boxes out of the Super S-box layer and
reduce the time and memory complexity of the attack [SLW+10].

Neutral bits and message modification. The inbound phase can be extended if the at-
tacked part of a primitive contains neutral bits or auxiliary paths (Section 8.5) that do not
destroy a solution to the inbound phase. An example the block cipher Threefish has a related-
key differential that has zero difference in the state in eight consecutive rounds. In the rotational
rebound attack [KNR10] a solution to the basic inbound phase was constructed in these eight
rounds, and then the sufficient conditions for the rotational trail were fulfilled in 5 outer round
with the auxiliary path based on the related-key differential.

The attack on Cheetah [WFW09] is an example of the modification on the byte level.
Due to a large size of the message block compared to the state size, the change of a single byte
of the message may affect the trail up to 4 rounds in both directions.

4.3.5 Trail form and attack layout

A differential trail for a rebound attack is typically constructed ad-hoc. It should be as
long as possible, and concentrate active words in as few layers as possible. In attacks on
Grøstl [MRST09,GP10,MPRS09], Whirlpool [MRST09,LMR+09], and Luffa [KNPRS10] a trail
is based on the expansion of a one-byte difference (e.g., 1-8-64-8-1 in Whirlpool). In attacks on
Cheetah [WFW09] and Lane [MNPN+09] the trail is more dedicated.

The index of round where the attack starts is also an important parameter. If the round
functions are different (even slightly), the change of the starting position may affect the attack
complexity (and even feasibility) significantly. In the attack on Threefish the inbound phase
was located to minimize the freedom that is supposed to spend in the outbound phase [KNR10].

Whether chaining value can be taken into account (and hence if the attack translates to
the hash function setting) depends on the mode the compression function employs. The MMO
mode in Skein admits easy translation. In general, the inbound phase must cover the chaining
value, as it is demonstrated in the attack on Grøstl [MRST10].

37

4.3.6 Rebound in Feistel and ARX schemes

The Substitution-Permutation networks, like AES and Grostl, are natural applications of the
rebound attack due to the simplicity of the diffusion, natural bounds on the trail length, and
S-boxes with good differential properties.

The ARX schemes are much less suitable for the rebound attack. The first reason is
the diversity and abundance of differential trails. As bit-oriented primitives, the ARX systems
do not have natural truncated differentials (except those based on single words, which lacks in
granularity). As a result, the rebound attacks do not provide the highest number of rounds, and
old-fashioned differential attacks are typically better. Notable exceptions are the applications
of the rebound attack to a property that is not a differential pattern, and the use of inbound
phase techniques to increase the number of rounds. In the attack on Threefish [KNR10] the
rotational pair of states is found with small amortized cost in the 15-round inbound phase of the
attack and then probabilistically checked for the rotational property in the remaining rounds.

The Feistel schemes are apparently much more vulnerable to the rebound attack than
their SPN counterparts. The reason is probably the existence of short local collision trails
accompanied with relatively slow diffusion. As a result, an attacker can mount a multiple
inbound phase and efficiently use his degrees of freedom. For example, a single inbound phase
in the n-bit Feistel scheme may consume as little as n/2 degrees of freedom, since the round
function makes use of only n/2 bits of the state. Two inbound phases which consume the whole
n-bit freedom may cover up to 5 rounds in the generic case ([SY11], Figure 4.6), and probably
more in concrete compression functions. The Feistel-based compression function of SHAvite-
256 has been recently attacked in the rebound style despite a heavy round function with 3 AES
rounds [MNPP11].

S P

K

S P

K

S P

K

S P

K

S P

K

n

n

1

guess

Figure 4.6: 5-round inbound phase in a generic Feistel scheme with SP-round function. 2n+ 1
S-boxes are active.

38

Chapter 5

Attacks on schedule and injection

The size of the internal state of symmetric primitives is often smaller than the total size of input,
because a smaller design is faster and needs fewer operations for good diffusion and confusion.
However, this implies that either inputs are compressed in the very beginning to match the
state size, or portions of inputs are injected during the iteration. The injection procedure,
which determines the injection values, is called the schedule (of the key or of the message). The
schedule can be viewed as an additional, separate computation, which operates on the schedule
state.

In this chapter we consider attacks that exploit weaknesses in the schedule procedure.

Input 1

Input 2

Scheduled input

Figure 5.1: Primitive with schedule.

Contents

5.1 Meet-in-the-middle . 39

5.2 Advanced meet-in-the-middle . 42

5.3 Local collision . 46

5.4 Schedule tricks . 49

5.1 Meet-in-the-middle

The meet-in-the-middle (MITM) technique is used to find a secret (or unknown) parameter k
of an invertible transformation Fk, given input I and output O:

O = Fk(I).

For example, in the key recovery attacks Fk is a cipher, k is a key, I is a plaintext, and O is a
ciphertext. In the preimage attacks on hash functions, F is a hash function, k is a message, I
is an initial value, and O is a hash.

39

The meet-in-the-middle approach can be applied, if F can be decomposed into indepen-
dent parts H and G, such that

Fk ≡ Hk2 ◦Gk1 ; k = L(k1, k2), (5.1)

H is invertible, and k1 and k2 can be chosen independently.

If G and H have similar computational complexity, we construct 2n/2 intermediate states
Gk1(I) as images of the input, and 2n/2 intermediate states H−1

k2
(O) as preimages of the output.

A matching pair

Q = Gk1(I) = H−1
k2

(O)

is found with probability close to 1/2, so we are able to compute k from k1 and k2. The time
and memory complexity of the straightforward approach are 2n/2 permutation calls and internal
states, respectively (Figure 5.2).

2
n/2

2
n/2

· · ·

Figure 5.2: Meet-in-the-middle for n-bit functions.

If the full F can not be decomposed as in Equation 5.1, but we are still able to compute
an internal variable in the middle:

I
Gk1−−→ q

Hk2←−− O,

we can detect the mismatch in the middle (early-abort technique). In the partial matching
method (Section 7.4.2) internal states are partially computed in the last steps, and are matched
on a smaller subsets of the state bits. This trick significantly reduces the number of candidate
pairs for the MITM. Moreover, the matching bits may be linear functions of “alien” message
words as follows:

Gk1(I)⊕ L1(k2)
?
= H−1

k2
(O)⊕ L2(k1).

Then the linear functions are formally moved to the other side of the equation, and we compute
them independently (indirect partial matching, [ZL10,AGM+09]).

5.1.1 Memoryless MITM

The memory complexity can be significantly reduced with a marginal increase in the time
complexity. The most efficient method uses the switching function r that maps elements of the
domain to a single bit in a random fashion. Then we define a step function f that evaluates x
either to G(x) or to H−1(x), depending on the value of x:

f(x) =

{

G(x) if r(x) = 0

H−1(x) if r(x) = 1

40

The function f is iterated by the Floyd cycle finding algorithm (Figure 5.3) as follows. We start
from a random value x and use two memory elements a = f(x) and b = f2(x). In each step we
update a by applying f to it, and update b by applying f2 to it. Upon finding a cycle, we check
whether we really have found a pair G(x) = H−1(y) or whether we have found a cycle in G or
in H. If the output of r is equidistributed, for each cycle we find P(G(x) = H−1(y)) = 0.5. In
case of encountering a cycle in G or H−1 we restart the algorithm with another random element
x.

f (x)

f 2(x)

Figure 5.3: Floyd cycle finding algorithm.

5.1.2 Simple key-recovery

The MITM approach is used in key recovery attacks on block ciphers as follows. Assume that
an internal variable X depends on only a portion KF of key bits as a function of plaintext, and
depends on only a portion KB of key bits as a function of ciphertext (Figure 5.4). Given a
plaintext-ciphertext pair, the key bits from K \ (KF ∪KB) are guessed, and X is computed of
the plaintext and of the ciphertext. A contradiction implies that the key guess is wrong. This
attack benefits from the slow avalanche effect of key bits [BR10].

A 6- and 7-round versions of DES can be attacked, i.e. there exists a good X. It was
demonstrated that not only the key bits, but also internal variables can be guessed to speed up
the key recovery [DSP07]. Similar attacks on AES cover only 4 rounds [BDD+10].

plaintext

ciphertext

key

P

C

X

gK2
(C)

fK1
(P)

Figure 5.4: Meet-in-the-middle attack on a block cipher.

41

5.1.3 Other applications

From pseudo-preimage to preimage. The meet-in-the-middle approach is also useful in
the preimage search for single call of a compression function. In the latter case only a hash
value is fixed. Then the adversary tries to decompose the compression function into two parts,
whose inputs can be chosen independently. The complexity of the attack drops according to
the number of independent words (see Section 5.2). The attack finds a pseudo-preimage.

A full preimage can be found with another MITM procedure. Assume that a pseudo-
preimage can be found in time 2k, where k < n. Then we compute 2n/2+k/2 images of the
original IV: Qi = E(IV,Mi) with total complexity 2n/2+k/2. Secondly, we compute 2n/2−k/2

pseudo-preimages: E(Q′
i,M

′
i) = h with complexity 2n/2+k/2. There exist 2n/2+k/2+n/2−k/2 = 2n

pairs (Qi, Q
′
j), so we expect to find a matching pair Qi = Q′

j . Then Mi||M ′
i is a preimage

to h. The total computational complexity is 2n/2+k/2 There were proposed other methods
aimed to reduce memory costs (the computational complexity remains virtually the same): tree
methods [Leu08], P3-graphs [CR08], multi-target preimages [GLRW10].

Local collisions. The meet-in-the-middle approach can be used in collision search on the low
level, if there exists some independency. For example, in the attack on Tiger [KL06] the zero
difference in a variable z = f(x) + g(y) is required, while various differences in f and g can be
obtained independently. The meet-in-the-middle technique was applied to get equal differences
in them.

Another application to collision search was demonstrated in attacks on GOST [MPR+08]
and FORK [Saa07], where the MITM was applied to find actual values of the internal state.
In the attack on GOST collisions are found among fixed points that are formed by particular
internal variables, which are independent of some message words. Then the fixed points can be
found with the MITM. Similarly, in FORK-256 a group of internal variables is summed into a
hash, and every variable is independent of some message words.

Difference-based second preimage attacks. In the second-preimage setting the adversary
is aware of the full computation that leads to image H. Hence she is able to choose an optimal
starting point of the attack, whether it is an internal round of the compression function, or an
intermediate call of the compression function. In the difference-based second-preimage attack
the adversary works with the differences to the original computations instead of actual values.
In the context of meet-in-the-middle attacks, an adversary computes 2n/2 differences at each
direction, and match them in the middle [Kho08, IW09].

5.2 Advanced meet-in-the-middle

5.2.1 Splice-and-cut

In several applications we are less restricted in input and output conditions. I.e., in the pseudo-
preimage attack we are allowed to use any chaining value (CV) that matches with the image.
Moreover, the CV-image relation can be made a part of the computation. As a result, we do
not have to start the meet-in-the-middle attack from the CV or the hash value.

H = f(M,CV) = EM (CV)⊕ CV,

where CV is the chaining variable, and E is the block cipher keyed with M . We split the cipher
E and message M into three parts: E = E3 ◦ E2 ◦ E1 and M = MF ||MB||MC such that

MF is not used in E1 and E3; and MB is not used in E2.

42

Then we get the following chain of computations:

CV
MB ||MC

−−−−−−→
E1

S
MF ||MC

−−−−−−→
E2

V
MB ||MC

−−−−−−→
E3

H,

where S and V are the internal states. The basic attack works as follows.

1. Assign arbitrary values to S and MC .

2. Compute states V = {V MF

←−−
E2

S} for different MF and store them in memory.

3. Compute states V ′ =

{

V
MB

←−−−−−−−
(E1◦E3)−1

S

}

for different MB and store them in memory.

First, compute CV , then use CV and H to find the output of E3, and then compute in
the backward direction to V .

4. The set V ∩ V ′ constitutes preimages for the compression function. If necessary, repeat
the procedure for other S and MC .

The computations in Step 2 and Step 3 are called forward and backward chunks, and the
elements of MF and MB are called neutral bits. Neutral bits might be bits of round messages
and even linear spaces of bits. In the simple case when MF and MB have equal length d, the
sets V and V ′ have 2d elements, so the probability of a match is 22d−n, where n is the state size.
Assuming that each chunk costs about 1/2 calls of the compression function, the complexity to
find a preimage is about 2n−2d+d = 2n−d. The complexity grows negligibly, if we match not on
the full state, but only on a subset of bits of size about d (Section 7.4.2).

The choice of S1 and S2, as well as the decomposition of M , are made ad-hoc so far.
Clearly, the longer is the schedule, the harder it is to find such a decomposition.

Another problem is that MB and MF may be too small to generate enough states for the
meet-in-the-middle. Then we generate new S1 and MC and repeat the procedure.

H

Start Meet

S V

MB MBMF

M :

— MC

E1 E2 E3

CV

Figure 5.5: Splice and cut.

Double-branch compression functions. RIPEMD is an example of a double-branch com-
pression function: E(IV,M) = E1(IV,M)⊕E2(IV,M). The functions E1 and E2 are typically
similar, i.e. in RIPEMD they have different round constants. There were proposed two ap-
proaches to apply the splice-and-cut procedure [SA09b,WSK+11]:

43

• Make a starting point in each branch and compute backwards so that the both IVs are
indentical. Then the meeting point is the hash value.

• Make a starting point in only one branch. Then compute forward and backwards, compute
IV and hash, and then meet in the middle of the second branch.

Key recovery. This technique is also applicable to the key recovery. The wrap-around com-
putation is replaced with the call to the encryption or the decryption oracle. However, there
are two important differences.

First, the computation of the plaintext from the ciphertext and vice versa is not bit-
wise as in the Davies-Meyer mode. As a result, the relevant chunk must cover the full plain-
text/ciphertext. In other words, the plaintext/ciphertext must be computed from the starting
state without either portion of neutral bits. This condition is difficult to fulfill in the block
ciphers like AES, where most of the key material is used every round. The natural appli-
cation is the ciphers like KTANTAN, where only a small portion of the key is used at each
round [WRG+11].

Secondly, the data complexity increases as the starting state goes deep into the cipher.
The reason is that the attacker tries all possible values of KC (former MC), which affect the
plaintext and the ciphertext. If the diffusion is good, this may lead to the data complexity close
to the full codebook. The countermeasure is to set the starting state in the first or the last
round and to make the starting state as a function of plaintext/ciphertext.

5.2.2 Bicliques

Recently, cryptanalysts have replaced the starting state S with a sophisticated construction
called the initial structure [AGM+09,GLRW10,AS09]. The broad idea is to put constraints on
internal variables and form S out of variables spread over several rounds. However, one has to
prove separately that the construction is well-defined, i.e. that a match in the middle implies a
correct computation in the start.

The necessary formalism is introduced as follows. First, notice that at Steps 2-3 of the
attack a computation of a chunk is always associated with a particular value of neutral bits,
either MB or MF . Let the backward chunk start at a state Q, and denote by Qi the state being
computed with MB = i. Let also P be the starting state for the forward chunk, and denote by
Pj the state being computed with MF = j. If matched at the point V , the combination (Qi, Pj)
must provide a preimage. Therefore, all the Qi and Pj must follow the following conditions:

∀i, j : Qi

MB
i ||MF

j−−−−−−→
B

Pj , (5.2)

where B transforms Q to P , and MB
i = i, MF

j = j.

Hence we get 22d equations linking two groups of states 2d cardinality each. This con-
struction is called a biclique (a complete bipartite graph in the graph theory) of dimension
d [KRS11]. A single biclique of dimension d tests 22d preimage candidates with only 2d compu-
tations of each chunk. Therefore, a pseudo-preimage attack with a biclique of dimension d has
complexity about 2n−2d as long as bicliques can be constructed efficiently.

Differential view. The biclique equations (5.2) can be rewritten via a system of differential
trails:

∇Q ∇M ||∆M−−−−−−→
B

∆P. (5.3)

44

H

Biclique V

MB MBMF

E1 E2 E3

CV

Qi
Pj

MF

MB

B

Figure 5.6: Splice-and-cut attack with a biclique

A solution to (5.3) is a solution to (5.2). As a result, a biclique is a solution to the
system of differentials, and can be constructed with tools from the differential cryptanalysis. If

the differential trails ∇Q ∇M ||0−−−−→
B

0 and 0
0||∆M−−−−→

B
∆P do not interfere pairwise, a biclique can

be constructed rather simple. Otherwise one has to design specific algorithms that reduce the
amortized construction costs [KR11,KRS11].

Key recovery. The key-recovery attack is mounted in a similar fashion. The main difference
is that the sub-cipher with a biclique is located either in the first or in the last rounds:

E : P −→
E1

V −→
E2

S −→
B

C,

and there exists an internal variable v ∈ V that can be computed as follows:

P
Kb not used−−−−−−−→

E1
v

Kf not used←−−−−−−−−
E2

S, (5.4)

where KF and KB are independent parts of the key material. The rest of the key is denoted
by KC .

Similarly, for each KC we construct a biclique in B:

∀i, j Sj
KF=i,KB=j−−−−−−−−→

B3

Ci.

Since the number of produced ciphertexts is proportional to the number of bicliques, we
have to avoid covering the full codebook when keys are larger than the ciphertexts (like in
AES-256). The idea is to keep only those bicliques whose ciphertexts belong to a particular set
of cardinality smaller than the codebook.

Neutral bits and message compensation. In this section we have implicitly assumed that
the neutral bits are chosen in the initial message, or in the secret key. If the message/key schedule
is a transposition, the decomposition is directly translated into the expanded key/message. If
the schedule is more complicated, a good decomposition of the original message may not exist.
Hence it is natural to select neutral bits in the expanded message, though it brings other
difficulties.

45

S0

S2

C0

C1

K

plaintext ciphertext

C2

Decryption

oracle

S1

Kb
= 2, Kf

= 2

Kb
= 0, Kf

= 0

v

Kf Kb KbKf

E1 E2 E3

Figure 5.7: Biclique key-recovery attack.

To make it formal, we require the decomposition to be well-defined, i.e. the choice of
MF , MB, and MC must uniquely determine the original message. Since the message schedule
is typically invertible transformation, it is natural to select MF , MB, and MC in an internal
state D of the schedule computation. State D may be merely a concatenation of consecutive
message injections. To compute the length of chunks, we investigate the round function MS of
the message schedule. We identify the part of state Dnext = MS(D) that depends on MB and
figure out what are the corresponding message injections. These injections mark the end of the
forward chunk. Analogously, we identify the part of state Dprevious = MS−1(D) that depends
on MF , and compute the length of the backward chunk.

To make the chunks as long as possible, we may select neutral blocks in internal variables
of the schedule computation that do not necessarily form a full state. The procedure is called
message compensation and is exceptionally heuristic [AS09,AGM+09,GLRW10,KRS11]. The
constants used in those procedures are exactly the message block MC . The use of bicliques puts
an additional restriction: to construct bicliques easier one aims to find sparse differential trails,
which means that the corresponding message injections should not depend on neutral bits.

5.3 Local collision

A local collision is a differential that starts and ends with the zero difference in the internal
state, but is non-zero in the middle. The schedule state may have arbitrary difference, so the
non-zero difference appears and disappears as a result of the injection from the schedule. The
first injection of the non-zero difference is called a disturbance, and the last injection, that
cancels the difference, is called a correction.

5.3.1 Collision search

One of the first applications of local collisions was the cryptanalysis of SHA-0 [CJ98]. The
consecutive injection of differences in particular bits of SHA-0 message blocks results in the

zero difference in the state after 6 rounds. Let
M−→ denote the round function with a message

block M , which operates on internal states Ik. Then the following pattern holds with high

46

A B
C ′

C D E F

D′

E′

Start End

disturbance correction

Figure 5.8: Local collision outline. A,B, . . . , F — inputs.

probability:

I0
M1−→ I1

M2−→ I2
M3−→ I3

M4−→ I4
M5−→ I5

M6−→ I6.

I0
M1⊕δ1−→ I ′1

M2⊕δ2−→ I ′2
M3⊕δ3−→ I ′3

M4⊕δ4−→ I ′4
M5⊕δ5−→ I ′5

M6⊕δ6−→ I6.

All the δi are one-bit differences. The probability of this characteristic varies from 1/8 to 1,
depending on the round index.

If all the message blocks were independent, one local collision would be enough for a global
collision. Due to the message schedule the differences δi spread to other round injections. Due
to the linearity and the self-similarity of the message schedule, all the δi from the first 16 blocks
appear in the same positions in the further blocks. As a result, the local collisions in the first
rounds are reproduced later, as they were geometrically translated. The resulting differential
trail is an overlap of several local collisions, and its probability is the multiplication of local
collision probabilities.

Since the last 64 message words of SHA-0 are linear combinations of the first 16 words, the
concatenation of all the words is a codeword of a linear code. The difference vector is another
codeword, and the number of local collision is related to its weight. More precisely, the number
of local collisions is the weight of the codeword produced by the expansion of the disturbance
difference δ1 (or any other δi) from the first 16 words.

A collision trail starts and ends with the zero difference, which puts constraints on the
positions of local collisions. This is too restrictive, so a multi-block collision, whose trails
for compression functions do not end with the zero difference, can be found faster [BCJ+05].
In attacks on SHA-1, DynamicSHA and others [WYY05, Saa07, ADIP09] the local collision
approach was significantly improved.

A local collision was also used in the construction of auxiliary differential paths [NSS+06].
The benefit here is a low weight of differences in the trail, which allows to precisely impact bits
in the modification.

The same approach can be applied to other hash functions with regular message schedule.
If the schedule is a transposition (MD5, Blake), then the local collision approach is inefficient,
because the transposition rarely preserve the positions of local collision message differences.

5.3.2 Meet-in-the-middle attacks

Key recovery

A local collision can be used in the meet-in-the-middle attack on block ciphers (Section 5.1.2)
as follows. Assume that we attack a block cipher whose key schedule produce short subkeys
(compared to the total key length). Assume also for a given plaintext P it is easy to derive
pairs of the first subkeys {(K0

i ,K
1
i)} that transform P to the same internal state S. Then these

47

round

round

round

round

round

round

IV M

...

Hash

SHA-0 local SHA-0 full

Figure 5.9: Local collision in SHA-0 and a full differential trail.

pairs are actually neutral with respect to the computation of S. As a result, an attacker tries
different pairs of subkeys while decrypting the ciphertext and hence gain additional branches
in the meet-in-the-middle attack.

In the attack on GOST [Iso11] the 4-tuples of subkeys have been found for both the
plaintext and the ciphertext so that a 16-round section of GOST with subkeys

(K0,K1, . . . ,K7,K0,K1, . . . ,K7)

is attacked in the meet-in-the-middle fashion.

Preimage search

Local collisions are used in the preimage search as an improvement to the splice-and-cut tech-
nique (Section 5.2).

The first idea [Leu08,SA08b] is to use the colliding message parts as a degree of freedom
for the remote control on the state. Indeed, assume that we fix state S in an attack, and message
blocks M and M ′ form a local collision in a subcipher E that follows S:

EM (S) = EM ′(S).

Then a switch from M to M ′ does not change the computation of E, but may provide an easy
way to fulfill some conditions after E. This technique was used to control the output of the
compression function.

The second idea is to use a local collision as a part of the initial structure (apparently,
in the biclique). We fix internal variables in a biclique so that the local collision happens with
high probability. As a result, the message differences create the biclique differentials that do
not affect each other, which yields a biclique. A probabilistic approach to this idea has been
introduced in [SA08a].

48

In the double-branch compression functions like RIPEMD one is able to construct local
collisions that starts in the first round of one branch, goes backwards, then repeats in the second
branch and disappears [WSK+11]. Hence two appearances of an “alien” neutral word cancel
each other.

5.3.3 In related-key attacks

The key difference in a block cipher resembles the message difference in a hash function. There-
fore, it is natural to construct local collisions inside a cipher in order to get a trail with low
number of active non-linear operations.

A B
C

′

C D E F

D
′

E
′

Start End

disturbance correction

Figure 5.10: A local collision in AES-256.

This approach was used in the cryptanalysis of AES. If the difference is injected in the
upper byte, it is not touched by ShiftRows, but is converted to an unknown difference by
SubBytes, and then expanded by MixColumns to a full column difference. The full column
difference must be corrected by the next subkey addition. The appropriate subkey difference
can be predicted with probability up to 2−6, so the local collision trail has probability 2−6

(Figure 5.10).
Due to the nonlinearity of the AES key schedule, it is impossible to construct an arbitrary

long trail based on local collisions (see also Section 5.4.2).

5.4 Schedule tricks

5.4.1 Schedule recovery

If the intra-word diffusion in the round is slow, one may try to recover a preimage gradually
bit-by-bit. Let the message M be expanded to (M, f(M)), then then we replace f(M) with M ′

that consists of independent message blocks. Given the initial constraints, we recover M ′ and
simultaneously minimize the error function f(M)−M ′ by adjustment of internal variables. For
SHA-0 and SHA-1 it was demonstrated that the error can be expressed as a simple formula of
internal variables Ai, and the error bits can be gradually fixed to 0 from lower bits to higher
ones. Due to rotations in SHA-0/1 this process can not be applied for all the bits, and the
remaining error bits are fixed to zero with a dedicated technique. The attack is valid for SHA-
0/1 due to the absence of diffusion in the message schedule and small rotation amounts in the
round function.

A simplified version of this attack was applied to hash function DynamicSHA [ADIP09]. It
can be assumed with reasonably high probability (≫ 2−n) that all the data-dependent rotation
amounts are zero. This leads to a bit-slice recovery of the internal state, similarly to the attack
on SHA-0/1.

5.4.2 Translation through schedule

If the schedule can be defined by a cyclic code or approximated so, some patterns are just copied
(“translated”) to the further blocks. Let M be an l = r · k-bit input to the schedule block (e.g.,

49

a 512-bit message in SHA-0), which injects r bits per round. Let the first k injections be just
bits of M : (m1,m2, . . . ,mk), and the other t injections be a multiplication of M by a t × r
matrix A, which results in a cyclic code.

Assume that a pattern is generated in rounds i1–i2 < k. Then it may occur in the further
rounds as well, due to the structure of the code. This principle was used in the construction
of differential trails for SHA-0/1 [CJ98,WYY05], whose message schedule is given by a cyclic
code.

The attacks on AES were constructed in the similar manner. The AES key schedule,
though not being a cyclic code, is quite close to it, especially in the backward direction. A local
collision for one round of AES-256 was translated to 7 more rounds up [BKN09] (Figure 5.11
demonstrates 4.5 rounds of the key schedule).

Disturbance

Correction
+

Key schedule

=

Figure 5.11: Full key schedule difference (4.5 key-schedule rounds) for AES-256.

50

Chapter 6

Decomposition and combined
attacks

The decomposition principle states that a primitive can be divided into several parts, so that
optimal attack patterns for each part can be combined into a single attack on the whole prim-
itive. The properties, demonstrated by the patterns, may have different nature. Ideally, the
complexity of the resulting attack would be comparable to the product of the complexities of
sub-attacks.

The parts of the primitive, where the attacker has some degrees of freedom, are usually
treated in a specific way. The examples are the use of structures and truncated differentials
around the plaintext and the ciphertext in a block cipher, and the use of ad-hoc characteristics
in the first pass of the compression function. Therefore, the most interesting decomposition
methods are those working between points of control.

Contents

6.1 Start from the middle . 51

6.2 Boomerang attacks . 52

6.3 Combined attacks . 54

6.4 Impossible differentials . 56

6.5 Multi-branch functions . 57

6.1 Start from the middle

The start-from-the-middle is a natural approach when the scenario constraints on the input
and output values of the primitive is relatively weak. For example, a collision attack on a
compression function imposes constraints only on the hash and IV differences, but not on the
values, giving a 2n-bit condition. In contrast, a collision in the hash function setting imposes
also a constraint on the IV value, i.e. a 2n-bit condition on the input and an n-bit condition
on the output, which makes sense to start the collision construction from the beginning thus
taking the input condition into account immediately. However, in the compression function
setting the attacker may benefit from starting the attack in another point, i.e. in the middle.
The start-from-the-middle framework splits the primitive into two parts, on which attacks are
applied separately.

Evidently, this method can not be applied in the secret-key setting. However, it is quite
natural for hash functions, and for block ciphers when comparing to an ideal cipher. The first
application of this method was, probably, the collisions for the compression functions of MD4

51

and MD5 by Dobbertin [Dob96, Dob98]. He solved a system of nonlinear equations, whose
solution is a pair of states conforming to the middle part of the differential trail.

Collisions for the compression functions of the SHA family were rarely considered, and
most of efforts were put into collision search in hash functions. Collisions for compression
functions are motivated by the ongoing SHA-3 competition and various types of attacks on
its candidates, e.g. the rebound attack (Section 4.3). In the rebound attack the solutions are
constructed for the most expensive part of the differential trail, and then propagated proba-
bilistically through the other parts of the primitive. The complexity of the attack is C/p, where
C is the cost of constructing one solution for the middle part, and p is the probability of the
trail covering the remaining part of the primitive.

The latter idea is not nessarily used in the rebound framework. The attacker chooses the
most optimal method to construct a solution for the middle part, and then apply probabilistic
patterns to both input and output. E.g, if the pattern is differential, it leads to differential-
multicollision distinguishers [LM11].

The triangulation algorithm constructs a solution for a particular section of a differential
trail, which is not necessarily the most expensive one. In the attack on AES-256 [BKN09] a
solution is found for rounds 1–5 of AES-256, and in another attack for rounds 3–7.

6.2 Boomerang attacks

The main principle of the boomerang attack is to get a quartet — four internal states, whose
difference form a rectangle — in the middle of the cipher, so that the rectangle differences are
input differences for trails over a half of the cipher. As a result, one may use short differentials
with high probability instead of a long differential with low probability.

The basic boomerang attack [Wag99] is applied to a cipher EK(·) which is decomposed

into E1 ◦ E0. The first sub-cipher E0 has a differential ∆
p→ ∆′, and E1, the second one, has

differential ∇′ q→ ∇, with probabilities p and q, respectively.
We encrypt a pair of plaintexts (P, P ′) with the difference ∆ and apply the difference ∇′

to the ciphertexts (C,C ′) (Figure 6.1). Then a new pair of ciphertexts (D,D′) is decrypted.
With probability p the first pair has the difference ∆′ in the middle: R = R′⊕∆′, and with the
probability q2 the pairs (C,D) and (C ′, D′) have the difference ∇′ in the middle:

R⊕ S = R′ ⊕ S′ = ∇′.

Then S ⊕ S′ = ∆′, and Q ⊕ Q′ = ∆ holds with probability p. Finally, we get a boomerang
quartet (P, P ′, Q,Q′) with probability p2q2, while for a random permutation the probability of
this event is 2−n.

The boomerang attack works well if there are short differentials with high probability,
otherwise the probability p2q2 is too low. Another issue is that it is an adaptively-chosen
ciphertexts attack, which is a less realistic scenario.

Switch point issues. The set of internal variables, that are the output of E0 and the input
of E1, are called the switch point. This is the point where the quartet rectangle is composed.

First, the differentials may compensate each other. For example, equal differences in some
bytes or blocks may result in a higher probability than it is expected (e.g., the S-box switch
and the Feistel switch techniques in [BK09]). Moreover, the subciphers can be separated from
each other by transformation E′ that preserves quartet with reasonable probability. Then we
introduce the transition probability r:

r = P
[

(E0(Q)⊕ E0(Q
′) = ∆′)

∣

∣ (R⊕R′ = ∆′)&(S ⊕R = ∇′)&(S ⊕R = ∇′)
]

,

52

E0

E1

P

E0

E1

P
′

∆

∆∗

C
′

C

E0

E1

P

E0

E1

P
′

∆

∆∗

C
′

C D

D
′

∇

∇

a) b)

E0

E1

P

E0

E1

P ′

∆

∆∗

C ′

C D

D′

∇

E0

E1

Q

∇

E0

E1

Q′

∇
∗

∇
∗

E0

E1

P

E0

E1

P ′

∆

∆∗

C ′

C D

D′

∇

E0

E1

Q

∇

E0

E1

Q′

∇
∗

∇
∗

∆∗

∆

c) d)

Figure 6.1: Outline of the boomerang attack.

and a boomerang quartet is produced with probability p2q2r [DKS10b].

Secondly, the switch point and the differences ∆′ and ∇′ should be chosen carefully. First,
the differentials may contradict each other as follows. Consider a byte variable v at the switch
point, such that it has non-zero difference δ1 in E0 and non-zero difference δ2 in E1. There exist
28 quartets of this variable with these differences. Suppose also that δ2 is an input difference
to an S-box differential δ2 → δ′2, which is a part of the differential ∇′ → ∇. The differential
δ2 → δ′2 for the AES S-box gives a 6-bit or a 7-bit condition, which is imposed on the both
pairs of states in E1 sides of the boomerang. Clearly, this may filter out all possible quartets
(see [Mur09] for concrete examples and Figure 6.2 for an outline). Typically, there is a way to
overcome this problem, even gaining in probability, by relaxing the differences at the switching
point (see below).

Finally, we note that the choice of variables for the switch point is essential in the correct
estimate of the distinguisher probability. The Ladder switch (Section 7.4) is an exploit of the
existing parallelism in a design.

Improvements. There have been proposed several improvements of the boomerang attacks.
The most significant is the amplified boomerang attack [KKS00] (also called rectangle at-
tack [BDK01]), which runs in the chosen-ciphertext scenario. The idea is to encrypt sufficiently
many plaintext pairs so that the pairs in the middle with the difference ∇′ appear due to the
birthday paradox. Due to the quartet property we immediately get the second pair with the
difference ∇′. These pairs produce two pairs of ciphertexts with the difference ∇ with total
probability q2. Therefore, we get a quartet. In total, we generate N2p2q2 quartets out of N
pairs, and the minimal data complexity is 2n/2. Consequently, the amplified boomerang attack
always requires more data and time compared to the original boomerang attack. On the other
hand, the amplified boomerang attack admits a truncated difference in the ciphertexts, while

53

δ1

δ
∗

2

δ2

δ
∗

2

S

S S

S

δ2

— 8-bit condition

— 6/7-bit condition

Figure 6.2: Contradiction in the boomerang. The total number of bit conditions for a quartet
of bytes exceeds 35.

the regular boomerang attack requires difference to be fully specified ([BDK02] demonstrates
how to overcome this problem by partial key guess and, thus, the increase in complexity). This
is an advantage if regular differentials for the full cipher have too low probability.

An important improvement was proposed by Wagner [Wag99]: it was noted that the
number of good ciphertext quartets is actually higher, since an attacker may consider many
rectangles formed by all possible ∆′ and ∇′ (with the same ∆ and ∇). This observation can
be applied to both types of boomerang attacks. As a result, the number Q of good quartets is
expressed via amplified probabilities p̂ and q̂ as follows:

Q = p̂2q̂22−nN2,

where

p̂ =

√

∑

∆′

P [∆→ ∆′]2; q̂ =

√

∑

∇′

P [∇′ → ∇]2. (6.1)

The total gain depends on the differential properties of the round function. For example,
for the AES S-box with input difference δ we get the following:

p̂(δ) =

√

∑

δ′

P [δ → δ′]2 =
√

2−12 + 27 · 2−14 ≈ 2−3.5,

while a fixed output difference δ′ gives 2−6 at maximum.

6.3 Combined attacks

The combined attack is a sequential application of two probabilistic properties of different kind.
The cipher E is decomposed into E1 ◦E0, so that E0 and E1 are weak as nonlinear transforma-
tions (see their analysis in Chapter 3):

P
E0−→ Q

E1−→ C.

54

6.3.1 Differential-linear combination

The first combined attack [LH94] used differential and linear analysis. Suppose we have a
differential α→ β for E0 with probability 1, and a linear approximation

u ·Q⊕ v ·K = w ·C.

for E1 with probability 1/2 + q. Note that any plaintext pair of form (P, P ⊕ α) conforms to
the differential, so we derive that

E0(P)⊕ E0(P ⊕ α) = β; ⇒ u (E0(P)⊕ E0(P ⊕ α)) = u ·β.

After the encryption by E1, both ciphertexts conform to the linear approximation with proba-
bility 1/2 + 2q2 due to the piling-up lemma (Section 3.1). Then we derive

w(C1 ⊕ C2) = u ·β

with probability 1/2+2q2, and use this approximation as a distinguisher (Figure 6.3). We note
that β might be defined only in the bits covered by λ1.

Differentials with probability p 6= 1 are used as follows. We specify not β, but its mask
u ·β ∈ {0, 1}. Therefore, we consider a truncated differential α→ B, where λ1(B) = lb = const,
which holds with probability 1/2 + p′ (for a random function p′ = 0). Then the approximation
w(C1 ⊕ C2) = u ·β holds with probability 1/2 + 4p′q2 [BDK02].

P1 P2

α

1

Q1 Q2

β

C1 C2

λ2(Q2)

λ2(C2)

1/2 + q

λ1(Q1)

λ1(C1)

1/2 + q

Figure 6.3: Differential-linear attack.

6.3.2 Other improvements

The differential-linear transition can be further generalized [BDK05a]. Assume that with prob-
ability 1 internal states form a balanced multiset of size m, i.e. all the states guaranteely sum
into a fixed value (Section 4.1). Then the linear approximation of E1 preserves this property,
so we claim that

⊕

λC(Ci) =
⊕

λ1Qi = 0 with probability 1/2 + 2m−1qm. This can be proved
by induction.

There were several attempts to decompose the primitive into three independent parts
and more, but with no practical applications. It was conjectured [BDK05a], that any such
decomposition can be transformed into a simpler attack with lower complexity.

55

6.4 Impossible differentials

If a differential is used as a distinguisher, not only possible difference propagations can be used
but also impossible ones. Indeed, assume that the difference ∆1 never propagates to ∆2, which
is called an impossible differential :

∆1

f

6→ ∆2.

If this holds for any key, the key recovery attack is mounted as follows.

Assume that an impossible differential is followed by a round with a key addition. Then
we encrypt many plaintext pairs with the difference ∆1, guess the last key (or a part of it)
and partially decrypt ciphertexts. If the guess is correct, no pair of internal states has the
difference ∆2. Otherwise, the key guess is discarded. The attacker may guess on both ends of
the primitive (recently used in [LDKK08]), though the filtering procedure is more complicated.

The differential ∆1 → ∆2 must have high probability in a random permutation, otherwise
the filtering procedure is weak. This is overcomed by making ∆2 a truncated difference, which
leads to a higher probability of the differential. However, a truncated impossible differential is
harder to find.

Let us discuss the search for impossible differentials. An event with probability 0 implies
that the complementary event has probability 1. Intuitively, it is difficult to find any property
that always holds. One method is to find a trail on the number of rounds that do not provide
full diffusion. Then we prove that particular output bits are not influenced by the input differ-
ence and, therefore, must have zero difference [WZF07]. Another method is to use truncated
differentials, whose propagation can be investigated more efficiently. For example, one may
distinguish only between zero and non-zero differences, or zero, non-zero, and arbitrary ones.
Then linear and bytewise non-linear transformations are simple boolean functions, and all the
impossible truncated differentials can be found by exhaustive search [WLSL10, LSL10]. Still,
the theory lacks of necessary conditions to have an impossible differential.

If two sequential probability-1 trails are used:

∆→ ∆′; ∇′ ← ∇.

it is called the miss-in-the-middle [BBS99]:

∇′ 6= ∆′ =⇒ ∆ 6→ ∇.

The length of probability-1 trails is clearly limited by the diffusion properties of a primitive.
As a result, the number of rounds covered by the impossible differential can be bounded by
two times the number of rounds needed for full diffusion. The best attacks on AES-128 in a
single-key model are the impossible differential attacks with truncated differentials. For all the
versions of AES the first part of the impossible differential has the form 1 → 4 → 16, and the
second part can be of the form 12 → 12 [BA07, LDKK08] (Figure 6.4). The impossible AES
differential can be preceded by a 4 → 1 differential with probability 2−24. Recent impossible
differential attacks on AES [MDRMH10] use sophisticated techniques, long outer differentials,
and key schedule properties to mount the attack.

We also note that there are constructions, whose diffusion is much weaker in one direction
than in the other one. For example, the diffusion of the AES key schedule is weaker in the
backward direction ([FKL+00, BKN09]). Generalized Feistel schemes may have unbalanced
diffusion as well.

56

SB

SR

MC

AK

SB−1 SR−1 MC−1

SB MC

SB−1 SR−1

AK−1

Contradiction!

SR

Figure 6.4: AES impossible differential.

Low-probability differentials and other extensions.

Possible differentials that have probability p0 lower than expected from a random function (p),
has been proposed since late 1990s [KR99], but their use is pretty limited. The reason is that the
divergence D(p||p0) between two Bernoulli distributions is very small, so the data complexity
of the low-probability differential attack is significantly higher compared to the impossible and
regular differential attacks. As a result, the probability p must be relatively high, like in the
impossible differential attack, should the low-probability attack be valid. A couple of low-
probability attacks has been introduced recently [Tez10, MDS10], so we may expect further
progress in that direction.

An analogue from linear cryptanalysis is a linear hull with zero correlation. Though hulls
with these properties have been found for a reasonable number of rounds in AES and generic
Feistel ciphers [BR11], they are far more difficult to exploit compared to impossible differentials.
The data complexity is lower bounded with 2n−1, i.e. the half of codebook.

6.5 Multi-branch functions

A typical example of double-branch function is the hash function RIPEMD, whose compression
function operates as follows. The chaining value is input to two blockcipher-based permutations
which use the message as the key. A new chaining value is the sum of two outputs:

CVi+1 = EM (CVi)⊕ E′
M (CVi).

In order to simplify the design, the permutations differed in round constants only. Grøstl is an
example of a wide-pipe double-branch, which works with fixed permutations P and Q:

CVi+1 = P (CVi ⊕M)⊕Q(M).

LANE has 6 branches.

57

The analysis of double-branch functions is usually diffuclt since it is hard to control both
branches in parallel, which is required in most collision and preimage attacks. Cryptanalysts
have designed several ad-hoc approaches to mitigate those difficulties.

If the permutations are fixed, like in LANE and Grøstl, an adversary may work in the
semi-free-start framework. She finds a set of inputs with specific properties for each permu-
tation, and then combine them to get an admissible input to the full compression function.
Rebound attacks on LANE [MNPN+09] and Grøstl [MRST09] are typical examples. Since
the condition for permutation inputs to be a right compression input is linear, the generalized
birthday attack [Wag02] is a useful trick. This approach leads to collision and distinguishing
attacks.

Another idea is to consider the difference between internal states of permutations (Pround r⊕
Qround r in Grøstl) while the message value is the same. Then the differential trails are caused
by the difference in the operations in permutations, e.g. the constant addition, and not by
the difference in the message. The first version of Grøstl admitted suitable differential trails
similar to that in the first rebound attacks. The permutations P and Q differed only in the byte
position of the constant addition. Then we assume that an internal state in round r is identical
in both permutations, which is equivalent to the zero difference in a differential attack. Finally,
we apply the rebound attack with a trail with non-zero difference injections at the positions of
the constant addition [Pey10].

Regarding preimage attacks, the splice-and-cut method has been adapted for double-
branch hash functions that are based on block ciphers. The idea is to pursue the meet-in-the-
middle computation through the wrap-around in the same way it works for the Davies-Meyer
mode ([SA09b,WSK+11], Section 5.2). We start with a state S in the permutation E, derive
CV = f(S) and use it in the permutation E′. Similar approach has been applied to the Grøstl
hash function [MRST10].

58

Chapter 7

Representation and structure of a
primitive

In this chapter we consider attacks that change or exploit the high-level properties of a
primitive, or its structure. Some of these attacks change the representation of a primitive, i.e.
provide an alternative view on its design, which simplifies the analysis and may demonstrate a
weakness.

Contents

7.1 Slide attacks . 59

7.2 Invariants . 60

7.3 Fix and guess: simplifying the primitive 63

7.4 Ladder tricks: exploiting parallelism 65

7.1 Slide attacks

Slide attacks were proposed in 1999 [BW99] against block ciphers with identical round trans-
formations and subkeys. Assume that the encryption process admits the decomposition:

EK = fK ◦ fK ◦ · · · ◦ fK .

Consider any pair of plaintexts (P1, P2) such that P1
fK→ P2 (slid pair). Then EK(P1)

fK→ EK(P2).
Due to the birthday paradox, we find a slid pair among about 2n/2 encryptions. A naive
approach would be to test all the possible pairs (P1, P2) and then check an admissible key by
the slide property in the corresponding ciphertext pair. However, the function fK is supposed
to be weak, so we can detect a slid pair faster.

The function fK is not necessarily the round function, but can be any weak transformation
that is repeated in a cipher. The complementation slide technique [BW00] deals with the
function

fK ≡ hK2
◦ gK1

.

Round constants, which slightly modify the round function for little cost, are a typical
and easy countermeasure. As a result, few real ciphers were broken with this technique, but
there appeared several notable applications.

59

Applications. Although SHACAL-1 uses four different constants (each for 20 consecutive
rounds), it is vulnerable to the slide attack [Saa03]. The transitions between different round
groups can be treated with a careful choice of the internal state. As a result, a slid pair can be
constructed for the full SHACAL-1.

The KeeLoq cipher does not use round constants and was attacked with slides. The
idea was to detect fixed points of the internal transformation (similarly to the reflection at-
tack) [CBW08], or to guess a part of the key, decrypt the last rounds, and apply the guess-and-
determine procedure [Bog08, IKD+08].

The simple prefix-MAC EK(M) = H(K||M) is vulnerable to the slide attack, if the un-
derlying hash function consists of identical transformations. An example is the attack [GLP08]
on the prefix-MAC based on Grindahl [KRT07], the stream-based hash function. Having pro-
cessed the whole message, Grindahl performs several blank rounds, whose round function P is
weak, and then truncates the output. The attacker constructs a message pair (M1,M1||M2)
such that the hashing of the suffix M2 repeats the computation of corresponding blank rounds
for M1. As a result, for some state S

EK(M1) = Truncate(S); EK(M1||M2) = Truncate(P (S)).

The weakness of P leads to the full recovery of S, inversion of the blank rounds and even the
information on the key. This attack can be also viewed as a length-extension attack.

P1 fk fk ...

P2
fk ...

fk

fk

C1

fk C2

Figure 7.1: Slide attack.

7.2 Invariants

If a primitive E preserves a property Q of its input:

x ∈ Q → E(x) ∈ Q,

it is called an invariant for E. An invariant is a very dangerous feature of a design, even if it
holds only with some probability. A slid pair can be viewed as invariant over a pair of inputs:
the relation x↔ fk(x)) is preserved by fk. The existence of two-input invariants is also related
to the notion of homomorphic encryption [Riv02], which stands for deterministic transformation
of algebraic relations over inputs. Homomorphic encryption is essential in the construction of
security protocols such as voting, but is undesirable in the industrial-use block ciphers.

The use of round-dependent constants is a typical countermeasure against single-input
invariants. Indeed, a round-dependent constant guarantees that round functions are different.
A constant also has to break the invariant property Q to be a countermeasure.

7.2.1 Rotational cryptanalysis

The main idea of the rotational cryptanalysis is to consider pair of words where one is the
rotation of the other one.

60

We define −→
X

def
= X≪r.

and call (X,
−→
X) a rotational pair [with a rotation amount r]. A rotational pair is preserved by

any bitwise transformation, particularly by the bitwise XOR and by any rotation:

−−−−→
X ⊕ Y = −→x ⊕−→y , −→x≫r′ =

−−−→
x≫r′ .

It also propagates through the addition modulo 2n with probability between 1/4 and
1/2 [Dau05]:

P(
−−−→
x+ y = −→x +−→y) =

1

4
(1 + 2r−n + 2−r + 2−n).

The same holds for rotations to the left.
Now consider an arbitrary scheme S with additions, rotations, and XORs over n-bit words,

q operations in total. Then with probability (pr)
q

S(−→I) =
−−→
S(I).

under some independency assumptions.

For a random function P that maps to Zt
2 the probability that P(−→I) =

−−→
P(I) for random

I is 2−t. Therefore, we can detect nonrandomness if a function can be implemented with q
additions, and (pr)

q > 2−t.
The main countermeasure against rotational cryptanalysis is the use of constants. If a

constant is not rotation-symmetric, it always generates an error in a rotational pair. Low-weight
errors can be cancelled due to non-ideal behavior of the modular addition.

Rotational cryptanalysis was used in the cryptanalysis of block ciphers Threefish [KN10,
KNR10] and SEA [SPGQ06], and recently in attacks on BMW [NPSS10], Shabal [Van10], and
ESSENCE [BDLF10]. It can be also applied for ciphers with bit-sliced S-box, like a modified
Serpent [DIK08].

Like differential attack, rotational attack can be enhanced with neutral bits, auxiliary
paths, and related tools (Section 8.5).

7.2.2 Fixed points

The notion of a fixed point is very important in the analysis of iterative transformations with
identical round functions. If f(P) = P then P is a fixed point for f . Fixed points are extensively
used in the generic preimage attack [KS05], which are out of our scope. We will consider low-
level attacks that exploit the existence of fixed points.

Reflection attack

In the reflection attack [Kar08], applied to the weak-key variant of GOST, a cipher is decom-
posed into a sequence of transformations: F = fl ◦ fl−1 ◦ · · · ◦ f1 such that all the fi have the
same fixed points. Then such a fixed point is also a fixed point for F .

The attack works as follows. Find a plaintext P that produces a ciphertext C = P , and
then solve any equation fi(P) = P , which is assumed to be relatively easy.

The fixed points obtained in the reflection attack can be also used in the meet-in-the-
middle attack (Section 5.1). Assume that a random plaintext P is a fixed point with probability
p for a transformation Tr made out of the first r rounds. Then an attacker runs the meet-in-
the-middle attack on 1/p pairs (Tr(P), C), where C is the ciphertext of P . As a result, the
attack essentially skips the first r rounds no matter which neutral words are involved in these
rounds [Iso11].

61

Collision search

Fixed points can be used in iterative compression functions in order to reduce the computational
complexity of the collision search (the attack on the GOST hash function [MPR+08]).

An attack on RC4-hash is another example [IP08]. Assume that there exist two fixed
points X and Y such that it is easy to find a path from X to Y . Then the following path
produces a collision:

X
M3−→ Y

M2−→ Y

X
M1−→ X

M3−→ Y

7.2.3 Other invariants

A recent attack on Lesamnta uses invariants and bypasses the round constants [BDLF10]. It
has been found that the function F in the generalized Feistel scheme preserves the swap of input
halves:

←−→
A||B def

= B||A; F (A||B) =
←−−−−→
F (
←−→
A||B) =

←−−−−→
F (B||A).

The input to the function F is XORed to a round constant Ri, which was supposed to break
this effect. However, the round constant are almost symmetric:

∀i←→Ri = Ri ⊕ 1||1.

Then the attacker compares the compression of X and
←→
X ⊕ 1||1. The difference 1||1 cancels

the non-symmetry of constants, and each invocation of F gets a swapped input. Therefore, this
attack demonstrates a combination of symmetrical invariant and a differential approach.

Now we briefly list the other applications of invariants in cryptanalysis.

• An differential of form ∆ → ∆ is an invariant over a pair of inputs and may form an
iterative characteristic:

∆→ ∆→ · · · → ∆.

The first attack on the full DES [BS92] exploited an iterative characteristic.

• The complementation property of DES:

EK(P) = EKP

is a probability-1 invariant. However, due to its deterministic nature, it only speeds up
the exhaustive key search by a factor of 2.

• The complementation property of DES is actually the related-key differential with proba-
bility 1. A similar differential with non-one probability was constructed for GOST [KHL+04]
and XTEA [BDLF10].

• The rotation of columns is invariant to the AES round function. While the round constant
in the key schedule breaks this invariant in AES; it is not the case for several AES-based
functions [BDLF10,DKS11]. Similar rotation property holds in Essence [BDLF10] due to
the use of LFSR inside the compression function.

• The CubeHash round function preserves several symmetry patterns [ABM+09]. The use
of such patterns is prevented by a non-symmetric IV.

• The SIMD compression function is vulnerable to various swap patterns despite the so-
phisticated message expansion [BFL10].

62

7.3 Fix and guess: simplifying the primitive

7.3.1 Block ciphers and hash functions

A primitive can be described as a system of nonlinear equations on its internal variables. Key
recovery, preimage and collision search can be viewed as solving systems of such equations.
These systems can be significantly simplified if we fix or guess some internal variables in advance,
i.e. we search only for those executions whose internal variables satisfy particular conditions.
Then an attack consists of two steps: produce an execution with desired properties, and exploit
simplified equations. The technique is well known in the attacks on stream ciphers as the guess-
and-determine, where it is primarily used to recover a internal state from a keystream. In block
ciphers and hash functions this method is an auxiliary tool for more sophisticated attacks.

Key recovery. Most block ciphers have a strong round function, so that it is hard to recover
the state and the key by guessing or fixing a smaller portion of internal variables. However, if
the round function is weak, the technique is applicable. For example, a block cipher KeeLoq,
which is based on a LFSR and thus resembles a stream cipher, was attacked with guessing the
internal variables in a slid pair [Bog08].

Differential attacks. A fix of internal variables may limit the diffusion of difference and allow
differential paths with higher probability. For example, consider a generalized Feistel scheme,
which is similar to the MD family of hash functions:

Anew = A&B ⊕ C ⊕Mnew; Bnew = A; Cnew = B,

where & is the bitwise AND. It is quite easy to construct a differential path that holds wtith
probability 1:

∆A ∆B ∆C ∆M

0 0 −∆ ∆
0 0 0 0
0 0 0 0
0 0 0 0
∆ 0 0 ∆

A more flexible path can be obtained due to a local collision by fixing some internal
variables to zero. Assume that B = 0. Then

Anew = C +Mnew,

so any difference in A does not propagate directly to Anew, but only to B. By fixing one more
internal word to 0, we get a local collsion for M1 and M4:

A B C M

0 ∗ ∗ ∗
∗ 0 ∗ ∗
0 ∗ 0 ∗
∗ 0 ∗ ∗

∆A ∆B ∆C ∆M

0 0 0 ∆
∆ 0 0 0
0 ∆ 0 0
0 0 ∆ −∆

Another example is the attacks on AES and AES-based hash functions [KBN09,BKN09].
We fix particular state bytes to ensure the difference propagation in the most expensive part of a
differential trail. Then we find a conforming execution efficiently and check whether it conforms
the rest of the trail (Figure 7.2). Similar ideas are used in the rebound attack (Section 4.3) the
attack on SHAMATA [IMPS09].

63

Conditions Fix Determine Check

Figure 7.2: Fix, determine and check.

In collision search. Bit-oriented hash functions like the SHA family are vulnerable to colli-
sion attacks where a part of the IV is fixed to values that enhance the collision search. If the
adversary is limited to the complexity 2t, she may fix up to t bits in the intermediate IV just
by random trials.

This technique was used in the attack on the compression function BMW [Tho10]. The
attacker fixes several internal variables to zero, so that the resulting hash value is almost equal
to the message block. Therefore, a flip of a single bit results in a pseudo-collision for the
compression function.

A more advanced technique is applied to hash functions Lesamnta and SHAvite-3, which
are based on the generalized Feistel scheme. By equalizing outputs of the Feistel function F ,
the attackers simplified the equations that describe the hash value [BDLF09,BDLF10].

Using auxiliary paths (Section 8.5) in differential attacks, the attacker explicitly fixes
some internal bits in order to increase the probability of the path. For example, by fixing one
bit to zero in the argument of the modular addition, one can guarantee that there is no carry
in this bit.

In preimage search. This technique under the name “absorption” was used in several preim-
age attacks on hash functions of the MD-family. For example, if two of three inputs to the
majority function are equal to C, then the output is always C regardless of the third input.
Therefore, any difference in the third input word would be absorbed, and a local collision
property, that involves that word, would hold with higher probability. This principle was ex-
tended to other nonlinear functions and resulted in preimage attacks on HAVAL, MD4, and
MD5 [Leu08,SA08a,SA09a].

The guess-and-determine technique can be applied to non-invertible transformation to
make it invertible and, thus, vulnerable to such attacks as the meet-in-the-middle (Section 5.1).
For example, the Edon-R compression function can be inverted by guessing particular words in
the internal state [KNW09]. Early designs can be attacked directly by the guess-and-determine,
such as MD2 [Mul04].

Extremely short compression functions are vulnerable to guess-and-determine preimage
attacks with Hamsi as a notable example [Fuh10]. Dinur and Shamir significantly reduced the
pseudo-preimage search by fixing several bits of the IV.

7.3.2 Stream ciphers

The fix, or guess-and-determine method is extremely popular in the analysis of stream ciphers,
possibly because of the abundance of equations and variables that appear while observing a

64

large amount of keystream. The guess-and-determine attack is used both for the internal state
recovery and the key recovery.

Byte-oriented design are more vulnerable to the attack due to smaller number of variables
and shorter equations. On the other hand, the non-linear transformations of the byte-oriented
design are more complicated. Still, there is little theory behind the guess-and-determine at-
tack, besides a trivial bound that it is possible whenever the CICO problem (Section 2.2) can
be solved. Some stream ciphers have data-dependent transformations (e.g., irregular clock-
ing), which are also subject to the guess-and-determine attacks [NTW10]. The papers [DG08,
FLZ+10,HR02,MK08] may be the further references.

7.4 Ladder tricks: exploiting parallelism

The internal state of a primitive is a conjunction of low-level blocks, like bits or bytes. The
diffusion principle states that the blocks must be mixed with each other in order to make every
output bit dependent on all the input bits. Since the round function is not ideal, the internal
states can be decomposed into independently processed blocks. This effect can be exploited in
many ways.

7.4.1 In boomerang attacks

In the boomerang attack we decompose a cipher into two subciphers E0 and E1. The border
between subciphers is not necessarily the border between rounds. Moreover, it does not have
to be a border between operation layers, like S-box layers. In general, the border is a set S of
internal variables, that completely determine the execution of the cipher in both directions. For
example, the internal state A3 (after S-box layer in round 3 of AES-128) and the subkey K4

(the subkey of round 4 of AES-128) together determine the computations in both directions.
It was demonstrated that such simple slices may not be optimal in terms of the probability

of the corresponding boomerang distinguisher. In boomerang related-key attacks on AES [BK09]
this principle was called the ladder trick. For example, assume that the differential trail for E0

has low number of active S-boxes in rounds 1–4, and the differential trail for E1 has low number
of active S-boxes in rounds 6–9. However, round 5 would have too many active S-boxes, if it
were entirely assigned to any of the subciphers.

The solution is to extend both subciphers to the S-box layer in round 5, and then assign
the S-boxes independently. We assign each S-box to the subcipher where it would be inactive,
thus greatly reducing the total number of active S-boxes in the boomerang trail.

7.4.2 Partial matching

The same principle in preimage search got the name “partial matching”. In the meet-in-the-
middle preimage attacks (Section 5.2) two computation chunks are to meet at some intermediate
step of the compression function. However, the chunks may not be computed independently
till the meeting point, because the next step involves a neutral word used in the other chunk.
Then we notice that the size of the neutral word is often smaller than the size of the state, so
the state can be partially computed even after the point of injection. As a result, we match the
states partially [AS08, SA09a,AGM+09]. Work on a bit level admits better results, since the
diffusion is slower, and the effect of the message injection depends on the bit positions.

65

a1 a2 a3

S S S

k1

k2

k3

S S S

E0

E1E0 / E1 boundary

Figure 7.3: The ladder switch in a toy three S-box block. A switch either before or after the
S-box layer would cost probability, while the ladder does not.

66

Chapter 8

Proper use of probabilistic patterns

This chapter is devoted to various issues related to the probabilistic patterns, most of which
were introduced in Chapter 3. Recall that a probabilistic pattern for a function f is defined with
respect to the input property A and the output property B, which is derived with probability p:

P

[

A f−→ B
]

= p.

A pattern with probability higher than what is expected in a random function, it is a
potential weakness in an n-bit permutation (or transformation). There are several common
approaches to convert such a pattern to an attack, depending on the attack nature.

Contents

8.1 Find a good pattern . 67

8.2 Key recovery . 69

8.3 Attacks on compression functions . 72

8.4 Search for conforming executions . 72

8.5 Speeding up the attack . 75

8.6 Solving equations . 77

8.7 Unique attacks . 78

8.1 Find a good pattern

The search for a good pattern is typically a combination of manual and automated work, and
the manual efforts prevail for good designs. The first long characteristics were iterative, i.e.
they were a repetition of a single pattern of form α → α [BS92]. However, this approach fails
for modern primitives due to better diffusion properties.

Linearization. The ARX primitives are subject to linearization, i.e. to the replacement of
all modular additions by XORs and sequential search for low-weight trails. If found, those trails
serve as a base for differential attacks. The nonlinear paths are missed, so this approach does
not guarantee the absence of high-probability trails. On the other hand, nonlinear trails are
quite difficult to handle. As a result, cryptanalysts prefer nonlinear trails that sligthly deviate
from the linear ones [MN09,KNR10].

67

Greedy algorithms. SHA-1 and CubeHash trails close to optimal have been found by the
combination of the linearization technique and a greedy algorithm [CR06,KKMS10]. The idea is
the following. First, the majority of the internal state bits of a trail are marked as “undefined”.
Then they are sequentially defined in a way that produces the differential trail most suitable for
the collision attack (in the middle and the last rounds this is equivalent to getting the highest
probability). The search is accompanied with numerous heuristics and does not guarantee the
absence of better trail.

SAT-solvers and similar. SAT solvers and tools as Gröbner basis are often viewed as uni-
versal solutions to cryptanalytic problems. However, due to the nature of cryptanalysis such
generic tools make sense mainly when doing some mechanical work like searching or testing
probabilistic patterns. The advantage of using these tools is still quite limited, and the crypto
community remains sceptical about most of the attacks mounted in this framework ([MZ06] is
a nice though theoretical exception). Several attempts to prove the relevance of these tools by
designing a cipher vulnerable only to them failed [DK09].

Branch and bound. The branch-and-bound strategy is applied when the problem can be
reformulated as a search over a tree of possible solutions. For example, differential trails for
collision search in a hash function form a tree that starts with zero-difference state and split
into branches in non-linear operations. Every operation is a node which has as many branches
as many differences may come out of the operation. If a branch is marked with a logarithm of
the corresponding differential probability, then the path from the root to a leaf with the largest
sum of marks gives the highest probability trail.

The branch-and-bound strategy optimizes the search by cutting out those paths that will
not lead to an optimal solution. For this the strategy needs a lower bound on the value of the
optimal solution. Let us denote by V ∗

r a lower bound for the optimal solution over r rounds,
and by V r an upper bound for the optimal solutions over r rounds. Assign V1 with the value
of the best one-round solution that we can find. Derive V 1 from the structure of the primitive
or choose the maximum possible value.

Now suppose we have a lower bound V ∗
n for the optimal solution over n > 1 rounds (i.e.,

by taking an arbitrary solution), and the upper bounds V i for the optimal solutions over i < n
rounds. Then we construct optimal n-round solutions as follows. First, consider only those
solutions whose value v1 in the first round satisfies the condition

v1 ·V n−1 > V ∗
n .

Evidently, the other solutions have values lower than V ∗
n if being extended to n rounds. Then

extend the remaining solutions to two rounds and consider only those extensions whose values
v2 in the first two rounds satisfy the condition

v2 ·V n−2 > V ∗
n .

Then proceed with the third round and so on until we construct the best solutions for n rounds.

The branch-and-bound strategy is exponential in the worst case. Indeed, assume that
there are q optimal one-round solutions which are compatible with each other. Then after
r rounds we have qr optimal r-round solutions. However, if there are few optimal one-round
solutions and they are mainly incompatible, then the number of solutions might remain relatively
small. The recent attacks on AES, DES, and other ciphers [BN10,BN11] exploit the fact that
there are few optimal one-round trails in these primitives, and the previous estimates of V ∗

n are
close to optimal.

68

8.2 Key recovery

The key recovery is the primary attack on a block cipher, and a probabilistic pattern is well
suited for this purpose. The attack procedure depends on if the pattern probability is determined
by a single (dominant) trail or a cluster of trails resulting in a hull or differential.

8.2.1 Dominating trail

If the attack pattern is dominated by a single trail, the key bits can be derived explicitly from

the right pairs. Assume we have a pattern A f−→ B with probability p ≪ 1, which in turn is
much higher than the proportion of elements with property B in the range of f . Then we collect
a right input after about 1/p random trials. Since we know the property of the states before
and after the last key addition in f , we are able to get information on K.

For example, assume that a nonlinear transformation f is applied to the internal state in
the last round, and then the key is XORed to get the ciphertext:

C = f(A)⊕K.

Suppose we work with a differential pattern and know the differential of f : ∆I
f→ ∆O, then we

get the following equation:
f(A⊕∆I) = f(A)⊕∆O,

which provides information about f(A). Due to the nonlinearity of f and the awareness of C,
we get a list of candidate keys {K}. We use a simple rule of thumb: key candidates are ranked
according to the number of times they are proposed by ciphertexts.

The simplest linear attack (Algorithm 1) deals with a single linear trail, which approxi-
mates a linear function of subkeys l(K) with (u ·x⊕w · f(x)) for some u,w. The value l(K) is
set according to the dominate value in the samples {u ·xi ⊕ w · f(xi)}. The data complexity is
proportional to 1/C2, where C is the correlation of the dominating trail. It was later demon-
strated [Jun05] that the simple rule is optimal in terms of the Neyman-Pearson lemma. This
result does not hold [Jun05], however, for the case of multiple approximations, where the formal
approach from the nest section makes sense [HN11].

8.2.2 Multiple trails

In this section we explain an approach with a distinguisher, which is necessary if there is no
dominating trail. It is also useful in the other case, since it allows to recover key bits sequentially.

Now we assume that a probabilistic pattern A f−→ B covers all but r0 last rounds. Typically, r0
is 1 or 2; it may also cover parts of rounds. Then we guess the part of the last subkeys that is
necessary to figure out from the ciphertexts C whether the property B holds for the relevant
proportion of intermediate states S = f(P). The right guess should show that the proportion
is about p0, where p0 is the probability of the pattern. A wrong guess should provide a value
significantly different from p0.

Therefore, we face a purely statistical problem. It would admit a simple solution if we
were not restricted in time. Since we seek the fastest algorithms, the procedure that determines
the key may be quite complicated. Statistical tools used in the attack determine how efficiently
we use the data, whether we are able to exploit multiple patterns simultaneously, etc. The task
is most difficult in linear cryptanalysis (see [BCQ04,HN11]).

Now we proceed with a formal explanation, which is substantially based on the research
by Blondeau, Gerard, and Tillich [BG09, BGT11]. Let N be the number of available plain-
text/ciphertext samples. A sample can be a single pair (linear cryptanalysis), two pairs (differ-

69

ential cryptanalysis), etc.. Generally, we get information not on the full key, but on a subkey.
For that we extract some statistic Σ from the available data, then compute the likelihood of each
possible subkey, suggest a list L of the likeliest keys, and try exhaustively all the corresponding
master keys until the correct key is found.

In most of the cases, the statistic Σ is a set of counters Σk that correspond to the number
of times the probabilistic pattern is observed for a subkey k. Let p0 be the probability that
the pattern is observed for the correct subkey k0, and p be the probability that it is observed
for an incorrect subkey. Here we assume that all the incorrect subkeys have the same pattern
probability, which is a standard assumption. Without loss of generality, let p < p0. The
likelihoods are just the counter values.

Assuming also that the samples are independent, the counter Σk follows a binomial law
with parameters (N, p) for k 6= k0 and (N, p0) for k = k0. Then the attacks can be mounted in
two different frameworks:

• Fix a threshold and accept the keys with a likelihood larger than the threshold (hypothesis
testing).

• Fix the size of L to some value l and keep the l likeliest subkeys (key ranking).

Hypothesis testing

We fix threshold T and accept subkey k if Σk ≥ T . Then the success probability PS of the
attack is determined by the probability α = 1−PS of the type I error, which occurs when k0 is
not accepted due to Σk0 < T . The time complexity of the attack is determined by the size of L
and thus by the probability β of the type II error, which occurs when k 6= k0 is accepted. The
well-known result from statistics states that no test can improve the threshold test in both α
and β error probabilities.

Denote T/N by τ . If p < τ < p0, the following asymptotic holds for the error probabili-
ties [BGT11]:

β = P (Σk 6=k0 ≥ τN)
N→∞−−−−→ (1− p)

√
τ

(τ − p)(
√

2πN(1− τ))
e−N ·D(τ ||p); (8.1)

α = P (Σk0 < τN)
N→∞−−−−→ p0

√
1− τ

(p0 − τ)(
√
2πNτ)

e−N ·D(τ ||p0). (8.2)

(8.3)

Here D(p||q) is the Kullback-Leibler divergence for Bernoulli distributions:

D(p||q) = p ln

(

p

q

)

+ (1− p) ln

(

1− p

1− q

)

.

Therefore, time and data complexities and the success probability are all related, and any
two of them determine the other one. Since the equations (8.1) are hard to invert, the data
complexity as a function of α and β is found by numerical methods.

For the threshold τ = p0 and the resulting α ≈ 1
2 , data complexity may be approximated

as follows:

N ′ =
ln(2
√
πβ)

D(p0||p)
. (8.4)

The threshold may be also given by the log-likelihood ratio or the convolution method [HN11].
If the value of p is not available, one may use the χ2 test.

70

Key ranking

Within the key ranking approach we have to fix the number l of likeliest keys in order to try
them in the next phase. The value of l is a tradeoff between the success probability of the
attack and the time complexity. We sort the subkeys according to the counter value Σk and
store those with the largest counter value. The success probability is then defined as

PS = P[ko ∈ L].

Let n be the total number of subkeys. The explicit formula for PS in terms of l and n
is quite sophisticated, so we provide an approximation, which was checked experimentally for
different types of patterns [BGT11]:

PS ≈
N
∑

i=F−1(1− l−1

n−2
)

f0(i),

where F 1 is the inverse of the cumulative function of a binomial law with parameters (N, p):

F (x) =
∑

i≤x

(

N

i

)

pi(1− p)N−i,

and f0(x) is the probability that the counter Σk0 is equal to x:

f0(x) =

(

N

i

)

(p0)
i(1− p0)

N−i.

Data complexity for various cryptanalyses

It is a well-known rule of thumb, that exploiting a bias ε in a linear attack requires about 1/ε2

data, while a differential with probability ε is exploitable with only 1/ε plaintext pairs. One
may ask why the situation is so different. To answer the question we look at the expression (8.4)
and notice the crucial role of the Kullback-Leibler divergence. Computing the divergence for
distributions appearing in linear and differential cryptanalysis is a simple exercise. The re-
sult [BGT11] is as follows:

Attack Number of samples

Linear
1

2(p0 − p)2

Differential
1

p0 ln(p0/p)− p0

Truncated differential
p

(p0 − p)2

Impossible differential
1

p

It is easy to see that the data complexity of the differential cryptanalysis depends rather
not on the difference between p and p0 but on their ratio and the magnitude of p0.

71

8.3 Attacks on compression functions

A probabilistic pattern is a universal tool for the analysis of a compression function if it clearly
exhibits nonrandomness of the primitive. A collision search is actually a search for inputs
producing a zero-ending differential trail. Therefore, a good trail may form a base for a collision
trail if it fits the attack framework (zero final difference in a collision, zero IV difference in a
semi-free-start collision, etc.).

A zero-ending trail can be also used for a second-preimage search. Indeed, applying the
specified difference to the original input, we get the same output with the probability equal to
the DP of the trail. However, this method has very low probability to succeed (see the attack
on MD4 [YWZW05] and Haval [LCK+08]), since every trial requires a new differential.

A non-zero ending trail can be a base for a multi-block collision (Section 8.4), especially
when a feedforward is used. If g(x) = f(x)⊕ x then a differential ∆→ ∆ for f is a differential
∆→ 0 for g.

If the round function is not bijective, it is a dangerous weakness. For example, short
zero-ending differentials (vanishing differentials) have been found in the SecurID hash func-
tion [BLP03].

MAC. Differentials are widely used in key recovery attacks on the message authentication
codes. In this setting a MAC is equivalent to a block cipher, so the attack methods are very
similar. Since many MACs are based on hash functions, the differentials are taken from collision
attacks on these functions [FLN07,WOK08].

8.4 Search for conforming executions

In this section we discuss optimal search for executions that conform to a probabilistic pattern.
We consider a function f as a black box, for which we are given a pattern with probability p:

P

[

A f−→ B
]

= p. (8.5)

The further text is relevant for patterns only with relatively low p, such as differential of
rotational attacks. It is not suited for the linear cryptanalysis.

To find a pair of inputs conforming (8.5) one has to make about 1/p queries with sets with
property A. This is done with negligible memory and time complexity of about 1/p queries,
where s is the size of a set with property A. For the differential cryptanalysis we make 2/p
queries with single texts.

Now consider a more general multi-step pattern, when we have some freedom to modify
inputs between invocations of fi:

A0
Injection−−−−−→ f1−→ A1

Injection−−−−−→ f2−→ · · ·Ak−1
Injection−−−−−→ fk−→ Ak.

This situation is typical in stream-based hashes. Denote the number of possible modifications
at step i by 2li and the number of bit conditions that must be fulfilled at each step by qi.

Let us compute the complexity of the attack, i.e. of finding a conforming set of executions.
Denote the number of starting points by N , then N2l1−q1 points pass the conditions of the first
step. Then this number is increased by 2l2 modifications, thus giving N2l2+l1−q1−q2 points:

N
Injection−−−−−→ N2l1

f1−→ N2l1−q1 Injection−−−−−→ N2l1+l2−q1 f2−→ N2l1+l2−q1−q2 · · · fk−→ N2
∑

1≤j≤i(li−qi).

72

Most attacks needs just one right point in the end. Together with the condition that at least
one right point must come of each step, we have the following condition

∀i logN +
∑

1≤j≤i

(li − qi) ≥ 0. (8.6)

In the attack we choose minumum N satisfying Eq. 8.6. Clearly, the attacker is not obliged to
use all the degrees freedom at each step. Let us note that the sequence of intermediate points
is a path on a tree from its root to the deepest leaf, where the root is a starting point, and
branches are modifications, of which a proportion of 1− 2−qi ends with a leaf.

The workload C of the attack is approximated by the number of right pairs entering the
round, or the width of the search tree. Assuming that at least one right pair comes out of a
round, we get the following approximation:

logC ≈ maxi1≤i2≤k

li1 +
∑

i1≤j≤i2

(qi+1 − li)

 .

N

f1

f2

f3

2
l2 modifications

Figure 8.1: Tree of the search for conforming sets.

We described the search procedure as we first computed all the points at a particular step
(layer of the tree) and only after checked whether they would lead to the next step (Figure 8.1).
This approach, which is actually a breadth-first search, requires too much memory. The depth-
first search, when we explore the tree as far as possible along each branch, is more efficient
since we have to store in memory only the path of length k. In the differential cryptanalysis
the depth-first search is known as trail backtracking [BDPA06].

Collision search inside a compression function. This framework is quite popular in the
collision search in regular hash functions, such as SHA-1 [CR06,CMR07]. For example, to find
the conforming message pair for the first block of the 64-step SHA-1 collision [CR06], one has
to start with the standard IV (one possible pair), and then use 95 bit degrees of freedom to
bypass 55 bit conditions in the first 16 rounds. If a condition is failed, the attacker backtracks
the process and tries another possible input. Therefore, after 16 rounds about 240 execution

73

pairs are left, and they are filtered with the 40 uncontrolled conditions in the next 48 steps,
leaving one valid collision pair. In our notation we have the following:

{

∑

i≤16 qi = 55;
∑

i>16 qi = 40; N = 240;
∑

i≤16 li = 95;
∑

i>16 li = 0.

If we work with truncated differentials, an l-bit injection may provide up to 22l modifi-
cations, depending on the power of the constraint. In the attack on Grindahl [Pey07], which
injects 4 bytes at each step, Peyrin exploited differentials truncated to bytes. Therefore, he had
28k degrees of freedom at each step.

M M MF F F F rounds

number of points

M — modification (injection, branching)

F — filtering (round, conditions)

N

M

Figure 8.2: Complexity of trail backtracking.

Multi-block collision. A multi-block collision spans over several calls of a compression func-
tion, and can be found with the backtracking method. The differential characteristic between
the calls of the compression function has the following form:

0
F−→ δ1

F−→ δ2
F−→ · · · δk F−→ 0.

If the compression function has a feedforward, the full collision is a concatenation of pseudo-
and near-collisions, for which differentials with higher probability may exist.

For example, the first collision for SHA-0 was a four-block collision [BCJ+05], and the
blocks were computed with complexities 249.5, 250.5, 250.5, 244, respectively, with the total com-
plexity around 252.

Use of structures.

A structure is a set of states where particular bytes take the same value. If input pairs can be
organized into structures, the attack complexity can be reduced. Typically, a structure of size T
has T 2/2 pairs (Figure 8.3). The most common difference type that allows such a composition,
is the arbitrary difference. For example, a fixed difference in 12 out of 16 bytes corresponds to
a structure of 232 tuples (states), which can be composed into 263 pairs. This may be enough
to pass through a trail with probability 2−60. Ideally, a trail with total differential probability
2−k would be exploited only with 2k/2 data complexity.

74

Typical trails use regular differences throughout the primitive, and truncated differences
only in the beginning or in the end. As a result, mainly structures of plaintexts and ciphertexts
are used, so the advantage in complexity is limited.

However, the trails for hash functions are more flexible, so truncated differentials can
be widely applied. The attacks on stream-based Grindahl and RadioGatun are the examples.
These differential trails can be adapted for the use of structures, as was shown in [Kho09a].
On the other hand, the use of structures imposes a big constraint on the injected messages.
Consider, e.g., a 3-byte message injection, in which the difference is fixed to zero in the first
byte, and is unspecified in the remaining two bytes. Then all the elements of a structure that
follow the trail should get the message with the same first byte, i.e. there are 216 possible inputs
per element. If we considered pairs separately, each pair would admit 28+2 · 16 = 240 pairs of
injections. As a result, the structure splits faster than the number of pairs decreases, which
means that the structure at some step simply fissions into separate pairs (Figure ??).

* C C C

C * C C

C C * C

C C C *

Figure 8.3: Structure of 232 AES states, which form 263 pairs of texts. C stands for a constant,
* stands for an arbitrary value.

8.5 Speeding up the attack

In this section we discuss several tricks for speeding up an attack with probabilistic patterns,
mainly a differential attack. Recall that a conforming pair for a differential with probability p
can be found after 1/p random trials. The main idea of the following method is to reduce the
complexity of the search using the information from previous queries.

Block ciphers

Since we do not observe the encryption process, we are not able to detect why a pair with a
right difference does not conform to a differential. As a result, we do not get information from
such a failure.

If some sufficient conditions for the differential trail are simple functions of the key and
the plaintext, the latter can be simply modified until the conditions are met [KMNP10,DS11a].
The more efficient way, however, is to encrypt a structure of plaintexts and retrieve the key bits
from the right pairs. When a right pair is obtained, it may speed up the search for the next
pairs if it is required. In the attack on RC5 [BK98b] the second and next right pairs can be
obtained with significantly lower complexity. In the attack on AES a single right pair provides
information on several key bytes, so the attacker partially controls the first round and get right
pairs for the next differential much faster [BKN09].

Compression functions

In compression functions we observe the transformation process, so we know where a candidate
pair leaves the differential path. There is a couple of tricks aimed to modify the execution so

75

that it passes further. As a result, if an attempt fails, we hope to succeed in the next attempt
with higher probability than in a random trial.

Message modification. The message modification is a procedure that tells how to change
the inputs if a condition in a particular round is failed. The first such procedure [WY05] was
proposed for MD5 was considered. The idea is not to discard a message pair but modify it in
a special way. Clearly, the modification is easy if an error occurs shortly after an controlled
injection (basic modification), but is hard if it occurs several rounds after the last controlled
input (advanced modification). Several modification techniques were introduced, of which many
are ad-hoc [SWOK07,NSKO05].

Auxiliary paths. In the attacks on MD/SHA family of hash functions a condition, that a
message conforms to a differential, was translated to simple conditions on internal bit variables.
For example, if a particular bit is 0, the difference passes the modular addition. However, it is
quite hard to control bits if they are located far from the last controlled input. We note that
in start-from-the-middle attacks a cryptanalyst can fulfill conditions in both directions, thus
getting a more efficient attack [KNR10].

There appeared numerous techniques that aimed to bypass these conditions without dis-
carding the current trial. Virtually all of them are dedicated and suited for only one primitive.
In the further text we will briefly cover the underlying ideas.

orig
inal

path

∆

∇

auxiliary
path

∆′

∇
′

∆

∇

V and V +∇ are wrong values

⇒ Change inputs

V

V +∇

P

P +∆ ∆′

P +∆+∆′

P +∆′

∆

∆′
P +∆+∆′

P +∆′

∆∆′
∆′

V +∆+∇

∇
′

∇
′

∇

∇

V +∆

V +∆ and V +∆+∇ are right values

Figure 8.4: Auxiliary paths.

A bit b is called neutral with respect to an internal variable X if its flip does not affect

76

X. Certainly, there might exist also neutral bytes or words [BC04]. Then one can change the
value of the neutral bit in order to affect only a particular variable in the further computation,
and not to affect the others. Two neutral bits can quadruple the number of execution pairs
conforming the trail. This method was later generalized to probabilistic neutral bits [AFK+08]
and a generic framework for collision attacks on ARX primitives [BKMP09].

Authors of [BKMP09] proposed to split message into groups of bits according to their
influence on particular internal variables. Then in the first step an adversary “plays” with
message bits that influence some of the conditions, and in the next step these message bits are
fixed, and the others are modified.

In an amplified boomerang modification [JP07] (also known as a difference δ is applied
to both messages in a pair so that particular bits are changed in the middle of computation
(Figure 8.4). Let us show the effect on the following example. Assume that a message pair must
assign particular bits B in the computation to 0 in order to conform to the trail. However, in
the current computation they are equal to 1. Let the message difference δ result in a differential
trail, which produces difference in B with probability pδ. Then we apply δ to both message
words in our computation, so that B in both executions is changed to 1 with total probability
p2δ . If the latter value is higher than the probability that a random message pair reaches this
round, this method is useful. Notice that this attack relates to a boomerang attack on ciphers
since it creates quartets of states, but the boomerang does not “return”.

Simpler version of these ideas appeared under names tunnel [Kli06, Ste07] and subma-
rine [NSS+06]. A generalization of all the techniques has also been described in Rechberger’s
PhD thesis [Rec09].

NL-part and Inside-out

It is easy to control the internal state in the first rounds, because internal variables can be easily
changed by input variables. As a result, an attack algorithm may admit a more sophisticated
treatment of the first rounds. In the SHA-x hash functions the first rounds are directly affected
by the message words, so it is easy to fulfill more sophisticated conditions in the corresponding
internal states.

As a result, the first part of a differential trail is a subject to a serious modification. In
the case of SHA-x the cryptanalysts separate the first part of the trail (called nonlinear, or
NL-part) from the second linear part. The nonlinear part is chosen so that the probability of
the linear part is maximal. The number of conditions in the non-linear part is less important,
since most of conditions can be fulfilled by a careful choice of input message words.

If the attacker is not restricted in the inputs of the transformation (like in a pure collision
attack), he may first find solutions to the most expensive part of the differential trail (or another
pattern), and use the remaining freedom to conform to the conditions in the outer phase. This
approach is common in the rebound attack (Section 4.3) as well as in the attacks that do not
use meet-in-the-middle principle to construct differential trails [NPRA+10].

8.6 Solving equations

Many attacks are reduced to the problem of solving non-linear equations. Though the generic
problem is NP-complete [GJ79], a cryptanalyst hopes that a structure of a primitive makes it
vulnerable to some heuristic or tool.

Ad-hoc. Solving equations manually is quite popular when the primitive (or the part to be
attacked) is relatively small and equations are simple. Then a cryptanalyst may notice the

77

properties that are missed by an automatic tool, or provide a slower but deterministic way to
solve the system of equations. The advantage of this method is that a reader may check the
solution himself without running the software, or figure out a method that is useful in another
attack.

SHA-3 competition inspired dozens of new designs, and many of them are apparently so
weak that attacks are mounted just by ad-hoc solving of equations. For example, attacks on
EDON-R [Leu10,KNW09] and ESSENCE [NPRA+10] significantly benefit from this method,
though the attacks are hard to scale and generalize. Dobbertin solved complex equations in the
first attacks on MD4 and MD5 [Dob96,Dob98].

Reduced versions of (so far) strong primitives are also subject to manual solving. The
collision attacks on reduced SHA-2 and are an example [NB08].

Dedicated tools. Some ad-hoc attacks can be generalized to automated tools, which are
applicable to a large class of primitives. The triangulation algorithm [KBN09] transforms a
system of equations in a way similar to the Gaussian elimination, and provides a number of
solutions if the system is solvable. The tool is good for primitives with slow diffusion, and worse
for bit-oriented transformations with data-dependent diffusion (like ARX). Similar tools were
designed for stream ciphers [RS08,WB10].

The ARX-based designs have been analyzed with the concept of S-functions and automata
theory (Section 3.3.3). These concepts also help to solve non-linear equations arising from the
cryptanalysis of the designs [LT10].

Generic tools. Generic tools, like SAT-solvers or Gröbner basis algorithms, are always in
the attention of cryptanalysts as methods that are applicable to any primitive. However, their
universality is their weakness: there are very few attacks that benefited from generic tools.
Among those who did, pretty many were outperformed later by dedicated methods. Some
scholars say that generic tools are useful for small subroutines which have to be automated to
save the time of an analyst, like search for a right pair for a short differential.

The following papers are typical examples of the application of generic tools to cryptanal-
ysis [BKM10,Bul11,Sta10,BCN+10].

8.7 Unique attacks

This section is intentionally short. Here we briefly point out the attacks that has been applied
only once, due to unusual (and apparently bad) design of a target. Though it is unlikely you
will ever apply those methods, it is good to know them when designing a new ultra-lightweight,
fast and secure primitive. After all, the most interesting examples are:

• Divide-and-conquer attack on Hummingbird [Saa11], whose four keys can be recovered
sequentially.

• Cancellation attack on SHAvite-3 [GLM+10]. SHAvite has a generalized Feistel structure
with two keyed nonlinear functions and four state variables at each step. The attacker
fixes the key input to those functions so that outputs that apply to the same line of
computation are equal: Fk(x) = Fk′(x

′). As a result, the computation remains unchanged:
y ⊕ Fk(x)⊕ Fk′(x

′) = y.

78

Bibliography

[ABM+09] Jean-Philippe Aumasson, Eric Brier, Willi Meier, Maŕıa Naya-Plasencia, and
Thomas Peyrin. Inside the hypercube. In ACISP’09, volume 5594 of Lecture
Notes in Computer Science, pages 202–213. Springer, 2009.

[ABNP+11] Mohamed Ahmed Abdelraheem, Céline Blondeau, Maŕıa Naya-Plasencia, Marion
Videau, and Erik Zenner. Cryptanalysis of ARMADILLO2. Available online at
http://eprint.iacr.org/2011/160.pdf, 2011.

[ADIP09] Jean-Philippe Aumasson, Orr Dunkelman, Sebastiaan Indesteege, and Bart Pre-
neel. Cryptanalysis of Dynamic SHA(2). In Selected Areas in Cryptography’09,
volume 5867 of Lecture Notes in Computer Science, pages 415–432. Springer,
2009.

[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube testers
and key recovery attacks on reduced-round MD6 and Trivium. In FSE’09, volume
5665 of Lecture Notes in Computer Science, pages 1–22. Springer, 2009.

[AFK+08] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and
Christian Rechberger. New features of latin dances: Analysis of Salsa, ChaCha,
and Rumba. In FSE’08, volume 5086 of Lecture Notes in Computer Science, pages
470–488. Springer, 2008.

[AGM+09] Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei Wang.
Preimages for step-reduced SHA-2. In ASIACRYPT’09, volume 5912 of Lecture
Notes in Computer Science, pages 578–597. Springer, 2009.

[aJP02] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with overde-
fined systems of equations. In ASIACRYPT’02, volume 2501 of Lecture Notes in
Computer Science, pages 267–287. Springer, 2002.

[ALZ11] Mohamed Ahmed Abdelraheem, Gregor Leander, and Erik Zenner. Differen-
tial cryptanalysis of round-reduced PRINTcipher: Computing roots of permuta-
tions. In FSE’11, volume 6733 of Lecture Notes in Computer Science, pages 1–17.
Springer, 2011.

[AM09] Jean-Philippe Aumasson and Willi Meier. Zero-sum distinguishers for reduced
Keccak-f and for the core functions of Luffa and Hamsi. NIST mailing list, 2009.
avalilable at http://www.131002.net/data/papers/AM09.pdf.

[AS08] Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step
MD5 and more. In Selected Areas in Cryptography’08, volume 5381 of Lecture
Notes in Computer Science, pages 103–119. Springer, 2008.

79

http://eprint.iacr.org/2011/160.pdf
http://www.131002.net/data/papers/AM09.pdf

[AS09] Kazumaro Aoki and Yu Sasaki. Meet-in-the-middle preimage attacks against
reduced SHA-0 and SHA-1. In CRYPTO’09, volume 5677 of Lecture Notes in
Computer Science, pages 70–89. Springer, 2009.

[BA07] Behran Bahrak and Mohammad Reza Aref. A novel impossible differential crypt-
analysis of AES. In Proceedings of the Western European Workshop on Research
in Cryptology 2007 (WEWoRC’07), pages 152–156, 2007.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Miss in the middle attacks on IDEA
and Khufu. In FSE’99, volume 1636 of Lecture Notes in Computer Science, pages
124–138. Springer, 1999.

[BBS06] Elad Barkan, Eli Biham, and Adi Shamir. Rigorous bounds on cryptanalytic
time/memory tradeoffs. In CRYPTO’06, volume 4117 of Lecture Notes in Com-
puter Science, pages 1–21. Springer, 2006.

[BC04] Eli Biham and Rafi Chen. Near-collisions of SHA-0. In CRYPTO’04, volume
3152 of Lecture Notes in Computer Science, pages 290–305. Springer, 2004.

[BCC11] Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-order
differential properties of Keccak and Luffa. In FSE’11, volume 6733 of Lecture
Notes in Computer Science, pages 252–269. Springer, 2011.

[BCCM+09] Emmanuel Bresson, Anne Canteaut, Benoit Chevallier-Mames, Christophe
Clavier, Thomas Fuhr, Aline Gouget, Thomas Icart, ois Misarsky Jean-Franc,
Mari‘a Naya-Plasencia, Pascal Paillier, Thomas Pornin, Jean-Rene’ Reinhard,
Céline Thuillet, and Marion Videau. Indifferentiability with distinguishers:
Why Shabal does not require ideal ciphers. Cryptology ePrint Archive, Report
2009/199, available at http://eprint.iacr.org/2009/199.pdf, 2009.

[BCJ+05] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and reduced SHA-1. In EUROCRYPT’05,
volume 3494 of Lecture Notes in Computer Science, pages 36–57. Springer, 2005.

[BCN+10] Gregory V. Bard, Nicolas Courtois, Jorge Nakahara, Pouyan Sepehrdad, and
Bingsheng Zhang. Algebraic, AIDA/cube and side channel analysis of KATAN
family of block ciphers. In INDOCRYPT’10, volume 6498 of Lecture Notes in
Computer Science, pages 176–196. Springer, 2010.

[BCQ04] Alex Biryukov, Christophe De Cannière, and Michaël Quisquater. On multiple
linear approximations. In CRYPTO’04, volume 3152 of Lecture Notes in Com-
puter Science, pages 1–22. Springer, 2004.

[BDD+10] Charles Bouillaguet, Patrick Derbez, Orr Dunkelman, Nathan Keller, Vincent
Rijmen, and Pierre-Alain Fouque. Low data complexity attacks on aes. Available
online at http://eprint.iacr.org/2010/633.pdf, 2010.

[BDK01] Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack - rectangling
the Serpent. In EUROCRYPT’01, volume 2045 of Lecture Notes in Computer
Science, pages 340–357. Springer, 2001.

[BDK02] Eli Biham, Orr Dunkelman, and Nathan Keller. New results on boomerang and
rectangle attacks. In FSE’02, volume 2365 of Lecture Notes in Computer Science,
pages 1–16. Springer, 2002.

80

http://eprint.iacr.org/2009/199.pdf
http://eprint.iacr.org/2010/633.pdf

[BDK05a] Eli Biham, Orr Dunkelman, and Nathan Keller. New combined attacks on block
ciphers. In FSE’05, volume 3557 of Lecture Notes in Computer Science, pages
126–144. Springer, 2005.

[BDK05b] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and rect-
angle attacks. In EUROCRYPT’05, volume 3494 of Lecture Notes in Computer
Science, pages 507–525. Springer, 2005.

[BDK07] Eli Biham, Orr Dunkelman, and Nathan Keller. A new attack on 6-round IDEA.
In FSE’07, volume 4593 of Lecture Notes in Computer Science, pages 211–224.
Springer, 2007.

[BDK+10] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi
Shamir. Key recovery attacks of practical complexity on AES-256 variants with
up to 10 rounds. In EUROCRYPT’10, volume 6110 of Lecture Notes in Computer
Science, pages 299–319. Springer, 2010.

[BDLF09] Charles Bouillaguet, Orr Dunkelman, Gaëtan Leurent, and Pierre-Alain Fouque.
Attacks on hash functions based on generalized Feistel — application to reduced-
round Lesamnta and SHAvite-3512. Cryptology ePrint Archive, Report 2009/634,
available at http://eprint.iacr.org/2009/634.pdf, 2009.

[BDLF10] Charles Bouillaguet, Orr Dunkelman, Gae”tan Leurent, and Pierre-Alain Fouque.
Another look at complementation properties. In FSE’10, volume 6147 of Lecture
Notes in Computer Science, pages 347–364. Springer, 2010.

[BDPA06] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Radio-
Gatun, a belt-and-mill hash function. NIST Cryptographic Hash Workshop, avail-
able at http: // radiogatun. noekeon. org/ , 2006.

[BDPA07] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sponge
functions, available at http://sponge.noekeon.org/, 2007.

[BDPA09] Guido Bertoni, Joan Daemen, Michaeël Peeters, and Gilles Van Assche. Keccak
sponge function family main document. Submission to NIST (updated), 2009.
Version 1.2.

[BFL10] Charles Bouillaguet, Pierre-Alain Fouque, and Gaëtan Leurent. Security analysis
of SIMD. In Selected Areas in Cryptography’10, volume 6544 of Lecture Notes in
Computer Science, pages 351–368. Springer, 2010.

[BG09] Céline Blondeau and Benôıt Gérard. On the data complexity of statistical attacks
against block ciphers (full version). In Alexander Kholosha, Eirik Rosnes, and
Matthew G. Parker, editors, Workshop on Coding and Cryptography - WCC 2009,
pages 469–488, 2009.

[BGT11] Céline Blondeau, Benôıt Gérard, and Jean-Pierre Tillich. Accurate estimates
of the data complexity and success probability for various cryptanalyses. DCC
special issue on Coding and Cryptography, 59(1-3):3–34, 2011.

[Bih94] Eli Biham. New types of cryptanalytic attacks using related keys. J. Cryptology,
7(4):229–246, 1994.

81

http://eprint.iacr.org/2009/634.pdf
http://radiogatun.noekeon.org/
http://sponge.noekeon.org/

[Bir04] Alex Biryukov. The boomerang attack on 5 and 6-round reduced AES. In AES
Conference’04, volume 3373 of Lecture Notes in Computer Science, pages 11–15.
Springer, 2004.

[BK98a] Alex Biryukov and Eyal Kushilevitz. From differential cryptanalysis to ciphertext-
only attacks. In CRYPTO’98, volume 1462 of Lecture Notes in Computer Science,
pages 72–88. Springer, 1998.

[BK98b] Alex Biryukov and Eyal Kushilevitz. Improved cryptanalysis of RC5. In EU-
ROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 85–99.
Springer, 1998.

[BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key at-
tacks: RKA-PRPs, RKA-PRFs, and applications. In EUROCRYPT’03, volume
2656 of Lecture Notes in Computer Science, pages 491–506. Springer, 2003.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full
AES-192 and AES-256. In ASIACRYPT’09, volume 5912 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2009.

[BKLT11] Julia Borghoff, Lars Ramkilde Knudsen, Gregor Leander, and Søren Steffen
Thomsen. Cryptanalysis of PRESENT-like ciphers with secret S-boxes. In
FSE’11, volume 6733 of Lecture Notes in Computer Science, pages 270–289.
Springer, 2011.

[BKM10] Julia Borghoff, Lars R. Knudsen, and Krystian Matusiewicz. Hill climbing algo-
rithms and Trivium. In Selected Areas in Cryptography’10, volume 6544 of Lecture
Notes in Computer Science, pages 57–73. Springer, 2010.

[BKMP09] Eric Brier, Shahram Khazaei, Willi Meier, and Thomas Peyrin. Linearization
framework for collision attacks: Application to CubeHash and MD6. In ASI-
ACRYPT’09, volume 5912 of Lecture Notes in Computer Science, pages 560–577.
Springer, 2009.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić. Distinguisher and
related-key attack on the full AES-256. In CRYPTO’09, volume 5677 of Lec-
ture Notes in Computer Science, pages 231–249. Springer, 2009.

[BLP03] Alex Biryukov, Joseph Lano, and Bart Preneel. Cryptanalysis of the alleged
SecurID hash function. In Selected Areas in Cryptography’03, volume 3006 of
Lecture Notes in Computer Science, pages 130–144. Springer, 2003.

[BM97] Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing:
Incrementality at reduced cost. In EUROCRYPT’97, pages 163–192, 1997.

[BMS05] Alex Biryukov, Sourav Mukhopadhyay, and Palash Sarkar. Improved time-
memory trade-offs with multiple data. In Selected Areas in Cryptography’05,
volume 3897 of Lecture Notes in Computer Science, pages 110–127. Springer,
2005.

[BN10] Alex Biryukov and Ivica Nikolic. Automatic search for related-key differential
characteristics in byte-oriented block ciphers: Application to AES, Camellia,
Khazad and others. In EUROCRYPT’10, volume 6110 of Lecture Notes in Com-
puter Science, pages 322–344. Springer, 2010.

82

[BN11] Alex Biryukov and Ivica Nikolic. Search for related-key differential characteris-
tics in DES-like ciphers. In FSE’11, volume 6733 of Lecture Notes in Computer
Science, pages 18–34. Springer, 2011.

[Bog08] Andrey Bogdanov. Linear slide attacks on the KeeLoq block cipher. In In-
scrypt’07, volume 4990 of Lecture Notes in Computer Science. Springer, 2008.

[BPSZ10] Alex Biryukov, Deike Priemuth-Schmid, and Bin Zhang. Multiset collision attacks

on reduced-round SNOW 3G and SNOW 3g (+) . In ACNS’10, volume 6123 of
Lecture Notes in Computer Science, pages 139–153, 2010.

[BR10] Andrey Bogdanov and Christian Rechberger. A 3-subset meet-in-the-middle at-
tack: Cryptanalysis of the lightweight block cipher KTANTAN. In Selected Areas
in Cryptography’10, volume 6544 of Lecture Notes in Computer Science, pages
229–240. Springer, 2010.

[BR11] Andrey Bogdanov and Vincent Rijmen. Zero-correlation linear cryptanalysis
of block ciphers. Available online at http://eprint.iacr.org/2011/123.pdf,
2011.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of
the block-cipher-based hash-function constructions from PGV. In CRYPTO’02,
volume 2442 of Lecture Notes in Computer Science, pages 320–335. Springer,
2002.

[BS92] Eli Biham and Adi Shamir. Differential cryptanalysis of the full 16-round DES. In
CRYPTO’92, volume 740 of Lecture Notes in Computer Science, pages 487–496.
Springer, 1992.

[BS01] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. In EURO-
CRYPT’01, volume 2045 of Lecture Notes in Computer Science, pages 394–405.
Springer, 2001.

[Bul11] Stanislav Bulygin. Algebraic cryptanalysis of the round-reduced and side channel
analysis of the full PRINTCipher-48. Available online at http://eprint.iacr.
org/2011/287.pdf, 2011.

[BW99] Alex Biryukov and David Wagner. Slide attacks. In FSE’99, volume 1636 of
Lecture Notes in Computer Science, pages 245–259. Springer, 1999.

[BW00] Alex Biryukov and David Wagner. Advanced slide attacks. In EUROCRYPT’00,
volume 1807 of Lecture Notes in Computer Science, pages 589–606. Springer,
2000.

[CBW08] Nicolas Courtois, Gregory V. Bard, and David Wagner. Algebraic and slide at-
tacks on KeeLoq. In FSE’08, volume 5086 of Lecture Notes in Computer Science,
pages 97–115. Springer, 2008.

[CC98] Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-
weight words in a linear code: Application to McEliece’s cryptosystem and to
narrow-sense BCH codes of length 511. IEEE Transactions on Information The-
ory, 44(1):367–378, 1998.

83

http://eprint.iacr.org/2011/123.pdf
http://eprint.iacr.org/2011/287.pdf
http://eprint.iacr.org/2011/287.pdf

[Cho10] Joo Yeon Cho. Linear cryptanalysis of reduced-round PRESENT. In CT-RSA’10,
volume 5985 of Lecture Notes in Computer Science, pages 302–317. Springer, 2010.

[CJ98] Florent Chabaud and Antoine Joux. Differential collisions in SHA-0. In
CRYPTO’98, volume 1462 of Lecture Notes in Computer Science. Springer, 1998.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient
algorithms for solving overdefined systems of multivariate polynomial equations.
In EUROCRYPT’00, volume 1807 of Lecture Notes in Computer Science, pages
392–407. Springer, 2000.

[CLO07] David A. Cox, John B. Little, and Don O’Shea. Ideals, Varieties, and Algorithms.
Springer, 2007.

[CMR07] Christophe De Cannière, Florian Mendel, and Christian Rechberger. Collisions
for 70-step SHA-1: On the full cost of collision search. In Selected Areas in
Cryptography’07, volume 4876 of Lecture Notes in Computer Science, pages 56–
73. Springer, 2007.

[CR06] Christophe De Cannière and Christian Rechberger. Finding SHA-1 characteris-
tics: General results and applications. In ASIACRYPT’06, volume 4284 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2006.

[CR08] Christophe De Cannière and Christian Rechberger. Preimages for reduced SHA-0
and SHA-1. In CRYPTO’08, volume 5157 of Lecture Notes in Computer Science,
pages 179–202. Springer, 2008.

[DA07] Joan Daemen and Gilles Van Assche. Producing collisions for Panama, instan-
taneously. In FSE’07, volume 4593 of Lecture Notes in Computer Science, pages
1–18. Springer, 2007.

[Dam89] Ivan Damg̊ard. A design principle for hash functions. In CRYPTO’89, volume
435 of Lecture Notes in Computer Science, pages 416–427. Springer, 1989.

[Dau05] Magnus Daum. Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis,
Ruhr-Universitat Bochum, 2005.

[DG08] Blandine Debraize and Louis Goubin. Guess-and-determine algebraic attack on
the self-shrinking generator. In FSE’08, volume 5086 of Lecture Notes in Com-
puter Science, pages 235–252. Springer, 2008.

[DGP+11] Itai Dinur, Tim Gneysu, Christof Paar, Adi Shamir, and Ralf Zimmermann. An
experimentally verified attack on full grain-128 using dedicated reconfigurable
hardware. Available online at http://eprint.iacr.org/2011/282.pdf, 2011.

[DGV93] Joan Daemen, René Govaerts, and Joos Vandewalle. Weak keys for IDEA. In
CRYPTO’93, volume 773 of Lecture Notes in Computer Science, pages 224–231.
Springer, 1993.

[DIK08] Orr Dunkelman, Sebastiaan Indesteege, and Nathan Keller. A differential-linear
attack on 12-round Serpent. In INDOCRYPT’08, volume 5365 of Lecture Notes
in Computer Science, pages 308–321. Springer, 2008.

84

http://eprint.iacr.org/2011/282.pdf

[DK09] Orr Dunkelman and Nathan Keller. Cryptanalysis of CTC2. In CT-RSA’09,
volume 5473 of Lecture Notes in Computer Science, pages 226–239. Springer,
2009.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square.
In FSE’97, volume 1267 of Lecture Notes in Computer Science, pages 149–165.
Springer, 1997.

[DKS10a] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key attacks
on 8-round AES-192 and AES-256. In ASIACRYPT’10, volume 6477 of Lecture
Notes in Computer Science, pages 158–176. Springer, 2010.

[DKS10b] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-
key attack on the KASUMI cryptosystem used in GSM and 3G telephony. In
CRYPTO’10, volume 6223 of Lecture Notes in Computer Science, pages 393–410.
Springer, 2010.

[DKS11] Orr Dunkelman, Nathan Keller, and Adi Shamir. ALRED blues: New attacks
on AES-based MAC’s. Available online at http://eprint.iacr.org/2011/095.
pdf, 2011.

[DL05] Magnus Daum and Stefan Lucks. Hash collisions (the poisoned message attack).
Technical report, Eurocrypt 2005 Rump Session, 2005.

[DL11] Ming Duan and Xuajia Lai. Improved zero-sum distinguisher for full round
Keccak-f permutation. Available online at http://eprint.iacr.org/2011/023.
pdf, 2011.

[DLP+09] Joan Daemen, Mario Lamberger, Norbert Pramstaller, Vincent Rijmen, and Fred-
erik Vercauteren. Computational aspects of the expected differential probability
of 4-round AES and AES-like ciphers. Computing, 85(1-2):85–104, 2009.

[Dob96] Hans Dobbertin. The status of MD5 after a recent attack. CryptoBytes, 2(2):1–6,
1996. available at ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto2n2.
pdf.

[Dob98] Hans Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253–271, 1998.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael. AES — the Advanced
Encryption Standard. Springer, 2002.

[DR05] Joan Daemen and Vincent Rijmen. Probability distributions of correlation and
differentials in block ciphers, 2005. Available at http://eprint.iacr.org/2005/
212.pdf.

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on 8-round
AES. In FSE’08, volume 5086 of Lecture Notes in Computer Science, pages 116–
126. Springer, 2008.

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials.
In EUROCRYPT’09, volume 5479 of Lecture Notes in Computer Science, pages
278–299. Springer, 2009.

85

http://eprint.iacr.org/2011/095.pdf
http://eprint.iacr.org/2011/095.pdf
http://eprint.iacr.org/2011/023.pdf
http://eprint.iacr.org/2011/023.pdf
ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto2n2.pdf
ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto2n2.pdf
http://eprint.iacr.org/2005/212.pdf
http://eprint.iacr.org/2005/212.pdf

[DS11a] Itai Dinur and Adi Shamir. Breaking Grain-128 with dynamic cube attacks.
In FSE’11, volume 6733 of Lecture Notes in Computer Science, pages 167–187.
Springer, 2011.

[DS11b] Itai Dinur and Adi Shamir. An improved algebraic attack on Hamsi-256. In
FSE’11, volume 6733 of Lecture Notes in Computer Science, pages 88–106.
Springer, 2011.

[DSP07] Orr Dunkelman, Gautham Sekar, and Bart Preneel. Improved meet-in-the-middle
attacks on reduced-round DES. In INDOCRYPT’07, volume 4859 of Lecture
Notes in Computer Science, pages 86–100. Springer, 2007.

[DST04] Hüseyin Demirci, Ali Aydin Selçuk, and Erkan Türe. A new meet-in-the-middle
attack on the IDEA block cipher. In SAC’03, volume 3006 of Lecture Notes in
Computer Science, pages 117–129. Springer, 2004.

[DWS10] Zhenli Dai, Meiqin Wang, and Yue Sun. Effect of the dependent paths in linear
hull. available at http://eprint.iacr.org/2010/325.pdf, 2010.

[FKL+00] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David
Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael. In FSE’00,
volume 1978 of Lecture Notes in Computer Science, pages 213–230. Springer,
2000.

[FLN07] Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen. Full key-recovery
attacks on HMAC/NMAC-MD4 and NMAC-MD5. In CRYPTO’07, volume 4622
of Lecture Notes in Computer Science, pages 13–30. Springer, 2007.

[FLS+08] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Ta-
dayoshi Kohno, Jon Callas, and Jesse Walker. The Skein hash function fam-
ily. Submission to NIST (Round 1), available at http://www.skein-hash.info/
sites/default/files/skein.pdf, 2008.

[FLZ+10] Xiutao Feng, Jun Liu, Zhaocun Zhou, Chuankun Wu, and Dengguo Feng. A byte-
based guess and determine attack on SOSEMANUK. In ASIACRYPT’10, volume
6477 of Lecture Notes in Computer Science, pages 146–157. Springer, 2010.

[FP09] Thomas Fuhr and Thomas Peyrin. Cryptanalysis of RadioGatún. In FSE’09,
volume 5665 of Lecture Notes in Computer Science, pages 122–138. Springer,
2009.

[Fuh10] Thomas Fuhr. Finding second preimages of short messages for Hamsi-256. In
ASIACRYPT’10, volume 6477 of Lecture Notes in Computer Science, pages 20–
37. Springer, 2010.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[GLM+10] Praveen Gauravaram, Gaëtan Leurent, Florian Mendel, Maŕıa Naya-Plasencia,
Thomas Peyrin, Christian Rechberger, and Martin Schläffer. Cryptanalysis
of the 10-round hash and full compression function of SHAvite-3-512. In
AFRICACRYPT’10, volume 6055 of Lecture Notes in Computer Science, pages
419–436. Springer, 2010.

86

http://eprint.iacr.org/2010/325.pdf
http://www.skein-hash.info/sites/default/files/skein.pdf
http://www.skein-hash.info/sites/default/files/skein.pdf

[GLP08] Michael Gorski, Stefan Lucks, and Thomas Peyrin. Slide attacks on a class of
hash functions. In ASIACRYPT’08, volume 5350 of Lecture Notes in Computer
Science, pages 143–160. Springer, 2008.

[GLRW10] Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced meet-
in-the-middle preimage attacks: First results on full Tiger, and improved results
on MD4 and SHA-2. In ASIACRYPT’10, volume 6477 of Lecture Notes in Com-
puter Science, pages 56–75. Springer, 2010.

[GM00] Henri Gilbert and Marine Minier. A collision attack on 7 rounds of Rijndael. In
AES Candidate Conference, pages 230–241, 2000.

[GM08] Samuel Galice and Marine Minier. Improving integral attacks against Rijndael-
256 up to 9 rounds. In AFRICACRYPT’08, volume 5023 of Lecture Notes in
Computer Science. Springer, 2008.

[GM09] Jian Guo and Krystian Matusiewicz. Round-reduced near-collisions of BLAKE-
32. Available online at http://www.jguo.org/docs/blake-col.pdf, 2009. Ac-
cepted for presentation at WEWoRC 2009.

[GMK+09] Jian Guo, Krystian Matusiewicz, Lars R. Knudsen, San Ling, and
Huaxiong Wang. Practical pseudo-collisions for hash functions Arirang-
224/384. Available online at http://ehash.iaik.tugraz.at/uploads/9/9a/

Arirang-pseudo-sha3zoo.pdf, 2009.

[GP10] Henri Gilbert and Thomas Peyrin. Super-sbox cryptanalysis: Improved attacks
for AES-like permutations. In FSE’10, volume 6147 of Lecture Notes in Computer
Science, pages 365–383. Springer, 2010.

[Hel80] Martin Hellman. A cryptanalytic time-memory trade-off. IEEE transactions on
Information Theory, 26:401–406, 1980.

[HM97] Carlo Harpes and James L. Massey. Partitioning cryptanalysis. In FSE’97, volume
1267 of Lecture Notes in Computer Science, pages 13–27. Springer, 1997.

[HN10] Miia Hermelin and Kaisa Nyberg. Dependent linear approximations: The algo-
rithm of Biryukov and others revisited. In CT-RSA’10, volume 5985 of Lecture
Notes in Computer Science, pages 318–333. Springer, 2010.

[HN11] Miia Hermelin and Kaisa Nyberg. Linear cryptanalysis using multiple linear
approximations. Available online at http://eprint.iacr.org/2011/093.pdf,
2011.

[HQ01] Yeping He and Sihan Qing. Square attack on reduced Camellia cipher. In
ICICS’01, volume 2229 of Lecture Notes in Computer Science, pages 238–245.
Springer, 2001.

[HR02] Philip Hawkes and Gregory G. Rose. Guess-and-determine attacks on SNOW.
In Selected Areas in Cryptography’02, volume 2595 of Lecture Notes in Computer
Science, pages 37–46. Springer, 2002.

[HSK02] Yasuo Hatano, Hiroki Sekine, and Toshinobu Kaneko. Higher order differential
attack of Camellia (ii). In Selected Areas in Cryptography’02, volume 2595 of
Lecture Notes in Computer Science, pages 129–146. Springer, 2002.

87

http://www.jguo.org/docs/blake-col.pdf
http://ehash.iaik.tugraz.at/uploads/9/9a/Arirang-pseudo-sha3zoo.pdf
http://ehash.iaik.tugraz.at/uploads/9/9a/Arirang-pseudo-sha3zoo.pdf
http://eprint.iacr.org/2011/093.pdf

[IKD+08] Sebastiaan Indesteege, Nathan Keller, Orr Dunkelman, Eli Biham, and Bart Pre-
neel. A practical attack on KeeLoq. In EUROCRYPT’08, volume 4965 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2008.

[IMPS09] Sebastiaan Indesteege, Florian Mendel, Bart Preneel, and Martin Schläffer. Prac-
tical collisions for SHAMATA-256. In Selected Areas in Cryptography’09, volume
5867 of Lecture Notes in Computer Science, pages 1–15. Springer, 2009.

[IP08] Sebastiaan Indesteege and Bart Preneel. Collisions for RC4-Hash. In ISC’08,
volume 5222 of Lecture Notes in Computer Science, pages 355–366. Springer,
2008.

[Iso11] Takanori Isobe. A single-key attack on the full GOST block cipher. In FSE’11,
volume 6733 of Lecture Notes in Computer Science, pages 290–305. Springer,
2011.

[IW09] Kota Ideguchi and Dai Watanabe. Second preimage attack on SHAMATA-512.
In INDOCRYPT’09, volume 5922 of Lecture Notes in Computer Science, pages
169–181. Springer, 2009.

[JdFP05] Jorge Nakahara Jr., Daniel Santana de Freitas, and Raphael Chung-Wei Phan.
New multiset attacks on Rijndael with large blocks. In Mycrypt’05, volume 3715
of Lecture Notes in Computer Science, pages 277–295. Springer, 2005.

[JP07] Antoine Joux and Thomas Peyrin. Hash functions and the (amplified) boomerang
attack. In CRYPTO’07, volume 4622 of Lecture Notes in Computer Science, pages
244–263. Springer, 2007.

[JR94] Burton S. Kaliski Jr. and Matthew J. B. Robshaw. Linear cryptanalysis using
multiple approximations. In CRYPTO’94, volume 839 of Lecture Notes in Com-
puter Science, pages 26–39. Springer, 1994.

[Jun05] Pascal Junod. Statistical Cryptanalysis of Block Ciphers. PhD thesis, Ecole
Polytechnique Federale de Lausanne, 2005.

[Kar08] Orhun Kara. Reflection cryptanalysis of some ciphers. In INDOCRYPT’08, vol-
ume 5365 of Lecture Notes in Computer Science, pages 294–307. Springer, 2008.

[KBN09] Dmitry Khovratiovich, Alex Biryukov, and Ivica Nikolić. Speeding up collision
search for byte-oriented hash functions. In CT-RSA’09, volume 5473 of Lecture
Notes in Computer Science, pages 164–181. Springer, 2009.

[KHL+04] Youngdai Ko, Seokhie Hong, Wonil Lee, Sangjin Lee, and Ju-Sung Kang. Related
key differential attacks on 27 rounds of XTEA and full-round GOST. In FSE’04,
volume 3017 of Lecture Notes in Computer Science, pages 299–316. Springer,
2004.

[Kho08] Dmitry Khovratovich. Two attacks on RadioGatún. In INDOCRYPT’08, volume
5365 of Lecture Notes in Computer Science, pages 53–66. Springer, 2008.

[Kho09a] Dmitry Khovratovich. Cryptanalysis of hash functions with structures. In Selected
Areas in Cryptography’09, volume 5867 of Lecture Notes in Computer Science,
pages 108–125. Springer, 2009.

88

[Kho09b] Dmitry Khovratovich. Nonrandomness of the 33-round MD6. Technical report,
FSE 2009 Rump Session, 2009.

[KHP07] Jongsung Kim, Seokhie Hong, and Bart Preneel. Related-key rectangle attacks
on reduced AES-192 and AES-256. In FSE’07, volume 4593 of Lecture Notes in
Computer Science, pages 225–241. Springer, 2007.

[KK06] John Kelsey and Tadayoshi Kohno. Herding hash functions and the Nostradamus
attack. In EUROCRYPT’06, volume 4004 of Lecture Notes in Computer Science,
pages 183–200. Springer, 2006.

[KKMS10] Shahram Khazaei, Simon Knellwolf, Willi Meier, and Deian Stefan. Improved
linear differential attacks on CubeHash. In AFRICACRYPT’10, volume 6055 of
Lecture Notes in Computer Science, pages 407–418. Springer, 2010.

[KKS00] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang attacks
against reduced-round MARS and Serpent. In FSE’00, volume 1978 of Lecture
Notes in Computer Science, pages 75–93. Springer, 2000.

[KL06] John Kelsey and Stefan Lucks. Collisions and near-collisions for reduced-round
Tiger. In FSE’06, volume 4047 of Lecture Notes in Computer Science, pages
111–125. Springer, 2006.

[Kli06] Vlastimil Klima. Tunnels in hash functions: MD5 collisions within a minute.
Available at http://eprint.iacr.org/2006/105.pdf, 2006.

[KMNP10] Simon Knellwolf, Willi Meier, and Maŕıa Naya-Plasencia. Conditional differential
cryptanalysis of NLFSR-based cryptosystems. In ASIACRYPT’10, volume 6477
of Lecture Notes in Computer Science, pages 130–145. Springer, 2010.

[KN10] Dmitry Khovratovich and Ivica Nikolić. Rotational cryptanalysis of ARX. In
FSE’10, volume 6147 of Lecture Notes in Computer Science, pages 333–346.
Springer, 2010.

[KNPRS10] Dmitry Khovratovich, Maŕıa Naya-Plasencia, Andrea Röck, and Martin Schläffer.
Cryptanalysis of Luffa v2 components. In Selected Areas in Cryptography’10,
volume 6544 of Lecture Notes in Computer Science, pages 388–409. Springer,
2010.

[KNR10] Dmitry Khovratovich, Ivica Nikolic, and Christian Rechberger. Rotational re-
bound attacks on reduced Skein. In ASIACRYPT’10, volume 6477 of Lecture
Notes in Computer Science, pages 1–19. Springer, 2010.

[Knu94] Lars R. Knudsen. Truncated and higher order differentials. In FSE’94, volume
1008 of Lecture Notes in Computer Science, pages 196–211. Springer, 1994.

[KNW09] Dmitry Khovratovich, Ivica Nikolić, and Ralf-Philipp Weinmann. Meet-in-the-
middle attacks on SHA-3 candidates. In FSE’09, volume 5665 of Lecture Notes
in Computer Science, pages 228–245. Springer, 2009.

[KR96] Lars R. Knudsen and Matthew J. B. Robshaw. Non-linear approximations in
linear cryptoanalysis. In EUROCRYPT’96, volume 1070 of Lecture Notes in
Computer Science, pages 224–236. Springer, 1996.

89

http://eprint.iacr.org/2006/105.pdf

[KR99] Lars R. Knudsen and Vincent Rijmen. On the decorrelated fast cipher (DFC)
and its theory. In FSE’99, volume 1636 of Lecture Notes in Computer Science,
pages 81–94. Springer, 1999.

[KR07] Lars R. Knudsen and Vincent Rijmen. Known-key distinguishers for some block
ciphers. In ASIACRYPT’07, volume 4833 of Lecture Notes in Computer Science,
pages 315–324. Springer, 2007.

[KR11] Dmitry Khovratovich and Christian Rechberger. A splice-and-cut cryptanalysis
of the AES. Available online at http://eprint.iacr.org/2011/274.pdf, 2011.

[KRS11] Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques
for preimages: Attacks on Skein-512 and the SHA-2 family. Available online at
http://eprint.iacr.org/2011/286.pdf, 2011.

[KRT07] Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen. The Grindahl
hash functions. In FSE’07, volume 4593 of Lecture Notes in Computer Science,
pages 39–57. Springer, 2007.

[KS05] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for
much less than 2n work. In EUROCRYPT’05, volume 3494 of Lecture Notes in
Computer Science, pages 474–490. Springer, 2005.

[KSW97] John Kelsey, Bruce Schneier, and David Wagner. Related-key cryptanalysis of
3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In ICICS’97,
volume 1334 of Lecture Notes in Computer Science, pages 233–246. Springer,
1997.

[KW02] Lars R. Knudsen and David Wagner. Integral cryptanalysis. In FSE’02, volume
2365 of Lecture Notes in Computer Science, pages 112–127. Springer, 2002.

[LCK+08] Eunjin Lee, Donghoon Chang, Jongsung Kim, Jaechul Sung, and Seokhie Hong.
Second preimage attack on 3-pass HAVAL and partial key-recovery attacks on
HMAC/NMAC-3-pass HAVAL. In FSE’08, volume 5086 of Lecture Notes in Com-
puter Science. Springer, 2008.

[LDKK08] Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New impossible
differential attacks on AES. In INDOCRYPT’08, volume 5365 of Lecture Notes
in Computer Science, pages 279–293. Springer, 2008.

[Lea11] Gregor Leander. On linear hulls, statistical saturation attacks, PRESENT and a
cryptanalysis of PUFFIN. In EUROCRYPT’11, volume 6632 of Lecture Notes in
Computer Science, pages 303–322. Springer, 2011.

[Leo88] Jeffrey S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354–
1359, 1988.

[Leu08] Gaëtan Leurent. MD4 is not one-way. In FSE’08, volume 5086 of Lecture Notes
in Computer Science, pages 412–428. Springer, 2008.

[Leu10] Gaëtan Leurent. Practical key recovery attack against secret-IV Edon-R. In
CT-RSA’10, volume 5985 of Lecture Notes in Computer Science, pages 334–349.
Springer, 2010.

90

http://eprint.iacr.org/2011/274.pdf
http://eprint.iacr.org/2011/286.pdf

[LH94] Susan K. Langford and Martin E. Hellman. Differential-linear cryptanalysis. In
CRYPTO’94, volume 839 of Lecture Notes in Computer Science, pages 17–25.
Springer, 1994.

[LM91] Xuejia Lai and James L. Massey. Markov ciphers and differential cryptanalysis.
In EUROCRYPT’91, volume 547 of Lecture Notes in Computer Science, pages
17–38. Springer, 1991.

[LM01] Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differential
properties of addition. In FSE’01, volume 2355 of Lecture Notes in Computer
Science, pages 336–350. Springer, 2001.

[LM11] Mario Lamberger and Florian Mendel. Higher-order differential attack on reduced
SHA-256. Available online at http://eprint.iacr.org/2011/095.pdf, 2011.

[LMR+09] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and
Martin Schläffer. Rebound distinguishers: Results on the full Whirlpool compres-
sion function. In ASIACRYPT’09, volume 5912 of Lecture Notes in Computer
Science, pages 126–143. Springer, 2009.

[LSL10] Ruilin Li, Bing Sun, and Chao Li. Impossible differential cryptanalysis of SPN
ciphers. Available online at http://eprint.iacr.org/2010/307.pdf, 2010.

[LSLQ10] Ruilin Li, Bing Sun, Chao Li, and Longjiang Qu. Cryptanalysis of a generalized
unbalanced feistel network structure. In ACISP’10, volume 6168 of Lecture Notes
in Computer Science, pages 1–18. Springer, 2010.

[LT10] Gaëtan Leurent and Søren S. Thomsen. Practical partial-collisions on the
compression function of BMW. Available online at http://www.di.ens.fr/

~leurent/files/BMW_Distinguisher.pdf, 2010.

[LT11] Gaëtan Leurent and Søren S. Thomsen. Practical near-collisions on the compres-
sion function of BMW. In FSE’11, volume 6733 of Lecture Notes in Computer
Science, pages 238–251. Springer, 2011.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In EURO-
CRYPT’93, volume 765 of Lecture Notes in Computer Science, pages 386–397.
Springer, 1993.

[MDRMH10] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud Modarres-
Hashemi. Improved Impossible Differential Cryptanalysis of 7-Round AES-128.
In INDOCRYPT’10, volume 6498 of Lecture Notes in Computer Science, pages
282–291. Springer, 2010.

[MDS10] Hamid Mala, Mohammad Dakhilalian, and Mohsen Shakiba. Cryptanalysis of
block ciphers using almost-impossible differentials. Available online at http:

//eprint.iacr.org/2010/485.pdf, 2010.

[Mer89] Ralph C. Merkle. One way hash functions and DES. In CRYPTO’89, volume 435
of Lecture Notes in Computer Science, pages 428–446. Springer, 1989.

[MG00] Marine Minier and Henri Gilbert. Stochastic cryptanalysis of Crypton. In FSE’00,
volume 1978 of Lecture Notes in Computer Science, pages 121–133. Springer, 2000.

91

http://eprint.iacr.org/2011/095.pdf
http://eprint.iacr.org/2010/307.pdf
http://www.di.ens.fr/~leurent/files/BMW_Distinguisher.pdf
http://www.di.ens.fr/~leurent/files/BMW_Distinguisher.pdf
http://eprint.iacr.org/2010/485.pdf
http://eprint.iacr.org/2010/485.pdf

[MK08] Alexander Maximov and Dmitry Khovratovich. New state recovery attack on
RC4. In CRYPTO’08, volume 5157 of Lecture Notes in Computer Science, pages
297–316. Springer, 2008.

[MN09] Florian Mendel and Tomislav Nad. A distinguisher for the compression function
of SIMD-512. In INDOCRYPT’09, volume 5922 of Lecture Notes in Computer
Science, pages 219–232. Springer, 2009.

[MNPN+09] Krystian Matusiewicz, Maria Naya-Plasencia, Ivica Nikolić, Yu Sasaki, and Mar-
tin Schläffer. Rebound attack on the full LANE compression function. In ASI-
ACRYPT’09, volume 5912 of Lecture Notes in Computer Science, pages 106–125.
Springer, 2009.

[MNPP11] Marine Minier, Maŕıa Naya-Plasencia, and Thomas Peyrin. Analysis of reduced-
SHAvite-3-256 v2. In FSE’11, volume 6733 of Lecture Notes in Computer Science,
pages 68–87. Springer, 2011.

[MP05] Krystian Matusiewicz and Josef Pieprzyk. Finding good differential patterns
for attacks on SHA-1. In WCC’05, volume 3969 of Lecture Notes in Computer
Science, pages 164–177. Springer, 2005.

[MPR+08] Florian Mendel, Norbert Pramstaller, Christian Rechberger, Marcin Kontak, and
Janusz Szmidt. Cryptanalysis of the GOST hash function. In CRYPTO’08,
volume 5157 of Lecture Notes in Computer Science, pages 162–178. Springer,
2008.

[MPRS09] Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schläffer.
Improved cryptanalysis of the reduced Grøstl compression function, ECHO per-
mutation and AES block cipher. In Selected Areas in Cryptography’09, volume
5867 of Lecture Notes in Computer Science, pages 16–35. Springer, 2009.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The rebound attack: Cryptanalysis of reduced Whirlpool and Grøstl. In FSE’09,
volume 5665 of Lecture Notes in Computer Science, pages 260–276. Springer,
2009.

[MRST10] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
Rebound attacks on the reduced Grøstl hash function. In CT-RSA’10, volume
5985 of Lecture Notes in Computer Science, pages 350–365. Springer, 2010.

[Mul04] Frédéric Muller. The MD2 hash function is not one-way. In ASIACRYPT’04,
volume 3329 of Lecture Notes in Computer Science, pages 214–229. Springer,
2004.

[Mur09] Sean Murphy. The return of the boomerang, available at http://www.isg.rhul.
ac.uk/~sean/Boomerang_Return.pdf. Technical report, 2009.

[MVCP10] Nicky Mouha, Vesselin Velichkov, Christophe De Cannière, and Bart Preneel.
The differential analysis of S-functions. In SAC’10, volume 6544 of Lecture Notes
in Computer Science, pages 36–56. Springer, 2010.

[MZ06] Ilya Mironov and Lintao Zhang. Applications of SAT solvers to cryptanalysis of
hash functions. In Theory and Applications of Satisfiability Testing - SAT 2006,
volume 4121 of Lecture Notes in Computer Science, pages 102–115. Springer,
2006.

92

http://www.isg.rhul.ac.uk/~sean/Boomerang_Return.pdf
http://www.isg.rhul.ac.uk/~sean/Boomerang_Return.pdf

[NB08] Ivica Nikolic and Alex Biryukov. Collisions for step-reduced SHA-256. In FSE’08,
volume 5086 of Lecture Notes in Computer Science, pages 1–15. Springer, 2008.

[NP11] Maŕıa Naya-Plasencia. How to improve rebound attacks. In CRYPTO’11, Lecture
Notes in Computer Science, page ?? Springer, 2011. Available online at http:
//eprint.iacr.org/2010/607.pdf.

[NPRA+10] Maŕıa Naya-Plasencia, Andrea Röck, Jean-Philippe Aumasson, Yann Laigle-
Chapuy, Gaëtan Leurent, Willi Meier, and Thomas Peyrin. Cryptanalysis of
ESSENCE. In FSE’10, volume 6147 of Lecture Notes in Computer Science, pages
134–152. Springer, 2010.

[NPSS10] Ivica Nikolić, Josef Pieprzyk, Przemyslaw Sokolowski, and Ron Steinfeld.
Rotational cryptanalysis of (modified) versions of BMW and SIMD. Available
online at https://cryptolux.org/mediawiki/uploads/0/07/Rotational_

distinguishers_(Nikolic,_Pieprzyk,_Sokolowski,_Steinfeld).pdf, 2010.

[NSKO05] Yusuke Naito, Yu Sasaki, Noboru Kunihiro, and Kazuo Ohta. Improved collision
attack on MD4 with probability almost 1. In ICISC’05, volume 3935 of Lecture
Notes in Computer Science, pages 129–145. Springer, 2005.

[NSS+06] Yusuke Naito, Yu Sasaki, Takeshi Shimoyama, Jun Yajima, Noboru Kunihiro, and
Kazuo Ohta. Improved collision search for SHA-0. In ASIACRYPT’06, volume
4284 of Lecture Notes in Computer Science, pages 21–36. Springer, 2006.

[NTW10] Karsten Nohl, Erik Tews, and Ralf-Philipp Weinmann. Cryptanalysis of the
DECT standard cipher. In FSE’10, volume 6147 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2010.

[Oec03] Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In
CRYPTO’03, volume 2729 of Lecture Notes in Computer Science, pages 617–630.
Springer, 2003.

[Pey07] Thomas Peyrin. Cryptanalysis of Grindahl. In ASIACRYPT’07, volume 4833 of
Lecture Notes in Computer Science, pages 551–567. Springer, 2007.

[Pey10] Thomas Peyrin. Improved differential attacks for ECHO and Grøstl. In
CRYPTO’10, volume 6223 of Lecture Notes in Computer Science, pages 370–392.
Springer, 2010.

[PRR05] Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploiting cod-
ing theory for collision attacks on SHA-1. In IMA Int. Conf., volume 3796 of
Lecture Notes in Computer Science, pages 78–95. Springer, 2005.

[Rab78] Michael O. Rabin. Digitalized signatures. Foundations of Secure Computations,
pages 155–168, 1978.

[Rec09] Christian Rechberger. Cryptanalysis of Hash Functions. PhD thesis, Graz Uni-
versity of Technology, Graz, Austria, January 2009.

[Riv02] Ronald Rivest. MIT lecture notes: Voting, homomorphic encryption, 2002. avail-
able at http://web.mit.edu/6.857/OldStuff/Fall02/handouts/L15-voting.
pdf.

93

http://eprint.iacr.org/2010/607.pdf
http://eprint.iacr.org/2010/607.pdf
https://cryptolux.org/mediawiki/uploads/0/07/Rotational_distinguishers_(Nikolic,_Pieprzyk,_Sokolowski,_Steinfeld).pdf
https://cryptolux.org/mediawiki/uploads/0/07/Rotational_distinguishers_(Nikolic,_Pieprzyk,_Sokolowski,_Steinfeld).pdf
http://web.mit.edu/6.857/OldStuff/Fall02/handouts/L15-voting.pdf
http://web.mit.edu/6.857/OldStuff/Fall02/handouts/L15-voting.pdf

[Riv08] Ronald L. Rivest. The MD6 hash function – a proposal to NIST for SHA-
3. Submission to NIST, available at http://groups.csail.mit.edu/cis/md6/
submitted-2008-10-27/Supporting_Documentation/md6_report.pdf, 2008.

[RN11] Andrea Rck and Kaisa Nyberg. Exploiting linear hull in Matsuis Algorithm 1
(extended version). Available online at http://eprint.iacr.org/2011/285.

pdf, 2011.

[RRPV01] Vincent Rijmen, Bart Van Rompay, Bart Preneel, and Joos Vandewalle. Pro-
ducing collisions for PANAMA. In FSE’01, volume 2355 of Lecture Notes in
Computer Science, pages 37–51. Springer, 2001.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function ba-
sics: Definitions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance. In FSE’04, volume 3017 of Lecture
Notes in Computer Science, pages 371–388. Springer, 2004.

[RS08] H̊avard Raddum and Igor Semaev. Solving multiple right hand sides linear equa-
tions. Des. Codes Cryptography, 49(1-3):147–160, 2008.

[SA08a] Yu Sasaki and Kazumaro Aoki. Preimage attacks on 3, 4, and 5-pass HAVAL.
In ASIACRYPT’08, volume 5350 of Lecture Notes in Computer Science, pages
253–271. Springer, 2008.

[SA08b] Yu Sasaki and Kazumaro Aoki. Preimage attacks on step-reduced MD5. In
ACISP’08, volume 5107 of Lecture Notes in Computer Science, pages 282–296.
Springer, 2008.

[SA09a] Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than ex-
haustive search. In EUROCRYPT’09, volume 5479 of Lecture Notes in Computer
Science, pages 134–152. Springer, 2009.

[SA09b] Yu Sasaki and Kazumaro Aoki. Meet-in-the-middle preimage attacks on double-
branch hash functions: Application to RIPEMD and others. In ACISP’09, volume
5594 of Lecture Notes in Computer Science, pages 214–231. Springer, 2009.

[Saa03] Markku-Juhani Olavi Saarinen. Cryptanalysis of block ciphers based on SHA-1
and MD5. In FSE’03, volume 2887 of Lecture Notes in Computer Science, pages
36–44. Springer, 2003.

[Saa07] Markku-Juhani Olavi Saarinen. A meet-in-the-middle collision attack against the
new FORK-256. In INDOCRYPT’07, volume 4859 of Lecture Notes in Computer
Science, pages 10–17. Springer, 2007.

[Saa11] Markku-Juhani O. Saarinen. Cryptanalysis of hummingbird-1. In FSE’11, volume
6733 of Lecture Notes in Computer Science, pages 328–341. Springer, 2011.

[Sch10] Martin Schläffer. Subspace distinguisher for 5/8 rounds of the ECHO-256 hash
function. In Selected Areas in Cryptography’10, volume 6544 of Lecture Notes in
Computer Science, pages 369–387. Springer, 2010.

[SK98] Takeshi Shimoyama and Toshinobu Kaneko. Quadratic relation of S-box and its
application to the linear attack of full round DES. In CRYPTO’98, volume 1462
of Lecture Notes in Computer Science, pages 200–211. Springer, 1998.

94

http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting_Documentation/md6_report.pdf
http://groups.csail.mit.edu/cis/md6/submitted-2008-10-27/Supporting_Documentation/md6_report.pdf
http://eprint.iacr.org/2011/285.pdf
http://eprint.iacr.org/2011/285.pdf

[SLdW07] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-prefix collisions for
MD5 and colliding X.509 certificates for different identities. In EUROCRYPT’07,
volume 4515 of Lecture Notes in Computer Science, pages 1–22. Springer, 2007.

[SLW+10] Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, and Kazuo Ohta. Non-full-active
Super-Sbox analysis: Applications to ECHO and Grøstl. In ASIACRYPT’10,
volume 6477 of Lecture Notes in Computer Science, pages 38–55. Springer, 2010.

[SPGQ06] François-Xavier Standaert, Gilles Piret, Neil Gershenfeld, and Jean-Jacques
Quisquater. SEA: A scalable encryption algorithm for small embedded appli-
cations. In CARDIS’06, volume 3928 of Lecture Notes in Computer Science,
pages 222–236. Springer, 2006.

[SSA+09] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra, David
Molnar, Dag Arne Osvik, and Benne de Weger. Short chosen-prefix collisions for
MD5 and the creation of a rogue CA certificate. In CRYPTO’09, volume 5677 of
Lecture Notes in Computer Science, pages 55–69. Springer, 2009.

[Sta10] Paul Stankovski. Greedy distinguishers and nonrandomness detectors. In IN-
DOCRYPT’10, volume 6498 of Lecture Notes in Computer Science, pages 210–
226. Springer, 2010.

[Ste88] Jacques Stern. A method for finding codewords of small weight. In Coding Theory
and Applications, volume 388 of Lecture Notes in Computer Science, pages 106–
113. Springer, 1988.

[Ste07] Marc Stevens. On collisions for MD5. Master’s thesis, Eindhoven University of
Technology, Eindhoven, Netherlands, 2007.

[SWOK07] Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro. New message difference
for MD4. In FSE’07, volume 4593 of Lecture Notes in Computer Science, pages
329–348. Springer, 2007.

[SY11] Yu Sasaki and Kan Yasuda. Known-key distinguishers for 11-round feistel ciphers:
Application to collision attacks on their hashing modes. In FSE’11, volume 6733
of Lecture Notes in Computer Science, pages 397–415. Springer, 2011.

[Tez10] Cihangir Tezcan. The improbable differential attack: Cryptanalysis of reduced
round CLEFIA. In INDOCRYPT’10, volume 6498 of Lecture Notes in Computer
Science, pages 197–209. Springer, 2010.

[Tho10] Søren S. Thomsen. Pseudo-cryptanalysis of the original Blue Midnight Wish.
In FSE’10, volume 6147 of Lecture Notes in Computer Science, pages 304–317.
Springer, 2010.

[TSSK08] Yukiyasu Tsunoo, Teruo Saito, Maki Shigeri, and Takeshi Kawabata. Higher
order differential attacks on reduced-round MISTY1. In ICISC’08, volume 5461
of Lecture Notes in Computer Science, pages 415–431. Springer, 2008.

[TWP07] Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin. Breaking 104 bit WEP
in less than 60 seconds. In WISA, volume 4867 of Lecture Notes in Computer
Science, pages 188–202. Springer, 2007.

95

[Van10] Gilles VanAssche. A rotational distinguisher on shabal’s keyed permutation and
its impact on the security proofs. Available online at http://gva.noekeon.org/
papers/ShabalRotation.pdf, 2010.

[Vau96] Serge Vaudenay. An experiment on DES statistical cryptanalysis. In ACM Con-
ference on Computer and Communications Security, pages 139–147, 1996.

[Wag99] David Wagner. The boomerang attack. In FSE’99, volume 1636 of Lecture Notes
in Computer Science, pages 156–170. Springer, 1999.

[Wag02] David Wagner. A generalized birthday problem. In CRYPTO’02, volume 2442 of
Lecture Notes in Computer Science, pages 288–303. Springer, 2002.

[Wal03] Johan Wallén. On the differential and linear properties of addition. PhD thesis,
Helsinki University of Technology, 2003.

[WB10] Kenneth Koon-Ho Wong and Gregory V. Bard. Improved algebraic cryptanaly-
sis of QUAD, Bivium and Trivium via graph partitioning on equation systems.
In ACISP’10, volume 6168 of Lecture Notes in Computer Science, pages 19–36.
Springer, 2010.

[WFW09] Shuang Wu, Dengguo Feng, and Wenling Wu. Practical rebound attack on 12-
round Cheetah-256. In ICISC’09. Springer, to appear, 2009.

[WHYK10] Dai Watanabe, Yasuo Hatano, Tsuyoshi Yamada, and Toshinobu Kaneko. Higher
order differential attack on step-reduced variants of Luffa v1. In FSE’10, volume
6147 of Lecture Notes in Computer Science, pages 270–285. Springer, 2010.

[WLH10] Yongzhuang Wei, Jiqiang Lu, and Yupu Hu. Meet-in-the-middle attack on 8
rounds of the AES block cipher under 192 key bits. Available online at http:

//eprint.iacr.org/2010/537.pdf, 2010.

[WLSL10] Yuechuan Wei, Ping Li, Bing Sun, and Chao Li. Impossible differential crypt-
analysis on Feistel ciphers with P and PS round functions. In ACNS’10, volume
6123 of Lecture Notes in Computer Science, pages 105–122, 2010.

[WOK08] Lei Wang, Kazuo Ohta, and Noboru Kunihiro. New key-recovery attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In EUROCRYPT’08, volume 4965 of
Lecture Notes in Computer Science, pages 237–253. Springer, 2008.

[WRG+11] Lei Wei, Christian Rechberger, Jian Guo, Hongjun Wu, Huaxiong Wang, and San
Ling. Improved meet-in-the-middle cryptanalysis of KTANTAN. Available online
at http://eprint.iacr.org/2011/201.pdf, 2011.

[WSK+11] Lei Wang, Yu Sasaki, Wataru Komatsubara, Kazuo Ohta, and Kazuo Sakiyama.
(second) preimage attacks on step-reduced RIPEMD/RIPEMD-128 with a new
local-collision approach. In CT-RSA’11, volume 6558 of Lecture Notes in Com-
puter Science, pages 197–212. Springer, 2011.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In EUROCRYPT’05, volume 3494 of Lecture Notes in Computer Science, pages
19–35. Springer, 2005.

96

http://gva.noekeon.org/papers/ShabalRotation.pdf
http://gva.noekeon.org/papers/ShabalRotation.pdf
http://eprint.iacr.org/2010/537.pdf
http://eprint.iacr.org/2010/537.pdf
http://eprint.iacr.org/2011/201.pdf

[WYY05] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In CRYPTO’05, volume 3621 of Lecture Notes in Computer Science,
pages 17–36. Springer, 2005.

[WZF07] Wenling Wu, Wentao Zhang, and Dengguo Feng. Impossible differential crypt-
analysis of reduced-round ARIA and Camellia. J. Comput. Sci. Technol.,
22(3):449–456, 2007.

[Yuv79] Gideon Yuval. How to swindle Rabin. Cryptologia, 3:187–189, 1979.

[YWZW05] Hongbo Yu, Gaoli Wang, Guoyan Zhang, and Xiaoyun Wang. The second-
preimage attack on MD4. In CANS’05, volume 3810 of Lecture Notes in Computer
Science, pages 1–12. Springer, 2005.

[ZL10] Jinmin Zhong and Xuejia Lai. Improved preimage attack on one-block MD4.
Available online at http://eprint.iacr.org/2010/583.pdf, 2010.

[ZRHD08] Muhammad Reza Z’aba, H̊avard Raddum, Matthew Henricksen, and Ed Dawson.
Bit-pattern based integral attack. In FSE’08, volume 5086 of Lecture Notes in
Computer Science, pages 363–381. Springer, 2008.

97

http://eprint.iacr.org/2010/583.pdf

	I Framework
	Block ciphers
	Attack goals
	Attack scenarios

	Hash functions
	Attack goals
	Attack scenarios

	II Methods
	Analysis of nonlinear transformations
	Linear cryptanalysis
	Differential cryptanalysis
	Primitives with modular additions
	Algebraic attacks
	Data-dependent operations

	Attacks on byte- and word-oriented primitives
	Multiset attacks
	Truncated differentials
	Rebound attack

	Attacks on schedule and injection
	Meet-in-the-middle
	Advanced meet-in-the-middle
	Local collision
	Schedule tricks

	Decomposition and combined attacks
	Start from the middle
	Boomerang attacks
	Combined attacks
	Impossible differentials
	Multi-branch functions

	Representation and structure of a primitive
	Slide attacks
	Invariants
	Fix and guess: simplifying the primitive
	Ladder tricks: exploiting parallelism

	Proper use of probabilistic patterns
	Find a good pattern
	Key recovery
	Attacks on compression functions
	Search for conforming executions
	Speeding up the attack
	Solving equations
	Unique attacks

	Bibliography

