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METHODS, SYSTEMS, AND DEVICES FOR 
SURGICAL VISUALIZATION AND DEVICE 

MANIPULATION 

CROSS-REFERENCE TO RELATED 

APPLICATION(S) 

This application claims priority to U.S. Provisional Patent 
Application Ser. No. 60/890.691, filed Feb. 20, 2007 and 
titled “Methods, Systems, and Devices for Surgical Visual 
ization and Device Manipulation: U.S. Provisional Patent 
Application Ser. No. 60/956,032, filed Aug. 15, 2007 and 
titled “Methods, Systems, Devices of Robotic Medical Pro 
cedures; and U.S. Provisional Patent Application Ser. No. 
60/983,445, filed Oct. 29, 2007 and titled “Methods and 
Systems for Instructor and Student Operation of Surgical 
Devices, all of which are hereby incorporated herein by 
reference in their entireties. 

FIELD OF THE INVENTION 

The present invention relates to a console for use in 
Surgical procedures. More specifically, the console includes 
external manipulation components and a visual display that 
can be used in conjunction with an internal robotic device to 
minimize trauma to a patient during Surgery. 

BACKGROUND OF THE INVENTION 

Open Surgeries often require a Surgeon to make sizable 
incisions to a patient’s body in order to have adequate visual 
and physical access to the site requiring treatment. The 
application of laparoscopy for performing procedures, such 
as abdominal procedures, marks a paradigm shift in general 
Surgery. Laparoscopic Surgeries are performed using Small 
incisions in the abdominal wall and inserting a small endo 
Scope into the abdominal cavity and transmitting the images 
captured by the endoscope onto a visual display. The Sur 
geon can thus see the abdominal cavity without making a 
sizable incision in the patient’s body, reducing invasiveness 
and providing patients with the benefits of reduced trauma, 
shortened recovery times, and improved cosmetic results. In 
addition to the endoscope, laparoscopic Surgeries are per 
formed using long, rigid tools inserted through incisions in 
the abdominal wall. However, conventional techniques and 
tools for performing laparoscopic procedures can limit the 
dexterity and vision of the surgeon. Given the size of the 
incisions, the maneuverability of the tools is limited and 
additional incisions may be required if an auxiliary view of 
the Surgical site is needed. In addition, the typical location 
of the visual display necessitates the Surgeon gazing in an 
upward and frontal direction. The visual acuity of the 
Surgeon may also be limited by the two-dimensional video 
display. These constraints in both dexterous ability and 
vision limit the application of laparoscopic techniques to 
less complicated procedures. 

Another method currently used in minimally invasive 
Surgeries relates to translumenal procedures. Traditional 
translumenal procedures utilize modified conventional 
endoscopic tools. However, these modified endoscopic tools 
present constraints similar to laparoscopic tools, including a 
diminished visual field and the use of a two-dimensional 
visual display. Also, because the endoscopic tools must be 
flexible along their length in order to access the body cavity 
through a natural orifice, they present the additional chal 
lenges of determining and maintaining spatial orientation. In 
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2 
addition, tissue manipulations are limited due to the neces 
sity of applying force along the axis of the endoscope. 

Thus, there is a need in the art for improved, minimally 
invasive Surgical devices. 

BRIEF SUMMARY 

In a first aspect, a Surgical device includes a console 
having a visual display and a device manipulation compo 
nent, a robotic device having a camera and a connection 
component. The robotic device is configured to be posi 
tioned completely within a body cavity. The camera is 
configured to transmit visual images to the visual display. 
The connection component operably couples the console 
component and the robotic device. The device manipulation 
component is positioned relative to the visual display so as 
to appear to be penetrating the visual display. 

In another aspect, a Surgical system includes a console 
component having a visual component and a manipulator, a 
robotic device having a camera for providing visual images 
to the visual component and a connection component. The 
robotic device is position-able entirely within a body cavity. 
The connection component is operably coupled to the con 
sole component and configured to be coupleable to the 
robotic device when the robotic device is disposed within 
the body cavity. The manipulator is positioned relative to the 
visual component so as to appear to be penetrating the visual 
component. 

Yet another aspect is a method of performing a minimally 
invasive Surgery. The method includes positioning a console 
component at a location relative to a body cavity, inserting 
a robotic device through a natural orifice of a patient and into 
a passage connected to the natural orifice, passing the 
robotic device through the passage and into the body cavity 
such that the robotic device is located substantially com 
pletely within the body cavity, transmitting visual images 
captured by the robotic device to the console component, 
displaying the visual images on a visual display, providing 
inputs based on movements of manipulation components 
operatively connected to the console component and the 
robotic device based on the visual images on the visual 
display, and correspondingly moving the robotic device 
based on the inputs and the movements of the manipulation 
components. The visual display is positioned relative to the 
body cavity Such that the body cavity appears visually to a 
user to be viewable directly through the visual display. 

BRIEF DESCRIPTION OF THE FIGURES 

FIG. 1A is a perspective view of a surgical visualization 
and device manipulation system, according to one embodi 
ment. 

FIG. 1B is a perspective view of the surgical visualization 
and device manipulation system, according to the embodi 
ment of FIG. 1A. 

FIG. 2A is a diagram of a control scheme of the Surgical 
visualization and device manipulation system, according to 
one embodiment. 

FIG. 2B is a diagram of an alternative control scheme of 
the Surgical visualization and device manipulation system, 
according to one embodiment. 

FIG. 3A is a top view of a surgical visualization and 
device manipulation system positioned relative to a body 
cavity of a patient, according to another embodiment. 

FIG. 3B is a front view of the surgical visualization and 
device manipulation system positioned relative to a body 
cavity of the patient, according to the embodiment of FIG. 
3A. 
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FIG. 3C is a side view of the surgical visualization and 
device manipulation system positioned relative to a body 
cavity of the patient, according to the embodiment of FIG. 
3A. 

FIG. 4A is a perspective view of a Surgical visualization 
and device manipulation system, according to a further 
embodiment. 

FIG. 4B is a front view of the surgical visualization and 
device manipulation system, according to the embodiment 
of FIG. 4A. 

FIG. 5A is a perspective view of a surgical visualization 
and device manipulation system, according to another 
embodiment. 

FIG. 5B is a front view of the surgical visualization and 
device manipulation system, according to the embodiment 
of FIG. 5A. 

FIG. 6A is a front view of a console and manipulator arms 
of a Surgical visualization and device manipulation system, 
according to one embodiment. 

FIG. 6B is a perspective view of the console and manipu 
lator arms of the Surgical visualization and device manipu 
lation system, according to the embodiment of FIG. 6A. 

FIG. 6C is a perspective view of the console and manipu 
lator arms of the Surgical visualization and device manipu 
lation system, according to the embodiment of FIG. 6A. 

FIG. 6D is an enlarged perspective view of the console 
and manipulator arms of the Surgical visualization and 
device manipulation system, according to the embodiment 
of FIG. 6A. 

FIG. 7A is a front view of a set of offset planar hinge joint 
manipulators of a Surgical visualization and device manipu 
lation system, according to one embodiment. 

FIG. 7B is a perspective view of the set of the offset planar 
hinge joint manipulators of the Surgical visualization and 
device manipulation system, according to the embodiment 
of FIG. 7A. 
FIG.7C is a schematic view of the set of the offset planar 

hinge joint manipulators of the Surgical visualization and 
device manipulation system positioned relative to a body 
cavity of a patient, according to the embodiment of FIG. 7A. 

FIG. 8A is a rear perspective view of a console of the 
Surgical visualization and device manipulation system, 
according to one embodiment. 

FIG. 8B is a front perspective view of the console of the 
Surgical visualization and device manipulation system, 
according to the embodiment of FIG. 8A. 

FIG. 9 is a side perspective view of a surgical visualiza 
tion and device manipulation system positioned relative to a 
body cavity of the patient, according to an alternative 
embodiment. 

FIG. 10A is a perspective view of a surgical visualization 
and device manipulation system positioned relative to a 
body cavity of the patient, according to an alternative 
embodiment. 

FIG. 10B is a perspective view of a surgical visualization 
and device manipulation system positioned relative to a 
body cavity of the patient, according to an alternative 
embodiment. 

FIG. 11 is a schematic representation of a Surgical visu 
alization and device manipulation system, according to 
another embodiment. 

FIG. 12A is a schematic representation of an instructor 
console of the Surgical visualization and device manipula 
tion system, according to a further embodiment. 

FIG. 12B is a schematic representation of a student 
console of the Surgical visualization and device manipula 
tion system, according to the embodiment of FIG. 12A. 
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4 
FIG. 13 is a perspective view of a surgical visualization 

and device manipulation system having a stabilization sys 
tem, according to another embodiment. 

FIG. 14A is a perspective view of a robotic device of the 
Surgical visualization and device manipulation system in an 
unfolded position, according to one embodiment. 

FIG. 14B is a diagram of the rotational axes of the robotic 
device of the Surgical visualization and device manipulation 
system in a folded position, according to the embodiment of 
FIG. 14A. 

FIG. 15A is a diagram of a kinematic model of a robotic 
device of the Surgical visualization and device manipulation 
system, according to one embodiment. 

FIG. 15B is a close-up diagram of the shoulder joint of a 
kinematic model of a robotic device of the surgical visual 
ization and device manipulation system, according to the 
embodiment of FIG. 15A. 

FIG. 15C is a diagram of an actuation path of a robotic 
device of the Surgical visualization and device manipulation 
system, according to the embodiment of FIG. 15A. 

FIG. 15D is a graph of the planned and actual path of a 
NOTES robotic device traced in a workspace, according to 
one embodiment. 

FIG. 16 is a kinematic model of a shoulder joint of a 
robotic device of the surgical visualization and device 
manipulation system, according to one embodiment. 

FIG. 17 is a schematic diagram of an offset planar hinge 
joint of the Surgical visualization and device manipulation 
system, according to one embodiment. 

FIG. 18A is a kinematic model of an offset planar hinge 
joint of the Surgical visualization and device manipulation 
system in a nominal state, according to one embodiment. 

FIG. 18B is a kinematic model of an offset planar hinge 
joint of the Surgical visualization and device manipulation 
system rotated by an amount alpha, according to the embodi 
ment of FIG. 15A. 

DETAILED DESCRIPTION 

FIGS. 1A and 1B are perspective views of one embodi 
ment of a Surgical visualization and device manipulation 
system 10. System 10 includes a control console 12 that 
operates in conjunction with robotic Surgical device 14 
positioned inside body cavity 16, Such as an abdomen, of a 
patient. That is, the control console 12 can be used to operate 
the device 14 inside the body cavity 16. System 10 addresses 
the visual and dexterous manipulation constraints associated 
with standard Surgical procedures, such as laparoscopic and 
natural orifice translumenal endoscopic surgical (“NOTES) 
procedures, while building upon the established skill set of 
laparoscopic Surgeons. Robotic device 14 is located entirely 
within body cavity 16 and (in contrast to traditional lapa 
roscopic and endoscopic tools) is not constrained by an entry 
incision. 

In accordance with the implementation depicted in FIGS. 
1A and 1B, console 12 is configured to be positioned outside 
body cavity 16 of the patient and includes console magnet 
22, a visual display 24 (best depicted in FIG. 1B), and first 
manipulator 26A and second manipulator 26B (collectively 
referred to as “manipulators 26’). As used herein, "console' 
is intended to mean a controller or operational hub. Console 
magnet 22 draws robotic device 14 toward internal cavity 
wall 20 of body cavity 16 and adjacent console 12, thereby 
positioning robotic device 14 against internal cavity wall 20. 
Visual display 24 is coupled to robotic device 14 and 
displays visual feedback of body cavity 16 captured by 
robotic device 14. In this embodiment, manipulators 26 are 
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connected to console 12, and in conjunction with console 12, 
communicate with and control robotic device 14. In the 
implementation as depicted, console 12 and manipulators 26 
operate robotic device 14 via wireless communication. 
Alternatively, as explained in further detail below, the con 
sole 12 can be coupled to the robotic device 14 via a physical 
connection. 

In one implementation, by positioning robotic device 14 
within body cavity 16 relative to console 12, system 10 
allows the Surgeon to determine and maintain spatial orien 
tation of robotic device 14 with respect to console 12. Other 
benefits of system 10 can include, but are not limited to: 
providing a training tool for Surgeons, reducing or eliminat 
ing the need for a Surgeon to be on-site, and reducing the 
cost of robotic Surgical systems. 

FIG. 1B shows a perspective view of console 12 with 
manipulators 26 according to one embodiment. As used 
herein, “manipulator is intended to mean any input device 
associated with a console for operating a robotic device via 
a wired or wireless connection component. A manipulator 
can also be referred to herein as a “manipulator arm” or 
“manipulator handle.” In this embodiment, each manipula 
tor 26A and 26B is configured to provide for three rotations 
(one axially, two cross-axially) and one translation (up and 
down) as well as a binary trigger for controlling Such 
operational components as graspers, cauterization compo 
nents, and/or Suction/irrigation components. These capabili 
ties will be explained in further detail in additional embodi 
ments herein. The positions of manipulators 26 are measured 
and the information is transferred to a system processor (not 
shown) disposed within the console 12 which processes the 
position information and transmits resulting commands to 
robotic device 14 to position the device 14 or any device 
connected to the robotic device 14 in the appropriate posi 
tion or location. The positions of manipulators 26 are 
continuously updated to the processor Such that the com 
mands and the resulting corresponding movements of 
manipulators 26 and robotic device 14 and/or any device 
connected to robotic device 14 are substantially in real-time. 

In an exemplary embodiment as shown, manipulators 26 
Substantially replicate standard laparoscopic tool handles. 
That is, manipulators 26 have generally the same shape and 
movement as standard laparoscopic tools. Alternatively, 
manipulators 26 can take various forms, including, but not 
limited to: computer controls known in the art such as 
2-dimensional and 3-dimensional mice and keyboards; 
heavy equipment and airline controls known in the art Such 
as Sticks, wheels, and triggers; and various techniques used 
in virtual reality involving Smart gloves or other similar 
devices made to fit the human body and model human 
motion. In one embodiment, for example, virtual reality 
control is used and robotic device 14 is modified to look 
more human. In another embodiment, robotic device 14 is 
configured to look like a Surgeon’s hands. 

According to one implementation, visual display 24 is 
positioned on a front face 25 of console 12 opposite rear face 
23. In practice, console 12 is positioned on external Surface 
18 of body cavity 16 such that front face 25 and visual 
display 24 of console 12 are visible to a Surgeon standing 
over body cavity 16. In one aspect, visual display 24 is 
operably coupled to an image capturing component on 
robotic device 14. Signals from robotic device 14 may be 
transmitted in any format (e.g., NTSC, digital, PAL, etc.) to 
visual display 24 of console 12. For example, the signal may 
be a video signal and/or a still image signal. Visual display 
24 may also be any known image display component 
capable of displaying the images collected by an image 
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6 
capturing component that can be used with robotic device 
14. In one embodiment, visual display 24 is a standard Video 
monitor. In an alternative embodiment, the visual display 24 
can display two dimensional visual feedback, three dimen 
sional visual feedback or Stereoscopic imaging to a Surgeon 
via imaging component on robotic device 14. Those of 
ordinary skill in the art will recognize that a signal from a 
camera can be processed to produce a display signal for 
many different types of display devices, including, but not 
limited to: televisions configured to display an NTSC signal, 
televisions configured to display a PAL signal, cathode ray 
tube based computer monitors, LCD monitors, and plasma 
displays. In an exemplary embodiment, console 12 is a da 
VinciR) console, available from Intuitive Surgical, Inc., 
located in Sunnyvale, Calif. 

In practice, as shown in FIGS. 1A and 1B, console 12 is 
located according to one embodiment on external Surface 18 
of body cavity 16, while robotic device 14 is positioned such 
that the device 14 can be positioned or controlled by console 
12. In the embodiment of FIG. 1A, robotic device 14 is 
positioned against internal cavity wall 20 of body cavity 16. 
This configuration allows console 12 and robotic device 14 
to be unconstrained by the entry incision while providing the 
Surgeon with a view of the Surgical area. Console 12 can be 
used to control the robotic device 14 and further can move 
along the external surface 18 while robotic device remains 
substantially fixed with respect to the console 12 such that 
robotic device 14 moves within the patient (such as along 
internal cavity wall 20) and can be positioned at a desired 
location within body cavity 16 and provide the user with 
alternative views and workspaces. 

FIG. 2A depicts a schematic diagram of the internal 
components of a further embodiment of a Surgical visual 
ization and device manipulation system 29. Robotic device 
32 is connected to manipulators 34 via connection compo 
nent 37, which connects robotic device 32 to console 38. As 
used herein, "connection component' is intended to mean a 
wired or wireless connection between at least two compo 
nents of a Surgical visualization and device manipulation 
system that provides for the transmission and/or exchange of 
information and/or power between components. Connection 
component 37 operably couples console 38 and robotic 
device 32 to allow for communication between (1) imaging 
component (not shown) of robotic device 32 and visual 
display 40 on console 38, such that images collected by 
imaging component (not shown) can be transmitted to 
console 38 and displayed on visual display 40, and/or (2) 
manipulators 34 and robotic device 32, such that manipu 
lation of manipulators 34 by the user results in operation or 
control of robotic device 32. 

According to one embodiment, connection component 37 
is a wired connection Such as a wire, cord, or other physical 
flexible coupling. The wired connection is coupled at one 
end to robotic device 32 and at a second end to console 38 
(and particularly, to manipulators 34). For purposes of this 
application, the physical or wired connection can also be 
referred to as “tethered’ or “a tether.” The wired connection 
can be any physical component that is flexible, pliable, or 
otherwise capable of being easily formed or manipulated 
into different shapes or configurations. According to one 
embodiment, the wired connection includes one or more 
wires or cords or any other type of physical component 
operably coupled to the device 32 and console 38. The wired 
connection is configured to transmit or convey power and/or 
data 36A, video 36B, or anything else necessary or useful for 
operation of robotic device 32. In a further alternative, the 
wired connection comprises at least two wires or cords or 
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other such components, each of which are connected to a 
separate external unit (which, in one example, are a power 
Source and a data transmission and receiver unit as described 
below). 

FIG. 2B depicts a schematic diagram of an alternative 
embodiment of a Surgical visualization and device manipu 
lation system 30 in which connection component 37 is a 
wireless connection. That is, in this embodiment, the robotic 
device 32 communicates wirelessly with console 38 (and 
thus visual display 40 and manipulators 34). The wireless 
connection can also be referred to herein as “untethered.’ An 
“untethered device,” “wireless device,” or "wireless con 
nection' is intended for purposes of this application to mean 
any robotic device 32 that is fully enclosed within the 
patient’s body such that no portion of robotic device 32 is 
external to the patient’s body for at least a portion of the 
Surgical procedure or, alternatively, any robotic device 32 
that operates within the patient’s body while not being 
physically connected to any external object for at least a 
portion of the Surgical procedure. In one embodiment, an 
untethered robotic device 32 transmits and receives data 
wirelessly, including data required for controlling robotic 
device 32. In the wireless embodiment shown in FIG. 2B, 
robotic device 32 has an internal power Supply, along with 
a receiver 33A and transmitter 33B for wireless connection. 
In this embodiment the console 38 has an internal power 
supply, along with a receiver 35A and transmitter 35B for 
wireless connection. Alternatively, the console 38 can be 
powered using an external power Supply Such as a wall 
outlet. The console 38, receiver 35A, and transmitter 35B 
form a communication component 31 that is linked to the 
processor 48 and display 40. The receivers 33A and 35A and 
transmitters 33B and 35B used with a wireless robotic 
device 32 as described herein can be any known receiver 
and/or transmitter. For example, any known receiver and/or 
transmitter used in remote vehicle locking devices, remote 
controls and mobile phones. In an exemplary embodiment, 
robot commands are transmitted/received using a 900 MHz 
wireless transceiver chip (NRF905-REEL), available from 
Nordic Semiconductor, located in Sunnyvale, Calif., and 
Video is transmitted using a 2.4 GHZ transmitter 
(LUV200M), available from Spy ville.com, located in 
Monterey, Tenn. 

FIGS. 3A, 3B, and 3C show a top view, a front view and 
a side view, respectively, of a further embodiment of a 
system 50 positioned with respect to body cavity 52 of a 
patient. System 50 includes console 54 and robotic device 56 
and creates a “virtual hole' or “virtual incision' effect when 
console 54 is positioned on external surface 58 of body 
cavity 52 and robotic device 56 is held against internal 
surface 60 within body cavity 52 by console magnet 62. That 
is, visual display 64 shows the visual image being collected 
by imaging component 66 of robotic device 56 within the 
patient’s body cavity 52 on console 54 and manipulators 68 
are positioned relative to visual display 64 such that first 
manipulator 68A and second manipulator 68B (collectively 
referred to as “manipulators 68') appear from the user's 
perspective to be penetrating visual display 64 and body 
cavity 52 of a patient as best shown in FIG. 3A. The 
resulting effect for the user or Surgeon is that the user has the 
impression that he is looking directly into body cavity 52 
and that he can operate manipulators 68 to directly control 
first arm 70A and second arm 70B (collectively referred to 
as “arms 70') and first end effector 72A and second end 
effector 72B (collectively referred to as “end effectors 72) 
of robotic device 56 disposed within body cavity 52. Con 
sole 54 is thus able to replicate open Surgery by locating 
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8 
visual display 64 in front of the user and over body cavity 
52 while manipulators 68 are at the hands of the user. The 
location of visual display 64 is similar to the standard 
practice in non-robotic laparoscopic Surgery, thereby adding 
to the realistic aspect of the “virtual hole.” In addition, this 
positioning of console 54, visual display 64, manipulators 
68, arms 70 and end effectors 72 provides a more comfort 
able, ergonomically correct relationship between the gaZe 
direction of the user and the Surgical site or task location. 
Using system 50, manipulators 68 positioned on or near the 
patient’s body seem to mirror or substantially duplicate the 
look and feel of standard laparoscopic tool handles for the 
user, thereby building upon the existing experience of lapa 
roscopic Surgeons and making the use of system 50 more 
intuitive. As a result, a Surgeon or other user experienced 
with standard procedures can easily begin using system 50 
without much acclimation or training required, if any at all. 

In one embodiment the robot is controlled in an open-loop 
system in which the Surgeon uses the console to command 
the robot movement without any arm or end-effector posi 
tion feedback except for video feedback from the imaging 
system. One example of an open-loop control scheme relates 
to using the manipulators 68 to simply toggle between 
moving and stationary positions. In this scheme, the robotic 
arms can only move at one speed and are either commanded 
to move or not move. Therefore, the manipulators 68 can be 
moved in a direction to engage the robotic arms to begin 
moving. The manipulators 68 can then be moved back to the 
original position to stop the robotic arms from moving. 
The system depicted in FIG. 2A utilizes another open 

loop control scheme. The positions of manipulators 34 in 
this embodiment are measured using potentiometers 42. A 
“potentiometer can also be referred to as an “encoder.” 
Other methods for measuring the manipulator position 
include optical encoders that use infrared light or other 
wavelengths in the spectrum or acoustical encoders that 
measure Sound. As used herein, "encoder” is intended to 
mean any device that is capable of converting rotary or 
translational position to electronic pulses. Position data from 
the encoder measurements allows for determining the posi 
tion of each manipulator relative to the console and Veloci 
ties of the manipulators. This information can then be used 
to determine commands for the robotic arms. 

In FIG. 2A, each manipulator 34A and 34B in this 
embodiment includes three rotations (one axially, two cross 
axially) and one translation (up and down). Each of these 
motions are measured. In this embodiment, the encoder 
position is transmitted as a digital signal to a processor. 
Alternatively, the encoder position is transmitted as an 
analog Voltage. In this alternative embodiment, the encoder 
voltages outputted by the encoders 42 are then transmitted to 
an analog-to-digital converter 44 before being sent to the 
processor 48. In one example shown in FIG. 2A, the analog 
signals are digitized at 1000 Hz. These digitized signals are 
then transferred, via a universal serial bus (USB) hub 46, to 
a processor 48. The software in processor 48 reads the 
positions of manipulators 34 (as a digital signal) from the 
USB hub 46 and determines the motor commands to be sent 
to robotic device 32. In this embodiment, the encoder 
position indicates if the robot arm should move and in what 
direction. This results in a binary control system in which the 
actuation motors in the robot are commanded as “full on 
forward, “full on backwards, or off. For example, arms on 
the robot (not shown) can be either commanded to move in 
a specified direction, or not to move. There is no direct 
feedback from the actuators to the control program in 
computer 48. Commands from computer 48 are sent to the 
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actuators of robotic device 32 via a cable that tethers robotic 
device 32 to computer 48. In another embodiment, the 
converter/USB hub/computer are all integrated into the 
console so that the robot has a single tether from the console. 
In a further alternative embodiment, the tether is removed 
and replace by a wireless system that transmits commands to 
the robot and video from the robot to the console wirelessly 
as depicted in FIG. 2B. In this wireless embodiment, the 
robot includes an onboard power source such as a battery. In 
either the wired (FIG. 2A) or wireless (FIG. 2B) embodi 
ment, the commands received by the controller 45 are sent 
to an H-bridge 43 to provide a pulse width modulated 
(PWM) signal to the actuators 41. The PWM signal repre 
sents the percentage of full operating power at which the 
motor is instructed to operate. In this embodiment, the only 
feedback from the robot to the console is the video image 
from the imager system (including the imager 47 and lens 
49) onboard the robot 32. The NTSC video signal from 
imaging component 47 of robotic device 32 is sent back 
through the cable to visual display 40 on console 38. In this 
open-loop configuration, no robot position data is returned 
to the computer control program. The Surgeon observes what 
is happening to the robotic device by observing the display 
and this observation allows the Surgeon to command the 
robot to move in the direction desired. 

In a further alternative, the controller is a “closed-loop' 
controller system commonly used in robotic technologies. 
As is understood, a closed-loop controller system is a system 
with a controller that allows the user to provide specific 
instructions regarding a specific movement or action and 
further provides for a feedback sensor that senses when the 
device completes the specific movement or action. This 
system allows for very specific instructions or commands 
and very precise actions. For example, in the embodiment in 
FIG. 3, the user may input instructions into the controller 
that the device 56 should position the right arm 70B at a 30° 
angle with respect to the body 66, and the right arm 70B then 
moves until the sensor senses that the arm 70B is positioned 
at the desired angle. The feedback sensor can be a joint 
sensor, a visual sensor, or any other known feedback sensor. 
A closed-loop controller system thus allows for utilizing 
very specific and precise control of a device, including very 
precise device positioning, trajectory control, and force 
control. In one embodiment, the device could then be 
precisely operated in joint space or Cartesian space. In this 
embodiment, the position of the manipulator and the robot 
arm can be scaled so that the Surgeon has finer control at the 
robot end effector. 

In addition, various control schemes are contemplated 
with respect to the end effectors as well. For example, 
according to one embodiment, each manipulator 68A and 
68B includes a trigger for grasping, cauterization, Suction/ 
irrigation, or some other action at a device operational 
component. In one embodiment, the trigger is binary and is 
used to turn cauterization, grasping, Suction, or irrigation on 
or off in an open-loop manner. Alternatively, the positional 
feedback from the operational component and/or trigger is 
used to control the operational component in a closed-loop 
manner so that the operational component closely matches 
input from the Surgeon. 

Alternatively, the robotic device 56 may be controlled by 
any one of a number of control schemes in addition to those 
described above, and the various types of manipulators 68 
that are available further broaden the options available for 
the interaction between the manipulators 68 and the robotic 
device 56. In one embodiment, manipulators 68 are used like 
typical joystick controllers such that repositioning (includ 
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10 
ing rotation or translation) of either controller from a nomi 
nal position causes an arm or component of the robotic 
device 56 to move in the corresponding direction. In this 
embodiment, the velocity of motion of robotic device 56 or 
at least one of its components (such as an arm) is controlled 
by the magnitude of the input applied to manipulators 68, 
whereby increased rotation or movement of manipulators 68 
causes robotic device 56 or its components to move more 
rapidly. 

It is understood that any of the above control schemes and 
any other known robotic controller technologies can be 
incorporated into any of the robotic devices disclosed 
herein. 

According to another implementation, any robotic device 
described herein is connected via a connection component 
not only to a console, but also to an external unit (i.e. a 
power source and a data transmission and receiver unit) or 
one or more other robotic devices, such robotic devices 
being either as described herein or otherwise known in the 
art. That is, according to one embodiment, two or more 
robotic devices can be operably coupled to each other as 
well as to an external unit. According to one embodiment in 
which there are two robotic devices, the two robotic devices 
are operably coupled to each other and an external unit by 
a flexible wired connection or a wireless connection. That is, 
the two robotic devices are operably coupled to each other 
by a flexible wired connection that is coupled to each robotic 
device and each robotic device is also operably coupled to 
an external unit by a flexible wired connection. In one 
embodiment, there are three separate flexible wired connec 
tions: (1) a wired connection connecting the two robotic 
devices, (2) a wired connection connecting one of the 
robotic devices to an external unit, and (3) a wired connec 
tion connecting the other of the robotic devices to the 
external unit. Alternatively, one wired connection is oper 
ably coupled to both robotic devices and an external unit. In 
a further alternative, any number of wired connection may 
be used in any configuration to provide for connection of 
two robotic devices to each other and an external unit. 

Alternatively, the two or more robotic devices are oper 
ably coupled to each other as well as an external unit in an 
untethered fashion. That is, the robotic devices are operably 
coupled to each other and an external unit in a fashion Such 
that they are not physically connected. In one embodiment, 
the robotic devices and the external unit are operably 
coupled wirelessly. 

Alternatively, the visual display and manipulators need 
not be in physical contact or physically adjacent to each 
other. That is, in one embodiment, the visual display and the 
manipulators may be in completely different locations. In an 
exemplary embodiment, the visual display may be posi 
tioned at eye level of the user such that the user need only 
look straight ahead, while the manipulators are positioned 
adjacent to the patient’s body or elsewhere. Those skilled in 
the art will appreciate that the location of the visual display 
may be anywhere within the view of the surgeon. 

In a further embodiment, the console also does not need 
to be disposed in proximity with the patient, or the robotic 
device. That is, a console as described herein may be at a 
completely different geographical location and still be 
capable of operating in conjunction with a robotic device via 
a connection component to perform a procedure on a patient. 
In an extreme example, a Surgeon could perform a Surgery 
using a visualization and control system on a patient in a 
space station orbiting the earth in which the Surgeon on earth 
operates on the patient by controlling manipulators while 
looking at visual display, thereby operating a robotic device 
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disposed within the patient in the space station. In such an 
embodiment, the robotic device can be positioned in the 
patient using a magnetic component or some other type of 
attachment component that is positioned in an appropriate 
location outside the patient’s body. Further, it is understood 
that the Surgeon or user, despite being a different geographi 
cal location in relation to the patient, can utilize the console 
in a fashion that Substantially replicates or recreates the 
general “look and feel of a standard laparoscopic proce 
dure. That is, the user can position the console with the 
manipulators in front of the user on a table or other object 
Such that the user is positioned in generally the same fashion 
and utilizes the manipulators in generally the same fashion 
as if the user were in the same room as the patient and 
performing a standard laparoscopic procedure on that 
patient. 
A further embodiment of a visualization and device 

manipulation system 80 is depicted in FIGS. 4A and 4B 
having a console 92 that can be used to operate a robotic 
device 80. The robotic device 80 has two arms 82A, 82B 
(also referred to jointly as “82). The use of two arms 82 
allows the device 80 to perform various procedures and 
tasks such as stretching and/or dissection tasks. 

In accordance with one implementation, each arm 82 can 
have an operational component (also referred to as an "end 
effector') such as the operational component 88 coupled to 
arm 82A. In the embodiment as shown in FIGS. 4A and 4B, 
the end effector 88 is a grasper 88. Further, the robotic 
device 80 also has a camera 90. As such, the robotic device 
80 of this embodiment can provide for surgical vision and 
tissue manipulation. 

The console 92 is coupled with the robotic device 80 by 
a connection component 100 that, according to one embodi 
ment, provides one or more of power, command signals, and 
video. The console 92 includes a display component 98 and 
two manipulators 96A and 96B (also referred to herein as 
joysticks') that can be used to control the movement of the 

robotic arms 82 via operational coupling between each 
handle 96 and the corresponding arm 82. Various controls in 
the form of switches, knobs, or any other type of input 
components (not shown) on the console 92 can be provided 
to allow the Surgeon to control such things as camera 
focusing/zoom, illumination levels, panning position of the 
camera 50, and/or any other components or controllable 
variables relating to the robotic device 80. 

In one exemplary embodiment, the joysticks 96 are con 
figured to operate or “feel to the surgeon like a standard 
laparoscopic tool. That is, the Surgeon can move the joystick 
96 in 4 degrees of freedom (“DOF), just as standard 
laparoscopic tools inserted through trocarports can typically 
move in four DOF (3 rotations and 1 translation). As shown 
in FIG. 4B, three of the DOF displayed by the manipulators 
96 are rotations that include two off-axis rotations as 
depicted by arrows E and F and one axial rotation identified 
by arrow G. The fourth DOF as depicted by arrow H is a 
translation that allows the Surgeon to extend the joystick. In 
this embodiment, the position of joystick 96 is constrained 
to move only in these 4 orientations, and the position of the 
joystick 96 can be measured using a series of encoders 
coupled to the joystick 96 and the console 92. Using these 
positions, the control algorithms in the computer system (not 
shown) in the console 92 determine the actuator commands 
and transmit those commands to the robotic device 90. Each 
of the arms 82 in this embodiment as shown in FIG. 4B also 
allow the surgeon 4 DOF. That is, each arm 82 has a 
rotational shoulder joint 84 that provides two degrees of 
freedom as shown by arrows A and B, and a prismatic and 
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rotational elbow joint 86 that provides arm extension and 
rotation as shown by arrows C and D, respectively. Thus, the 
robotic device 80 receives the command signals from the 
console 92 and actuates the appropriate arm 82 to move in 
the 4 DOF in response to the similar movement caused by 
the user in the corresponding manipulator 96. 

FIGS. 5A and 5B depict another embodiment of a visu 
alization and device manipulation system 110 in which the 
console 112 has a single manipulator arm 114 that controls 
a single robotic arm 116. According to one implementation, 
the one-armed robotic device 110 can be used for a variety 
of Surgical procedures and tasks including, but not limited 
to, tissue biopsy and tissue retraction. For example, the 
grasper 118 can be used to retract the gallbladder during a 
cholecystectomy procedure. 

FIGS. 6A, 6B, 6C, and 6D depict an alternative imple 
mentation of a visualization and device manipulation system 
120. FIG. 6A shows a front view of console 122 having 
manipulators 124A, 124B (collectively referred to as 
“manipulators 124). In this embodiment, each manipulator 
124A, 124B is coupled to the console 122 with a carriage 
system 126A, 126B respectively (collectively referred to as 
“carriage systems 126'). FIGS. 6B and 6C show two dif 
ferent perspective views of manipulators 124 attached to 
console 122 by carriage system 126 and FIG. 6D shows an 
enlarged perspective view of carriage system 126B. As best 
shown in FIGS. 6A and 6D, each carriage system 126 
includes two tracks 127, 128 and three carriage wheels 130, 
131, 133. As shown in FIGS. 6A-6D, tracks 127, 128 are 
fixed to console 122 and connect manipulators 124 to 
console 122. Each manipulator 124 has three carriage 
wheels 130, 131, 133 that are in contact with the tracks 127, 
128 two upper wheels 130, 131 in contact with the upper 
track 127 and one lower wheel 133 in contact with the lower 
track 128. The upper and lower tracks 127, 128 as shown in 
FIGS. 6A through 6D are positioned at a predetermined 
angle with respect to the console 122 such that the move 
ment of the wheels 130, 131, 133 along the tracks 127, 128 
causes each of the manipulators 124 to rotate about an 
approximated axis 132 if the arms of the manipulators 124 
were extended through and beyond the console (which 
according to certain embodiments would mean extending 
into the patient). In one embodiment, the approximated axis 
132A, 132B of each manipulator 124A, 124B is coincident 
with or otherwise in generally the same location as the actual 
shoulder joints 136A, 136B of robotic device 134 such that 
the manipulators 124 “seem to the user to be directly 
connected to the robotic arms 138A, 138B. 

In an alternative implementation, the components of the 
carriage systems can be reversed Such that the tracks are 
coupled to the manipulators and the wheels are coupled to 
the console. In this embodiment, the carriage wheels 130 
rotate while track 128 moves about an approximated axis 
132 as shown in FIG. 1. 

Although FIGS. 6A-6D depict carriage system 126 as 
including one set of tracks 128 and carriage wheels 130 in 
one plane, in alternative embodiments the carriage system 
may include any number of sets of tracks and carriage 
wheels in any number of planes. In one embodiment, the 
track is not held rigidly to the console, but is instead attached 
to a second set of carriage wheels. This second set of 
carriage wheels is then affixed to a second track that is 
attached to the console. In this embodiment, the first track/ 
carriage wheel assembly allows for one rotation, while the 
second track/carriage wheel assembly allows for a second 
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rotation. This combination provides both off-axis rotations 
that are common for laparoscopic Surgical instruments dur 
ing Surgery. 

In another alternative embodiment, manipulators 140A, 
140B (collectively referred to as “manipulators 140') may 
be connected to console 142 by offset planar hinge joints 
144A, 144B as shown in FIGS. 7A, 7B, and 7C. It is 
understood that offset planar hinge joints have been used in 
the field of micro manipulation and further in the field of 
parallel robotics where multiple hinges are joined together to 
form concentric multilink spherical joints. According to one 
implementation, natural and realistic control of robotic 
device 146 is achieved by configuring each manipulator 140 
to rotate about an approximated axis that is located generally 
at around the same location as the respective shoulder joints 
148A, 148B of robotic device 146. Thus, the use of the offset 
planar hinge joints 144 allows for two off-axis rotations that 
generally replicate the rotations common for laparoscopic 
Surgical instruments. 

In one embodiment, offset planar hinge joints 144 are 
six-bar linkages including first bent bracket 150A, 150B and 
second bent bracket 152A, 152B (collectively referred to as 
“bent brackets 150, 152'), first straight bracket 154A, 154B 
and second straight bracket 156A, 156B (collectively 
referred to as “straight brackets 154, 156”) and horizontal 
leaf 158A, 158B and base leaf 160A, 160B (collectively 
referred to as “leaves 158, 160'). Leaves 158, 160 are 
similar to door hinges because they allow for rotation about 
a single axis. Horizontal leaves 158A, 158B allow the 
manipulators 140 to rotate axially as indicated by arrow C 
and translate up and down as indicated by arrow D. Base 
leaves 160A, 160B are also free to rotate as indicated by 
arrow B about fixed pins 162A, 162B. The six-bar linkage 
allows manipulators 140 to rotate along arrow A about the 
approximated remote axis located generally in the same area 
as the device shoulder joints 148. These combined three 
rotations allow for the look and feel of traditional laparos 
copy while the console 142 and robot 146 are not physically 
connected. 
The offset planar hinge joint configuration as depicted in 

FIGS. 7A, 7B, and 7C allows for rotation of the manipula 
tors 140 about an approximated axis of rotation located 
generally in about the same location as the robotic device 
shoulder joints 148. This kinematic configuration has been 
implemented in other machine designs much like common 
levers. In this embodiment, the approximated axis of rota 
tion of each manipulator 140 being located generally at 
shoulder joints 148 causes the motion of manipulators 140 
to generally mimic the motion of standard laparoscopic 
Surgical tools. In addition to allowing rotation about the 
approximated axes located generally at about the same 
location as the shoulder joints 148, offset planarhinge joints 
144 also allow for each manipulator 140A, 140B to rotate 
about its respective axis and translate through horizontal 
leaves 158. 

In some alternative embodiments, the approximated axis 
of rotation of the manipulators 140 with respect to console 
142 is adjustable to account for variable skin thicknesses. 
This is accomplished by moving the offset planar hinge 
joints 144 vertically or translationally away from console 
142 or adjusting the angle of the fixed pins 162. Those 
skilled in the art will recognize and appreciate that this 
adjustment can also be in the form of an electronic setting 
which can be calibrated for various thicknesses of the 
abdominal wall depending on the individual patient. 

Although many of the figures in this application depict the 
console as having two manipulators, it is understood that the 
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console may include any number of manipulators. For 
example, the console may include two or more sets of 
manipulators with each set dedicated to a different robotic 
device being used cooperatively within a body cavity of the 
patient. Alternatively, the console or the manipulators may 
be capable of operating more than one robotic device. For 
example, in one embodiment, the manipulators or the con 
sole is provided with a switch or any other type of known 
input that allows the user to Switch communications from 
one robotic device to another, thereby Switching operating 
control from one robotic device to another. This switch may 
be a mechanical toggle-type Switch on the console, or a 
footpedal on the floor. The switch could also be integrated 
into a touchscreen on the console with the Switching capa 
bility implemented in Software and activated by pressing a 
graphic on the console touchscreen interface. Thus, the 
console and the manipulators may be used with one robotic 
device, two robotic devices, or any number or combination 
of robotic devices that might be used together for a Surgical 
procedure. In addition, the console and the manipulators 
may be used to control not only the robotic devices within 
the patient’s body cavity, but also the robotic devices that are 
not disposed entirely within the body cavity. 

In an alternative embodiment, the console may not 
include any manipulators. In embodiments in which the 
console does not include any manipulators, a console mag 
net may be used to move the robotic device around within 
the body cavity. In a further embodiment, the manipulators 
and the console may be physically separate components. 

FIGS. 8A and 8B show an embodiment of a console 180 
without manipulators. In this embodiment, console magnet 
182 is attached to a rear face 184 of console 186. Alterna 
tively, as with any console disclosed herein, console magnet 
182 may be two or more magnets positioned in any con 
figuration or location on console 186 so as to be able to be 
magnetically coupled with a robotic device. In practice, 
console 186 is positioned on or adjacent to an external 
surface of body cavity such that rear face 184 and console 
magnet 182 of console 186 are adjacent to the external 
Surface. In this position, console magnet 182 can interact 
with any robotic device disposed within the patient’s body 
and in certain embodiments can maintain the device in a 
position against internal cavity wall of the body cavity. 

In one embodiment, the console 186 of FIGS. 8A and 8B 
is used to operate a robotic device that has no arms. That is, 
the console 186 can be used to move a robotic device from 
one point to another within the patient’s body by moving the 
console 186 outside the body, and further can have actuation 
components other than arms to operate the various kinds of 
robotic devices that may be positioned inside the patient. 
Without being limiting, examples of the types of robotic 
devices that could be operated with the console 186 include 
robotic camera devices such as those disclosed in 117766, 
683. In this embodiment, visual feedback from a robotic 
camera can be displayed on the video screen 188. In further 
embodiments, the console 186 has non-arm controls such as 
buttons or other types of actuators that allow the console 186 
to be used with any robotic device. 
Two further embodiments of consoles without manipula 

tor arms are provided in FIGS. 9, 10A, and 10B. FIG. 9 
shows a Surgical visualization and device manipulation 
system 200 having console 202, console magnets 204A and 
204B (collectively referred to as “console magnets 204) 
and magnetically-controlled robotic device 206. FIGS. 10A 
and 10B shows a Surgical visualization and device manipu 
lation system 210 having console 212, first console magnet 
214A and second console magnet 214B (collectively 
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referred to as "console magnets 214) and magnetically 
controlled robotic device 216. Given that the consoles 202, 
212 have no manipulators, the robotic devices 206 and 216 
are thus controlled by movement of consoles 202 and 212 
and console magnets 204 and 214, respectively, over body 
cavity 218. 

It is understood that any console embodiment disclosed 
herein can be used to position and/or control any known 
robotic device that can be used for medical procedures. 

FIG. 11 depicts a Surgical system 220 according to one 
embodiment in which the system includes two consoles: one 
for the instructor 222 and another for the student 224. The 
two consoles 226A, 226B are connected or otherwise 
coupled to a robotic device (not shown) positioned within 
the patient’s body. Each console 226A, 226B has a right 
manipulator arm 228A, 228B and a left manipulator arm 
230A, 230B. Alternatively, each console 226A, 226B can 
have one manipulator arm, no manipulator arms, or any 
other configuration as described herein with respect to the 
various console embodiments. In this embodiment, the com 
mands provided at the student console 226B can be 
bypassed for various purposes such as preventing the end 
effectors from damaging tissues. 
As shown in FIG. 11, the two consoles 226A, 226B are 

connected to the in vivo Surgical robot used inside the 
patient. The connection between each of the consoles 226 
and the robotic device (not shown) can be any connection as 
described herein. It is understood that the consoles 226 can 
be positioned anywhere. In one embodiment, the consoles 
226 are positioned directly on the patient 232. Alternatively, 
they can be positioned beside the patient 232. For example, 
in one embodiment in which they are positioned beside the 
patient 232, both consoles 226A, 226B are placed on stands 
similar to music stands. It is further understood that when 
the consoles 226 are positioned beside or in the same room 
with the patient 232, the consoles 226A, 226B can be 
positioned such that the users 222, 224 at the consoles 226A, 
226B are facing the patient 232. In one embodiment, the 
consoles 226A, 226B can be positioned side by side. Alter 
natively, the consoles 226A, 226B can be positioned in any 
orientation in the room with the patient 232. 

In accordance with one implementation as discussed 
above, both consoles 226 are positioned in the same room as 
the patient. Alternatively, one console is positioned in the 
same room as the patient and the other console is positioned 
Somewhere else such as another room in the same building 
or elsewhere in the same country or elsewhere in the world. 
In a further alternative, both consoles 226A, 226B are 
positioned elsewhere outside the room containing the patient 
232. As a result, the surgeon 222 and/or the student 224 can 
operate a console remotely, including from a different loca 
tion in the world. 
One embodiment of the system depicted in FIG. 11 

enhances patient safety. That is, the system makes it possible 
for multiple hands or multiple operators to have access to the 
instruments at the same time while also allowing the instruc 
tor 222 to disconnect (or “freeze) the students console 
226B from the robotic device (that is, disconnect the com 
munication between the student’s console 226B and the 
robotic device Such that commands cannot be sent from the 
students console 226B) by the touch of a pedal 234 or 
button (not shown). In this way, the instructor 222 can take 
over control of the robotic device during surgery if/when 
necessary. 

In accordance with another implementation, the console 
manipulators 228, 230 (also referred to as “manipulator 
handles,” “handles,” or 'joysticks) not only have position 
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encoders (used to determine the joystick positions) con 
nected to them as described with other console embodiments 
discussed above, but the consoles 226A, 226B can also have 
actuators (not shown) configured to drive the handles 230, 
228. That is, the actuators are coupled to the handles 230A, 
228A such that the actuators can be actuated to move the 
handles 230B, 228B. According to one embodiment, the 
actuators on the second console 226B can be coupled with 
the first console 226A such that manipulation of the handles 
at the first console 226A can cause the actuators at the 
second console 226B to actuate the handles 228B, 230B. 
Thus, one implementation provides for a master-slave rela 
tionship between the two consoles 226A, 226B. It is under 
stood that this master-slave relationship could operate in 
either direction, so that either the manipulators 230A, 228A 
at the first console 226A are controlling the manipulators 
230B, 228B at the second console 226B or vice versa. 

According to one embodiment, the master-slave connec 
tion implementation described above with respect to the 
consoles 226 can allow the student to observe the instruc 
tor's motions during Surgery. That is, the movement of the 
handles 230A, 228A at the instructor's console 226A causes 
the handles 230B, 228B at the student’s console 226B to 
move in the same way, thereby allowing the student 224 to 
observe the movements of the handles 230B, 228B. Simi 
larly, when the student 224 takes control, the instructor's 
console 226A can become the slave console. That is, the 
handles 230B, 228B of the students console 226B can be 
coupled to the handles 230A, 228A of the instructor's 
console 226A such that movement of the student console 
handles 230B, 228B actuates similar movement of the 
instructor's console handles 230A, 228A so that the instruc 
tor 222 can observe or maintain a “feel for what the student 
224 is doing. In accordance with one alternative embodi 
ment, the instructors console 226A can also have a pedal 
234, button, or any other kind of component (not shown) as 
also discussed above for disconnecting the student console 
226B from the end effectors 184, 186 or otherwise disrup 
tion communications between the student console 226B and 
the in vivo device (not shown). Thus, the instructor 222 can 
observe the student's 224 actions via the master-slave con 
nection between the consoles 226A, 226B and, if necessary, 
actuate the disconnection pedal 234 to easily take over the 
Surgery. 

It is understood that the linked consoles as described 
above could include any number of consoles with a central 
command for controlling which console has control over the 
in vivo Surgical robotic device. In accordance with another 
implementation, commands from multiple consoles can be 
used together to command the robotic device. In this 
embodiment, the multiple commands can be scaled to allow 
the instructor to slowly allow more control for the student. 

FIGS. 12A and 12B depict a surgical system 240 accord 
ing to another embodiment in which the instructor console 
depicted in FIG. 12A is configured to allow the user to touch 
a pen 242 (or any pen-like instrument or even the user's 
finger) on the screen 244 to provide information and/or 
instructions that appear on the student console 258, shown 
in FIG. 12B. The instructor console 246 can also be referred 
to as the “first console' or “primary console.’’, while the 
student console 258 can also be referred to as the “second 
console' or “secondary console.” In this implementation, the 
system 240 is configured such that the instructions drawn on 
the screen 244 in FIG. 12A appear on the student’s screen 
260 in FIG. 12B. In one embodiment, the instructor 248 can 
use this system 240 to easily communicate with the student 
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262. For example, the instructor 248 could easily illustrate 
important Surgical features and point to sites of interest. 

It is understood that that the user 206 of the primary 
console 246 need not be an instructor, but rather can be any 
user who can or wants to enter information at the primary 
console 246 Such that it appears on the secondary console 
258. It is also understood that, according to one alternative 
implementation, the entry of information on one screen and 
appearance on the other screen can operate in either direc 
tion, so that information entered on either screen appears on 
the other. 

It is also understood that the technology discussed above 
with respect to FIGS. 12A and 12B can be used with 
standard laparoscopic Surgery using standard tools or it can 
be combined with the use of in vivo robotic devices as 
shown in FIG. 12B. 
When used with standard laparoscopic technology, 

according to one embodiment, the Surgeon 206 provides the 
information using the pen-like instrument 242 on a touch 
screen monitor 244 that may or may not include the video 
feed from the laparoscope. This input is then overlaid onto 
or otherwise appears on the monitor or screen 260 the 
Surgical team is using. In this embodiment, the input touch 
screen 244 further allows the instructor 206 to erase any 
markings or clear the screen 244. Furthermore, the system 
240 also allows segments of the procedure (or the entire 
procedure) to be saved. These segments could include video, 
audio, and instructions drawn on the screen 244. This allows 
the instructor 206 or student 262 to review the surgery or 
even replay the surgery using either console 246, 258 in 
slave mode. 

In one embodiment, the touch screen 244 used in the 
above systems is a Touchscreen tablet notebook such as the 
Pavilion TX1000Z by Hewlett Packard located in Palo Alto, 
Calif. In an alternative embodiment, the touchscreen is a 
Touchscreen overlay Such as the MagicTouch touchscreen 
by Mass Multimedia, Inc., located in Colorado Springs, 
Colo. In one embodiment, the communication between 
screens is transferred via USB technology, while in another 
embodiment the student screen 260 is a second screen 
operating from the instructor tablet notebook using a stan 
dard 9-pin monitor output. In a further alternative, the touch 
screens utilized in the various embodiments of the above 
system can be any known touch screen known in the art. 

FIG. 13 depicts a further embodiment of a surgical system 
280 having a stabilization system 282. The stabilization 
system 282, according to one embodiment, allows the con 
sole 288 to be stabilized and/or fixed in place. Such a 
stabilization system 282 can reduce instability of the surgi 
cal environment caused by the weight of the console 288 and 
manipulators 294 and/or the force applied by the surgeon 
during use that can result in rocking and movement of the 
console 288 and handles 294 in relation to the patient’s body 
and/or the device 298 disposed within the patient’s body. 
As shown in FIG. 13, the system has two linkages 284. 

One end of each linkage 284 is attached to the console 288, 
and the other end of each linkage 284 is attached to a base 
290. Alternatively, the linkages 284 can be attached to the 
manipulator arms 294 or any other portion of the visualiza 
tion and control system 280. 

The base 290, according to one embodiment, is a plat 
form, table (including, for example, an operating table), 
gurney, stand, or a cart. Alternatively, the base 290 is a 
translating component that is coupled to and configured to 
translate along the operating table or other similar object in 
a treatment area, such that the stabilization system 282 can 
move back and forth next to or along the side of the patient. 
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In a further alternative, the base 290 is the floor or any other 
stable object. The attachment via the linkages 284 of the 
console 288 to the base 290 provides stability to the com 
ponent 288. In yet another alternative, there is no base and 
the linkages 284 are attached or coupled to the patient in 
Some fashion. For example, in one embodiment, the linkages 
284 can be attached to a strap or other object around the 
patient’s leg or waist or any other type of object that is 
attached or coupled to the patient. 

In one aspect, the linkages 284 further provide the sur 
geon with the ability to grossly position the robot 298 inside 
the patient’s body and then lock the system 282 into an 
appropriate or desired position for the procedure. In one 
implementation, the base 290 provides absolute rigidity, or 
alternatively it provides various amounts of damping to the 
movement of the system 282. Further, the system 282 can be 
Subsequently unlocked to allow the Surgeon to reposition 
during the procedure or remove the system 282. 
The linkages 284 can be any structures capable of attach 

ing and stabilizing the system 280 and the base 290. In one 
alternative embodiment, the linkages 284 have clamps 
(shown schematically as 292) that assist with attachment to 
the base 2.90. 

In another embodiment, the linkages 284 further have one 
or more joints (shown schematically as 286) that allow the 
linkages 284 to be reconfigured or repositioned as needed. 
Such joints 286 can be lockable such that they can be 
positioned and then fixed into place. Further, the joints 286 
can also provide for variable amounts of damping. 

According to one embodiment as shown in FIG. 13, the 
stabilization system 282 has two linkages 284. Alternatively, 
the system can have one linkage or more than two linkages. 
The number of linkages can vary depending on the patients 
size, the procedure being performed, and/or the specific 
procedural equipment (including the specific robotic 
devices) being used. 
The mechanical joints, linkages, and attachment clamps 

of system 282 can be manufactured from metal or polymers 
or any other known material used in medical devices. 
Further, the linkages 284 can be rigid or deformable. In 
embodiments in which the linkages 284 are deformable, the 
joints 286 can be adjusted for gross positioning while fine 
positioning is attained by deforming or bending the linkages 
to allow for precise position of the visualization and control 
system. 
Any robotic device configured for use within a patients 

body cavity may be used with one or more of the various 
Surgical visualization and device manipulation systems 
described herein. As used herein, “robotic devices' is 
intended to mean any device that may be used laparoscopi 
cally or endoscopically during a Surgical procedure. Some of 
the various robotic devices that may be used with the 
systems disclosed herein include, but are not limited to, any 
one or more of the devices disclosed in copending U.S. 
patent application Ser. No. 11/932,441 (filed on Oct. 31, 
2007 and entitled “Robot for Surgical Applications'), Ser. 
No. 1 1/695,944 (filed on Apr. 3, 2007 and entitled “Robot 
for Surgical Applications'), Ser. No. 11/947,097 (filed on 
Nov. 27, 2007 and entitled “Robotic Devices with Agent 
Delivery Components and Related Methods), Ser. No. 
11/932,516 (filed on Oct. 31, 2007 and entitled “Robot for 
Surgical Applications'), Ser. No. 1 1/766,683 (filed on Jun. 
21, 2007 and entitled “Magnetically Coupleable Robotic 
Devices and Related Methods”) and Ser. No. 11/766,720 
(filed on Jun. 21, 2007 and entitled “Magnetically Couple 
able Surgical Robotic Devices and Related Methods’), 
60/890,691 (filed on Feb. 20, 2007), 60/949,391 (filed Jul. 
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12, 2007), 60/949,390 (filed Jul. 12, 2007), 60/956,032 (filed 
Aug. 15, 2007), 60/983,445 (filed Oct. 29, 2007), 60/990, 
062 (filed Nov. 26, 2007), 60/990,076 (filed Nov. 26, 2007), 
60/990,086 (filed Nov. 26, 2007), 60/990,106 (filed Nov. 26, 
2007), and 60/990,470 (filed Nov. 27, 2007), all of which are 
hereby incorporated herein by reference in their entireties. 

In an exemplary embodiment, the robotic device can be a 
natural orifice translumenal endoscopic Surgical device, 
such as a NOTES device. Those skilled in the art will 
appreciate and understand that various combinations of 
features are available including the features disclosed herein 
together with features known in the art. 

FIGS. 14A and 14B show one embodiment of robotic 
device 300 for use with one or more of the systems disclosed 
herein, in an unfolded position and a folded position, respec 
tively. FIGS. 14A and 14B will be discussed in conjunction 
with one another. Robotic device 300 includes device mag 
net (not shown), body 302, first arm 304A and second arm 
304B (collectively referred to as “arms 304), first shoulder 
joint 306A and second shoulder joint 306B (collectively 
referred to as “shoulder joints 306), first elbow joint 308A 
and second elbow joint 308B (collectively referred to as 
“elbow joints 308'), first end effector 310A and second end 
effector 310B (collectively referred to as “end effectors 
310) and imaging component 312. Here the shoulder joints 
306 are rotatable in two directions, the elbow joints 308 are 
translational in one direction, and the end effectors 310 are 
rotational in one direction. In one embodiment, device 
magnet (not shown) can interact with an external magnet 
such as a console magnet to position the robotic device 300 
within a patient and in spatial relation to the console in 
similar fashion to the implementations discussed above. 
The upper (or “first) portion of first arm 304A is pivotally 

connected to body 302 by first shoulder joint 306A. Further, 
the lower (or “second) portion 314A of the first arm is 
translationally coupled to the upper portion 304A at the first 
elbow joint 308A.. First end effector (or “operational com 
ponent) 310A is rotationally attached to the lower portion 
314A. Likewise, the upper portion of second arm 304B is 
pivotally connected to body 302 by second shoulder joint 
306B, while the lower portion 314B is translationally 
coupled to the upper portion 304B at the second elbow joint 
308B. Second end effector 310B is rotationally attached to 
the lower portion 314B. The connections of arms 304 to 
body 302 allow arms 304 to rotate about an axis perpen 
dicular to the length of body 302 and further about an axis 
parallel to the length of the body 302. 

In accordance with one embodiment as best shown in 
FIG. 14B, each arm 304 has 4 degrees of freedom (DOF) so 
that the motion of end-effectors 310 is similar to the motion 
of standard laparoscopic tools (three rotations and one 
translation). Each arm 304 can rotate around an axis per 
pendicular to the length of the body 302 as shown by arrow 
A (wherein the rotation is also referred to as "yaw), and 
further can rotate around an axis parallel to the body 302 as 
shown by arrow B (wherein the rotation is also referred to 
as “pitch'). In addition, each arm 304 can rotate at the end 
effectors 310 around an axis parallel to the arm 304 as shown 
by arrow C (wherein the rotation is also referred to as “roll'). 
Finally, each arm 304 can also be extended translationally by 
the extension of the lower portions 314 as shown by arrow 
D to lengthen the reach of the end effectors. In this embodi 
ment, the lengthening or translation D is accomplished using 
a prismatic joint which is referred to here as the elbow joint. 
Using robotic device 300 with arms 304 having the same 
degrees of freedom as Standard laparoscopic tools in con 
junction with a console having manipulators according to 
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various embodiments disclosed herein allows the user to 
operate the manipulators in a manner that Substantially 
replicates the movement of standard, non-robotic laparo 
scopic tools. While various specific robotic devices may be 
shown herein, it is to be appreciated that numerous robotic 
devices with arms or end effectors having various degrees of 
freedom are available. In a further embodiment, it is under 
stood that the consoles disclosed herein can also be used 
with various robotic devices having no arms or end effectors. 
Lower portions 314 of arms 304 are fitted with end 

effectors 310 that are extendable and retractable from upper 
arm portions 304. The design of end effectors 310 are based 
on existing standard hand-held laparoscopic tools. As used 
herein, “end effector” is intended to mean any component 
that performs some action or procedure related to a Surgical 
or exploratory procedure, and in particular any device that 
can perform, or assist in the performance of any known 
Surgical or exploratory laparoscopic procedure. An end 
effector can also be referred to as an “operational compo 
nent'. In one aspect, the one or more end effectors 310 assist 
with procedures requiring high dexterity. In currently known 
standard techniques, movement is restricted because passing 
the rigid laparoscopic tool through a small incision restricts 
movement and positioning of the tool tip. In contrast, a 
robotic device having an operational component inside a 
body cavity is not subject to the same constraints. Examples 
of end effectors 310 include, but are not limited to: clamps, 
Scalpels, any type of biopsy tool, graspers, forceps, staplers, 
cutting devices, cauterizing devices, suction/irrigation 
devices, ultrasonic burning devices or other similar compo 
nent. It is understood that the end effector can be any end 
effector, including interchangeable end effectors, as dis 
closed in any of the patents or applications disclosed herein 
or any other known end effector used in robotic devices for 
medical procedures. In addition, it is understood that these 
devices can also include any additional components useful 
in operating the end effectors, such as actuators, as known in 
the art and/or described in the incorporated patents or 
applications. 

Robotic device 300 can provide two dimensional visual 
feedback, three dimensional visual feedback or stereoscopic 
imaging to a Surgeon via imaging component 312. Accord 
ing to one embodiment, imaging component 312 (also 
referred to herein as a “camera') is disposed on a center 
portion of body 302 of robotic device 300. It is understood 
that imaging component 312 as used herein is intended to 
mean any device for capturing an image. Imaging compo 
nent 312 provides visual feedback of body cavity to a visual 
display on a console (such as, for example, the console 12 
of FIG. 1). Various embodiments of imaging component 312 
include, but are not limited to: a camera providing real-time 
Video to the user through visual display, a stereo camera that 
creates a three-dimensional image, a complementary metal 
oxide semiconductor (“CMOS) digital image sensor, a 
square 7 mm camera, any Small camera similar to those 
currently used in cellular or mobile phones, any imaging 
device currently used in or with endoscopic devices, a 
pan-and-tilt camera, and any device that provides a Sufficient 
depth of field to observe the entire abdominal cavity. An 
exemplary embodiment of a complementary metal oxide 
semiconductor (“CMOS) digital image sensor is Model No. 
MT9V125 from Micron Technology, Inc., located in Boise, 
Id. Further, any imaging component disclosed in any of the 
patents or applications incorporated herein can be incorpo 
rated into any device used with systems and devices dis 
cussed herein. Although FIGS. 14A and 14B depict imaging 
component 312 disposed on the center portion of body 302 
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of robotic device 300, imaging component 312 may be 
disposed on any portion of body 302 or robotic device 300. 

Imaging component 312, in one implementation, can also 
include a light component (not shown) configured to light 
the area to be viewed, also referred to as the “field of view.” 
Light component can be positioned proximate to any imag 
ing component and end effectors to provide constant or 
variable illumination for the imaging component so that the 
view of the area of interest (such as, for example, the 
Surgical site) is improved or the viewing area is increased. 
Light component illuminates the field of view of the surgical 
site, thereby facilitating operation of any robotic device 
and/or any other devices being used in conjunction with 
Such robotic device. In one example, lighting component is 
a light emitting diode (LED) light. In another example the 
lighting component can be a fiber optic filament or cable 
with light source outside of the patient and transmitted to the 
robot via a fiber optic cable. In a further alternative, lighting 
component can be any suitable illumination source, includ 
ing any such source as disclosed in any of the patents or 
applications incorporated herein. Although imaging compo 
nent 312 is discussed as including only one light component, 
imaging component 312 may include any number of light 
components. In an exemplary embodiment, the light com 
ponent may include two 5 mm LEDs. 

Robotic device 300 can be inserted into or positioned in 
a body cavity in many ways, including the use of a standard 
laparoscopic port or a natural orifice approach or any other 
method known in the art or disclosed in any of the patents 
or applications incorporated herein. In one embodiment, 
arms 304 of robotic device 300 are partially disconnected by 
disconnecting magnets 326A and 326B from magnets 328A 
and 328B, respectively, at each of shoulder joints 306A and 
306B. This increases the level of rotation of arms 304 and 
allows robotic device 300 to take a linear but flexible 
structure so that it can be more easily inserted into body 
cavity. Robotic device 300 can then be assembled once 
inside the body cavity. This assembly involves attaching 
magnet 328A to 326A and magnet 328B to 326B. In one 
example the Surgeon can actively perform this assembly 
using other tools. In another example the arms are spring 
loaded to move to this position after insertion. 

It is understood that the robotic device 260 depicted in 
FIGS. 14A and 14B contains various motors and other 
internal components for operation of the device similar to 
those disclosed in U.S. application Ser. No. 1 1/766,683, 
entitled “Magnetically Coupleable Robotic Devices and 
Related Methods, filed on Jun. 21, 2007, which is incor 
porated by reference above. It is also understood that this 
device is merely exemplary of the many robotic devices that 
can be used with the visualization and control systems 
disclosed herein. 

While multiple embodiments are disclosed, still other 
embodiments will become apparent to those skilled in the art 
from the following detailed description, which shows and 
describes illustrative embodiments. As will be realized, the 
embodiments are capable of modifications in various obvi 
ous aspects, all without departing from the spirit and scope 
of the invention. Accordingly, the drawings and detailed 
description are to be regarded as illustrative in nature and not 
restrictive. 

EXAMPLE 1. 

The following is an exemplary kinematic design of the 
motion of one embodiment of a NOTES robotic device that 
can be used with any console as disclosed herein. The design 
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is merely exemplary of one particular embodiment of a 
robotic device and is not intended to be limiting in any 
fashion, as any number of robotic devices can be used in 
conjunction with a console, as discussed above. 

This particular design begins with a kinematic model of 
the robotic device, as shown in FIG. 15A. Here the kine 
matic model of the NOTES robot is shown overlaid on the 
robot schematic in FIG. 15A. The robot is a 2-DOF planar 
manipulator with a rotational shoulder joint A and prismatic 
arm B denoted by joint variables 0 and a respectively. 
The Denavit-Hartenberg parameters for the robot are 

shown in Table 1. The parameter Co defines the angle of 
rotation of the robot with respect to a universal frame {0} 
that is used to introduce gravity. Parameters a and as are 
constants defining the body width and offset of the end 
effector with respect to the axis of rotation of the shoulder 
joint, respectively. 

TABLE 1. 

DENAVIT-HARTENBERG PARAMETERS 

i Ci-1 C; 1 0. di 

1 Co O O O 
2 O C1 0. O 
3 O C2 -90 O 
4 O C3 90 O 

Using the general kinematic model and the Denavit 
Hartenberg parameters, the equations that describe the loca 
tion x, y of the end-effector 332 with respect to frame {1} 
are defined in Equation 1 and used to derive the Jacobian of 
the robot as given in Equations 2 and 3. The position of the 
end effectors 332 with respect to frame {1} is denoted as 
Porg4. 

IP ce a2 + Sea} + a X S = sin(i) Equation 1 
Orga 

g St. G2 - Ced3 y ci = cos(i) 

Equation 2 
J(q1, q2) = d(02, a2) = da, Porg4 

If d2 + Ced3 Ca Equation 3 
CaCl2 + Seas Sg 

Inverse kinematic equations for joint variables a and 0. 
are obtained by Solving (1). Equation 4 lists the inverse 
kinematic equation that describes variable a, while Equa 
tion 5 lists 0. 

Equation 4 
a2 = w x2 + y?-2xa1 + ai - ai C 

Xa3 + ya - all as Equation 5 6 = arcian a2(X - a1)-yas 

The geometry of the shoulder joint is given by the 
kinematic model of an offset slider crank mechanism, shown 
in FIG. 15B. Distance, e, is the offset distance from the line 
of action of the slider 334 to the axis of rotation A of the arm 
340 with respect to the main body 338, and distance, s, is the 
location of the slider 334 with respect to the axis of rotation 
A. The distance L1 is the length of the linkage 336 between 
pins 344 and 346. The distance L2 is the length between the 
axis of rotation A and the pin 344. Position and velocity 
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equations derived from the above configuration can be 
solved for slider position and velocity as functions of crank 
position, p, and angular velocity (). Equation 6 describes the 
slider position s, while Equation 7 describes the slider 
velocity S. 

= L2 sinip + Ll 1 (t + L2 cosp f Equation 6 
S = L2S1mp + L. L1 

L2sinip (e+ L2 cosp) Equation 7 
S = L2 cosp -- == 

1 (t + L2 cosp f 
L1 

Open-loop control tests were performed with the NOTES 
robot for a Cartesian straight line path. Using a linear 
function with parabolic blends and assuming a maximum 
allowable Velocity, a path was planned in Cartesian space. 
The Cartesian path was converted to joint space using the 
inverse kinematic relationships, and the inverse of the Jaco 
bian, all described above in Equations 1 through 7. 
A path from P1 =(0.60) to P2=(40,85) (mm) in Cartesian 

space was generated, as shown in FIG. 15C. Joint variable 
0 was then converted to actuator space, where velocity was 
linearly related to motor speed, using the equations derived 
for the offset slider-crank mechanism (Equations 6 and 7). 

Using the generated actuator space velocity traces, six 
open-loop tests were performed. A comparison of the 
planned path and the actual paths is shown in FIG. 15D. The 
mean of the actual paths is given as a dotted line with an 
envelope containing all paths. While the open-loop tests 
closely follow the desired path, feedback control will 
improve system performance. 

EXAMPLE 2 

The following is an exemplary design of the motion of 
one embodiment of the shoulder joint of a NOTES robotic 
device. Here, a departure from typical joint designs was 
required because of a desire to keep the arm in plane with the 
body of the robotic device. One example of a kinematic 
model of the shoulder joint of the NOTES robotic device is 
shown in FIG. 16. In the present mechanism a powerscrew 
applies a force (F) to a slider constrained to move only in 
the y-direction. The slider mechanism is coupled to the 
robotic arm (ac) by a link (bd) with rotational degrees of 
freedom at each end. Length (ab) is constant and defines the 
length of the arm from the rotation point (a) to the linkage 
pin (b). Length (ad) represents the distance between the 
rotation point (a) and the slider (d) Angle 0 is the angle 
between (ab) and (ad). For this particular example, link 
lengths of the model are shown in Equations 8-11. 

ab= i Equation 8 

(CF (3. Equation 9 

ad = r Equation 10 

bd=d Equation 11 

Using these lengths, equations for the amount of force 
from the slider (F) that can be translated through the 
mechanism to the end-effector in the X or y-directions can be 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

24 
derived and are given by Equations 12 and 13 where F is the 
amount of force in the x-direction and F, is the amount of 
force in the y-direction. 

2Fl 8 2 Equation 12 
F = t i = tan(9), 2.3 

2Fl 2 Equation 13 
'T as (d? - ?) + r? 

In the present kinematic configuration, a very large 
mechanical advantage is achieved when link bd nears per 
pendicular to link ad, which is only possible when the ratio 
of d to 1 is less than one. Mathematically, at this point the 
applicable forces (Fx) are infinite. However, when the ratio 
of d to 1 is less than one, the range of motion of the shoulder 
joint becomes limited, with a ratio of d/l of 0.9, yielding a 
maximum angle of rotation of 65 degrees. In this example, 
in order to achieve both a large range of motion and the 
mechanical advantage of the linkage configuration, a d/1 
ratio of 1 was used. With this ratio, Equations 12 and 13 
simplify to Equations 14 and 15 respectively, which were 
used to determine link length. 

2Fl Equation 14 
tan(6) 

(3max 

2Fl Equation 15 
y 

(3max 

EXAMPLE 3 

The following is an exemplary design of the motion of 
one embodiment of the manipulators of the console. In this 
example, laparoscopic tool handles are used to control the 
movement of the NOTES robotic device. Natural and real 
istic control of the robotic device was achieved by requiring 
the laparoscopic tool to rotate about the same point as the 
robotic arm. This point is shown to be physically the same 
point; however, this point could be a virtual point. Relative 
motion with respect to the virtual point when the virtual 
point is not physically in the same location for both the 
console and the robotic device would create the same effect. 

In the present example, an “offset planar hinge' similar to 
that shown in U.S. Pat. No. 5,657.584 was used. The linkage 
allows the manipulators to rotate about a remote point. An 
example of an offset planar hinge joint is shown in FIG. 17. 
The offset planar hinge joint shown in FIG. 17 is similar to 
offset planar hinge joint shown and described in the discus 
sion of FIGS. 7A and 7B. A kinematic representation of the 
offset planar hinge joint in the present example is shown in 
FIGS. 18A and 18B. Equations 16-22 describe the geometry 
of the linkage. The lengths of the links between pins are 
listed as the two pin labels (ie. ab is the distance between pin 
a and pin b). Many of the links are of the same length and 
are grouped as either members of links L. L or L. The 
angle cb is the angle between links fh and fd. 

if L3 Equation 16 12 (i = tan () 

ab = cd = ef=fi = gi = ik = L2 Equation 17 
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-continued 
Equation 18 

ce 8 f fg hi 

Equation 19 bd d gk. i L3 

— — . . — Equation 20 
accadefice|df 

Equation 21 fhlgiik 

Equation 22 fghi 

Equations 20-22 list which links are parallel. With these 
relationships, the distance from point d to g can be found. 
This distance is used to determine the maximum rotation of 
the linkage in the present example. The distance is given in 
Equation 23 and simplified to Equation 26. 

de L3 cosé + costi Equation 23 
g = sind siné - sind 

ind L3 Equation 24 
Sli - 

W L + Li 

d L1 Equation 25 
COSGi - 

W Li+ Li 

L Equation 26 
cosé + --- 

-3. W L + Li 
dig = W Li+ Li L3 

siné 
W Li+ Li 

Using the kinematic model, the maximum relative rota 
tion of the leaves in the present example will occur when the 
distance from point d to g is equal to Zero, and a maximum 
bracket rotation (0), for the present example, can be 
found. 

-3. Equation 27 
|dg| = 0 

L Equation 28 
cosé + - –– = 0 

W Li+ Li 

Sindra - L3 = 0 Equation 29 

W Li+ Li 

tandar = L3 Equation 30 
- L1 

6a = 7- Equation 31 

The relationship between bracket rotation and leaf rota 
tion for the present example is given by Equation 32. 
Substituting for maximum bracket rotation above will yield 
maximum leaf rotation, as shown in Equation 33. 

a = 8-ci - it Equation 32 

Onax F - 2d Equation 33 
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In the present example, the design and positioning of the 

offset planar hinge joints are based on several factors. In 
order to keep the offset planar hinge joints reasonably sized, 
the offset angle of the base leaf was set on the order of 30°. 
In this example, the maximum rotation of the manipulators 
is limited by the offset angle, however designing for larger 
maximum leaf rotation will allow for sufficient rotation of 
the manipulators. Measurement of the position of the 
manipulators allows for use as controllers for the robotic 
device. As previously shown, rotation of the manipulators is 
directly related to bracket rotation (Equation 32). In the 
present example, this rotation can be measured using poten 
tiometers. Further, rotation of the offset planar hinge joints 
about the connecting pin to the console is also done using 
potentiometers. These two measurements allow for the posi 
tion of the manipulators to be determined. Translation of 
each of the manipulators about its axis can be determined 
using mechanical Switches or linear potentiometers. Further 
more, the Squeezing and releasing of the handles of the 
manipulators is monitored. Those skilled in the art will 
recognize and understand that various sensors are available 
in the art for monitoring and measuring rotation, translation, 
pressure, and force. 
The Surgical visualization and device manipulation sys 

tem generally includes a console having a visual display and 
a set of manipulators, a robotic device positioned within a 
body cavity and a connection component operably connect 
ing the console and the robotic device. The system provides 
a “virtual hole' effect by displaying images captured by the 
robotic device on the visual display. The console may be 
positioned directly over the body cavity such that as the 
images of the body cavity are being fed to the visual display, 
the surgeon feels as if he is looking directly into the body 
cavity of the patient. The Surgeon can then operate and 
control the manipulators as if the manipulators were con 
nected to the robotic device positioned within the body 
cavity at the Surgical site. In addition to providing a “virtual 
hole' effect, the system also allows a Surgeon to perform a 
procedure on a patient located at another location. As the 
Surgeon views visual display and operates manipulators, the 
robotic device responds to the movements of the manipu 
lators and performs the movements dictated by the Surgeon 
through the manipulators. 

Although the Surgical visualization and device manipula 
tion system has been described with reference to preferred 
embodiments, persons skilled in the art will recognize that 
changes may be made in form and detail without departing 
from the spirit and scope of the invention. 

What is claimed is: 
1. A Surgical system comprising: 
(a) a console positioned outside a patient's body com 

prising a visual display and at least one manipulator 
arm, 

(b) a robotic device comprising: 
(i) a device body; 
(ii) a camera configured to transmit visual images to the 

visual display; 
(iii) a first robotic arm comprising a first end effector, 

wherein the first robotic arm is coupled to a first end 
of the device body; 

(iv) a second robotic arm comprising a second end 
effector, 
wherein the second robotic arm is coupled to a 

second end of the device body, 
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wherein the robotic device is sized to be inserted 
through a standard laparoscopic port and configured 
to be positioned completely within a body cavity of 
a patient, and 

wherein the first and second robotic arms are config 
ured such that the first and second robotic arms are 
not positionable in any enclosure of the robotic 
device; and 

(c) a connection component operably coupling the con 
sole and the robotic device, 

wherein the console is further configured to be positioned 
in direct physical contact with the patient’s body during 
SC. 

2. The system of claim 1, wherein the console further 
comprises a console magnet and the robotic device further 
comprises a device magnet capable of magnetic communi 
cation with the console magnet. 

3. The system of claim 1, wherein the manipulator arm is 
operably coupled to the robotic device via the connection 
component. 

4. The system of claim 1, wherein the connection com 
ponent is a wireless connection component. 

5. The system of claim 1, wherein the manipulator arm is 
positioned relative to the visual display so as to appear to be 
penetrating the visual display. 

6. The system of claim 1, further comprising a stabiliza 
tion component coupled to the console. 

7. A Surgical system comprising: 
(a) a robotic device sized to be inserted through a standard 

laparoscopic port, the device comprising: 
(i) a device body; 
(ii) first and second robotic arms operably coupled with 

the device body, wherein each of the first and second 
robotic arms comprises an end effector, wherein the 
first robotic arm is coupled to a first end of the device 
body and the second robotic arm is coupled to a 
second end of the device body, and wherein the first 
and second robotic arms are configured Such that the 
first and second robotic arms are not positionable in 
any enclosure of the robotic device; and 

(iii) a camera associated with the device body; 
(b) a console positioned outside a patient’s body, wherein 

the console is configured to be positioned in direct 
physical contact with the patient’s body during use, the 
console comprising: 
(i) at least one manipulator arm operably coupled with 

the console, wherein the at least one manipulator arm 
is configured to be in communication with at least 
one of the first and second robotic arms; and 

(ii) a visual display disposed on the console, the visual 
display configured to receive images from the cam 
era; and 

(c) a connection component operably coupling the con 
sole and the robotic device. 

8. The system of claim 7, wherein the console further 
comprises a console magnet and the robotic device further 
comprises a device magnet capable of magnetic communi 
cation with the console magnet. 

9. The system of claim 7, wherein the at least one 
manipulator arm is operably coupled to the robotic device 
via the connection component. 

10. The system of claim 7, wherein the at least one 
manipulator arm is positioned relative to the visual display 
So as to appear to be penetrating the visual display. 

11. A Surgical system comprising: 
(a) a robotic device sized to be inserted through a standard 

laparoscopic port, the device comprising: 
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28 
(i) an elongate device body configured to be positioned 

within a cavity of a patient; 
(ii) a first robotic arm operably coupled with a first end 

of the device body, the first robotic arm comprising 
a first end effector; 

(iii) a second robotic arm operably coupled with a 
second end of the device body, the second robotic 
arm comprising a second end effector, and 

(iv) a camera associated with the device body, wherein 
the first and second robotic arms are configured Such 
that the first and second robotic arms are not posi 
tionable in any enclosure of the robotic device: 

(b) a console positioned outside the patient’s body, the 
console comprising: 
(i) first and second manipulator arms operably coupled 

with the console, wherein the first and second 
manipulator arms are configured to be in communi 
cation with the first and second robotic arms; and 

(ii) a visual display disposed on the console, the visual 
display configured to receive images from the cam 
era; and 

(c) a connection component operably coupling the con 
sole and the robotic device. 

12. The system of claim 11, wherein the robotic device is 
configured Such that it is not constrained by any entry 
incision. 

13. The system of claim 11, wherein the console is 
configured to be positioned in contact with the patients 
body during use. 

14. The system of claim 11, wherein the console is 
configured to be disposed at a location remote from the 
patient. 

15. The system of claim 11, wherein the console further 
comprises a console magnet and the robotic device further 
comprises a device magnet capable of magnetic communi 
cation with the console magnet. 

16. A Surgical system comprising: 
(a) a robotic device sized to be inserted through a standard 

laparoscopic port and configured to be positioned in a 
body cavity of a patient, wherein the robotic device 
comprises: 
(i) a device body; 
(ii) a first robotic arm operably coupled with a first end 

of the device body, the first robotic arm comprising 
a first end effector; 

(iii) a second robotic arm operably coupled with a 
second end of the device body, the second robotic 
arm comprising a second end effector, and 

(iv) a camera associated with the device body, wherein 
the camera is positioned between the first and second 
robotic arms, 

wherein the first and second robotic arms are config 
ured such that the first and second robotic arms 
cannot be positioned into any enclosure of the 
robotic device; 

(b) a console positioned outside the patient’s body, the 
console comprising: 
(i) first and second manipulator arms operably coupled 

with the console, wherein the first and second 
manipulator arms are configured to be in communi 
cation with the first and second robotic arms; and 

(ii) a visual display disposed on the console, the visual 
display configured to receive images from the cam 
era; and 

(c) a connection component operably coupling the con 
sole and the robotic device. 
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17. The system of claim 16, wherein the console is 
configured to be disposed at a location remote from the 
patient. 

18. The system of claim 16, wherein the first and second 
manipulator arms are operably coupled to the robotic device 5 
via the connection component. 

19. The system of claim 16, wherein the connection 
component is a wired connection component. 

20. The system of claim 16, wherein the manipulator arm 
is positioned relative to the visual display So as to appear to 10 
be penetrating the visual display. 
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