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Abstract Physiological testing of elite athletes requires the correct identification and
assessment of sports-specific underlying factors. It is now recognised that per-
formance in long-distance events is determined by maximal oxygen uptake
(V

.
O2max), energy cost of exercise and the maximal fractional utilisation of

V
.
O2max in any realised performance or as a corollary a set percentage of V

.
O2max

that could be endured as long as possible. This later ability is defined as endur-
ance, and more precisely aerobic endurance, since V

.
O2maxsets the upper limit of

aerobic pathway. It should be distinguished from endurance ability or endurance
performance, which are synonymous with performance in long-distance events.
The present review examines methods available in the literature to assess aerobic
endurance. They are numerous and can be classified into two categories, namely
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direct and indirect methods. Direct methods bring together all indices that allow
either a complete or a partial representation of the power-duration relationship,
while indirect methods revolve around the determination of the so-called anaer-
obic threshold (AT). With regard to direct methods, performance in a series of
tests provides a more complete and presumably more valid description of the
power-duration relationship than performance in a single test, even if both ap-
proaches are well correlated with each other. However, the question remains open
to determine which systems model should be employed among the several avail-
able in the literature, and how to use them in the prescription of training intensi-
ties. As for indirect methods, there is quantitative accumulation of data supporting
the utilisation of the AT to assess aerobic endurance and to prescribe training
intensities. However, it appears that: (i) there is no unique intensity corresponding
to the AT, since criteria available in the literature provide inconsistent results;
and (ii) the non-invasive determination of the AT using ventilatory and heart rate
data instead of blood lactate concentration ([La– ]b) is not valid. Added to the fact
that the AT may not represent the optimal training intensity for elite athletes, it
raises doubt on the usefulness of this theory without questioning, however, the
usefulness of the whole [La– ]b-power curve to assess aerobic endurance and pre-
dict performance in long-distance events.

Maximal oxygen uptake (V
.
O2max) has long been

used as a determinant of performance in middle-
and long-distance events.[1] As such, its measure-
ment has become routine in the physiological test-
ing of elite athletes.[2] However, when the range of
V
.
O2max is narrow, as is the case in highly trained

athletes, the correlation between V
.
O2max and per-

formance is relatively poor.[3,4] In fact, two athletes
with similar V

.
O2max do not necessarily perform

equally.[3,5] Alternatively, an athlete with a V
.
O2max

lower than other athletes could compensate by be-
ing able to use a higher percentage of V

.
O2max

(%V
.
O2max) to achieve the same oxygen uptake

(V
.
O2) [ml/min/kg] during the race.[4,6]

Since the classic work of di Prampero et al.,[7,8]

it is recognised that other parameters are crucial in
the prediction of long-distance performance, namely
the energy cost of exercise and the ability to sustain
a high %V

.
O2max throughout the entire effort dura-

tion. This latter ability is defined by some authors
as endurance.[9-12] In order to make the distinction
with endurance performance, which is often used
synonymously with performance ability in long-
distance events, and since V

.
O2max sets the upper limit

of the aerobic pathway, we propose to call it aero-
bic endurance. However, this definition of endur-

ance is not unanimously accepted. The cornerstone
of this theoretical framework is that endurance is
always expressed relative to an upper limit. Other-
wise, it is not possible to separate endurance from
other factors of performance (i.e. the upper limit of
the considered pathway and the energy cost of ex-
ercise). This theoretical framework proposes the
existence of other types of endurance, namely mus-
cular endurance, which can be defined as the abil-
ity to sustain a high fraction of maximum voluntary
contraction for a prolonged period of time,[13] or
even anaerobic endurance.

As outlined by Péronnet and Thibault,[12] the
physiological basis of aerobic endurance is not
clearly understood. Outstanding aerobic endurance
(i.e. the capacity to sustain a very high fraction of
V
.
O2max for a given duration) can be associated with

a combination of several factors, including a high
percentage of type I muscle fibres, the capacity to
store large amounts of muscle and/or liver glyco-
gen, the capacity to spare carbohydrate to reserve
by using more fatty acids as energy substrates, and
the capacity to efficiently dissipate heat.[14-16]

Since aerobic endurance is independent of
V
.
O2max (i.e. two athletes with a similar V

.
O2max are

not necessarily able to sustain the same %V
.
O2max

676 Bosquet et al.

 Adis International Limited. All rights reserved. Sports Med 2002; 32 (11)



for the same duration),[6,12,17] aerobic endurance
should be assessed with specific tools. Gradually the
anaerobic threshold (AT: expressed in %V

.
O2max)

has become a standard, because it is closely linked to
the %V

.
O2max that can be maintained in long-distance

events.[4,6,18,19] However, it does not represent the
unique means to assess aerobic endurance. Meth-
ods available in the literature are numerous and
might generate some confusion for sports scien-
tists, coaches and athletes.

The main purpose of this review, therefore, is
to examine methods that have been proposed to
assess aerobic endurance, presented as direct and
indirect methods. Direct methods correspond to
the definition we have adopted, that is, a relative
intensity that could be maintained or endured as
long as possible or its corollary, the highest rela-
tive intensity for a set duration or distance. On the
other hand, indirect methods such as the ‘anaero-
bic threshold’ are not a maximal duration measure
per se nor a maximal relative intensity for a set
duration, but they are supposed to reflect aerobic
endurance. A secondary aim of the manuscript is
to examine practical applications of these meth-
ods.

1. Direct Measures of 
Aerobic Endurance

1.1 Aerobic Endurance Index Computed
from the Performance in a Single Test

There are essentially three types of tests allowing
one to assess aerobic endurance from a single bout
at a set intensity: constant-work (CWT), constant-
duration (CDT) and constant-power (CPT) tests.[20]

In CWT, sometimes referred to as time trials,[21]

an individual completes a set amount of work or a
set distance (real or simulated) as quickly as pos-
sible.[20] CDT are similar to CWT, but the individ-
ual completes as much work or covers as much
distance as possible in a set time.[20] Finally, CPT
consist of maintaining a constant power output to
the point of exhaustion, defined by the inability to
maintain power, speed or cadence.[20] The perfor-
mance measure in a CPT is time to exhaustion or

limit time (tlim), as introduced by Monod and
Scherrer.[22] However, whatever the type of test
used to assess aerobic endurance, the results are
finally expressed with a relative intensity corre-
sponding to a tlim.

1.1.1 Performance in a Single Test at 
Submaximal Intensity [Less than Maximal
Oxygen Uptake (V

.
O2max)]

Performance in these tests has been used by re-
searchers to assess aerobic endurance, since it is
well correlated with other markers of this aptitude.
In fact, Coyle et al.[23] demonstrated in an homog-
enous group of cyclists that tlim at 88% of V

.
O2max

was significantly related to the athlete’s muscle
capillary density and the lactate threshold (LT) [r
= 0.96, p < 0.05]; the LT has been shown to be
related to aerobic endurance when expressed as a
%V

.
O2max (see section 2.3). Moreover, individuals

with the longer tlim possessed a greater percentage
of type I muscle fibres.[23] Coyle et al.[21] con-
firmed these observations with elite cyclists; they
reported a high correlation between the perfor-
mance in a CWT of 40km on the road and the per-
formance in a CDT of 1 hour in the laboratory (r =
–0.88, p < 0.001). Again, the individuals with the
higher power during the laboratory tests had a
higher percentage of type I muscle fibres and a
higher muscle capillary density. More recently,
Billat et al.[24] reported that tlim at 90% of V

.
O2max

was significantly related to the %V
.
O2max corre-

sponding to the LT (r = 0.65, p < 0.05), and was a
good predictor, together with the exercise econ-
omy, of 3000m running performance (r = 0.82, p
< 0.05).

Although a good relationship between the per-
formance in CPT, CWT or CDT and aerobic en-
durance has been consistently found, some meth-
odological considerations must be taken into
account to ensure good measurement accuracy.

If a CPT is used to assess aerobic endurance, the
power output should be set as a %V

.
O2max rather

than at a set absolute intensity (in km/h, W or
ml/min/kg), otherwise it is not possible to separate
aerobic endurance from other factors of performance
in the interpretation of tlim. In fact, when V

.
O2max
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and exercise economy are equal, the same absolute
intensity corresponds to the same %V

.
O2max (figure

1) and differences in the tlim are attributable to
changes in aerobic endurance. However, when
V
.
O2max or exercise economy are different, the

same absolute intensity does not correspond to the
same %V

.
O2max (figure 1), and differences in tlim do

not solely reflect differences in aerobic endurance,
but also differences in V

.
O2max or exercise econ-

omy.
It appears that CPT is more or less reliable, partic-

ularly at low relative intensities. Hence, McLellan
et al.[25] reported a coefficient of variation (CV)
ranging from 2.8 to 31.4% for tlim at 80% of V

.
O2max

on a cycle ergometer. This variability is in agree-
ment with previous observations made by Krebs
and Powers,[26] who reported a CV ranging from
5.2 to 55.9% under similar conditions. The lack of
reproducibility of these open-ended submaximal
tests may be caused by psychological factors, such
as motivation and monotony, but also by the accu-
racy with which the power output is determined or
applied.[20] In fact, given the hyperbolic relation-
ship between power and tlim, a small change in the
power output can result in a large change in its tlim

at or below V
.
O2max.[20,27] It is noteworthy that Hop-

kins et al.[20] found CPT to have a high reliability
when the change in tlim is converted back into the
change in mean power.

Reliability seems to be higher when the end of
the test is set beforehand. Indeed, the CV of CDT
is approximately 3%, both on a treadmill[28] and a
cycle ergometer,[29,30] while it is often less than 2%
for CWT (or time trials).[31-35] From these observa-
tions, and considering that field tests provide more
specific and arguably more useful results than
those obtained in the laboratory,[36,37] competition
data gained over competitive events lasting several
minutes or more represent a reliable means of as-
sessing aerobic endurance.

1.1.2 Performance in a Single Constant-Power
Test at the Velocity Associated with V

.
O2max

Introduced by Daniels et al.[38] in the mid-eighties,
the term ‘velocity at V

.
O2max’ (vV

.
O2max) is defined

as the minimal velocity that elicits V
.
O2max during

an incremental test.[39] Tlim at this velocity is also
considered as a measure of aerobic endurance,
since Billat et al.[24,40,41] have found in elite and
sub-elite runners that it was significantly related
to: (i) average velocity over a 1500m race (r = 0.72,
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Fig. 1. Effect of measuring time to exhaustion at absolute (km/h)
or relative intensity (percentage of V

.
O2max): (a) V

.
O2max and ex-

ercise economy are identical between the study participants A
and B; differences in time to exhaustion reflect aerobic endur-
ance; (b) V

.
O2max is identical, but exercise economy is different;

differences in time to exhaustion reflect both exercise economy
and aerobic endurance; (c) exercise economy is identical, but
V
.
O2max is different; differences in time to exhaustion reflect

both V
.
O2max and aerobic endurance. V

.
O2 = oxygen uptake;

V
.
O2max = maximal oxygen uptake.
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p < 0.01); (ii) the average velocity over a half-mar-
athon race (21.1km; r = 0.71, p < 0.05); and (iii)
the %V

.
O2max corresponding to the LT (r = 0.74, p

< 0.05).
As shown in table I, average tlim values for run-

ning range from 3.83 ± 1.11[42] to 7.60 ± 1.60 min-
utes[43] when measured on a treadmill, and from
5.12 ± 3.05[44] to 8.40 ± 2.10 minutes[45] when
measured on the track. The mean tlim of studies
listed in table I is 5.92 ± 1.02 minutes.

Billat et al.[48] reported reproducible measures
on the basis of similar results in eight long-distance
runners who repeated the test twice at 1-week in-
tervals (6.70 ± 1.88 and 6.73 ± 1.68 minutes, re-
spectively; r = 0.86, p < 0.01). Although there was

no significant difference between test and retest
mean values, interindividual values showed large
variations in agreement with the studies of
McLellan et al.,[25] and Krebs and Powers.[26]

A difficulty in using vV
.
O2max to express inten-

sity in percentage of vV
.
O2max resides in the exer-

cise protocol used to determine V
.
O2max; many

methods are available in the literature to calculate
vV

.
O2max,[40,60-65] leading to velocities that can be

significantly different.[39,52,66] For example, using
a discontinuous multistage protocol with 5-minute
stages and 5-minute or longer rest intervals that led
to a plateau in the V

.
O2max-velocity relationship, it

has been found that only the continuous multistage
protocol with 2-minute stages yields maximal

Table I. Summary of studies investigating time to exhaustion (tlim) at the velocity associated with maximal oxygen uptake (V
.
O2max)

Study n Ergometer V
.
O2max (ml/min/kg) tlim (min)

mean SD CV mean SD CV

Higgs[46] 20 Treadmill 41.32 4.60

Volkov et al.[47] 4 Treadmill 60.80 3.20 5.26 5.40 3.25 60.19

Lavoie and Mercer[42] 5 Cycle ergometer 61.40 4.50 7.32 3.83 1.11 28.98

Adopo et al.[43] 10 Treadmill 69.80 6.30 9.03 7.60 1.60 21.05

Padilla et al.[45] 14 Track 65.30 5.00 7.66 7.00 2.20 31.43

24 Track 71.90 4.20 5.84 8.40 2.10 25.00

Billat et al.[24] 13 Treadmill 74.90 3.10 4.14 5.35 1.45 27.10

Billat et al.[41] 12 Treadmill 69.40 3.70 5.33 6.57 1.73 26.40

Billat et al.[40] 38 Treadmill 71.40 5.50 7.70 6.00 1.78 29.72

Billat et al.[48] 8 Treadmill 69.50 4.20 6.04 6.70 1.88 28.11

8 Treadmill 69.50 4.20 6.04 6.73 1.68 25.00

Billat et al.[49] 16 Treadmill 75.50 5.30 7.02 5.50 1.50 27.27

Billat et al.[50] 15 Treadmill 69.30 3.30 4.76 5.75 2.00 34.78

Billat et al.[51] 15 Treadmill 77.70 6.40 8.24 6.12 1.97 32.15

15 Treadmill 68.40 4.70 6.87 6.22 2.82 45.31

14 Treadmill 63.20 4.20 6.65 7.02 2.15 30.64

Hill and Rowell[52] 13 Treadmill 52.10 5.10 9.79 4.83 1.02 21.03

Villeneuve[53] 10 Cycle ergometer 59.60 6.00 10.07 6.43 0.87 13.52

10 Treadmill 60.40 4.70 7.78 6.47 1.19 18.39

Gazeau et al.[54] 7 Treadmill 69.20 6.80 9.83 5.03 1.38 27.39

Billat et al.[55] 8 Treadmill 71.20 5.00 7.02 5.02 0.90 17.94

Renoux et al.[56] 14 Treadmill 68.90 4.60 6.68 4.48 1.28 28.62

Demarie et al.[44] 15 Track 56.30 4.40 7.82 5.12 3.05 59.57

Billat et al.[57] 7 Track 61.20 3.40 5.56 5.78 1.83 31.70

Morton and Billat[58] 10 Treadmill 59.30 5.20 8.77 6.08 1.77 29.04

Blondel et al.[59] 10 Track 61.80 6.20 10.03 5.95 1.83 30.76

Mean 13 65.36 4.77 7.14 5.92 1.78 30.04

SD 7 7.96 1.04 1.66 1.02 0.61 10.91

CV = coefficient of variation (%); n = number of participants; SD = standard deviation.
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speeds similar to the criteria.[67] Otherwise, the
maximal speed achieved at the end of the tests de-
creases from 0.5- to 1-, 1.5-, 2- and 3-minute stage
protocols. A 1 km/h speed increment was used with
these protocols. The acceleration (calculated as a
combination of stage duration and speed incre-
ment) rather than the stage duration alone seems to
be the key factor in continuous multistage proto-
cols since Billat et al.[50] found no difference in 15
well trained long-distance runners, using either 2-
minute stages with a 1 km/h increment or 1-minute
stages with a 0.5 km/h increment (20.7 ± 1 and 20.8
± 0.9 km/h, respectively; p > 0.05). It is worth not-
ing that Villeneuve[53] also reported that tlim at the
maximal velocity attained at the end of multistage
tests was longer in protocols using longer stage
durations.

Beyond these methodological issues, the signif-
icance of the tlim at vV

.
O2max needs consideration.

In fact, it is not clear whether the large interindi-
vidual differences observed in populations with
relative homogenous V

.
O2max values (see table I for

CV) are caused by a higher aerobic endurance, or,
as suggested by several researchers, by individual
differences in anaerobic capacity.[59,68,69]

Finally, the analysis of individual cases reveals
some athletes who, with similar vV

.
O2max, perform

differently over short- and long-duration events,
some having better tlim at high relative power,
while others have more endurance at low relative
power. Consequently, measuring aerobic endur-
ance with a single test, whatever the intensity cho-
sen, seems problematic.

1.1.3 The Square Wave Endurance Exercise Test
of Gimenez et al.
Gimenez et al.[70-72] proposed a 45-minute

square wave endurance exercise test (SWEET) to
predict aerobic endurance. The first session con-
sists of alternating 4-minute stages at 50% of max-
imum aerobic power (MAP) with 1-minute stages
at 100% of MAP (base and peak intensities, respec-
tively) over 45 minutes. The next sessions are iden-
tical to the first, except for the base of the SWEET,
which is increased by 5% per session, until the par-
ticipant is no longer able to complete the 45-minute

test. Exercise is performed on a cycle ergometer
and at least two sessions are required.[70] The total
mechanical work (TMW, expressed in kJ/kg) from
the beginning of the first session to the last com-
pleted work interval at 100% MAP, is considered
by the authors as an index of aerobic endurance.
Although the individual may perform more than
one series where the intensity of recovery interval
is increasing, the individual is exhausted only at
the last series and the TMW is not based on a com-
bination of exhaustion times.

The rationale for choosing a square wave test is
based on the fact that a constant-load exercise does
not correspond to the rapid accelerations that en-
durance athletes do voluntarily or are obliged to do
in a short space of time. If this assumption is true
for most middle-distance events (≤10000m), es-
sentially for strategic reasons, it does not fit with
the reality of long-distance events (marathons or
longer), where a regular pace is a prerequisite for
optimal performance. On the other hand, it is not
possible to assume that the limiting factors which
minimise the fatigue induced by pace breakdowns
are the same as those used to maintain a high
%V

.
O2max for a long period of time. Furthermore,

in order to be valid, an index of endurance must be
independent of V

.
O2max.[12] This is not the case for

TMW, since with similar aerobic endurance, the
athlete who has the greater V

.
O2max will also have

the higher TMW. From a conceptual point of view
at least, the relative power of the base intervals of
the last completed session would appear a better
aerobic endurance index. Moreover, given the
square-wave form of the test, it is not clear whether
TMW corresponds to the maximal work that can
be performed in 45 minutes.

1.2 Aerobic Endurance Index Computed
from the Performance in a Series of Tests

1.2.1 Fractional Utilisation of V
.
O2max as a

Function of Performance Time
Preliminary efforts designed to describe the %

V
.
O2max-duration relationship[73,74] revealed a cur-

vilinear shape for short durations, and almost a lin-
ear shape for long durations (figure 2). However,
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these studies were based on limited data and in-
cluded no regression equations. In addition, rela-
tive intensity was plotted against running distance
while Léger et al.[9] have shown metabolic events
to be a function of running time in heterogeneous
populations. In other words, the physiological lim-
itations are not the same for a 20km run in 60 min-
utes and another run in 120 minutes, while they
would be similar for a 10 and 20km run in 60 min-
utes. Subsequent investigations have taken these
limits into account.

Saltin[75] proposed a linear model that predicts
the %V

.
O2max that can be sustained for exercise du-

rations (t = time in minutes) of 30 to 300 minutes
(equation 1):

This equation relates %V
.
O2max to running time,

not to running distance. Consequently, an elite ath-
lete who completes the marathon in 130 minutes
can sustain approximately 81% V

.
O2max, while a

recreational athlete who runs the distance in 240
minutes can sustain only 70% of his/her V

.
O2max.

However, this does not mean that the elite athlete
possesses higher aerobic endurance, since for the
same duration, the relative intensity is the same.

Davies and Thompson[76] proposed a non-linear
model derived from the data collected from four
British ultramarathoners (including a world-
record holder), to predict the %V

.
O2max that can be

maintained for races of up to 24 hours (equation
2):

where t represents the duration of the race, in
hours. This model applies equally to running and
cycling performance. However, because cycling is
more efficient than running, the distance covered
by a cyclist in standard conditions will be about 2.5
times the distance covered by a runner in the same
time.[77]

Although of value, these equations have been
developed with elite athletes only, and are not
valid for exercise durations ranging from 1 to 29
minutes. To overcome these limitations, Léger et
al.[9] re-examined the relationship between %V

.
O2max

and performance time by analysing the perfor-
mance of 311 moderately trained runners (V

.
O2max

= 61.3 ± 6.1 ml/min/kg) at distances ranging from
0.2 to 42.2km. They proposed a double-logarithmic
regression with four separate equations, where X
represents time, in minutes, and Y the correspond-
ing %V

.
O2max (see equations 3, 4, 5, and 6):

There is no physiological justification for the
number of equations; the interest of this model is to
improve the accuracy of the prediction (r = –0.97,
standard error of the estimate = 5.5%), and to allow
prediction of %V

.
O2max for very short durations (t

< 4.6 min). However, it underestimates the aerobic
endurance of elite athletes, since the curves of
Saltin,[75] and Davies and Thompson[76] are more
elevated (figure 2). Such a model reflects the aver-
age endurance of the average athlete and better es-
timates maximal training time at any relative in-
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Fig. 2. Fractional utilisation of maximal oxygen uptake (V
.
O2max)

as a function of performance time: a comparison of models.
Model A = Costill and Fox;[74] Model B = Åstrand and Rodhal;[73]

Model C = Saltin;[75] Model D = Davies and Thompson;[76] Model
E = Léger et al.[9]

%VO  = 91.24 − 3.79 • t − 0.08 • t22max

•

if t < 4.6 min: ln Y = 4.93 − 0.186 • ln  X 

if 4.6 < t < 70.4 min: ln Y = 4.79 − 0.096 • ln X 

if 70.4 < t < 173.7 min: ln Y = 4.90 − 0.121 • ln X

if t > 173.7 min: ln Y = 5.08 − 0.156 • ln X 

%VO  = 94 − 0.1   • t  2max

•
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tensity even though adjustments will probably be
necessary.

Independently of these considerations, the main
limitation of all these models is that they assume
aerobic endurance is the same for all athletes, since
it predicts an average %V

.
O2max value for a set time;

there is no provision for individual differences. On
the other hand, they do not consider the slow com-
ponent of V

.
O2 kinetics,[78] which questions the as-

sumption of a steady-state V
.
O2 during heavy exer-

cise.[79] Finally, if such average curves are useful
to see if individual values are below or above aver-
age, it is imperative to know on which population
sample the equations were derived from. In this
respect, a curve drawn from world records could
be interesting because it allows one to see how in-
dividual scores compare with the actual limits of
human performance.

1.2.2 The Endurance Index of Péronnet 
and Thibault
Since the fractional utilisation of V

.
O2max de-

creases linearly when time (in minutes) is con-
verted to a natural logarithm (figure 3), Péronnet
and Thibault[12] proposed to use the slope of this
relationship as an index of aerobic endurance. This
endurance index (EI) is defined as the decrease of
the fractional utilisation of V

.
O2max when running

duration exceeds 7 minutes and when the natural
logarithm of time is increased substantially. This
can be written (equation 7):

or after rearrangement (equation 8):

The lower this slope (or EI), the higher the aer-
obic endurance. The major advantage of the EI is
its accessibility, since it can be estimated easily
from performance data ranging from 3000m to the
marathon or longer distances. Moreover, it allows
comparison between individuals with different
V
.
O2max values or performance levels. However,

using a slope to compare the aerobic endurance of

several individuals requires the y-intercept to be
the same for all athletes, or to choose a common
‘starting’ point for everyone. To achieve this, the
authors assumed that V

.
O2max can be maintained for

7 minutes. But as shown in table I, there is large
interindividual variability in tlim at vV

.
O2max (CV =

30 ± 11%), and the mean value seems to be closer
to 6 than to 7 minutes (5.92 ± 1.02 minutes). Con-
sequently, the EI of Péronnet and Thibault[12] does
not allow comparison between individuals with
different performance levels or across competition
events. Nonetheless, it remains a convenient tool
for the modelling of aerobic endurance. The model
is better to assess EI in long-lasting events (vs
events close to 7-minutes duration); its validity is
also improved when EI is computed from more
than two performances.

1.2.3 The Nomogram of Mercier et al.
Mercier et al.[80] developed a nomogram (figure

4) from empirical observations to predict aerobic
endurance and running performances at different
distances. This nomogram relies on the assumption
of a constant energy cost of running, and supposes
that the rate of decline of the fractional utilisation
of V

.
O2max when time increases depends on the

level of the athletes. The relative endurance index
(REI) is a number without units, on a scale of –100
to +100. It is obtained by subtracting the value in
column B in figure 4 from the value in column A,
and corresponds to the points at which these col-
umns are crossed by the line that describes the ath-
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Fig. 3. Fractional utilisation of maximal oxygen uptake (V
.
O2max)

as a function of the natural logarithm (ln) of performance time.[12]
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ln 7 − ln t

2max
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lete’s performances at two distances. The higher
the REI, the higher the aerobic endurance. Once
the line is traced, the nomogram enables one to

predict performance at other distances, either by
interpolation or by extrapolation. For example,
Saïd Aouïta, the outstanding middle-distance run-
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ner in the late eighties, ran 7:29.45 min:sec in the
3000m and 27:26 min:sec in the 10 000m. The no-
mogram predicts an endurance score of 76, and a
performance time at the 5000m of approximately
12:59 min:sec. His personal best is 12:58.39. De
Castella, who was one of the best marathoners dur-
ing the same period, ran 13:34 min:sec in the
5000m and 28:10 min:sec in the 10 000m. The no-
mogram predicts an endurance score of 98, and a
performance time in the marathon of approxi-
mately 2:08:15 h:min:sec. His personal best over
the distance is 2:08:18 h:min:sec.

The nomogram also allows V
.
O2max to be esti-

mated, with values being given on the scale that
relates V

.
O2max to 3km running time. In addition to

being relatively accurate in its predictions, the no-
mogram provides the opportunity to determine
training priorities for a given chronometric objec-
tive, either by identifying the main physical apti-
tude to improve, or by setting chronometric objec-
tives at lower distances. Like any model, however,
the predictions are average scores with a prediction
error that may be due to the fact that the best per-
formances are affected not only by any one of the
three components of performance in long-distance
events,[7,8] but also by anaerobic capacities and
motivation.

1.2.4 The Critical Power of Monod and Scherrer
It is assumed that the total amount of work that

can be performed before exhaustion, either during

small muscle[22] or whole-body exercise,[81] is
given by (equation 9):

where Wlim is the total amount of work (J), P is the
power output (W), AWC is the anaerobic work ca-
pacity (J) and CP is the critical power (W) [figure
5]. By rearrangement of this equation, we note that
CP is the asymptotic value of the P-tlim relationship
(figure 6) [equation 10]:

Consequently, CP provides an estimate of the
highest exercise intensity that can be maintained,
at least theoretically, for a long period of time with-
out fatigue.[22] In this respect, CP should reflect
aerobic endurance.

It is worth noting that this systems model relies
on several assumptions: (i) the energy cost is con-
stant throughout the exercise intensities investi-
gated; (ii) the anaerobic stores are completely
utilised during each test; and (iii) V

.
O2max is at-

tained at the very onset of work and is maintained
at 100%.[82,83] If assumptions (i) and (ii) are rea-
sonable, assumption (iii) can not be met given the
existence of a time constant of the V

.
O2 kinetics at

the onset of exercise.[83] To overcome this flaw,
Billat et al.[84] proposed to compute CP from the
duration after V

.
O2max has been attained instead of

the total duration of the CPT. Consequently, CP
represents the power that allows V

.
O2max to be

maintained for the longest time, and has been
shown to be very close to vV

.
O2max (16.96 ± 0.92

and 17.22 ± 1.12 km/h, respectively; r = 0.88, p <
0.05).[84]

As seen in table II, most studies use four or five
CPT separated by 24 hours recovery to determine CP.
Power outputs are chosen such that fatigue occurs
generally between 1 and 12 minutes. Nevertheless,
it has been suggested that CP could be estimated
with reasonable accuracy from two workloads,[85-87]

provided their tlim range from 1 to 10 minutes and
differ by more than 5 minutes.[85] Moreover,
Bishop and Jenkins[88] showed that CP estimated
from three tests separated either by 3 hours or by

W  = P • t  = AWC + CP • t  lim lim lim

t  = 
AWC

P − CP
lim
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W
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k 
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Fig. 5. Linear relationship between time to exhaustion and work.
A, B and C are the coordinates of three trials performed at three
constant powers. Slope b of the line Y = a + bX is defined as the
critical power.
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24 hours was not statistically different (170.0 ±
13.4 and 171.3 ± 13.5W, respectively; p > 0.05).
Consequently, CP can be determined from two
tests separated by 3 hours recovery, provided the
participants are first familiarised with the tests[83]

and the workloads are selected with care.[85,89]

The choice of a given range of duration is par-
ticularly important in estimating CP. As shown by
Vandewalle et al.,[27] the relationship between
Wlim and tlim is not strictly linear, since the data
corresponding to tlim shorter than 3.5 minutes are
under the regression line calculated from the val-
ues of tlim ranging from 3.5 to 35 minutes. Conse-
quently, CP is overestimated when supramaximal
power outputs are used. This methodological bias
was reported by Clingeleffer et al.,[89] who found
that CP calculated from two trials of 90 and 240
seconds was significantly higher than the slope of
the best-fit line of four trials leading to exhaustion
in 90, 240, 600 and 1200 seconds (214 ± 32 and
164 ± 28W, respectively; p < 0.05). This was later
confirmed by Bishop et al.,[108] who reported a sig-
nificant difference when CP was estimated from
coordinates of three tests ranging either from 1.13
to 3.21 minutes or from 3.21 to 8.08 minutes (197
± 44 and 163 ± 23W, respectively; p < 0.05). Con-
sidering the inverse relationship between power
and tlim, a lower CP estimate is certainly more
closely related to the concept of CP, since, at least
theoretically, it corresponds to a power output that

can be maintained almost indefinitely.[108] Thus,
longer predictive trials should be preferred. The
shortest duration should be more than 3 minutes,
in order to overcome the inertia of the aerobic me-
tabolism, while the longest duration should not be
more than 30 minutes, in order to avoid the influ-
ence of glycogen stores, dehydration, or motiva-
tion on performance.[27,108]

In section 1.1.1, we have questioned the reli-
ability of CPT. However, given the hyperbolic re-
lationship between P and tlim, CP is not particularly
sensitive to the errors of tlim,[27] even when they are
large.[106] This is probably the reason why most of
the studies reported a good reliability of CP,[92,93]

provided the participants were familiarised with
the procedure.[88]

The linear Wlim-tlim and non-linear P-tlim rela-
tionships (Equations 9 and 10) do not represent the
sole mathematical models allowing the estimation
of CP. Dividing equation 9 by t yields an alternate
linear formulation which is used by some re-
searchers (equation 11):[82]

In order to overcome the assumption of Equa-
tion 10, that power is infinite when time ap-
proaches zero, Morton[114] proposed an alternative
non-linear model and added a third parameter
called Pmax, which represents the maximal instan-
taneous power (equation 12):

Finally, Gaesser et al.[115] proposed an expo-
nential model, which overcomes the assumption of
infinite power at very short durations, but does not
provide an estimation of AWC (equation 13):

where τ is an undefined time constant.
Studies designed to compare these five mathe-

matical models reported a significant difference
between CP estimates, whatever the ergome-
ter.[95,97,101] The 3-parameters model of Mor-
ton[114] produced CP estimates that were signifi-
cantly lower than the four other models, while the

P = AWC • t  + CP −1
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Fig. 6. Hyperbolic relationship between power and time to ex-
haustion. The coordinates are deduced from the relationship
depicted in figure 5. The asymptote value is equivalent to the
critical power of figure 5.

t  = 
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P − CP
 − AWC

P  − CP
lim

max

P = CP + (P  − CP) • exp  max
−t /τ
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exponential model resulted in the highest esti-
mates.[111,112,115] Considering these large differ-
ences, approximately 20% between the highest and
the lowest estimates, the choice of equation ap-
pears important. The question remains: which model
provides the most valid index of aerobic endur-
ance?

A variety of correlates for CP have been inves-
tigated. If some studies reported significant corre-
lations between CP and most of the so-called
threshold measures, either ventilatory threshold
(VT)[81,90,109,116,117] or LT,[96,103,118-121] others
failed to do so or reported significant differences
between the power or the velocity associated with

Table II. Summary of modalities for the determination of critical power

Study n Ergometer Number
of tests

Duration
(min)

Recovery
(h)

Range of intensity
(or distance)

Moritani et al.[81] 8 Cycle ergometer 3 1-5 0.5 275-400W

8 Cycle ergometer 3 2-5 0.5 175-300W

DeVries et al.[90] 6 Cycle ergometer 4 1-5 0.5 275-400W

5 Cycle ergometer 4 1-5 0.5 225-350W

Hughson et al.[91] 6 Treadmill 6 2-12 48 5.3-6.2 m/sec

Nebelsick-Gullett et al.[92] 25 Cycle ergometer 3 <6 0.5 156-313W

Gaesser and Wilson[93] 14 Cycle ergometer 5 1-10 24 –30W < MAP < +60W

Housh et al.[85] 12 Cycle ergometer 2 1-10 24 172-360W

12 Cycle ergometer 4 1-10 24 172-360W

Jenkins and Quigley[94] 8 Cycle ergometer 4 <15 24 360-520W

Poole et al.[95] 8 Cycle ergometer 5 1-10 24 200-400W

Housh et al.[96] 12 Cycle ergometer 2 0.5 314-392W

Jenkins and Quigley[97] 9 Cycle ergometer 3 <6 3 300-400W

Carnevale and Gaesser[98] 7 Cycle ergometer 4 1-10 24 300-390W

Housh et al.[99] 10 Treadmill 4 2-12 24 4-5.35 m/sec

Jenkins and Quigley[100] 18 Cycle ergometer 3 <15 3 270-390W

Overend et al.[101] 26 Cycle ergometer 4 2-15 0.7/24

Pepper et al.[102] 10 Treadmill 4 24 3.6-6 m/sec

Wakayoshi et al.[103] 8 Swimming 2 2-4 24 200 and 400m

Smith and Hill[104] 26 Cycle ergometer 5 24

Clingeleffer et al.[89] 7 Kayak 2 1.5-20 3 150-215W

Clingeleffer et al.[86] 8 Kayak 4 1.5-20 3 150-215W

Bishop and Jenkins[88] 9 Cycle ergometer 3 1-10 3

Kolbe et al.[105] 17 Treadmill 6 2-12 1wk 4.7-6.9 m/sec

Kachouri et al.[106] 7 Track 2 3-12 95 and 105% MAS

Kranenburg and Smith[37] 9 Treadmill 3 3-13 1/24

9 Track 3 1/24 900-4000m

Florence and Weir[107] 12 Treadmill 4 0.33 3.6-6 m/sec

Bishop et al.[108] 10 Cycle ergometer 3 1-10 24

Billat et al.[84] 6 Track 4 1-12 24 90-140% MAS

Smith et al.[109] 13 Cycle ergometer 4 1.5-10 24

Neder et al.[110] 17 Cycle ergometer 4 1-20 24 80-120% V
.
O2max

Bull et al.[111] 9 Cycle ergometer 5 1-10 24 –50W < MAP < +50W

Martin and Whyte[87] 8 Swimming 5 24 100-1500m

Housh et al.[112] 10 Treadmill 4 2-12 4-5.35 m/sec

Smith and Jones[113] 8 Treadmill 4 4-9 100-120% MAS

Blondel et al. [59] 10 Track 4 1-14 24 90-140% MAS

MAP = maximum aerobic power; MAS = maximum aerobic speed; n = number of participants; V
.
O2max = maximal oxygen uptake.
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CP and the considered threshold.[86,87,95,96,107,122]

Differences in the duration of predictive trials can
explain at least part of this discrepancy between
studies. Recently Smith and Jones[113] provided a
new insight into the relationship between CP and
maximal lactate steady state (MLSS). Although
conventional statistical approaches demonstrated
that there was no significant difference between
the two estimates (14.1 ± 1.1 and 13.8 ± 1.1 km/h,
respectively; p > 0.05), the bias ± 95% limits of
agreement[123] indicated that estimating one vari-
able from another in individuals might result in
significant error.[113] These results suggests that
CP and the MLSS probably represent the same
physiological phenomenon, but also that CP can
not be considered as a non-invasive measure of
MLSS.

Considering that field tests using performance
data may be more applicable for coaches than
physiological variables obtained from laboratory
tests, Kranenburg and Smith[37] compared CP de-
termined from track running and treadmill tests in
elite runners. They found no significant difference
between the two estimates (293 ± 21 and 300 ± 20
m/min, respectively), and both were highly cor-
related with 9.8km race performance (r = 0.92; p <
0.001). Similar results were obtained by Waka-
yoshi et al.,[36] who found no differences between
CP determined in a swimming flume (CPflume) or
in a swimming pool (CPpool; 1.49 ± 0.03 and 1.54
± 0.02 m/sec, respectively). But unlike Kranen-
burg and Smith,[37] CPpool was more strongly re-
lated to 400m freestyle performance than CPflume

was (r = 0.99 and 0.89, respectively). Considering
the higher accessibility and specificity of field test-
ing, and since the results are similar with the lab-
oratory, and sometimes more correlated with per-
formance, determining CP on the track or in a
swimming pool is undoubtedly of greater interest
for runners and swimmers.

1.3 Practical Issues

Since CP represents the highest exercise inten-
sity that can be maintained for a long period of time
without fatigue,[22] it should be strongly related to

aerobic endurance. Several studies suggest this is
the case, since CP is significantly correlated with
running performance over distances ranging from
1 to 42.2km,[37,105,107] with cycling performance
over distances ranging from 17 to 40km,[109] and with
the mean velocity of a 400m freestyle.[36,103] But
contrary to the hypothesis of Monod and Scherrer,[22]

exercise at CP can not be maintained indefinitely.
Depending on the duration of the predictive trials
or the mathematical modelling, tlim at CP ranges
from 30 to 60 minutes.[94,111,119,122,124,125] It is note-
worthy that CP determined from the 1500 and
5000m world records in males using equation 9
corresponds to the mean velocity of the 10 000m
world record (22.77 and 22.75 km/h, respectively),
while it differs only by 3% with females (19.73 and
20.31 km/h, respectively).

Given the hyperbolic relationship between
power and tlim, a small variation in power induces
a large difference in the estimated value of tlim,
especially for power outputs slightly lower than
CP. Consequently, CP has a relatively low predic-
tive value, and power should not be extrapolated
for values of tlim which are very short or very
long.[27]

Contrary to indirect measures of aerobic endur-
ance (see section 2.3), few attempts have been
made to establish the influence of training on CP.
Jenkins and Quigley[97,100] found that AWC and
CP were, respectively, more affected by anaerobic
and aerobic training. Unfortunately, there are no
data available about the value of training at or
around CP to improve performance at endurance
events. However, it has to be recognised that as
long as methodological considerations like the
choice of the appropriate mathematical modelling
are not elucidated, the interest of such studies is
limited.

2. Indirect Measures of Predicting
Endurance Performance

Indirect methods used to predict aerobic endur-
ance are based on a significant relationship be-
tween the fractional utilisation of V

.
O2max for a

given event and some biological variables, such as
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ventilatory parameters, blood lactate concentra-
tions ([La– ]b) or heart rate. Generally, this relation-
ship is described in terms of a threshold. By defi-
nition, the term ‘threshold’ is the level at which
changes in a physiological parameter occur in re-
sponse to a stimulus. Below the threshold, the stim-
ulus is insufficient to generate any response; con-
versely, above the threshold, the stimulus begins to
evoke the expected response.[126]

Owles,[127] in 1932, was the first to report
changes in [La– ]b in response to light exercise. He
concluded that ‘there was no lactate increase as a
result of exercise up to a certain critical level’.
Wasserman et al.[128] showed that this ‘critical
level’ of [La – ]b was related to significant changes
in selected ventilatory parameters during incre-
mental exercise. They defined the AT as ‘the level
of work or O2 consumption at which metabolic ac-
idosis and the changes in gas exchange occur’. [128]

Theoretically, an athlete who exercises below this
threshold will be able to accommodate the lactate
and hydrogen ions produced by the muscles; fa-
tigue will therefore be limited only by substrate
reserves. Consequently, the higher the threshold,
the higher the aerobic endurance.[11]

It is worth noting that the AT is not a threshold
for anaerobiosis. Not only is the contribution of
anaerobic pathways minor during submaximal ex-
ercise (intensity less than V

.
O2max),[129] but also the

formation of lactate during exercise can be caused
by a larger pyruvate formation than is needed and
is not necessarily the result of anaerobic condi-
tions.[130] In fact, lactate can be produced in oxida-
tive as well as in glycolytic fibres of fully oxygen-
ated muscle.[131] Although the use of the term
‘anaerobic’ is clearly incorrect, and probably the
underlying theory,[62,132] the fact is that the so-
called AT is well-correlated with the fractional
utilisation of V

.
O2max for a given event. Therefore,

it represents a convenient tool to assess aerobic
endurance. Both invasive and non-invasive meth-
ods during incremental or steady-state exercise
have been used by researchers to ‘locate’ the AT.

2.1 Incremental Tests

2.1.1 Lactate Threshold
The onset of plasma lactate accumulation,[18]

the LT,[133] the onset of blood lactate accumula-
tion,[134] the individual AT,[135] the lactate turning
point[136] and the lactate slope index[137] are terms,
among others (see table III), which have been used
to define the exercise intensity at which there is a
non-linear increase [La– ]b.[138]

As shown in table IV, this increase or ‘break-
point’ has been determined using a wide range of
criteria. For instance, Sjödin and Jacobs[134] used a
fixed concentration of 4 mmol/L, while Worms et
al.[165] used 3 mmol/L. Hurley et al.[166] used 2.5
mmol/L, LaFontaine et al.[142] 2.2 mmol/L and
Yoshida et al.[167] used 1 mmol/L above the resting
level. Using a fixed lactate value as the threshold
certainly increases objectivity but denies individu-
ality since the non-linear increase in [La– ]b does
not always occur at 4 mmol/L.[168]

Other researchers have used the tangent point of
the lactate curve to locate the threshold. For Simon
et al.[176] an angle of 51° was used, while Keul et
al.[175] elected to use 45°. Furthermore, depending
on the units used or the relative magnitude of the
X and Y scales, the tangent point at a set angle
could yield a different threshold value, thus ques-
tioning this type of approach. Bunc et al.[177] have
used the intersection between the exponential re-
gression of the lactate curve and the bisector of the
tangents on the upper and lower parts of the regres-
sion. Whether the multistage protocol starts and
finishes at low or high intensities would affect the
tangents of the lower and upper parts of the regres-
sions as well as the position of the crossing point
between the two tangents thus making this partic-
ular approach somewhat arbitrary (figure 7).

This diversity in methods has led to confusion
and misinterpretation. Indeed, while there should
be only one threshold value, computed thresholds
using various ‘scientific’ techniques on the same
set of data could range between 79 and 92% of
V
.
O2max.[185] In any event, a rightward shift of the

lactate curve, when expressed in %V
.
O2max, is a

good marker of aerobic endurance and any single

688 Bosquet et al.

 Adis International Limited. All rights reserved. Sports Med 2002; 32 (11)



standardised point on that curve, whether it is
termed a ‘threshold’ or not, will reflect aerobic en-
durance.

2.1.2 Ventilatory Threshold
Wasserman and McIlroy[153] used expired air

and changes in ventilatory markers to establish a
‘ventilatory threshold’. This non-invasive method
relies on the assumption that the H+ ions of lactic
acid are buffered by blood bicarbonate, producing
excess CO2, which in turn increases expired min-
ute ventilation (V

.
E). According to this theory, the

initial rise in [La– ]b coincides with the onset of
exercise-induced hyperventilation during incre-
mental work. With regard to the [La– ]b, several
criteria or combinations of criteria have been pro-
posed to detect this threshold (table IV).

Although many studies have reported that VT
was strongly related to the LT,[118,172,179,186-189]

there are considerable doubts about the validity of
this statement. First and foremost, given the large
range of invasive techniques (table IV), a signifi-
cant correlation between the VT and one of the
numerous lactic thresholds is not a sufficient crite-
rion to establish its validity. Moreover, even if we
hypothesise that all studies are using the same def-
inition and the same criteria to detect the LT, there
is strong evidence to suggest that these thresholds
do not occur at the same power output.

Hugues et al.[182] have shown that the LT and
VT could be manipulated independently of each
other by changing the pedalling frequency (LT <
VT at 90 rpm, but not at 50 rpm), or by modifying
the substrate availability (LT > VT in glycogen
depleted state, but not in normal glycogen state).
Hagberg et al.,[190] while studying patients who
lack muscle phosphorylase (MacArdle’s disease),
demonstrated that hyperventilation during incre-
mental exercise could occur despite there being no
increase in plasma [H+]. Added to the fact that de-
tection of the VT is highly subjective, given that
different evaluators can choose different thresh-
olds from the same data,[161,191] and that it is de-
pendant on the duration of the stages in an incre-
mental test,[192] these studies suggest that the
non-invasive determination of the AT from venti-

latory data during incremental exercise is not
valid.

Table III. Nomenclature used to describe anaerobic threshold
(adapted from Tokmakidis,[126] with permission)

Study Nomenclature

Invasive methods
Owles[127] Critical metabolic level

Williams et al.[139] Lactate excess

Farrell et al.[18] Onset of plasma lactate
accumulation

Kinderman et al.[140] Aerobic/anaerobic threshold

Ivy et al.[133] Lactate threshold

Skinner and McLellan[141] Aerobic threshold

Anaerobic threshold

Sjödin and Jacobs[134] Onset of blood lactate accumulation

LaFontaine et al.[142] Maximal steady state

Stegmann et al.[135] Individual anaerobic threshold

Jones and Ehrsam[143] Owles point

Davis et al.[136] Lactate turning point

Lactate breaking point

Wasserman et al.[144] Pyruvate threshold

Van Harn and Brooks[145] Epi/norepinephrine threshold

Mader and Heck[146] Transitional state

Simon et al.[147] Plasma lactate threshold

Beaver et al.[148] Bicarbonate threshold

Smith et al.[149] Plasma ammonia threshold

Hughson et al.[137] Lactate slope index

Tegtbur et al.[150] Lactate minimum speed

Beneke[151] Maximal lactate steady state

Non-invasive methods
Holmann[152] Point of optimum ventilatory

efficiency

Wasserman and McIlroy[153] Threshold of anaerobic metabolism

Wasserman et al.[128] Anaerobic threshold

Reinhard et al.[154] Threshold of decompensated
metabolism acidosis

Skinner and McLellan[141] Aerobic threshold

Sheen and Juchmes[155] Hyperventilation threshold

Jones and Ehrsam[143] Proportional limit

Conconi et al.[156] Deflection velocity

Powers et al.[157] Ventilatory threshold

Simon et al.[158] Respiratory compensation threshold

Boulay et al.[159] Ventilatory anaerobic threshold

McLellan and Skinner[160] First and second ventilatory threshold

Gladden et al.[161] Gas exchange threshold

Palka and Rogozinski[162] Respiratory anaerobic threshold

Chicharro et al.[163] Salivary threshold

Jones and Doust[164] Breathing frequency breakpoint
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Table IV. Criteria used to define the different thresholds (adapted from Tokmakidis,[126] with permission)

Reference Threshold Criteria

Invasive methods
Holmann[152] OEPL Non-linear increase of [La]

Farrell et al.[18] OPLA Rupture of the [La] curve

Foxdal et al.[169] OPLA [La] of 4.0 mmol/L

Sjödin and Jacobs[134] OBLA [La] of 4.0 mmol/L

Kinderman et al.[140] LT [La] of 2.0 mmol/L

Reinhard et al.[154] LT 2 standard deviations above resting [La]

Ivy et al.[133] LT Before onset of [La] breakpoint

Hughson and Green[170] LT 0.5 mmol/L above resting [La]

Hagberg and Coyle[171] LT 1 mmol/L above 40-60% V
.
O2max

Hurley et al.[166] LT [La] of 2.5 mmol/L

Sucec et al.[172] LT Abrupt and sustained [La] increase

Worms et al.[165] LT [La] of 3.0 mmol/L

Yoshida et al.[167] LT 1 mmol/L above resting [La]

Coyle et al.[173] LT 1.0 mmol/L above baseline [La]

Cheng et al.[174] LT Distance max from [La] curve to the line formed by its two endpoints

Skinner and McLellan[141] AT First increase of [La] (2 mmol/L)

AnT Second increase of [La] (4 mmol/L)

Keul et al.[175] IAT [La] tangent at 45°

Simon et al.[176] IAT [La] tangent at 51°

Stegmann et al.[135] IAT [La] tangent with [La] recovery curve where [La] is equal to the value at
the end of exercise

Bunc et al.[177] IAT See section 2.1.1 in text

LaFontaine et al.[142] MSS [La] of 2.2 mmol/L

Palmer et al.[178] MLSS Change of <1.0 mmol/L in [La] during SSE

Tegtbur et al.[150] LMS Minimum [La] during MET after HIE

Non-invasive methods
Holmann[152] POW V

.
E tangent at 45°

Wasserman and McIlroy[153] AnT Abrupt increase in RER

Wasserman et al.[128] AnT Increase in V
.
E and V

.
CO2

Davis et al.[179] AnT Abrupt increase in FEO2

Davis et al.[180] AnT Increase in V
.
E/V

.
O2 but not in V

.
E/V

.
CO2

Moritani and DeVries[181] AnT IEMG breakpoint

Conconi et al.[156] AnT Deflection point of HR

Skinner and McLellan[141] AT First and second V
.
E breakpoint

Reinhard et al.[154] TDMA Minimum V
.
E/V

.
O2

Hugues et al.[182] VT V
.
E breakpoint

James et al.[183] AnT Disproportionate increase in BF

Chicharro et al.[163] AnT First increase in Cl– or Na+ in saliva

Jones and Doust[164] VT V
.
CO2 breakpoint

BFB Disproportionate increase in BF

Snyder et al.[184] MLSS %HRmax during SSE

Palmer et al.[178] MLSS RPE of 12

AnT = anaerobic threshold; AT = aerobic threshold; BF = breathing frequency; BFB = breathing frequency breakpoint; FEO2 = expired fraction
of oxygen; HIE = high-intensity exercise; HR = heart rate; %HRmax = percentage of maximal heart rate; IAT = individual anaerobic threshold;
IEMG = integrated electromyogram; [La] = lactate concentration; LMS = lactate minimum speed; LT= lactate threshold; max = maximum;
MET = multistage exercise test; MLSS = maximal lactate steady state; MSS = maximal steady state; OBLA = onset of blood lactate
accumulation; OEPL = oxygen endurance performance limit; OPLA = onset of plasma lactate accumulation; POW = point of optimum
ventilatory efficiency; RER = respiratory exchange ratio; RPE = rated perceived exertion; SSE = steady-state exercise; TDMA = threshold of
decompensated metabolic acidosis; V

.
CO2 = volume of carbon dioxide eliminated per minute; V

.
E = minute ventilation; V

.
O2 = oxygen uptake;

V
.
O2max = maximal oxygen uptake; VT = ventilatory threshold.
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2.1.3 Heart Rate Threshold
Wyndham et al.[193] showed that the heart rate–

power relationship during incremental exercise is
sigmoidal, with a linear component in the middle
and a plateau at work loads close to the maximal.
Conconi et al.[156] have observed that the point at
which the heart rate–power relationship deviates
from linearity (deflection point) occurs in the same
range of power to the point at which there is an
exponential increase in [La– ]b. They also proposed
that a non-invasive field test could be used to de-
tect this deflection point. Despite the fact that the
Conconi test is used by some athletes and coaches,
there is considerable criticism of the method in the
scientific literature.[194-204]

The main difficulty concerns the concept of a
deflection point itself, since several studies failed
to detect it systematically in all participants, either
during running or cycling.[143,194-199] A number of
authors have therefore questioned the physiological
existence of the deflection point, and have suggest-
ed that it is an artefact dependent on the protocol.[200]

Indeed, the original method published in 1982 was
based on a testing procedure which enforces a pla-
teau in heart rate.[126,205] The short-distance (200m)
running speed increment yields more heart rate
values at high speed, since time of the stages de-
creases when speed increases.

To control this methodological bias, Conconi et
al.[206] have modified their procedure by adopting
an incremental exercise test based on a fixed time
protocol, instead of a fixed distance. Bourgois and
Vrijens[207] used this protocol and took into ac-
count the new recommendations of Conconi et
al.[206] to assess the deflection point in rowers.
They were effectively able to detect a heart rate
deflection point in all participants. Nonetheless,
the debate is not closed, since it still has to be de-
termined if the deflection point can be used as a
non-invasive measure of the AT.

From the initial work of Conconi et al.,[156]

there is a very strong relationship between the two
variables, heart rate deflection and the LT (r =
0.99). Although some authors have since provided
support,[208-210] numerous other studies have failed

to establish a relationship.[195,197,199,201-205] The
studies of Jones and Doust,[199] and Bourgois and
Vrijens[207] are particularly interesting, in that they
scrupulously respect the original[156] and the mod-
ified[206] protocol of Conconi and colleagues. Both
studies concluded that this test is not valid for the
non-invasive estimation of the AT, since the veloc-
ity[199] and the power[207] associated with the de-
flection point overestimates the velocity or power
associated with the lactate turnpoint by 13 to 28%.
Furthermore, they both demonstrated that contin-
uous exercise close to the deflection point leads to
significant accumulation of blood lactate (8.1 ± 1.8
and 10.4 ± 3.10 mmol/L, respectively), and rapid
development of fatigue (time to exhaustion = 15.9
± 6.7 and 17.5 ± 11.1 min, respectively).

2.2 Constant-Duration Tests

The kinetics of muscle lactate concentration
and [La– ]b are not superimposable, both during
and after exercise, and even at very low intensi-
ties.[131,211,212] This phenomenon has been the-
orised by Brooks,[213] who suggested that [La– ]b

reflects, at any given time, the difference between
lactate production, mainly by the muscle but also
by the liver, intestine and skin, and lactate utilisa-
tion, mainly by the liver but also by the heart and
skeletal muscles.[214] During CPT, [La– ]b over time
is strongly dependent on the exercise intensity.[155]
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Fig. 7. Effect of tracing the tangent from different points on the
determination of anaerobic threshold (AT) according to the al-
gorithm of Bunc et al.[177] AT is defined as the intersection be-
tween the exponential regression of the lactate curve and the
bisector of the tangents on the upper and lower parts of the
regression. [La– ]b = blood lactate concentration.
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During low-intensity exercise, there is an initial
rise, a brief plateau, and finally a decrease of [La– ]b.
During high-intensity exercise, [La– ]b shows a sus-
tained increase up to and sometimes beyond the
end of exercise. Logically, there exists an exercise
intensity at which [La– ]b increases progressively to
a steady state. By definition, the MLSS is the max-
imal exercise intensity where an equilibrium between
the rate of appearance and the rate of disappear-
ance of lactate in the blood is still maintained.[213]

In most studies, the MLSS is located between
70 and 80% of V

.
O2max.[215-224] However, some au-

thors have observed a MLSS at 65% of V
.
O2max,[225]

while others reported intensities equal to or above
85% of V

.
O2max.[226,227] Beneke[151] has reported a

lower workload and [La– ]b at MLSS when com-
pared with the 4 mmol/L threshold or the individ-
ual anaerobic threshold (255 ± 17, 287 ± 20 and
287 ± 25W, 3.0 ± 0.6, 4.0 ± 0 and 4.2 ± 0.8 mmol/L,
respectively; p < 0.001), suggesting that, in row-
ing, these two AT do not represent the MLSS.

The determination of the MLSS usually re-
quires 4 or 5 CDT of up to 30 minutes duration,
performed at exercise intensities between 50 and
90% of V

.
O2max.[151,155,166,215,228,229] The intention

is to establish the highest exercise intensity where
[La– ]b increases by no more than 1.0 mmol/L be-
tween 10 to 30 minutes.[184] McLellan and Ja-
cobs[230] proposed a slightly different algorithm to
determine MLSS. Participants performed an incre-
mental test and three CDT of 60 minutes. The ex-
ercise intensity of the first CDT is the power or
velocity corresponding to a [La– ]b of 4 mmol/L
during the incremental test. The workload of the
two remaining CDT is adjusted by increments of
±2.5% in order to identify the highest exercise in-
tensity for which [La– ]b variations between 10 and
60 minutes are lower than 0.75 mmol/L.

To improve the accessibility of this method,
Billat et al.[221] suggested that MLSS could be es-
timated from only two bouts of 20 minutes per-
formed at 65 and 80% of V

.
O2max (with each bout

separated by 40 minutes of complete rest). The dif-
ferential values of [La– ]b between the 20th and the
5th minute of each bout can be plotted against ve-

locity. The MLSS, obtained by interpolation is the
velocity for which the differential value is equal to
zero.

This method is simple, accessible and has the
advantage of not significantly disrupting an ath-
lete’s training schedule, since it is submaximal and
non-exhaustive. However, its validity can be ques-
tioned. The method relies on the assumption that
the [La– ]b-power relationship is linear. Hughson et
al.[137] and Oyono-Enguelle et al.[220] have shown
that the [La– ]b-power relationship describes an ex-
ponential curve. Consequently, it is not certain that
the velocity measured by the approach of Billat et
al.[221] corresponds to the MLSS. According to
Billat,[138] this methodological consideration (i.e.
non-linearity of the [La– ]b-power relationship) can
be controlled by choosing two velocities close to
each other. Then the arc of the exponential rela-
tionship between [La– ]b and power tends to a
straight line, which minimises the error of estima-
tion inherent to the interpolation procedure. How-
ever, this involves a high risk of distortion, since a
slight error of measurement in [La– ]b can adversely
influence the estimation of the MLSS.

Based on the work of Davis and Gass,[231]

Tegtbur et al.[150] have developed the lactate min-
imum test (LMT) in order to estimate the MLSS in
a single testing session. The LMT is a treadmill
multistage test performed immediately after supra-
maximal exercise leading to high blood lactate val-
ues. After a small rest period to allow for equilib-
rium between muscle and [La– ]b, the multistage
test begins. At intensities below MLSS, the lactate
removal rate exceeds the production rate and [La– ]b

decreases. However, when the exercise intensity is
beyond the MLSS, the lactate production rate ex-
ceeds the rate of removal and [La– ]b increases. The
lower [La– ]b value is associated with the MLSS and
the corresponding speed is referred to as the lactate
minimum speed (LMS). The procedure has been
criticised because of difficulties in its stand-
ardisation.[232,233] [La– ]b after initial supramaximal
loads has to be sufficiently high without imposing
undue fatigue before the multistage test (8 mmol/L
is suggested by Carter et al.[233]). Moreover, rest
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duration between these two bouts of exercise and
stage duration during the incremental test have to
be long enough to ensure blood lactate equilibrium
while avoiding full recovery to resting values
which would make it impossible to identify the
passage from removal phase to production phase
corresponding to MLSS. Initial intensity and in-
crementation as well as stage duration also appear
to affect LMS estimates.[233] With an additional
pre-test, MacIntosh et al.[234] appear to have solved
some of these problems. Their study showed sim-
ilar mean values between MLSS and LMS as-
sessed with the LMT but there were a few obvious
individual differences.

2.3 Practical Issues

The scientific literature of the two last decades
abounds with studies showing that the AT is signifi-
cantly related to various types of performances [235,236]

and is a better predictor of performance in long-
distance events than V

.
O2max.[18,167,171,194] Although

there is a quantitative accumulation of experimen-
tal data supporting this point of view, some method-
ological considerations raise doubts about validity.
As is the case for all biological indices, the units
used to describe the AT are important. When ex-
pressed in m/min, km/h or ml/min/kg, the AT does
not measure solely aerobic endurance, but also
V
.
O2max and the mechanical efficiency. Indeed, the

higher the V
.
O2max, the higher the AT in ml/min/kg,

and the higher the mechanical efficiency, the
higher the AT in m/min, for the same capacity to
accumulate lactate. If AT is to be an indicator of
aerobic endurance alone, it has to be expressed as
%V

.
O2max. Then, when expressed in %V

.
O2max, the

AT is no better a predictor of performance than
V
.
O2max alone.[126,237-239]

Holmann et al.[240] suggested that the improve-
ment in performance in long-distance events is bet-
ter when the training intensity is prescribed from
the AT instead of from the maximal heart rate or
the V

.
O2max. Effectively, numerous studies have re-

ported that training at an intensity near the AT in-
duces a rightward shift of the lactate curve and a
concomitant increase in AT, either in V

.
O2max or in

%V
.
O2max.[180,241-245] A meta-analysis including 85

experimental groups from 34 studies has con-
cluded that training at an intensity near the AT is
an adequate stimulus for improving the AT for sed-
entary individuals.[246] However, a higher intensity
is necessary to increase the AT with conditioned
individuals.[246] Since the minimal stimulus re-
quired to improve the V

.
O2max

[247] or the AT[246]

depends on the initial level of fitness of individu-
als, it is not possible to conclude that training at the
intensity corresponding to the AT represents the
optimal means to improve one’s performance in
endurance events.

Recently, Tokmakidis et al.[185] have compared
various methods and criteria used to identify the
AT. It appears that there is no unique intensity cor-
responding to the AT, since their results ranged
from 79.40 (1 mmol/L above baseline [La– ]b

[173])
to 91.91% of V

.
O2max (slope index with a fixed tan-

gent[137]). Independently of the method or criteria
used for their identification, all these AT indices
provided the same information; they reflected the
displacements of the [La– ]b curve on the x-axis.
This explains why, despite the large variability ob-
served by Tokmakidis et al.,[185] all the AT are
highly correlated with one another and with per-
formance (r > 0.90).

In conclusion, the AT may not be the optimal
training intensity for endurance athletes. However,
given that the AT does change with training, it may
be a useful tool in monitoring changes in response
to a training programme. Jones and Ehrsam[143]

have suggested that the terminology associated
with the AT should be abandoned, and that scien-
tists and coaches should focus on an arbitrary point
on the [La– ]b curve (at a given %V

.
O2max) to follow

its displacements. This would free the AT from a
somewhat troubled past and allow recognition of
the properties of the [La– ]b curve in the prediction
of performance in long-distance events.

3. Conclusion

Aerobic endurance represents the ability to sus-
tain a high %V

.
O2max for a long period of time.[9-12]

Since it represents one of the parameters of perfor-
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mance in long-distance events[7,8] and is inde-
pendent of V

.
O2max,[12] aerobic endurance must be

assessed with specific tools. This review has
shown that the methods of determination are nu-
merous. Although indirect methods like the AT are
very commonly used in the physiological testing
of elite athletes, their superiority against direct
methods in terms of validity and reliability is not
established. Future research should focus on the
comparison between these methods to determine
which of them correlates the most with perfor-
mance in long-distance events. Efforts should be
made to integrate them into a multi-regression ap-
proach in order to determine the relative impor-
tance of aerobic endurance and other parameters in
the prediction of performance in long-distance
events according to the duration of the event, gen-
der and the level of practice. Finally, health bene-
fits of physical activity are often measured with
reference to V

.
O2max,[248] but little is known about

the specific effect of aerobic endurance improve-
ment on cardiovascular disease risk factors, while
it represents one parameter of aerobic fitness.
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