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Abstract. Determining the importance of independent variables is of practical relevance
to ecologists and managers concerned with allocating limited resources to the management of
natural systems. Although techniques that identify explanatory variables having the largest
influence on the response variable are needed to design management actions effectively, the use
of various indices to evaluate variable importance is poorly understood. Using Monte Carlo
simulations, we compared six different indices commonly used to evaluate variable
importance; zero-order correlations, partial correlations, semipartial correlations, standard-
ized regression coefficients, Akaike weights, and independent effects. We simulated four
scenarios to evaluate the indices under progressively more complex circumstances that
included correlation between explanatory variables, as well as a spurious variable that was
correlated with other explanatory variables, but not with the dependent variable. No index
performed perfectly under all circumstances, but partial correlations and Akaike weights
performed poorly in all cases. Zero-order correlations was the only measure that detected the
presence of a spurious variable, whereas only independent effects assigned overlap areas
correctly once the spurious variable was removed. We therefore recommend using zero-order
correlations to eliminate predictor variables with correlations near zero, followed by the use of
independent effects to assign overlap areas and rank variable importance.

Key words: Akaike weights; beta coefficients; beta weights; dominance analysis; hierarchical partitioning;
independent effects; partial correlation coefficients; relative weights; standardized regression coefficients.

INTRODUCTION

Ecologists, conservation biologists, and wildlife man-

agers are often faced with the challenge of identifying

factors associated with an ecological phenomenon of

interest. For instance, Ottichilo et al. (2001) explored

ecological and anthropogenic factors influencing popu-

lation trends of resident wildebeest (Connochaetes

taurinus hecki) in the Masai Mara ecosystem. Farmer

et al. (2006) investigated habitat factors influencing the

risk of mortality in black-tailed deer (Odocoileus hemi-

onus sitkensis) in a managed forest landscape. And,

Stokes and Cunningham (2006) used model selection

techniques to determine which river flow regulation

scheme and spatial biological factors would likely have

the greatest impact on the control of invasive willows in

riparian areas. In situations such as these, controlled

experiments provide the optimal means to disentangle

the contributions of various factors of interest and

elucidate relationships among response and explanatory

(independent, predictor) variables (Williams 1997).

However, in many cases large-scale manipulations are

not feasible for financial, logistical, or even ethical

reasons, necessitating the use of multivariate analysis

methods to identify a ‘‘best’’ model, or suite of models,

to be used for making valid inference. Recent develop-

ments in the use of information theory and multi-model

inference have helped to improve the process of making

valid inference by reducing uncertainty associated with

model-selection (Burnham and Anderson 2002). How-

ever, these approaches focus on comparisons among

models and not on the relative importance of the

explanatory variables contained within the models.

Once the best model has been identified, ecologists

and wildlife managers often desire to know which of the

various independent variables included in the model has

the strongest influence on the response variable, and

should therefore be targeted, to achieve a desired

management outcome. Explanatory variables are often

only nominally independent, and correlation among the

explanatory variables (i.e., multicollinearity) makes it

difficult to tease apart the unique contributions of each

explanatory variable to the response variable (Mac

Nally 2000, Graham 2003). For example, given a

response variable (y) and two explanatory variables

(x1, x2; Fig. 1a), area A represents variance in y uniquely

predicted by variable x1, B represents variance in y

uniquely predicted by variable x2, C represents variance

in y redundantly predicted by variables x1 and x2, D

represents variance in y predicted by neither variable,
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and E represents covariance between variables x1 and x2
that is not shared with the dependent variable.

Considering the correlation between x1 and x2, how

should overlap area C be assigned to determine the

relative importance of each explanatory variable in

terms of its contribution to the prediction of the

dependent variable?

Although determining the relative importance of

explanatory variables is of practical relevance to the

allocation of limited resources to the management of

natural systems, the use of various indices to evaluate

variable importance is not well understood. In this

paper, we focus on the process of variable selection,

which can be used in conjunction with model selection to

determine which of the explanatory variables contained

in the top-ranked model has the strongest influence on

the dependent variable. The results of variable selection

can then be treated as multiple competing hypotheses

for subsequent hypothesis testing within an adaptive

management framework (Nichols 2001).

We begin by briefly reviewing four traditional

measures (zero-order correlations, partial correlations,

semipartial correlations, and standardized regression

coefficients) and two relatively newer methods (Akaike

weights and independent effects) used to assess variable

importance in the ecological literature. Next, we report

the results of Monte Carlo simulations comparing the

performance of these indices in terms of their ability to

(1) correctly weight the explanatory variables based on

the proportion of the total variance in the dependent

variable independently explained by each variable, and

(2) detect the presence of a spurious variable that is

correlated with other explanatory variables in the model,

but not with the dependent variable. We conclude with a

discussion of the results and recommendations for use.

A REVIEW OF INDICES OF VARIABLE IMPORTANCE

Zero-order correlations

Given a single dependent variable (y) and two

explanatory variables (x1, x2), the squared zero-order

(simple, bivariate) correlation between y and x1, defined

as

r2
yx1
¼

X
yx1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

y2
X

x2
1

q

0
B@

1
CA

2

measures the direct effect of explanatory variable x1 on

dependent variable y, while ignoring the effect of

variable x2 (Fig. 1b, area A þ C/area A þ B þ C þ D

[Cohen et al. 2003]). Because zero-order correlations

measure only the direct effect of each predictor, they are

unable to partition the variance shared by two or more

correlated predictors into the variance attributable to

each predictor. Thus, when the explanatory variables are

uncorrelated, the interpretation of variable importance

is straightforward. The squared zero-order correlations

for all variables in the model sum to the multiple

correlation coefficient (r2, coefficient of determination),

and relative importance is assessed by a rank ordering of

the values of the observed squared correlations.

However, when correlation between the explanatory

variables exists, interpretation of variable importance is

unclear. The squared zero-order correlations for all

variables in the model no longer sum to the model

r-squared, and the individual correlations will not

accurately reflect the true contributions of the correlated

variables.

Partial correlations

Given a single dependent variable (y) and two

explanatory variables (x1, x2), the squared partial

correlation (coefficient of partial determination) be-

tween y and x1, defined as

r2
yx1:x2

¼ ryx1
� ryx2

rx1x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

yx2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

x1x2

q

0

B@

1

CA

2

represents the correlation between y and x1 after the

influence of x2 has been removed from both y and x1
(Fig. 1c, area A/area AþD [Cohen et al. 2003]). Unlike

zero-order correlations that ignore the effects of other

explanatory variables, partial correlations measure the

predictive efficacy of an explanatory variable in the

presence of a specific subset of the remaining regressors.

Importance is assessed via a rank ordering of the

observed partial correlations, contingent upon the

specific subset of explanatory variables included in the

model. As with zero-order correlations, partial correla-

tions are not designed to partition the variance shared

between multiple correlated predictors and the depen-

FIG. 1. Variance partitioning for (a) the general case of two
correlated explanatory variables and a response variable, and
for the specific cases of (b) zero-order correlations, (c) partial
correlations, and (d) semipartial correlations. See Introduction
for an explanation of variables and regions.
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dent variable. Thus, interpretation of variable impor-

tance is unclear when correlation between the explana-
tory variables exists. Additionally, because the overlap

area is excluded from the partial correlations for both
variables, the overall model may be significant (i.e., F ,

0.05) but no single explanatory variable may account for
a significant proportion of the variance in the dependent

variable (Berry and Feldman 1985).

Semipartial correlations

Given a single dependent variable (y) and two
explanatory variables (x1, x2), the squared semipartial

correlation between y and x1, defined as

r2
yðx1:x2Þ ¼

ryx1
� ryx2

rx1x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

x1x2

q

0
B@

1
CA

2

represents the correlation between y and x1 after the

influence of x2 is removed from x1, but not from y (Fig.
1d, area A/area A þ B þ C þ D [Cohen et al. 2003]).

Semipartial correlations measure the increase in r2

associated with the addition of an explanatory variable,

above and beyond all other explanatory variables
included in the model. Consequently, they are generally

considered a more appropriate measure for regression
analysis than partial correlations (Cohen et al. 2003).

However, semipartial correlations suffer from the same
limitation as zero-order and partial correlations; they

cannot partition the variance shared between multiple

correlated predictors and the dependent variable.

Standardized regression coefficients

Given a single dependent variable (y) and two

explanatory variables (x1, x2), the standardized regres-
sion coefficient (beta coefficient) for x1 with respect to y

is defined as

b 0
1 ¼ b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiX
x2

1X
y2

vuut

where b1 is the sample partial regression coefficient for

predictor variable x1. Thus, it represents the change in y
that results from a change of one standard deviation in

x1 (Zar 1999). Because standardized regression coeffi-
cients are unitless, the importance of each predictor is

indicated by the magnitude of its standardized coeffi-
cient. Although standardized regression coefficients are

often used to assess variable importance, several

limitations with this approach have been noted. First,
there is no a priori reason to assume that a change of

one standard deviation in one predictor should be
equivalent to a change of one standard deviation in

another predictor (Soofi et al. 2000). Second, collinearity
among predictors makes interpretation of standardized

regression coefficients difficult, as the value of the
overlap area is disproportionately allocated to the

explanatory variable with the larger zero-order correla-

tion (LeBreton et al. 2004).

Akaike weights

Given the data and a set of R candidate models, the

Akaike weight for the ith model is defined as

wi ¼
exp � 1

2
Di

� �

XR

r¼1

exp � 1

2
Dr

� �

where Di is the difference between the Akaike informa-

tion criterion (AIC) values for the model with the lowest

AIC value and model i (Di ¼ AICi � AICmin [Burnham

and Anderson 2002]). Because the Akaike weights are

normalized to one, they indicate the probability that the

ith model is actually the best model, of those considered,

to use for making valid inference.

Although the primary use of Akaike weights is in

model selection, they have also been suggested as a

useful technique for assessing the relative importance of

variables (Burnham and Anderson 2002). For instance,

the relative importance of explanatory variable x1 can be

estimated by summing the Akaike weights across all

competing models in the set in which variable x1
appears. Once the Akaike weights for all variables have

been calculated, relative importance is assessed via a

rank ordering of the observed values; larger sums

indicate a variable is relatively more important that

other variables. Note, however, that the weight of each

variable is determined by the number of models in which

the variable appears, in addition to the weight of those

models. Thus, it is important to balance the number of

competing models that contain each variable when

making comparisons based on Akaike weights (Burn-

ham and Anderson 2002).

Independent effects

Given a single dependent variable (y) and k explan-

atory variables (x1, x2, ..., xk), the independent effect of

predictor x1 (Ix1
) represents the average contribution of

variable x1 to the variance in y over all 2k possible

models. The independent effect of each variable is

calculated by comparing the fit of all models containing

a particular variable to the fit of all nested models

lacking that variable, through the process of hierarchical

partitioning (Chevan and Sutherland [1991]; this method

is similar to a technique called dominance analysis in the

organizational research literature, cf. Budescu [1993]).

Thus, for variable x1,

Ix1
¼
Xk�1

i¼0

X
ðr2

y;x1xh
� r2

y;xh
Þ= k � 1

i

� �

k

where xh is any subset of i predictors, x1 excluded

(Chevan and Sutherland 1991, Budescu 1993).

Hierarchical partitioning is not a substitute for other

statistical methods, but rather a complement to any

technique that yields a measure of model fit (e.g., linear,

loglinear, or logistic regression, probit analysis, etc.). By
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averaging each variable’s contribution to the dependent

variable over all possible combinations of explanatory

variables, the variance shared by two or more correlated

predictors can be partitioned into the variance attribut-

able to each predictor. In addition, because this method

utilizes an all possible models approach, it provides a

more robust assessment of variable importance, relative

to single-model approaches, by assuring that the

contribution of a particular variable is neither enhanced

nor masked through its correlation with other explan-

atory variables (Mac Nally 2000).

SIMULATION METHODS

We simulated four scenarios to evaluate the indices

under progressively more complex circumstances. These

scenarios corresponded to (1) four uncorrelated explan-

atory variables, (2) two uncorrelated explanatory

variables and two explanatory variables correlated 0.4

with one another, (3) four uncorrelated explanatory

variables and a spurious variable, and (4) two uncorre-

lated explanatory variables, two variables correlated 0.4

with one another, and a spurious variable.

For the simulation with k¼ 4 uncorrelated variables,

we first randomly generated 20 000 cases from a normal

distribution for each explanatory variable (x̄ ¼ 0; r ¼1)
plus the dependent variable ( ȳ¼ 500; r¼ 1). Selection of

500 as the mean for the dependent variable was

arbitrary. We used a sample size of 20 000 to eliminate

the positive bias in sample r-squared associated with

random sampling fluctuations (Cohen et al. 2003). Next,

we constructed matrices specifying the desired correla-

tion structure between the dependent variable and each

explanatory variable, as well as inter-correlations

between the explanatory variables. The latter were set

to zero for the simulation based on four uncorrelated

explanatory variables. Two correlation matrices were

constructed for each simulation, one in which the zero-

order correlations summed to produce a total r-squared

value of 0.70, and one in which the zero-order

correlations summed to produce an r-squared value of

0.35. We selected these r2values because they represented

a typical range for ecological studies. For each

correlation matrix, the zero-order correlations between

the dependent variable and explanatory variables were

structured such that variable x1 accounted for 10% of

the explained variation in y, x2 accounted for 20% of the

explained variation in y, and x3 and x4 each accounted

for 35% of the explained variation in y. Note that the

specified r-squared values, weights, and correlations

between the dependent and explanatory variables were

based on direct (zero-order) correlations, only; they did

not account for the confounding effects of collinearity or

the inclusion of spurious variables, and thus served as

the baseline against which to evaluate the actual

performance of the various indices. Next, we multiplied

the randomly generated variables by the Cholesky

decomposition of the correlation matrix (ROOT proce-

dure; SAS Institute 1999). This transformed the

uncorrelated variables into a data set drawn from a

population with the desired correlations (Horn and

Johnson 1985).

For each sample that consisted of 20 000 cases of the

dependent and explanatory variables, we ran all 2k

possible models and calculated the Akaike weights and

independent effects for each variable as the average over

all 2k models, and the zero-order correlations from each

of the k bivariate models (Appendix A). The partial

correlations, semipartial correlations, and standardized

regressions coefficients were calculated from the model

containing all k explanatory variables (Appendix A). We

repeated this process 2500 times for each of the four

simulations. At the end of the 2500 trials, we calculated

the relative importance of each explanatory variable as

the average for each measure over the 2500 trials. All

analyses were performed in program SAS (REG

procedure; SAS Institute 1999).

For the remaining simulations, we followed a

procedure identical to that used for the first simulation

with the following exceptions. For the second simula-

tion, the 20 000 cases generated for explanatory vari-

ables x2 and x4 were correlated 0.40 with one another.

For the third simulation, we randomly generated 20 000

cases of a fifth explanatory variable (x5) that was not

correlated with the dependent variable, but was corre-

lated with explanatory variables x2 and x4 (rx2x5
¼ rx4x5

¼
0.45). For the fourth simulation, the 20 000 cases

generated for explanatory variables x2 and x4 were

correlated 0.40 with one another, and we included a

spurious variable (x5) that was not correlated with the

dependent variable, but was correlated with explanatory

variables x2 and x4 (rx2x5
¼ rx4x5

¼ 0.45).

We evaluated the six indices based on their ability to

(1) correctly rank the predictors and determine variable

weights and (2) relate the values to the overall measure

of model fit. For the simulations in which the

explanatory variables were uncorrelated, the true values

were equivalent to the zero-order correlations. This was

also the case for the simulation involving uncorrelated

variables and a spurious variable, since the spurious

variable was not part of the generating model that

produced the dependent variable. For the simulations

based on correlated predictor variables, the true

correlations for variables x2 and x4 were equivalent to

the unique contribution of each variable (i.e., the

squared semipartial correlation coefficient) plus half

the value of the overlap area. To determine the value of

the overlap area, we subtracted the squared semipartial

correlation from the zero-order correlation for either

variable x2 or x4, as using either variable produced the

same outcome.

RESULTS

The performance of the indices did not differ

materially between the simulations in which the corre-

lation matrix was structured to produce a total r2 of 0.70

vs. a total r2 of 0.35. Only the weights of the partial
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correlations differed slightly (Appendix B). Thus, we

present only the results of the simulations based on the

higher r2 value.

Uncorrelated explanatory variables

Zero-order correlations, semipartial correlations,

standardized regression coefficients, and independent

effects performed equally well when the explanatory

variables were uncorrelated. All four indices correctly

ranked the explanatory variables in the order of

importance, and produced accurate estimates of the

contribution of each explanatory variable to the

variance in y (Table 1). In addition, each of these

indices produced a total r2 that was equal to the true

value of 0.70 specified by the correlation matrix. Partial

correlation coefficients ranked the variables correctly in

order of importance; however, the weights were slightly

overestimated for variables x1 and x2 and underestimat-

ed for variables x3 and x4. Furthermore, interpretation

of variable importance was not straightforward using

partial correlations, because the values did not equal the

true correlations nor sum to the r-squared value for the

full model (Table 1). Akaike weights performed poorly

in all respects. Despite considerable differences in the

true r2 values, all four explanatory variables were

assigned equal importance. Furthermore, because the

unit of measure for Akaike weights differs from that of

the other indices, the values are not interpretable with

respect to the true correlations of the explanatory

variables (Table 1).

Correlated explanatory variables

Hierarchical partitioning was the only method to

correctly partition the shared variance between variables

x2, x4, and the dependent variable (Table 1). It produced

independent effects that correctly ranked the importance

of the explanatory variables and reflected the true

contributions of each independent and correlated

explanatory variable to the variance in y. In addition,

it was the only method to detect the effective decrease in

model r-squared from 0.70 to ;0.60 as a result of the

redundancy in variables x2 and x4. As expected, zero-

order correlations overstated the contribution of vari-

ables x2 and x4, as well as the total r-squared, because

the overlap area was attributed to both variables. Partial

correlations also overestimated the contributions of

variables x2 and x4 because of its inability to partition

the shared variance; this index had the highest cumula-

tive value, which overstated the true r2 by 46%.

Conversely, semipartial correlations understated both

the total r2 and the importance of variables x2 and x4, as

the overlap area was omitted from the contributions of

TABLE 1. Performance of six measures of variable importance (r2¼ 0.70).

Variable

Zero-order
correlation

Partial
correlation

Semipartial
correlation

Standardized
coefficient

Akaike
weight

Independent
effect

True
correlation

Value� Weight� Value Weight Value Weight Value Weight Value Weight Value Weight Value Weight

Four uncorrelated explanatory variables

x1 0.070 10% 0.190 13% 0.070 10% 0.070 10% 1.000 25% 0.070 10% 0.070 10%
x2 0.140 20% 0.318 23% 0.140 20% 0.140 20% 1.000 25% 0.140 20% 0.140 20%
x3 0.245 35% 0.450 32% 0.245 35% 0.245 35% 1.000 25% 0.245 35% 0.245 35%
x4 0.245 35% 0.450 32% 0.245 35% 0.245 35% 1.000 25% 0.245 35% 0.245 35%
Total 0.700 100% 1.408 100% 0.700 100% 0.700 100% 4.000 100% 0.700 100% 0.700 100%

Two independent and two correlated explanatory variables (rx2x4
¼ 0.40)

x1 0.070 10% 0.148 17% 0.070 14% 0.070 13% 1.000 25% 0.070 12% 0.070 12%
x2 0.140 20% 0.084 10% 0.037 7% 0.044 8% 1.000 25% 0.088 15% 0.088 15%
x3 0.245 35% 0.378 43% 0.245 50% 0.245 46% 1.000 25% 0.245 41% 0.245 41%
x4 0.245 35% 0.261 30% 0.142 29% 0.169 32% 1.000 25% 0.194 32% 0.194 32%
Total 0.700 100% 0.871 100% 0.494 100% 0.528 99% 4.000 100% 0.597 100% 0.597 100%

Four uncorrelated explanatory variables and a spurious variable

x1 0.070 10% 0.621 15% 0.070 5% 0.070 4% 1.000 20% 0.070 7% 0.070 10%
x2 0.140 20% 0.886 21% 0.335 24% 0.449 25% 1.000 20% 0.211 22% 0.140 20%
x3 0.245 35% 0.851 21% 0.245 18% 0.245 13% 1.000 20% 0.245 26% 0.245 35%
x4 0.245 35% 0.916 22% 0.467 34% 0.626 34% 1.000 20% 0.329 34% 0.245 35%
x5 0.000 0% 0.857 21% 0.257 19% 0.432 24% 1.000 20% 0.102 11% 0.000 0%
Total 0.700 100% 4.131 100% 1.374 100% 1.822 100% 5.000 100% 0.957 100% 0.700 100%

Two independent variables, two correlated variables (rx2x4
¼ 0.40) and a spurious variable

x1 0.070 10% 0.193 12% 0.070 10% 0.070 8% 1.000 20% 0.070 10% 0.070 12%
x2 0.140 20% 0.224 14% 0.084 12% 0.113 13% 1.000 20% 0.110 16% 0.088 15%
x3 0.245 35% 0.455 29% 0.245 34% 0.245 28% 1.000 20% 0.245 35% 0.245 41%
x4 0.245 35% 0.425 27% 0.216 30% 0.288 33% 1.000 20% 0.229 32% 0.194 32%
x5 0.000 0% 0.272 17% 0.110 15% 0.154 18% 1.000 20% 0.053 7% 0.000 0%
Total 0.700 100% 1.569 99% 0.725 101% 0.870 100% 5.000 100% 0.707 100% 0.597 100%

� True r2
yx.

� Scaled r2
yx; scaled by total model r2 for comparison to value used for variable weight.
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both variables. Similarly, standardized regression coef-

ficients underestimated the importance of variable x2 by

nearly 50%, as most of the overlap area was assigned to

variable x4. The cumulative value of the standardized

regression coefficients also slightly understated model r2.

Akaike weights could not detect the overlap area and

still assigned equal weights to all variables.

Uncorrelated explanatory variables

and a spurious variable

Zero-order correlations was the only index that

identified variable x5 as a spurious variable (i.e., a

zero-order correlation of zero), and produced values

that correctly ranked the importance of the explanatory

variables and reflected the true contributions of each

explanatory variable to the variance in y (Table 1).

Further, it was the only index that generated a

cumulative value equal to the true r2 of 0.70 specified

by the correlation matrix; the cumulative values for all

other indices overstated total r2. All indices except zero-

order correlations assigned a higher value to the

spurious variable (x5) than for variable x1, and

overstated the contributions of variables x2 and x4, as

these latter variables picked up additional explanatory

power from their correlation with the spurious variable.

Partial correlations, semipartial correlations and stan-

dardized regression coefficients also produced cumula-

tive values that exceeded 1.0, rendering them

uninterpretable within the context of r2. Independent

effects had the same limitations as partial correlations,

semipartial correlations, and standardized regression

coefficients, but produced values that were closer to the

true contribution of each explanatory variable. Akaike

weights could not identify the presence of a spurious

variable, and assigned equal weight to all variables.

Correlated explanatory variables and a spurious variable

Again, zero-order correlations was the only index to

correctly identify variable x5 as a spurious variable (i.e.,

zero-order correlation of zero; Table 1). However, the

contributions of variable x2 and x4, and well as the

cumulative value, were overstated as a result of the

inability of zero-order correlations to partition the

overlap area. Partial correlations, semipartial correla-

tions, and standardized regression coefficients all as-

signed a value to the spurious variable (x5) that exceeded

the contributions of variables x1 and x2, which were

included in the generating model. Interestingly, although

semi-partial correlations and standardized regression

coefficients incorrectly stated the importance of vari-

ables x2 and x4, the estimated values were closer to the

true values than those produced by the third simulation;

increases in the values resulting from correlations with

the spurious variable were tempered by decreases

associated with the overlap area. The cumulative values,

though less than 1.0, were still overstated. Independent

effects correctly ranked the variables in order of

importance, but assigned some weight to the spurious

variable. Akaike weights could not identify the presence

of a spurious variable, and assigned equal weight to all

variables.

DISCUSSION

When predictor variables are uncorrelated, interpre-

tation of variable importance is straight forward and the

selection of an index simple; zero-order correlations,

semipartial correlations, standardized regression coeffi-

cients, and independent effect all perform equally well.

However, in ecological studies explanatory variables are

often only nominally independent, and no single

technique to assess variable importance performs

satisfactorily under all circumstances. While zero-order

correlations can identify spurious variables that have no

relationship with the dependent variable but are

correlated with other explanatory variables in the

model, this index cannot assign overlap areas to

determine variable importance. Conversely, indepen-

dent effects cannot detect the presence of spurious

variables, but it is the only index that can correctly

partition shared variance and detect the effective

reduction in total r2 that results from redundancy in

the correlated variables.

Akaike weights are primarily used to select among

models with different combinations and numbers of

variables, optimizing between model over-fit, with its

corresponding high variance, and model under-fit, with

its corresponding high bias. Beyond this, Akaike weights

are useful for comparing the weight of evidence between

models, evaluating the support for sets of candidate

models containing predictor variables of interest, or

calculating a model-averaged parameter estimate (Burn-

ham and Anderson 2002). However, because weightings

apply to each model as a whole, rather than to

individual variables, we found this index was not

sufficiently sensitive to correctly rank variable impor-

tance. In our simulations, the large sample size of 20 000,

used to facilitate comparisons among the indices by

eliminating the positive bias in r2 that occurs in

randomly generated samples (Cohen et al. 2003),

resulted in no model-selection uncertainty. Consequent-

ly, the top-ranked model, and all corresponding

variables contained within that model, received an

Akaike weight of 1. Although the Akaike weights

returned by our simulations were, to some extent, an

artifact of the large sample size we used, the perfor-

mance of this index was not materially improved when

we repeated the simulations with a sample size of 100 to

increase model selection uncertainty (Appendix B).

Furthermore, although we expected AIC to consistently

choose the true model, the five-variable model that

included the spurious variable consistently received an

Akaike weight of 1, while the true four-variable

generating model received an Akaike weight of 0. Thus,

this index was not appropriate for identifying spurious

variables, or for ranking variable importance, and

should not be used in these capacities; rather, Akaike
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weights should be used for model selection prior to

assessment of variable importance using alternative

methods.

Correlation among predictor variables

Problems with multicollinearity, including inflated

standard errors for the predictor coefficients with a

concomitant increase in Type II errors, instability in

coefficient estimates, and erroneous rankings of variable

importance, are well-documented in the statistical (e.g.,

Zar 1999, Cohen et al. 2003, Belsley et al. 2004, Gotelli

and Ellison 2004) and ecological (e.g., Mac Nally 2000,

Graham 2003) literature. Although suggested cut-off

values vary widely, remediation is typically not recom-

mended unless pairwise correlations exceed ;0.80 (Katz

2006). However, we found that even the relatively low

level of correlation (r ¼ 0.40) incorporated in our

simulations was sufficient to preclude an accurate

assessment of variable importance. Similarly, Graham

(2003) reported that correlations as low as 0.28 resulted

in inaccurate model parameterization. Nearly all the

indices we tested distorted the relative contributions of

the predictor variables, and produced incorrect rank

orderings, when correlation between the explanatory

variables was included in the model. This was due to the

inability of the indices to correctly assign the overlap

area, which caused the contributions of the collinear

variables (x2 and x4) to be understated. Only independent

effects produced values for the predictor variables that

reflected their true contributions towards the variance in

y. Thus, failure to consider the influence of correlation on

variable rankings, or reliance on traditional measures of

variable importance such as semipartial correlations or

standardized regression coefficients, will likely lead to a

misidentification of priorities, and attendant inefficient

allocation of resources, when selecting among competing

management alternatives.

Identification of spurious variables

In recent years, scientists have raised concerns

regarding the reporting of spurious effects in biological

journals, especially for exploratory studies where rela-

tionships between the dependent variable and numerous

factors are examined (Anderson et al. 2001). Of the

indices tested, we found that only zero-order correla-

tions could reliably detect the presence of a spurious

variable (i.e., return a value/weight of zero). All other

indices assigned at least some weight to the spurious

variable, and frequently ranked the importance of the

spurious variable ahead of predictors that were included

in the true model. Furthermore, for all indices except

zero-order correlations, inclusion of the spurious vari-

able caused the model r2 to be biased high. Thus, in the

absence of some form of screening, the temptation will

be to include the spurious variable in the final model due

to the apparent improvement in explanatory power.

The indiscriminate use of statistical tests to screen

variables for significance is discouraged because it

inflates the risk of committing a Type I error (Gotelli

and Ellison 2004). However, statistical significance is not

an indication of variable importance. Rather, it reflects

the strength of confidence in making inference about an

unknown parameter based on a statistic (Soofi et al.

2000). We note that even with a reduced sample size of

100, the spurious variable remained highly significant (P

, 0.0001) in our simulations. In contrast with signifi-

cance testing, zero-order correlations rely on the

existence of non-zero correlations between dependent

and explanatory variables, rather than P values, to

screen for spurious variables. Thus, the use of zero-order

correlations to identify spurious variables does not carry

an increased risk of committing a Type I error.

We caution that our simulations were designed to test

for a specific type of spurious variable, one that was

partially correlated with other explanatory variables in

the generating model, but not with the dependent

variable. Although zero-order correlations performed

well under these circumstances, this index cannot be

used to identify spurious effects in situations in which

the dependent and explanatory variables are correlated

but no biological relationship exists. In addition, none of

the methods we tested will directly identify interaction

effects, in which the relationship between a dependent

and explanatory variable is moderated by the presence

of a third interacting variable; these cases must be

identified via other procedures such as the inclusion of

an interaction term in the model or experimental testing

using a factorial design (Cohen et al. 2003, Gotelli and

Ellison 2004). Thus, the use of zero-order correlations

should not be viewed as a substitute for careful a priori

thinking about the biological basis for including

variables in an analysis (Anderson et al. 2001).

CONCLUSION

Based on our simulation results, we recommend using

zero-order correlations to eliminate predictor variables

that have correlations with the response variable near

zero, as the first step in variable importance analyses.

Once spurious variables have been identified and

eliminated, hierarchical partitioning can assign overlap

areas and rank variable importance via independent

effects. We stress that correlation does not imply

causation and we make no claims about the ability of

the indices tested to resolve the difficult issue of

establishing causality among variables; validation of

variable importance can only be determined by exper-

imental means. Thus, this approach should be used to

generate testable hypotheses regarding alternative man-

agement strategies that can be subsequently tested

through application in an adaptive management frame-

work. At a time when many resource management

agencies are faced with shrinking budgets, we suggest

that this approach can assist ecologists and wildlife

managers in prioritizing management strategies and in

allocating scarce resource to their most productive use.
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APPENDIX A

Performance of six measures of variable importance (Ecological Archives E090-026-A1).

APPENDIX B

Performance of Akaike weights with a reduced sample size of 100 to increase model-selection uncertainty (Ecological Archives
E090-026-A2).

SUPPLEMENT

Source code for variable importance situations (Ecological Archives E090-026-S1).
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