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Error back propagation (EBP) is now the most used training algorithm for feedforward

artificial neural networks (FFANNs). However, it is generally believed that it is very

slow if it does converge, especially if the network size is not too large compared to the

problem at hand. The main problem with the EBP algorithm is that it has a constant

learning rate coefficient, and different regions of the error surface may have different

characteristic gradients that may require a dynamic change of learning rate coefllcient

based on the nature of the surface. Also, the characteristic of the error surface maybe

unique in every dimension, which may require one learning rate coefficient for each

weight. To overcome these problems several modifications have been suggested. This

survey is an attempt to present them together and to compare them. The first

modification was momentum strategy where a fraction of the last weight correction is

added to the currently suggested weight correction. It has both an accelerating and a

decelerating effect where they are necessary. However, this method can give only a

relatively small dynamic range for the learning rate coefficient. To increase the

dynamic range of the learning rate coefficient, such methods as the “bold driver” and

SAB (self-adaptive back propagation) were proposed. A modification to the SAB that

eliminates the requirement of selection of a “good” learning rate coefficient by the user

gave the SuperSAB. A slight modification to the momentum strategy produced a new

method that controls the oscillation of weights to speed up learning. Modification to the

EBP algorithm in which the gradients are resealed at every layer helped to improve the

performance. Use of “expected output” of a neuron instead of actual output for

correcting weights improved performance of the momentum strategy. The conjugate

gradient method and “self-determination of adaptive learning rate” require no learning

rate coefficient from the user. Use of energy functions other than the sum of the

squared error has shown improved convergence rate. An effective learning rate

coefficient selection needs to consider the size of the training set. All these methods to

improve the performance of the EBP algorithm are presented here.
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1. INTRODUCTION

Artificial neural networks (ANNs) are

mathematical models developed to mimic

certain information storing and process-

ing capabilities of the brain of higher

animals. These models are developed

with a quite different philosophy of infor-

mation processing from that of conven-

tional computers. It is hoped that they

will overcome the conventional comput-

ers’ limitation on “intelligent” informa-

tion processing capability. They are

assumed to be assembled from neuron-

like cells that are connected by links with

adjustable strengths/weights. The most

attractive characteristic of ANNs is that

they can be taught to perform computa-

tional tasks using some learning algo-

rithm and few examples. When designed

carefully, they can be simulated on digi-

tal computers or can be implemented us-

ing digital/analog VLSI.

Although interest of the research com-

munity in ANNs as a means for intelli-

gent computing had existed for over 30

years (see Widrow and Lehr [ 1990]), there

is little doubt that Rumelhart, McClel-

land, and the PDP research group [1986]

should be credited with revitalizing wide

interest in it. The different models and

their applications can be found in many

books and in such surveys as Hinton

[1989], Lippmann [1987], and Widrow

and Lehr [1990]. This article concen-

trates only on feed forward ANNs

(FFANNs) and error-back propagation

(EBP) learning algorithms for them.

The EBP learning rule for multilayer

FFANNS, popularly known as the back-

propagation algorithm, is a general-

ization of the delta learning rule for

single-layer ANNs. The delta learning

rule is so called because the amount of

learning is proportional to the difference

(or delta) between the actual output and

the desired output provided by a teacher.

As the title of Werbos’ [1974] thesis sug-

gests, the BEP learning algorithm goes

“beyond regression.” Werbos [1990] be-

lieves that “backpropagation has many

applications which do not involve neural

networks as such.”

EBP is now the most popular learning

algorithm for multilayer FFANNs be-

cause of its simplicity, its power to ex-

tract useful information from examples,

and its capability of storing information

implicitly in the connecting links in the

form of weights. Thus, unlike expert sys-

tems, where knowledge as a set of rules

is necessary, FFANNs need no explicit

rules to perform classification tasks. The

development of EBP theory is related to

many disciplines, and it took a long time

to reach its present form. Basic elements

of the theory, as pointed out by le Cun

[ 1988], can be traced back to the book of

Bryson and Ho [1969]. It was more ex-

plicitly stated by Werbos [1974], Parker

[1985], le Cun [1986], and Rumelhart

et al. [1985]. However, the book by the

PDP research group [ 1986] helped the

EBP algorithm to spread widely and

achieve its present popularity.

The original version of the EBP learn-

ing algorithm has been of great concern

to practical users for many reasons: (1) it

is extremely slow if it does converge,

(2) it may get stuck in local minima be-

fore learning all the examples, (3) it is

sensitive to initial conditions, (4) it may

start oscillating, and so on. Several

methods have been proposed to improve
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the performance of the EBP algorithm.

The most important suggested modifica-

tions to the original EBP algorithm are

presented here. Also, the synergy among

the methods is discussed so that they can

be combined to possibly obtain consider-

able improvement over any single one.

In the next section, following Rumel-

hart et al. [1986], the original version of

the EBP algorithm is presented. An

overview of different modifications to the

original EBP algorithm and their rela-

tionships is presented in Section 3. Dif-

ferent modifications to the original EBP

algorithm for speeding up the training

process are presented in Section 4. The

modifications to EBP described in Sec-

tion 4 are compared in Section 5.

2. ORIGINAL EBP ALGORITHM

A FFANN consists of a set of simple

neurons (or processing units). A neuron

is described with two entities: its activa-

tion function and its bias or threshold. It

accepts inputs from output of other neu-

rons or from external sources. The set of

neurons in a FFANN is partitioned into

several disjoint subsets. All neurons in

one partition are assigned to the same

layer. For instance, in a two-layer

FFANN the neurons are partitioned into

two disjoint subsets, one for each layer.

Each neuron in one layer is connected to

all neurons in the next layer by links

with adjustable strength/weights. As

shown later, a connection weight may

change during the learning process. Let

u: be the ith neuron in lth layer. The

input layer is called the Oth layer and

the output layer is called the oth layer.

Let nl be the number of neurons in lth

layer. The weight of the link between

neuron u; in layer 1 and neuron u:+ 1 in

layer 1 + 1 is denoted by w~j. Let

{X1, X2,..., XP} be the set of input pat-

terns that the network is supposed to

learn to clawify and let {d,, dz, . . . . dr}

be corresponding desired output pat-

terns. It should be noted that XP is an

nondimension vector (xlP, Xzp, . . . , x~OP)

and dP is an nO-dimension vector

(dl ,dzP,...,

l!’

d~oP). The pair (xP, dP) is

cal ed a training pattern.

Example. A three-layer (including in-

put layer) FFANN is shown in Figure 1.

Input (Oth), lst, and output layers have

two, two, and one neurons, respectively.

Thus for this FFANN, nO = 2, nl = 2,

and nO = 1.For illustrative purposes in

the rest of the article we use the follow-

ing set of inputs and desired output pat-

terns.

{%=[:]? %=[:],

[11 [1)

1
$3 =

o’
$.. =

1’

{dl = [0], d, = [1],

d~ = [1], dl = [01}.

The output of a neuron u? is the input

xiP (for input pattern p). For other lay-

ers, the net input to a neuron is usually

computed as the sum of all inputs to it.

With the notations we have introduced,

the net input net~~ 1 to a neuron u:+ 1 for

the input pattern XP is given by

where out; is the output of neuron u; of

layer 1, and bias:+ 1 is the bias of neuron

u:+ 1 of layer 1 + 1. The net input to a

neuron is used by its activation function

to produce an output. Any nonlinear

function can be used as an activation

function. The sigmoidal function is the

most commonly used activation function.

Using this function, the output of a neu-

ron u ~ with net input net;, is given by

where ~ determines the steepness of the

activation function. A lower value of /3

gives a smoother transition from a lower

to a higher activation level as the net;,

changes its value; a higher value for ~

will cause a step-like transition in the

activation level. In the rest of the article

we assume that the value of ~ = 1.

ACM Computing Surveys, Vol. 27, No. 4, December 1995
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Figure 1. 3-layer neural network,

The EBP algorithm for FFANNs pro-

ceeds by representing an input pattern to

the input (or the Oth) layer, after which

the network produces an output. This

output is compared to a desired or target

output. The difference between the target

output and actual network is called er-

ror. Formally, the error eP’ for the i th

neuron u ~ of the output layer o for the

input training pair ( XP, dP ) is computed

as

eP, = dPl – out:,. (3)

An objective of a learning algorithm is to

use this error to adjust the weights in

such a way that the error gradually re-

duces. The training process stops when

the error of every neuron for every train-

ing pair is reduced to an acceptable level,

or when no further improvement is ob-

tained. In the latter case, the network is

again initialized with small weights and

the training process starts afresh,

Example (con’t.). To continue further

with the example, we need to assign some

values to each of the connections and

biases. Let connection weights and bias

fo: ~euron 1 in layer 1 be w ~, = 0.3,

W12 — – 0.6, and bias; = 0.4; for neuron

2 in layer 1 be w~l = 0.2, w~z = 0.8, and

bias? = – 0.2; and for neuron 1 in the

output layer be w~l = 0.7, w~z = 0.9, and

bias; = –0.7.

Using these values for the connection

weights and biases, one can compute net

inputs and corresponding outputs of the

neurons for every input pattern, For ex-

ample, considering the pattern x ~ as in-

put to the network we get net inputs for

two neurons in the 1st layer as net ~1 =

E;. IW?l XJ1 + bias; = 0.4, and net~z =

~~. ~W~~Xll + bias; = –0.2.

Now applying these net inputs to the

activation function we get the output of

the neurons in the 1st l~yer as out ~1 =

f(net~~~ = 1/(1 + e)-net” = 0.~99, and
out~z = f(rzet~z) = 1/(1 + e)-’et” = 0.450.

These outputs of the 1st layer act as the

input to the next layer (which is the

output layer in this example) and for

the neuron in the output layer we get

net:l = 0.124 and out:l = 0.531. Because

the desired output with input pattern xl

is dl = [0], the error Sll = dll — out~l =

– 0.469.

For measuring the performance of the

learning algorithm, an objective function

is defined in such a way that as the error

reduces so does the value of the objective.

Thus a training algorithm decides the

change of weights using some procedure

that guarantees no increase in the objec-

tive function’s value. The objective func-

tions are known as the energy functions

(from the name of similar functions in

physics). Rumelhart et al. [1986] in their

original EBP algorithm used the sum of

the squared error as the energy function.

The energy function can be defined for

only one training pattern pair ( XP, dp ) as

ACM Computmg Surveys, Vol 27, No. 4, December 1995



Error Back-Propagation Learning 9 523

There are two versions of the EBP al- The chain rule of differentiation is used

gorithm, online and batch. In the online to evaluate the expressions for 8~~ 1. We

EBP algorithm, the weights are updated skip derivations, but write the expres-

sing the error corresponding to every sions for them. It is assumed that activa-

training pattern. This method uses the tion levels of neurons are computed

energy function defined by Equation (5). using the standard sigmoid function

However, in the batch EBP algorithm, [Equation(2)]with p = 1:

the weights are updated after accumulat-

ing errors corresponding to all input pat-

terns, and thus make use of the energy
a;i = Out;, (l – Out;i)spi (12)

function defined by Equation (4). The

weight updating rule for the batch mode for neuron i in the output layer, and

is given by

“J

the index s labels the iteration or step

number in the learning process, and q is

the step size or learning rate coefficient.

For the online EBP algorithm, the

weight-updating rule is obtained if the

energy E in Equation (7) is replaced by

energy EP to compute an energy-weight

gradient:

dEP
G~j[s] = _ (8)

dw:j[s] “

Now one can use the chain rule of dif-

ferentiation to write

Referring to expression for net 1~ 1 from

Equation (l), it is easy to find t~at

for neuron i in hidden layers. It is clear

from Equation (12) that the error signal

~~, is computed directly from the corre-

sponding error ePi = dPi – out~i, but the

error signal for neurons in hidden layers

is obtained by propagating error signals

of the neurons in the layer just after it:

thus the name Error Back. Propagation

Learning Algorithm. Figure 2 illustrates

computation of error signals 8~~ 1 for a

neuron i in layer 1 + 1.

Combining Equation (11) with Equa-

tion (12), one can compute weight cor-

rections for output-layer neurons. Simi-

larly, the weight correction for hidden-

layer neurons can be computed by com-

bining Equation (11) with Equation (13).

The training process of a FFANN is an

iterative process. Each iteration consists

of the following steps:

dnet~~ 1 (1)

C?W:JS]
= Out:j[ s].

’10) (2)

Expressions for 6JEP/dnet~ 1 are dif-

ferent for hidden-layer neurons and out-

put-layer neurons. Thus it is convenient

to denote PEP/dnet~ 1 = – ~~~ 1 for both (3)

hidden-layer and output-layer neurons to

obtain the weight update rule for all neu-

rons as

W~j[S + 1] = W~j[S] + ~8~~10Ut~j[S].

(11)

Select a training pattern ( XP, dP).

Forward Pass: Present the input

pattern XP to the input of the FFANN

and determine its output. Equations

(1) and (2) are necessary to do the

computation for this pass.

Backward Pass: Calculate the error

signal for each neuron. It should be

noted that error signal calculation

starts from the output layer and pro-

ceeds in the backward direction to

hidden layers. For instance, if a

FFANN has four layers—one input

ACM Computing Surveys, Vol. 27, No. 4, December 1995
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Figure 2. Computation of error signal for a hidden-layer neuron i in layer 1 = 1,

layer, two hidden layers, and one out-

put layer—then (a) error signals for

the output-layer neurons are com-

puted first, then (b) error signals for

the second hidden-layer neurons

(next to the output layer) are com-

puted, and finally (c) error signals for

the first hidden-layer neurons (closest

to the input layer) are computed.

(4) Weight Adjustments: Adjust the

weights using Equation (11).

Example (con’t.). Now we continue

with the example started earlier. Before

this, what we have completed are the

first two steps of the preceding algo-

rithm. We selected x ~ as the input pat-

tern and completed the forward pass. We

also computed Sll. Next we complete the

backward pass by computing error sig-

nals for the output-layer neurons [using

Equation (12)] and the hidden-layer neu-

rons [using Equation (13)]. The error sig-

nal for the output layer neuron u ~

is 8:1 = out~l(l – out~,)sll = –0.132.

Error signals for neurons u ~ and u ~ in

the hidden layer are 8~1 = out~l(l –

Outll)z; = ~wjla:k ;
\

– 0.022, and 8~z =

Outll(l — OUt; l)~k.1W;28:k = —0.029,

respectively. This completes the third

step.

In the last step, using Equation (11)

the weights are adjusted to obtain w ~1 =

0.3, w& = – 0.6, and bias+ = 0.377759

for neuron u; in the hidden layer; w~l =

0.2, W;2 = 0.8, and bias; = – 0.229459

for neuron u; in the hidden layer; w ~1 =

0620827, W;Z = 0.840468, and biasj =

– 0.832244, for neuron u; in the output

layer. We used the learning rate coeffi-

cient q = 1 for weight adjustment. (For

consistency, we use learning rate coeffi-

cient q = 1 in all our examples that fol-

low.) The completes one iteration with

input pattern xl. Because the weights

were updated after presenting only one

pattern, this is the online version of the

EBP learning algorithm.

We present input patterns xl, xz, X3,

and xl in that order to the network at

each cycle for easy reproduction of the

results. (However, they could be pre-

sented in any order, but possibly affect-

ing the final outcome,) It was assumed

that the network had learned all the pat-

terns if the absolute value of the error

was less than 0.3 for each pattern. The

online algorithm required 420 cycles to

learn all the patterns. The final connec-

tion weights of the network were as fol-

10WS: W;l = 3.30961, W;2 = –3.74105,

and bias: = – 2.06024 for neuron u~ in

the hidden layer; w~l = – 3.32466, w~z

= 2.99838, and bias; = – 1.81799 for

neuron u ~ in the hidden layer; w ~1 =

3.75645, w~z = 3.73334, and bias; =

ACM Computing Surveys, Vol. 27, No, 4, December 1995
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– 1.74346, for neuron u! in the output

layer.

Batch Version. Now we illustrate the

batch version of the EBP learning algo-

rithm with the same sample FFANN. It

may be recalled that in the batch ver-

sion: each pattern is presented once and

weight correction is calculated, but the

weights are not actually adjusted; and

calculated weight corrections for each

weight are added together for all the pat-

terns and then weights are adjusted only

once using the cumulative correction. As

for the online version, we present input

patterns xl, Xz, X8, and XA in that order

to the network at each cycle. However, it

should be noted that in the batch version

of the EBP algorithm the order of presen-

tation of patterns to the network does

not matter because we adjust weights

only once after all the patterns have been

presented and cumulative errors for the

weights have been computed.

After the first cycle, the adjusted

weights of the network are: w ~1 =

0.292659, w~z = – 0.605081, and bias: =

0.389771 for neuron u; in the hidden

layer; w~l = 0.197833, w~z = 0.796052,

and bias; = – 0.208627 for neuron u; in

the hidden layer; w~l = 0.671218, w~z =

0.871077, and bias: = – 0.750384, for

neuron u! in the output layer. This ver-

sion of the algorithm required 491 cycles

to attain our desired error level (of less

than absolute value 0.3) for all the pat-

terns. The weights of the network after

491 cycles are given next. It should be

noted that the weights obtained are quite

different from the ones obtained by the

online version. The final connection

weights of the network were as follows:

w~l = – 2.45067, w~z = – 2.47898, and

bias: = 3.51763 for neuron u] in the hid-

den layer; w~l = 5.16276, w~z = 5.33647,

and bias; = – 1.86421 for neuron u; in

the hidden layer; w~l = 4.12527, w~z =

4.30574, and bias: = – 5.9717, for neu-

ron u ~ in the output layer.

Values of several parameters are of

importance in implementing the EBP al-

gorithm. The initial value of weights

should be small and randomly chosen

[Rumelhart et al. 1986] to avoid the sym-

metry problem.1 Sietsma and Dow [1991]

have used uniformly distributed random

numbers between – 0.5 and 0.5 as bias

weights, and between ( – 0.5/nl ) and

(0.5/nl) as initial weights for links be-

tween layers 1 and 1 + 1. Note that the

division by nl, the number of inputs,

eliminates the effect of the number of

inputs to a neuron. The q value plays a

very important role. A smaller value of q

makes learning slow, but too large a value

causes oscillation, preventing the net-

work from learning the task [Rumelhart

et al. 1986]. In practice, the most effec-

tive value of q depends on the problem.

For example, Fahlmann [1988] has re-

ported 0.9 as the learning rate coefficient

for one problem, and Hinton [1987] has

reported 0.002 as the learning rate coeffi-

cient for another problem. This variation

in the value of the learning rate coeffi-

cient for faster training of FFANNs has

drawn the attention of many researchers.

Various methods have been proposed to

speed up the EBP algorithm. In the next

section, a brief overview of these meth-

ods is presented.

3. AN OVERVIEW OF DIFFERENT

MODIFICATIONS

It has been realized that the original

EBP algorithm is too slow for most prac-

tical applications, and many modifica-

tions have been suggested to speed it up.

Before describing different modifications

to the original EBP algorithm in Section

4, we briefly discuss them here to see

how they are related to one another.

A classification tree is shown in Fig-

ure 3 to help our discussion. As can be

seen from the figure, the methods pro-

posed to speed up the original EBP can

be divided into groups: (1) Dynamic

learning rate adjustments, where values

1 If all initial weights are equal and the final solu-

tion requires different weights, then EBP fails to

train the net. This is known as the symmetry prob-

lem.
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Figure 3. Classification of different methods to speed up EBP learning algorithms.

of learning rate coefficients are adjusted

as the learning continues. Adjustment of

learning rate coeffkients could be done

indirectly or directly. Examples of indi-

rect adjustment of learning rate are the

momentum method (see Section 4.1) and

con]”ugate gradient methods (see Section

4.7). Indirect learning rate adjustment

methods, especially the momentum

method, have speeded up the EBP algo-

rithm in some cases. However, they were

not satisfactory enough in many cases,

and hence methods for direct adjustment

of the learning rate coefficient have been

proposed: one learning rate coefficient for

all the weights (see Sections 4.2.1, 4.3,

and 4.6 for details) and one learning rate

coefficient for each weight (see Sections

4.2.2 and 4.2.3 for details).

Methods other than adjustment of

learning rate coefficients have shown no-

ticeable speedup for some applications.

(2) Resealing of (error signal) variables

is based on the observation that error

signals for hidden-layer neurons are at-

tenuated very quickly. The amount of at-

tenuation increases exponentially as the

distance of the hidden layer from the

output layer increases linearly. Thus, to

compensate for the attenuation the error

signals are scaled up (see Section 4.4). (3)

Another source of improvement is to use

the expected output of a neuron instead

of the current output (see Section 4.5). (4)

The original EBP algorithm uses sum of

the squared errors as its energy function.

However, any function of error that de-

creases as error is reduced can be used

as an energy function. Several other en-

ergy functions have been used to speed

up EBP learning (see Section 4.8). (5)

Analysis and experimentation have

shown that the size of the training set is

a parameter that could be used to deter-

mine a learning rate (see Section 4.9).

When sizes of training sets for different

classes are different, use of different

learning rate coefficients for them could

speed up EBP learning.

ACM Computing Surveys, Vol 27, No. 4, December 1995
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In the following sections the methods

for modifying the original EBP algorithm

in order to speed up the learning process

are presented.

T

4. MODIFICATIONS TO ORIGINAL EBP :

I /

l?<,,<),

ALGORITHM ~
>
% /

This section presents a survey of the

modifications to the original EBP algo-

rithm that have been suggested to speed

up the training of FFANNs. As we pro-

ceed it will become clear that some of

these methods can be combined to obtain

an algorithm that not only provides faster

training but also helps automate the se-

lection of certain problem-sensitive pa-

rameters.

4.1 Momentum Strategy

The learning strategy used in the origi-

nal EBP algorithm is actually a gradient

descent on the multidimensional energy

surface in the weight space. A closer look

on the effect of the value of the learning

rate coefficient q reveals that in an area

of the energy surface where the gradient

is not changing sign, a larger value of q

reduces the energy function faster; on

the other hand, near an area where the

sign of the gradient is changing quickly,

a smaller value of q keeps the descent

along the energy surface. This disparate

need for the value of q suggests a method

that adapts the value of q dynamically

depending on the characteristic of the

energy surface. The momentum strategy

implements such a variable learning rate

coefficient implicitly by adding a fraction

of the last weight change to the current

direction of movement in the weight

space, and it is a slight change to the

weight updating rule of the original EBP

[Equation (7)]. The new equation for

weight change is given by

~
3

1

0 I 1

0 100 2D0 300

Number of It.mu.ns

Figure 4. Comparison of two values of connection

weights for batch version of EBP with and without

momentum term.

Note that we get Equation (7) from the

following equation:

W~j[S + I] = W~j[S] + ~G~j[ S]

+ a(zu:j[sl –w:j[s – 11),

(15)

when Aw~j[ k ] is defined as

Aw~j[k] = w~j[k] – w~,[k – 1]. (16)

Example (con’t.). Figure 4 shows the

desired effect of using a momentum term

in EBP learning. We used momentum

coei%cient a = 0.5, and kept all initial

conditions and learning rate coefficients

the same as before. We plotted the con-

nection weight w ~1 as a function of the

training step for both training with and

without the momentum term. It can be

seen from these curves that when the

sign of the gradient does not change, the

Aw/j[s + 1] = @:J[s] + aAw;J[s], momentum method increases the amount

(14) of weight adjustments. This can be

viewed as a change of effective learning

rate coefficient to a larger value. Thus, as

where a is a momentum coefficient that expected, the desired error level was

can have a value between zero and one. reached much faster (after only 328

ACM Computing Surveys, Vol 27, No 4, December 1995



528 ● Dilip Sarkar

iterations) with the momentum term

than without it (491 iterations). How-

ever, it should be noted that use of a

momentum term may not always reduce

the number of required iterations. We

were lucky in this example! The final

weights after the desired error level was

reached are: w~l = – 2.44177, w~z =

– 2.4702, and bias+ = 3.50069 for neuron

u; in the hidden layer; w~l = 5.2046, w~z

= 5.3867, and bias; = – 1.9496 for neu-

ron u ~ in the hidden layer; w ~1 =

4.14685, w~z = 4.28035, and bias: =

– 5.95402, for neuron u; in the output

layer. The final weights are very similar

to those obtained from the batch version

of the EBP, but slightly different. How-

ever, this may not always be the case.

A better insight into the effect of the

momentum term in the finite difference

equation (15) can be obtained by using

a technique such as the Z transform

[Eaton and Olivier 1992]. The Z trans-

form of Equation (15) is:

(17)

where w~~[O] is the initial weight. This Z

transform can be viewed as a cascade of

an integrator with gain q and a low-pass

filter with gain 1/(1 – a). The integrator

accumulates individual G~J terms. The

gain and cutoff point of the low-pass fil-

ter are controlled by the single parame-

ter a. The maximum total gain from the

system is (q/(l – a)) when many con-

secutive inputs (values of G~j ) are ap-

proximately equal in magnitude and sign.

In the filter analogy, these are low-

frequency inputs and hence attain high-

est gain. On the other hand, the maxi-

mum attenuation from the system is

(q/(l + a)) when many consecutive in-

puts are roughly equal in magnitude, but

the signs of any two consecutive inputs

are opposite. Again in the filter analogy,

these represent high-frequency inputs.

The lower and upper bounds between

which the dynamic range of the effective

learning rate coefficient is adjusted are

the minimum and maximum gains of the

system. For example, if q = 1 and a = 0.2

then the lower and upper bounds of the

effective learning rate coefficient are

0.833 and 1.25, respectively. Clearly, a

momentum coefficient value close to zero

keeps the range for adjustment of the

effective learning rate coefficient smaller,

but it lets the system respond quickly in

the area where the gradient of the en-

ergy surface is changing at a faster rate.

However, if the momentum coefficient is

closer to one, a large dynamic range for

the effective learning rate coefficient is

obtained and the value of the energy

function decreases at a higher rate near

the constant gradient area; but the sys-

tem tends to be unstable near the area

where the gradient changes sharply. Se-

lection of an optimal value for the mo-

mentum coefficient is a difficult, if not

impossible problem. Some experimental

studies have shown that for some prob-

lems a momentum coefficient value 0.5

could be too high; yet others have used a

momentum coefficient value as high as

0.99 without any difficulty [Tollenaere

1990]. Some experimental results on the

effect of the change of learning rate and

momentum coefficients were reported in

Tollenaere [1990] and Eaton and Olivier

[ 1992].

A variation of the momentum strategy

described by Equation (14) is

AW;J[S + 1] = (1 – a)q’G:J[s]

+ 6Aw/i[s]. (18)

It is not difficult to see that the strate-

gies given by Equations (14) and (18) will

behave in the same way, provided that

For more detailed descriptions of other

theoretical aspects on the effect of the

momentum coefficient see Jacobs [1988]

and Watrous [1988]. The momentum

strategy can be considered as an approxi-

mation to the conjugate gradient method

[Battiti 1992], because in both the pre-

sent gradient direction is modified using
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a term that takes the previous direction

into account. However, the main differ-

ence between the two methods is that in

the momentum strategy the momentum

coefficient is fixed and guessed by the

user, whereas in the conjugate gradient

method it is automatically adjusted as

the training proceeds. Please see Section

4.7 for details on conjugate gradient

methods for training of FFANNs.

4.2 Adaptive Learning Rate Coefficient

In the previous section we found that the

momentum coefficient implicitly adjusts

the effective learning rate coefficient dy-

namically, depending on the nature of

the energy surface. The improvement in

learning time comes from this dynamic

behavior of the effective learning coeffi-

cient. There are methods where the

learning coefficient is explicitly adjusted

to obtain an improved convergence speed.

Three methods for explicitly adapting the

learning coefficient are described next.

4.2.1 The “Bold Driver” Method. This

method makes two trivial changes to the

oritinal EBP algorithm: it monitors the

value of the energy function E given by

Equation (4), and it dynamically adjusts

the value of the learning rate coeffici-

ent q.

The training starts with some arbi-

trary value of the learning rate coeffi-

cient q. If the value of E decreases, the

learning rate is increased by a factor p

( p > 1). This helps to take a longer step

in the next iteration. And also, the value

of the learning rate grows exponentially

in a constant gradient region of the en-

ergy function. On the other hand, if the

value of the energy function E increases,

it is assumed that the last step size was

too large and (1) the last weight correc-

tion to every weight is canceled, (2) the

value of the learning rate coefficient is

decreased by a factor o (CT < 1), and (3) a

new trial is performed. If the new trial

shows a reduction in the value of the

energy function, the decreased learning

rate coefficient is accepted as the next

learning rate; otherwise the learning rate

coefficient is repeatedly reduced until it

gives a step size that reduces the value of

the energy function. The example is con-

tinued to illustrate the basic ideas be-

hind the method.

Example (con’t.). We kept the initial

conditions as before. The learning rate

coefficient increasing factor p was set to

1.1 and the learning rate coefficient de-

creasing factor a was set to 0.5. Figure 5

plots the learning rate coefficient and the

value of energy function against the

number of training steps. For a better

illustration, the value of the energy func-

tion was multiplied by 30. It is clear that

the learning rate coefficient increases

gradually (by a factor of 1.1) until we hit

a training step where the value of the

energy function increases. At this point,

the learning rate coefficient is decreased

(by a factor of 0.5).

Figure 6 compares energy values of

momentum methods and the “bold

driver” method. At the beginning both

have the same value of the energy func-

tion. But soon the value of the energy

function is decreased quickly by increas-

ing the learning rate coefficient (see Fig-

ure 5). However, they gradually reach a

relatively large learning rate coefficient

and the energy function value increases

instead of decreases. At this point the

algorithm starts decreasing the value of

the learning rate coefficient until it re-

ceives a value that will decrease the value

of the energy function. As in the case of

the lmomentum method, the energy func-

tion value slowly drops down without any

oscillation.

The desired error level was reached

after 199 iterations. The final weights of

the network were very similar to those

obtained by the momentum method, but

had minute differences. The “bold driver”

method was significantly faster for this

example, as we desired. However, it

should be kept in mind that the situation

may not always be this good.

The “bold driver” method is nonlocal

because it keeps only one learning rate

coefficient for all the weights, whereas
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Figure 5. Relationship between learning rate and energy value in “bold driver” version of EBP

learning.

2

0
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Number of Iterations

Figure 6. Comparison of energy values for “bold driver” and momentum version of EBP learning.

the momentum strategy adjusts the e~- viewed as an EBP algorithm with con-

fectiue learning coefficient locally for each trolled oscillation of the energy function.

weight through the momentum term.

Battiti [1989] has reported that p = 1.1 4.2.2 SAB: Self-Adaptive Back Propagation.

and a = 0.5 are good choices. Because This method was developed indepen-

this method controls the oscillation of the dently by Jacobs [1988] and Devos and

value of the energy function, it could be Orban [1988]. It is a local acceleration
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strategy, and it is supported by the fol-

lowing observations: (1) every weight

should have its own learning rate coeffi-

cient, because the partial derivative of

the energy function E with respect to

each weight gives the gradient for that

weight only. Also, the learning rate coef-

ficient for one weight need not be appro-

priate for other weights. (2) The learning

rate coefficient should be allowed to vary

depending on the nature of the surface of

the energy function along the dimension

under consideration. (It is not unusual to

have different properties of the gradient

along a single dimension.) (3) The learn-

ing rate coefficient for a weight should be

increased if consecutive steps have same

sign. (4) The learning rate coefficient

should be small when the derivative of

the energy function with respect to a

weight changes sign.

Let the learning rate coefficient for the

weight w~j at time step s be q~j[s ]. The

algorithm is as follows:

(1)

(2)

(3)

(4)

(5)

Choose an initial learning rate coeffi-

cient q.

Set the learning rate coefficient q~j[O]

= q; {same for all weights}.

Do a back propagation step without

momentum term.

If G~j[ s], the negative of the partial

derivative of the energy function E,

has the same sign, set q/j[s + 1] =

P~/j[ S1{for weight w~j[ s]}; { p > 1}.

If G/J[s] changes sign then

~ set q~~[s + 1] = q; {for weight

W;j[s]};

. estimate a “good” weight w~j[s + 1]

by interpolation (based on previous

Aw~~ values and assuming that the

weight space is quadratic in every

dimension);

. do a number of back propagation

steps with momentum term.

(6) Restart the algorithm from Step (3).

Example (cont.). The SAB method is

fundamentally different from all other

methods discussed earlier. In this method

one learning rate coefficient is kept for

each weight. Figure 7 shows plots of

r-
f.tc,.,b-i.l I

~] ~c..,.
I I ! I

o 50 100 150

Number of Itemmm

Figure 7. Separate learning rate coefficients for

two weights in the SAB version of EBP learning.

learning rate coefllcients for two weights

of the example network. It shows that

they start with the same learning rate

coefficient value and keep their values,

the same for a while by increasing them

exponentially. We used the increment

factor p = 1.1 for this example. But after

a few iterations the learning rate coeffi-

cient of w ~1 drops to the initial value,

whereas that of w~l does not. This is

because the gradient of the energy func-

tion in the direction of w ~1 changes sign

but that for w ~1 does not change. The

desired error level was reached after 171

iterations. The final weights of the net-

work were different from those obtained

by other methods. The final weights and

biases of the network are

0 = –2.00546, W:2= – 1.86626,Wll

and bias: = 2.60926 for neuron u:

in hidden layer;

W;l = 12.531, W:2 = 13.3534,

and bias; = – 5.0778 for neuron u;

in hidden layer;
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5.09768, W:2 =4.4951,

6.42277 for neuron u!

in output layer.

This algorithm performs better than

the original EBP, because it can adjust

the learning rate coefficient over a wide

range if the initial learning rate coeffi-

cient is “small.” One problem inherent in

the original EBP algorithm, the selection

of a “good” learning rate coefficient by

the user, remains unchanged in this al-

gorithm. In addition, this algorithm

starts with the initial learning rate coef-

ficient if a change in the sign of the

gradient occurs. The next algorithm, dif-

ferent variations of which were proposed

in Jacobs [1988], Devos and Orban [1988],

and Tollenaere [1990], overcomes both

problems. Following Tollenaere [1990], it

is here called SuperSAB.

4.2.3 SuperSAB. Let p be the factor by

which the learning rate coefficient is in-

creased, if necessary, and let a be the

factor by which the learning rate is de-

creased, if necessary. Experimental stud-

ies suggest that the learning rate coeffi-

cient decrease should be faster than the

increase [Jacobs 1988, Tollenaere 1990].

Recall that the learning rate coefficient

at time step s for weight w~l is denoted

by qjj[s ]. The algorithm is as follows:

(1)

(2)

(3)

(4)

(5)

(6)

Choose an initial learning rate coeffi-

cient q.

Set the learning rate coefficient qjj[O]

= q; {for all weights}.

Do a number of back propagation

steps with momentum term.

If G~J[s ], the negative of the partial

derivative of the energy function E

has the same sign, set -q~~[s + 1] =

pq~j[ S1 {for weight w~j[ s]}; { p > 1}.

If G~J[s ] changes sign then

. set qfl[s + 1] = crq~~[s]; {for weight

Wjsll {a < 1};

. undo the previous weight update;

and

. set Aw~l[s + 1] = O.

Restart the algorithm from Step (3).

1

n

Number of Ita.uo”,

Figure 8. Comparison of learning rate coefficients

for a weight in the SAB and SuperSAB versions of

EBP learning.

Example (con’t.). Figure 8 shows plots

of learning rates of weight w ~1 for SAB

and SuperSAB learning algorithms.

These two plots show the most important

difference between SAB and SuperSAB

learning methods: when there is a change

in sign of the gradient of the energy func-

tion in the direction of the weight w ~1,

(1) in the SAB learning method the

learning rate coefficient is set to the ini-

tial value, but (2) in the SuperSAB learn-

ing method the value of the learning rate

coefficient is reduced by a constant fac-

tor, which is 0.5 in our example.

Although it is claimed that on an aver-

age the SuperSAB method is faster than

the SAB method, in this example we were

unlucky: the network did not learn even

after 500 iterations. This situation makes

a very important point: no matter how

much engineering we do to speed up the

EBP learning algorithm, it is going to fail

with certain initial conditions.

An experimental study by Tollenaere

[1990] has shown that this algorithm

speeds up learning considerably. Also,

because the learning rate coefficient is

never set to its initial value (as in SAB),
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the choice of initial learning rate coeffi-

cient would not have much influence on

learning time and hence can be lmade

arbitrarily. The algorithm of Jacobs

[1988] has been extended by Minai and

Williams [1990a, 1990b] and tested on a

number of interesting problems to show

its superior performance [Minai and

Williams 1990b].

4.3 Controlling Oscillation of Weights

In this section, several methods to con-

trol the oscillation of weights are de-

scribed. Before proceeding further some

notation is introduced to make the pre-

sentation concise and precise. The func-

tions SIGN(A.wjJ[ s]) returns the sign

of the value of Aw~j[ s]. The modified

algorithm saves the last weight change

Aw~j[s – 1]. It is obvious that if SIGN

(Aw~J[s – 11) is different from SIGN

(Aw~j[ s]) then there is an oscillation of

weight. In this case, the amount of weight

correction is reduced by a factor, denoted

FACTOR. The value of FACTOR is be-

tween zero and one. For further reference

we name each of the methods used to

calculate the value of FACTOR.

4.3.1 Inverse Input-Size Correction Reduction.

In this method, if at instance s an oscil-

lation is detected for a weight connected

from neuron i to neuron j then the value

of FACTOR is determined by:

1
FACTOR =

Size–of–Input ‘

where Size._ of_Input is the number of

neurons connected to neuron i from the

previous layer 1. Thus the modified

weight correction A w~~[s ] for the oscillat-

ing weight is

1

Aw;;[s] =
Size–of–Input

x AW:J[S].

Recall that Aw~j[s] is the weight change

that would have been used by the origi-

nal EBP algorithm.

4.3.2 Constant Correction Reduction. This

method starts with a predetermined con-

stant c and computes FACTOR as the

inverse of c, that is,

FACTOR = (l/C).

Using FACTOR, the modified weight

Aw~~[s] is calculated from Aw/j[ s]. In

Pirez and Sarkar [1991] c = 2 and c = 4

were used as the constant factors for ex-

tensive experimental study and good per-

formance was obtained.

4.3.3 Normalized IAw~ [s – 11I Correction Re-

duction. In the two methods proposed

earlier, modified weight correction de-

pends only on the suggested correction

A W:J[s ]. In the present method to com-

puter FACTOR, both the suggested

correction at instance s and the actual

correction at the instance s – 1 were

used, The value of FACTOR is propor-

tional to IAw~J[s – 1]]. Mathematically,

4.3.4 Normalized IAw~ [s ] I Correction Reduc-

tion. This method 1s very similar to the

previous method. Now we make FAC-

TOR proportional to IA W:J[s ]1 instead of

IAw;JIs – 1]1.

AW;J[S]
FACTOR =

AW;J[S] – fiw:l[s – 1] “

It is not difficult to see that, like the

original EBP algorithm, the modified

EBP algorithms also reduce the sum of

the squared error as the training pro-

ceeds. Extensive experimental study on

complex problems has shown that these

modified algorithms on the average per-

form better than the EBP algorithm with

momentum term. For narrower networks

they outperform EBP with the momen-

tum factor [Pirez and Sarkar 19911.

4.4 Flescaling of Variables

The modifications described earlier do not

consider the effect of the number of lay-
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ers in a network, although it is believed

that as the number of layers increases,

so does the training time in the original

EBP algorithm. A reason for this behav-

ior is explained by Rigler et al. [1991],

based on two simple but correlated facts.

First, the sigmoidal function [see Equa-

tion (2)], when used as the activation

function in the original EBP algorithm

(the activation function), agrees with the

logistic differential equation

y’ =y(l –’y). (19)

Because the value of the sigmoidal func-

tion f(x) is bounded by zero and one, the

value of y’ = y(l – y) is bounded by zero

and 0.25. The derivative y’ attains maxi-

mum value 0.25 when y = 0.5. Second,

the term y(l – y) comes from the chain

rule for computation of partial deriva-

tives of the energy function given by

Equation (4) or (5). The number of times

this term occurs is exactly the number of

layers the weights are away from the

output layer. In other words, the term

Y(1 – y) occurs exactly once in the par-

tial derivatives of the energy function

with respect to the weights of the output

layer, exactly twice in the partial deriva-

tive of the energy function with respect

to the weights in the hidden layer just

behind the output layer, and so on.

Because of these two facts, the value of

the partial derivative at different layers

cannot exceed 1/4, 1/16, 1/64, . . . . and

hence the magnitude of the gradient

diminishes at an exponential rate as

we move away from the output layer.

One splution to this problem is to rescale

the value of the gradient in every layer.

Rigler et al. [ 1991] suggest using powers

of expected value of y(l – y), -?3[y(l –

y)] L, assuming that the value of y is uni-
formly distributed between zero and one.

These values are 1/6, 1/36, 1/216, . . . .

and the corresponding resealing values

are 6, 36, 216, . . . . for layers one, two,

three, and so on when the layers are

counted backward starting with the out-

put layer as layer one. The improvement

in training performance using the vari-

able resealing procedure was reported in

Rigler et al. [1991]. It was found that on

the average it reduces the number of

required iterations considerably.

4.5 EBP With Expected Source Values

The weight update in the EBP algorithm

is proportional to the output of the neu-

ron that is its source. However, once

weights are updated following the EBP

algorithm, the output of the source neu-

ron will be different. Thus Samad [1991]

recommended using the “expected out-

put” of the source neuron instead of the

actual output. One can see the reason for

the recommendation as follows. From

Equations (6) and (8), as discussed ear-

lier, the weight change at step s + 1,

Aw~J[s 1 can be written as

dEP
Azo/i[s] = –q (20)

dqj[s] “

Using the chain rule of differentiation,

dEP/d zo~l[s] can be rewritten as

~EP dEP ~ net~~ 1
(21)

(7 W:j[s] = dnet~jl G7LOjJ[S] “

Next, referring to the expression for

net Z+1 from Equation (l), it is easy to

fin~zthat

~+1 the output ofNote that to neuron u,

neuron u;, out; is a source. Following

Rumelhart et al. [1986] dEP/~netZ~ 1 can

be denoted by ti~~ 1 and expressecf’ as

\

Out:’+ ’(dpi - out:+’)

for neuron i in output layer~1+1 _

\ for neuron i in hidden

,1+1
where outj is the derivative

activation function for neuron u !‘

ayers,

(23)

of the

1 with

respect to the net input net;+ 1 (e~aluated

for the input pattern x ). Using Equa-

tions (21), (22), and (2$), the rule for
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weight update [Equation (20)] can be

rewritten as

Aw;~[s] = ‘q OUtjt$:l. (24)

Now it can be argued that the weight

correction A.w#j[s ] is proportional to the

output of the source neuron UZ and pro-

portional to i3~~1 of neuron ~~+ 1. How-

ever, the output of the source neuron u~

would be different after changing its in-

put weights following the EBP algorithm.

Thus instead of using the actual output

of the source unit, an “estimated value”

of the output of the source can be com-

puted as the sum of the actual output

and the error term at the source. This

gives the new rule for weight update as

AZU;J[S] = ‘~(OUt; + y8:)8;~1, (25)

where y is a constant. Clearly, when y =

0.0, the original EBP algorithm is ob-

tained. The suggested modification is

simple to implement and also can be used

for both online and batch mode of learn-

ing. Experimental results presented by

Samad [1991] show a faster learning rate

with this modified weight updating rule.

4.6 Self-Determination of Adaptive Learning

Rates

A problem with the EBP algorithm is

that a learning rate coefficient is neces-

sary for updating weights. The two ap-

proaches discussed thus far either use an

educated guess to fix the learning rate

coefficient to a constant value or adjust it

dynamically using some heuristic meth-

ods. But they cannot eliminate the risk of

taking “too large” steps and overshooting

the goal. The method discussed in this

section computes the local, most extreme,

steepest gradient attainable for comput-

ing optimal step size.

Once the error (EP) or current height

and the extreme energy-weight gradient

(extreme (3Ep/~~/j[ s])) is known, the

AOP~w~j[s] can be computed as

EP
AOP,zujj[ s] = –

()

~EP
extreme ——

dw:l[sl

and thus using Equation (20), the opti-

mal learning rate coefficient can be ex-

pressed by

EP
?p3pt =

()

dEP dEP “
extreme

dw:J[s] C7W:J[S]

(26)

The methods for computing the energy-

weight gradient and the energy are

known. Next, from Weir [1991] a method

is described to compute the extreme

energy-weight gradient.

4.6.1 The Extreme Gradient. The method

for computing the extreme energy-weight

gradient described in Weir [1991] consid-

ers the neurons in the output layer and

in the hidden layers separately. First,

computation of the extreme energy-

weight gradient for output layer units is

described.

Using the notations introduced earlier

and the chain rule of differentiation, the

gradient of the energy function with re-

spect to a weight w :J for the input train-

ing pattern x~ can be written as

Output Layer. For a neuron u; in the

output layer

dEP
= out~” – dPz , (28)

clout:

aout:
— = out;(l - OZd:), (29)
dnet~

Jnet;
= OutJo– 1.

dw;j[s]
(30)
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Setting the value of outj” -1 to its possible

maximum of one, the bounds of the

energy-weight gradient can be computed

by solving the cubic in out; [obtained

from Equations (28), (29), and (30)] over

the interval (O, 1). Let the maximum and

minimum values found be m ~ and m ~,

respectively. Let us define S~~ as

Now to keep the computation procedure

simple, a single value of S~k is propa-

gated backward via the neurons u:- 1,

and the extreme value of the energy-

weight gradient is obtained as

(i
6JEP

extreme = extreme( ~~h ) = mq,
dw;[s]

where mq = ml or mz depending on the

sign of the energy-weight gradient. The

extreme energy-weight gradient for all

the training patterns then can be com-

puted as XP mq, where q is either lVp or

2vp.

Hidden layers. For a neuron u; in a

hidden layer, the value of the energy-

weight gradient of the next outer layer

1 + 1 is used to compute its extreme

energy-weight gradients:

dEP n,+]

— = ,;l ~:u;+l :;:;:: ‘:$;’ ~
clout: 1 1

:32)

Using Equation (31) and noting that

dnet~+ 1
= W:J ,

6Jout;

Equation (32) can be written as

Now from the last equation, 8 Z for a

neuron u;. in a hidden layer ~can be

defined as

Because the value of the last term in

Equation (33) cannot exceed 0.25 [see

Equations (2) and (29) for explanation]

and values of w~l and 8~1 are indepen-

dent of each other,

--o%)

(34)

with sgn(extreme( 8; ~ 1) extreme( W/J )) =

sgn(extreme( 8~J)) = sgn( ~~~) for extreme

( 8P~) + O, where

(
+1 forx>O

sgn(x ) = O forx=O

–1 forx <O.

As ~~; the output layer, after setting

Outh to one we get

i)

dEp
extreme —

d W:h = extreme(%)

4.6.2 The Extreme Weights. Computation

of the extreme energy-weight gradient

for nodes in hidden layers requires val-

ues of extreme weights. Now a method is

described for computing the extreme gra-

dient. The extreme weight for the links

between neuron u Z and neuron u ~+ 1 is

either w}~[s ] or wj~j[s + 1]. At time in-

st ant s, the value of the former is known:

however, computation of the value of

W:J[s + 1] using Equations (6) and (8)

requires the value of qOPt that is being
computed. This circularity problem can

be avoided by expressing the extreme

gradient in terms of q and computing q
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directly. The computation can proceed af-

ter viewing the extreme gradient as

()
dEP

extreme = aqOPt + b, (35)
dw}J[s]

with

where h, = O or – ~EP/dw/J[s] depend-

ing on whether extreme (w~j[ s]) = W<j[s ]

or w~j[ 1 + 1], respectively, and

b = ~ ~~ extreme(8~~ lw~j[ s]).
~=1

Substitution of the extreme gradient

value from Equation (35) in Equation (26)

results in a quadratic equation of the

form

wr:pt+ b~opt
+C=o,

where

–EP

c = t)EP/dw:J[s] “

The quadratic equation in %pt has an

unique positive real solution [Weir 1991].

Thus with the technique described in this

section one can easily compute a safe

step size at every iteration of the EBP

algorithm. The modification increases the

computation requirements. Also, because

it always takes conservative step sizes, it

is more likely to follow the energy sur-

face very closely, and thus may get stuck

into local minima before learning all the

examples. Empirical study has shown

some improved performance of this

algorithm over the ones that use a

momentum term [Weir 1991]. The most

attractive feature of this modified algo-

rithm is that no learning rate coefficient

has to be “guessed” for use.

4.7 Conjugate Gradient Methods

In the EBP algorithm, the energy func-

tion E is minimized following steepest

descent. At every step, a direction is com-

puted that would minimize error at that

instant, and this process of energy mini-

mization is continued iteratively. One

problem with this method is that a

direction g, at time step s, and another

direction g] at time step s may not be

dmutually perpendicular, an thus the en-

ergy function minimized at time step s,

may be spoiled, at least in part, by the

minimization at time step Sj. If two di-

rections are linearly independent and

noninterfering then the minimization will

be faster. The concept of noninterfering

direction is at the heart of the conjugate

method for minimization. Two directions

p, and Pj are mutually conjugate with

respect to a matrix M if

where pZT is the transpose of the vector

pi. The basic idea is this: if the new

direction for minimization, p,, ~ is per-

pendicular to the earlier direction pt, the

minimization with former direction will

not be affected by the minimization in

the present direction.

Before proceeding further, some nota-

tions are introduced that are used only in

this section. Let the weights of the net-

work at time step s be considered to be a

vector W [s ]. Let G[s ] be the energy-

weight gradient vector corresponding to

the elements of W [s] at time step s. Let

Y[s] = G[s + 1] – G[s]; the first direc-

tion p[l] is given by p[l] == – G[l]. Start-

ing with initial weight matrix W [ 1] the

subsequent weight matrices are com-

puted as follows:

W[s+ 1] =W[s] +LL[S]P[S] (36)

p[s+l] = –G[s+ll +8[s]P[s],

(37)

where p[s ] is chosen to minimize the

energy function along the search direc-

tion p[ s],

I-LISI = minE(W[sl + I-Lp[sl), (38)
P

and 0[s ] is defined by

Y[s].G[s + 1]
9[s] =

Y[s].p[s] ‘
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where A.B of two vectors of identical

sizes is the scalar product, defined as the

sum of the product of the corresponding

elements, Formally,

There are different versions of the conju-

gate gradient method depending on the

choice of computation of O[s ]. For other

choices of 0[s ] see Shanno [1978] and

references therein.

Two issues are of concern regarding

the use of conjugate gradient methods for

EBP. First, the computation of (3[s ] us-

ing Equation (38) is expensive because

every step of the linear search for an

optimal value involves an evaluation of

the energy function and this requires

computation of error. Second, this method

would guarantee a convergence after

N + 1 iterations if the objective function

were quadratic in weights. Moreover, the

possibility of numerical instability exists.

Nonetheless, it has been shown in Battiti

[1989] and Kinsella [1992] that the con-

jugate gradient method performs better

than the standard EBP algorithm. Oth-

ers have conjectured and shown empiri-

cally that in some cases one can use a

conjugate gradient method with some in-

exact linear search instead of the exact

linear search (in Equation (38)) [Battiti

1989, 1992; Shanno 1978].

Battiti [1989] used an inexact linear

search where the search direction was

computed using the following equation:

p[s+l] = –G[s+l] +A[s]AW[S]

+ BIs IYIs I, (39)

where

AW[S] = W[s] –W[s– 1],

After every N steps, where n is the num-

ber of weights in the weight matrix W [ s],

the search is restarted in the direction of

the negative energy-weight gradient

– G[ N] and the coefficients A[s ] and

B[s ] are computed as follows:

((
Y[S].Y[S]

A[s]=–1+
AW[S].Y[S] 1

i

AW[S].G[S]

x AW[S].Y[S]

(

Y[s].G[s]

+ AW[S].Y[S]

(
AW[S].G[S]

B[s] =

)AW[S].Y[S] “

The inexact linear search is similar to

the momentum strategy described in Sec-

tion 4.1, with the added feature that the

former directly adjusts the coefficients as

the learning proceeds. There have been

reports on several simultaneous and in-

dependent efforts on the use of the modi-

fied conjugate gradient method for the

EBP learning algorithm, for more infor-

mation, see Battiti [1992].

4.8 Different Energy Functions

The methods described in other sections

keep the sum of the squared error as the

energy function [see Equations (4) and

(5)] while they change the original EBP

algorithm by adjusting the learning coef-

ficient, adding a momentum term, using

elegant numerical computation methods,

and so on. In this section a set of new

energy functions is described that is de-

fined and used to speed up learning.

The expression for computation of the

error signal when sigmoidal activation

[Equation (2)] and the sum of the squared

errors are used contains a factor of the

form out:(l – out~), where the value of

out: is between zero and one. The value

of this factor approaches zero as out,”

approaches one of its extreme values, zero

or one, Thus if the output of an output

neuron is close to either extreme and far

away from the target output, then the

high value of its error signal is attenu-

ated very close to zero and almost no

correction to its weights is made. With

this observation van Ooyen and Nienhuis

[1992] proposed a new energy function
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that eliminates this problem. When this

new energy function

p=l~=l

+(1 – dPi)ln(l + out;,)) (40)

(where in(x) is the natural logarithm of

x) is used, the energy-weight gradient is

given by

dE1n
— = (out; – dP, )out:-l,
~w;-~

which does not contain the factor that

attenuates the error signal when the out-

put of a neuron in the output layer is

close to either extreme. Empirical study

on several problems in van Ooyen and

Nienhuis [1992] has shown improved

performance. This log-likelihood function

was also proposed by Solla et al. [1988] to

use as an error measure in layered neu-

ral networks, and through numerical

simulations they found marked reduction

in learning times. This improvement was

viewed as characteristic of the function.

Holt and Semnani [1990] have also rec-

ommended this energy function and ob-

served through simulations that it can

speed up back propagation learning.

Ahmad and Salam [1992a, 1992c,

1992b] have used three new energy func-

tions to improve the performance of the

original EBP algorithm. Because the

standard EBP algorithm descends along

the gradient of the error surface, the use

of any energy function that has a larger

gradient than that of the sum of the

squared error at higher energy values

would make for faster training. This view

may have motivated Ahmad and Salam

to propose and use a Cauchy energy

function and the polynomial energy func-

tion. In Ahmad and Salam [ 1992b] the

Cauchy energy function EC, defined by

Equation (41), has shown faster conver-

gence:

The polynomial energy function given by

E
pol ‘a i 5 (Iep,l +b)r, (42)

p=l~=l

where a and b are constants (or any

other energy functions that help speed

up the learning process), has been stud-

ied in Ahmad and Salam [ 1992c]. It was

reported that faster convergence is ob-

tained with the polynomial energy func-

tion [Ahmad and Salam 1992c]. The third

energy function used by Ahmad and

Salam, called the exponential energy

function, appears in practical situations

to help avoid local minima at higher en-

ergy levels. It is defined in terms of the

sum of the squared error energy function

E as

E
ezp

= eKE, (43)

where K is a constant. This apparently

simple energy function has an excellent

feature: as the error decreases so does

the learning rate exponentially. Because

of this effect Ahmad and Salam [1992a]

appropriately call the modified learning

“dynamic learning using exponential en-

ergy function.” The dynamic nature pre-

sented by this new energy function can

be understood by looking at the energy-

weight gradient

JE.XP KB 6JE
—=Ke — (44)
d W;J dw:l “

As can be seen, the energy-weight gradi-

ent of the exponential energy function is

a product of the energy-weight gradient

of the original (sum of the square) energy

function and an exponential function of

the original energy function. Clearly, as

the value of the error decreases, so will

the step size, even if the learning rate

coefficient is kept constant. Ahmad and

Salam have shown that the exponential

energy function, under easily met condi-

tions, performs no worse than the stan-

dard EBP algorithm, and they have found

through empirical study that it actually

performs better than the EBP algorithm

with momentum term.
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4.9 Effect of Training Set Size

The original EBP and the modifications

discussed here do not consider the effect

of training set size. Empirical study has

shown a dependence on training set size

[Tesauro 1987; Tesauro and Janssens

1988; Eaton and Olivier 1992]. A study

in Tesauro [1987] and [Tesauro and

Janssens 1988] concentrated on a diffi-

cult problem, a parity function that

requmes memorization of the input pat-

terns. If the network is not too small for

memorization, then the training time

grows exponentially with the number of

bits for which parity is to be computed.

Because studies in Tesauro [1987] and

Tesauro and Janssens [1988] were lim-

ited to a difficult problem, their results

may not apply to such problems as classi-

fication of patterns and regression.

Eaton and Olivier [1992] suggested

that the length of the energy-weight gra-

dient G~l might be proportional to L,

L = N: +N; + . . . +lV; , (45)

where N, is the number of patterns of

type i and m is the number of different

pattern types. The intuition behind their

suggestion about the length of the gradi-

ent is that “the dimensionality of the

weight space is usually greater than the

number of unique pattern types, so that

it is possible for the gradient of each

pattern type to be orthogonal to all other

types” [Eaton and Olivier 1992]. To com-

pensate for this effect they proposed a

learning rate coefficient inversely pro-

portional to L. Their experiment with

several problems suggests that if q is

selected using the following equation and

momentum coefficient a = 0.9 then fast

training is obtained:

1.5
q=

N: +N: + . . . +N;
(46)

Anand et al. [ 1993] have proposed a

method to accelerate learning of classifi-

cation when training set sizes for each

class are different. They have shown that

in two class problems, if the size of one

training set is much smaller than that of

the other, the first iteration of the origi-

nal EBP algorithm increases the error

for the class with fewer examples while

decreasing error for the other. This on

average increases the number of itera-

tions required to learn the classification.

They have proposed a method that re-

duces the error for both classes simulta-

neously. They achieve it by selecting a

direction for weight correction that fa-

vors learning of both classes. A very sim-

ple way to find such a direction is to

select the direction that bisects the direc-

tions of the negative of the gradients of

each class [Anand et al. 1993].

In the next section modifications to the

back propagation algorithm presented in

this section are compared and con-

trasted.

5. DISCUSSION

The modifications to the original EBP

algorithm described in the previous sec-

tion can be classified in manv different.
ways. One classification could be based

on whether a modification applies to the

online EBP algorithm, to batch EBP al-

gorithms, or to both. The momentum

strategy, resealing of variables, EBP with

expected source values, and different en-

ergy functions can be used for both the

online and batch EBP algorithms. The

self-determination of adaptive learning

rates can be applied only to the online

EBP algorithm. All other methods de-

scribed here are useful only for batch

EBP algorithms.

Another classification could be based

on whether there is only one (effective)

learning rate coefficient for all the

weights or one learning rate coefficient

for each weight. The “bold driver”

method, resealing of variables, self-

determination of adaptive learning rate,

conjugate gradient method, and effect of

training can use only one learning rate

coefficient for all weights. All other meth-

ods can use one learning rate coefficient

for each weight.

Some of these methods can be com-

bined to get faster training than can be
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obtained from any single one. For exam-

ple, both SAB and SuperSAB use the

momentum strategy. It is believed that

momentum strategy, controlling oscilla-

tion of weights, resealing of variables,

EBP with expected source values, and

effect of training set size can be com-

bined together for faster convergence.

Self-determination of adaptive learn-

ing rate has the problem that, in making

conservative steps to avoid overshooting

of the goal, it may get the network stuck

in a local minimum before learning all

the examples of the training set. Every

modification, except self-determination of

adaptive learning rate, that applies to

the online EBP algorithm requires a

“good” learning rate coei%cient to be sup-

plied by the user. As discussed in Section

2, the effective learning rate coeffkient

for two problems may be quite different.

Thus it is necessary to find a modifica-

tion to the EBP algorithm for online

training that does not require any effec-

tive learning rate coefficient.
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