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Abstract: Spiropyrans modified with reactive polyfunctional substituents are of great interest as
building blocks for the creation of various smart systems with controllable properties for materials
science and biomedicine. In this study, a new highly modified spiropyran of the indoline series,
methyl 5′-chloro-8-formyl-5-hydroxy-1′,3′,3′-trimethyl-spiro[chromene-2,2′-indoline]-6-carboxylate,
was obtained via the cyclocondensation reaction from 5-chloro-1,2,3,3-tetramethyl-3H-indolium
perchlorate and methyl 3,5-diformyl-2,4-dihydroxy-benzoate. The molecular structure of the target
compound was confirmed by 1H, 13C NMR, and IR spectroscopy, as well as LC/MS and elemental
analysis. Photochemical studies revealed photochromic activity for the obtained spiropyran at
room temperature. The photoinduced merocyanine form demonstrated an enhanced lifetime and
fluorescent properties in the red region of the spectrum.

Keywords: spiropyran; photochromism; molecular switch; indoline; heterocycles; polyfunctional
substituents

1. Introduction

Over the past several decades, organic photochromic compounds have been constantly
attracting interest as components of various smart systems and dynamic materials [1,2].
Spiropyrans [3–7] represent one of the most promising classes of organic photochromes
capable of reversible isomerization between the usually uncoloured cyclic (SP) and brightly
coloured merocyanine (MC) forms. This process occurs with a dramatic change in the
number of properties, such as dipole moment, fluorescence, acidity, etc. Another dis-
tinction of spiropyrans is their multi-sensitivity to different types of external stimuli that
can induce intermolecular transformation and include the electromagnetic irradiation of
various wavelengths, temperature, pH, mechanical stress, the action of metal ions and other
chemical species [8–12]. Due to these features, spiropyrans are widely used in different
cutting-edge fields of science, including molecular electronics [13,14], nanosensing [12,15],
bio-imaging [16,17], targeted drug-delivery [18,19], and photopharmacology [20,21].

The synthesis of novel spiropyrans with different sets of reactive polyfunctional
substituents represents one of the most promising directions in the field of organic pho-
tochromes. It facilitates the further modification of molecules in order to impart them with
desired properties or link them to target substrates. Recently, we obtained photochromic
spirocyclic compounds of the 1,3-benzoxazine [22] and indoline [23] series based on the
polyfunctional derivatives of salicylic aldehyde. The aim of this study was to synthesize
a similar highly modified spiropyran of the indoline series containing several reactive
substituents and study its photochromic properties.
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2. Results and Discussion

The target methyl 5′-chloro-8-formyl-5-hydroxy-1′,3′,3′-trimethyl-spiro[chromene-2,2′-
indoline]-6-carboxylate 1 was obtained via the cyclocondensation reaction of 5-chloro-
1,2,3,3-tetramethyl-3H-indolium perchlorate 2 and methyl 3,5-diformyl-2,4-dihydroxy-
benzoate 3 after their mixture in i-PrOH and chloroform was heated in the presence of
triethylamine (Scheme 1).
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Scheme 1. The synthesis of methyl 5′-chloro-8-formyl-5-hydroxy-1′,3′,3′-trimethyl-spiro[chromene- 
2,2′-indoline]-6-carboxylate 1. 

The structure of 5′-chloro-8-formyl-5-hydroxy-1′,3′,3′-trimethyl-spiro[chromene- 
2,2′-indoline]-6-carboxylate 1 was confirmed by 1H, 13C NMR, IR, and UV spectroscopy, 
as well as LC-MS and elemental analysis. It should be noted that due to the presence of 
two formyl and two hydroxyl groups in the molecule of initial aldehyde 3, the formation 
of three structural isomers (1, 4, and 5) during synthesis was potentially possible (Scheme 
1). However, the 1H and 13C NMR spectra indicated the presence of a single isolated 
product, whereas the analysis of the 2D NMR spectra (1H-1H COSY, 1H-13C HSQC, 1H-13C 
HMBC and 1H-15N HMBC) enabled us to identify it as structure 1 and to assign all the 
signals in the 1H and 13C NMR spectra to the corresponding atoms in the molecule.  

Thus, the protons H-3 and H-4 appeared in the 1H NMR spectrum as characteristic 
doublet signals with J-constants of 10.6 Hz at 5.72 and 7.27 ppm, respectively, and 
showed correlations in the 1H-1H COSY NMR spectrum (Figure S3). These data indicate 
the cis-configuration of the corresponding vinylic fragment of the 2H-chromene moiety 
and confirm the spirocyclic structure of molecule 1. The characteristic signal of the spiro 
carbon atom C-2 appeared at 107.28 ppm in the 13C NMR spectrum and correlated with 
the proton signals of H-3, H-4, N-CH3, and 3′-CH3 groups in the 1H-13C HMBC (Figure 
S5). The presence of a characteristic cross-peak of the proton H-7 with the carbon atom of 
the aldehyde group (C-8a) in the 1H-13C HMBC spectrum excluded the possibility of 
structure 5, while the observed cross-peak of the –OH hydrogen and the carbon atom C-6 
attached to the -COOMe group made the realization of structure 4 impossible. The signal 
of a single nitrogen atom was found at 92.5 ppm and showed strong correlations with the 
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The structure of 5′-chloro-8-formyl-5-hydroxy-1′,3′,3′-trimethyl-spiro[chromene-2,2′-
indoline]-6-carboxylate 1 was confirmed by 1H, 13C NMR, IR, and UV spectroscopy, as
well as LC-MS and elemental analysis. It should be noted that due to the presence of two
formyl and two hydroxyl groups in the molecule of initial aldehyde 3, the formation of
three structural isomers (1, 4, and 5) during synthesis was potentially possible (Scheme 1).
However, the 1H and 13C NMR spectra indicated the presence of a single isolated product,
whereas the analysis of the 2D NMR spectra (1H-1H COSY, 1H-13C HSQC, 1H-13C HMBC
and 1H-15N HMBC) enabled us to identify it as structure 1 and to assign all the signals in
the 1H and 13C NMR spectra to the corresponding atoms in the molecule.

Thus, the protons H-3 and H-4 appeared in the 1H NMR spectrum as characteristic
doublet signals with J-constants of 10.6 Hz at 5.72 and 7.27 ppm, respectively, and showed
correlations in the 1H-1H COSY NMR spectrum (Figure S3). These data indicate the
cis-configuration of the corresponding vinylic fragment of the 2H-chromene moiety and
confirm the spirocyclic structure of molecule 1. The characteristic signal of the spiro carbon
atom C-2 appeared at 107.28 ppm in the 13C NMR spectrum and correlated with the
proton signals of H-3, H-4, N-CH3, and 3′-CH3 groups in the 1H-13C HMBC (Figure S5).
The presence of a characteristic cross-peak of the proton H-7 with the carbon atom of
the aldehyde group (C-8a) in the 1H-13C HMBC spectrum excluded the possibility of
structure 5, while the observed cross-peak of the –OH hydrogen and the carbon atom C-6
attached to the -COOMe group made the realization of structure 4 impossible. The signal
of a single nitrogen atom was found at 92.5 ppm and showed strong correlations with
the signals of hydrogen atoms H-3, H-7′ and of the N-CH3 group in the 1H-15N HMBC
spectrum (Figure S6). All these facts together confirmed the formation of compound 1 as a
single product, which is consistent with the previously obtained data for spiropyrans of
the 1,3-benzoxazine series derived from the same aldehyde [22].

The photochromic properties of spiropyran 1 were studied in acetonitrile solution at
room temperature. The obtained spectral and photokinetic parameters are summarized in
Table 1.
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Table 1. Spectral and kinetic properties of spiropyran 1 in acetonitrile, T = 293 K.

Compound Isomer
Absorption
λmax, nm

(ε·10−3, M−1·cm−1)
τ, s Fluorescense

λmax, nm (Φfl)

1
SP

202 (33.4); 253 (47.1);
299 sh (11.2);
341 sh (3.5)

- -

MC 402; 536 105 611 (0.01)
sh shoulder.

Under ambient conditions, compounds were predominantly found to exist in the
closed SP form with the presence of trace amounts of the open MC isomer (Scheme 2).
The cyclic-form SP was characterized by intensive absorption bands with maxima in the
range of 202–341 nm, while the MC demonstrated two low-intensity absorption maxima
in the visible region at 402 and 536 nm (Figure 1). Moreover, the open MC isomer of 1
possessed fluorescence in the red region of the visible spectrum with a maximum at 611 nm
and a quantum yield value of 0.01 (Figure S9). After irradiation with UV light (365 nm),
an increase in the intensity of the absorption bands with maxima at 402 and 536 nm was
observed due to photoinduced isomerization of spiropyran and the enhancement of its
MC-form concentration (Figure 1). The reverse reaction of thermal relaxation occurred
spontaneously after the termination of irradiation and returned the system to its initial equi-
librium state (Figure S10). The lifetime of the open form (τ) was found to be 105 s, which
significantly exceeded the lifetime values of similar compounds substituted by several
carbonyl-containing groups [22,24]. It should be noted that the irradiation of the initial solu-
tion with visible light (546 nm) led to full discoloration due to the photoinitiated cyclization
of the MC form. However, the system also returned to the thermal equilibrium state after
stopping the irradiation. Thus, it can be concluded that spiropyran 1 demonstrates the
properties of a photochromic “balance”, as previously described by us [8].
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In summary, we obtained a new highly functionalized spiropyran of the indoline
series containing hydroxy, methoxycarbonyl, and formyl groups in the 2H-chrome moiety.
The molecular structure of the product was confirmed by a set of physicochemical methods.
The use of various two-dimensional NMR techniques made it possible to establish the
occurrence of only one of the three possible reaction paths, leading to the formation of a
single target compound 1. The obtained spiropyran demonstrated the properties of the
photochromic “balance” in acetonitrile solution at room temperature. Its MC form has
shown enhanced lifetime value in comparison with similar compounds and exhibited fluo-
rescent properties. The presence of several reactive substituents with different functionality,
in combination with photochromic activity and fluorescent properties, makes the target
compound a promising candidate for use as a switching molecule in photopharmacology,
drug delivery, etc.

3. Materials and Methods

All reagents were purchased from Alfa Aesar and Merck and were used as received.
Organic solvents used were purified and dried according to standard methods. Aldehyde
3 was obtained according to the method previously developed by us [22].

1H, 13C, 1H-1H COSY, 1H-13C HSQC, 1H-13C HMBC, and 1H-15N HMBC NMR spec-
tra were recorded on a Bruker AVANCE-600 (600 MHz) spectrometer at the Center for
Collective Use “Molecular Spectroscopy” of Southern Federal University. The signals
were assigned relative to the signals of residual protons of the deuteriosolvent CDCl3
(δ = 7.26 ppm). The IR spectra of the compounds were recorded on a Varian Excalibur
3100 FT-IR spectrometer using a partial internal reflection method. The mass spectra were
recorded on an Agilent 6470 Triple Quadrupole Jetstream LC/MS spectrometer. The elec-
tronic absorption spectra were recorded on an Agilent–8453 spectrophotometer equipped
with the thermostatic cell. The irradiation of solutions with the filtered light of a high-
pressure Hg lamp was performed on a Newport 66902 equipment. Photoluminescent
spectra were recorded with a Varian Cary Eclipse fluorescence spectrophotometer. UV/Vis
and fluorescence spectra were recorded using standard 1 cm quartz cells. Acetonitrile of
the spectroscopic grade (Aldrich) was used to prepare solutions. The quantum yields of
fluorescence were determined by the Parker–Rees [25] method, which used an ethanol
solution of cresyl violet acetate (Φfl = 0.54) as the standard (λex = 540 nm) [26].

Elemental analysis was carried out by a conventional method [27]. Melting points were
determined on Fisher–Johns apparatus (Thermo Fisher Scientific, Waltham, WA, USA).

Methyl 5′-chloro-8-formyl-5-hydroxy-1′,3′,3′-trimethyl-spiro[chromene-2,2′-indoline]-
6-carboxylate 1. In total, 308 mg (1 mmol) of 5-chloro-1,2,3,3-tetramethyl-3H-indolium perchlo-
rate 2 and 224 mg (1 mmol) of methyl 3,5-diformyl-2,4-dihydroxy-benzoate 3 were dissolved
in a mixture of 10 ml of i-PrOH and 5 ml of CHCl3. Then, 0.15 of Et3N was added and
the reaction mixture was refluxed for 2 h. After the solvent was evaporated under vacuum
conditions, the residue was purified by column chromatography on SiO2 (eluent—CHCl3)
and recrystallization from acetone to furnish the target product as light purple amorphous
solid. Yield = 120 mg (29%). Mp 202–204 ◦C. IR spectrum, ν, cm−1: 2961, 2855, 1672, 1645,
1605, 1578, 1484, 1436, 1345, 1307, 1271, 1231, 1174, 1094, 1082, 1027, 984, 930, 893, 811, 796, 772,
735, 661, 610, 572, 482, 452. 1H NMR (ppm): δ 11.72 (s, 1H, -OH), 9.91 (s, 1H, -CHO), 8.26 (s,
1H, H-7), 7.27 (d, J = 10.6 Hz, 1H, H-4), 7.10 (dd, J = 8.2, 2.1 Hz, 1H, H-6′), 7.00 (d, J = 2.1 Hz,
1H, H-4′), 6.42 (d, J = 8.2 Hz, 1H, H-7′), 5.72 (d, J = 10.6 Hz, 1H, H-3), 3.92 (s, 3H, -COOCH3),
2.72 (s, 3H, N-CH3), 1.29 (s, 3H, C(3′)-CH3), 1.19 (s, 3H, C(3′)-CH3). 13C NMR (ppm): δ 186.82
(CHO), 170.45 (COOCH3), 162.29 (C-5), 161.82 (C-9), 146.32 (C-8′), 138.20 (C-9′), 131.51 (C-7),
127.67 (C-6′), 124.74 (C-5′), 123.39 (C-4), 122.22 (C-4′), 117.36 (C-3), 116.24 (C-8), 108.10 (C-7′),
107.48 (C-10), 107.28 (C-2), 106.12 (C-6), 52.60 (COOCH3), 52.27 (C-3′), 29.06 (N-CH3), 25.76
(C-CH3), 20.11 (C-CH3). MS (m/z): 414.2 [M+H]+. Anal. calcd (%) for C22H20ClNO5: C, 63.85;
H, 4.87; Cl, 8.57; N, 3.38. Found: C, 63.79; H, 4.90; Cl, 8.53; N, 3.35.
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Supplementary Materials: The following supporting information can be downloaded online.
Figures S1–S6: The NMR spectra of compound 1. Figure S7: The IR spectrum of compound 1;
Figure S8: mass-spectrum of compound 1. Figure S9: The UV/Vis, fluorescence emission, and
fluorescence excitation spectra of compound 1. Figure S10: Kinetic curve of the thermal recyclization
reaction of compound 1.
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