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ABSTRACT: Calculated methyl anion affinities are known to correlate with
experimentally determined Mayr E parameters for individual organic functional group
classes but not between neutral and cationic organic electrophiles. We demonstrate that
methyl anion affinities calculated with a solvation model (MAA*) give a linear correlation
with Mayr E parameters for a broad range of functional groups. Methyl anion affinities
(MAA*), plotted on the log scale of Mayr E, provide insights into the full range of
electrophilicity of organic functional groups. On the Mayr E scale, the electrophilicity
toward the methyl anion spans 180 orders of magnitude.

■ INTRODUCTION

Organic chemistry is taught using a canonical set of functional
groups. To a first order approximation, prediction of polar
chemical reactivity rests on the deceptively simple act of
quantifying the nucleophilicity and electrophilicity of every
functional group that is present in the reactants. The ability to
independently quantify nucleophilicity and electrophilicity
largely eluded organic chemists until the pioneering work of
Mayr and coworkers.1 In a heroic body of work, Mayr’s team
has shown that solution-phase nucleophilicity and electro-
philicity can be independently quantified using a log scale,
allowing useful predictions of reaction rate constants using the
equation log k20° = sN sE (E + N), where E and N are
electrophilicity and nucleophilicity parameters, respectively,
which quantify log-scale electrophilicity and nucleophilicity.2,3

The variable sN is a nucleophile-specific sensitivity parameter
and sE is close to unity.
The success of the Mayr equation centers around a focus on

reactions that form bonds to carbon atoms, not, for example,
Cs−O or F−Ge bonds, but a focus on carbon is not a
significant limitation in the field of organic chemistry. The
current set of electrophilicity parameters spans about 33 orders
of magnitude and does not encompass highly reactive nor
unreactive groups that serve as the pedagogical foundation for
the field of organic chemistry, for example, t-butyl carbocation,
ester carbonyls, amide carbonyls, acid chlorides, imines, alkyl
halides, and carbon−carbon bonds.
Methyl anion affinity (MAA, Figure 1A) is related to the

Mayr E parameter: −ΔE ∝Mayr E and is proportional to log k
from the Mayr equation when sE is 1. In early work, Mayr and
Houk showed that calculated methyl anion affinity (AM1 Hf,
gas phase) gives a good linear correlation with the Mayr
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Figure 1. Previous correlations of MAA with Mayr E. (A) MAA is
defined as the negative of the energy change for reaction of H3C

− with
electrophiles so that higher affinity correlates intuitively with higher
energy, and higher kinetic electrophilicity. (B) Calculated MAA vs
Mayr E generated lines that were dramatically different for neutral and
cationic electrophiles. At higher levels of theory, different functional
groups give different linear correlations.
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electrophilicity (Mayr E) for various cations: carbenium,
iminium, and oxonium ions (Figure 1B).4,5 It is promising
that diverse cationic electrophiles fall on the same line.
Subsequent work focused on individual functional groups but
no attempt was made to correlate MAA with Mayr E for both
neutral and cationic electrophiles. At higher levels of theory
(MP2 and B3LYP), calculated MAAs also correlate linearly
with Mayr electrophilicity for other classes of electrophiles:
diarylallyl6,7 and azacarbenium ions.8 Mayr and coworkers have
also shown that neutral electrophiles such as ketones,9 Michael
acceptors,10 and nitroarenes11 give good linear correlation
between calculated MAAs and Mayr E. In theory, the common
slope of these lines should correlate with 1/sN for a methyl
anion.
At all levels of theory, the correlation between MAA and

Mayr E are linear with similar slopes but it is sobering to see
that, even at high levels of theory, different classes of functional
groups such as ketones, Michael acceptors, nitroarenes,
benzhydryl cations, allyl cations, and azacarbenium ions, fall
on different lines, suggesting that it may be impossible to
broadly correlate MAA with Mayr E across all of the canonical
functional groups in organic chemistry. The SMD solvation
model [dimethyl sulfoxide (DMSO)] improves the linear
correlation but did not lead to convergence of the lines for
ketones and enones (Figure 1B). It is unclear if any theoretical
treatment can be used to correlate the calculated methyl anion
affinity with the solution phase electrophilicity of canonical
organic functional groups.

■ RESULTS AND DISCUSSION

Solvation Improves Correlation of MAA* with
Electrophilicity. We set out to compare the COSMO(∞)
solvation model with SMD(DMSO) for calculation of MAAs
that would correlate with electrophilicity. For this study, we
chose a functionally diverse test set of electrophilic species that
span almost the entire range of experimentally determined
Mayr E parameters (Figure 2A): pentan-2-one,9 acrylonitrile,10

butanal,12 methyl vinyl ketone,10 maleic anhydride,13 dime-
thylmethyleneammonium cation,14 tropylium cation,14 me-
thoxyphenylmethylium cation,14 benzhydryl cation,15 and
cumyl cation.16 We restricted the product geometries to
idealized transition state-like conformations by locking the
newly formed H3C−C bond 90° to the pi system being
attacked for cumyl cation, methyl vinyl ketone, and
acrylonitrile (Supporting Information). For example, methyl
vinyl ketone was constrained to the S-cis conformation and
newly formed H3C−C bond in the product was constrained to

be 90° to the original enone pi system, instead of the lower
energy gauche conformation that minimizes the A1,3 strain
(Figure 2B). For most electrophiles, the minimized product
geometries tend to be geometrically and energetically similar to
the transition state-like geometries.
The correlation between MAA and Mayr E is particularly

poor when both neutral and cationic electrophiles are
compared (Figure 3). When COSMO(∞) was used in the

calculation of methyl anion affinity, the MAA gave surprisingly
good linear correlation with Mayr E across both cationic and
neutral electrophiles. Unexpectedly, on the full scale of
measured Mayr E parameters, the SMD(DMSO) solvation
was about as good as COSMO(∞) (R2 0.95 vs 0.97,
respectively) for calculation of MAAs that correlate with
experimental electrophilicity although the correlation was not
quite as good for ketones. Going forward, we define MAA* as
a methyl anion affinity calculated with a solvation model to
distinguish it from the traditional notion of a gas phase methyl
anion affinity (MAA). MAA*s calculated with PBE0(disp)/
def2-TZVP17 gave about the same or better (R2 0.97 vs 0.96)
linear correlation with Mayr electrophilicity compared to
B3LYP/6-311++G(3df,2pd), but was significantly faster and
was used for all subsequent calculations of MAA*s.

MAA* Correlates with Mayr E Across a Broad Range
of Electrophiles. Having shown that MAA*s correlate well
with the Mayr E parameters for the test set of ten electrophiles,
we set out to extend that analysis to a much fuller set of
structurally diverse electrophiles. To date, Mayr and Ofial have
reported Mayr E parameters for over 319 electrophiles.18 The
set includes molecules from over 30 different classes of
functional groups: (i) empty p orbitals with π conjugation:
benzylic cations,14−16,19−23 allyl cations,6,14 and the tropylium
ion;14 (ii) empty π* orbitals: ketones,9 iminium ions,14,24

oxacarbenium ions,14 sulfacarbenium ions,14 acyl imines,25

tosyl imines,25 phosphoryl imines,25 quinone methides,26,27

indolylmethylium ions,28,29 alpha, beta-unsaturated ke-
tones,10,12,30−32 acrylates,10 acrylamides,10 cinnamates,10 acryl-
onitriles,10 alkylidenemalonates and related compounds,33−35

maleates and related compounds,13 alkylidene malonitriles,13

nitrostyrenes,36 cinnamyliminium ion derivatives,37−41 benzyl-
idene malonitriles,42 quinones,43,44 sulfonyl substituted ethyl-
enes,10,45,46 electrophilic arenes,47−50 and azocarboxylates;51,52

and (iii) empty σ* orbitals: chlorinating agents (σC−Cl* ),53

electrophilic fluorinating agents (σN−F* ),54 and electrophilic

Figure 2. (A) Test set of electrophiles for which Mayr has reported
experimental E parameters. Arrows show sites of attack. (B) MAAs
were calculated by restricting products to transition state-like
geometries.

Figure 3. Solvation models lead to the correlation of MAA with Mayr
E. Inclusion of a solvation model like SMD or COSMO leads to a
good linear correlation between calculated MAA and Mayr E for both
cationic and neutral functional groups.
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trifluoromethylsulfenylating agents (σX−S* ).55 Cationic pi-metal
complexes14,19,56,57 can be represented as empty p orbitals or
empty σ*. We selected 75 of the 319 molecules (28 out of 32
functional groups) in the Mayr−Ofial database in an attempt
to capture as many of the common canonical functional groups
in organic chemistry as possible, excluding cationic π-metal
complexes, chlorinating, fluorinating, and sulfenylating re-
agents that react through SN2-like processes as-discussed
below. MAA* was found to correlate linearly with the Mayr E
parameters for nearly all of the functional groups, including the
most reactive electrophiles (e.g., 1-(mesityl)ethenium ion, E =
6.04) and the least reactive electrophiles (e.g., cinnamonitrile,
E = −24.60). Ultimately, it was found that MAA* based on
calculated free energies (G298) of unconstrained products gave
the same correlation as MAA offering a more reproducible
procedure (Figure 4, see the Supporting Information). As
discussed below, ketones are a notable exception to this linear

correlation and were not used in the linear regression (R2

0.96); the mean absolute error for Mayr E was ±1.2. Inclusion
of an additional term for (EHOMO−ELUMO)

−1 did not change
R2, using EHOMO for a typical nucleophile, methylamine
(Supporting Information).
Acetyl chloride and acetic anhydride do not generate stable

tetrahedral intermediates at the PBE0/def2-TZVP level of
theory. Therefore, we constrained the C−Cl distance to 1.800
Å in the adduct of acetyl chloride and we constrained the C−
OAc distance to 1.395 Å in the adduct of acetic anhydride.58,59

No Mayr E parameter has ever been reported for an SN2
displacement reaction at carbon although Mayr has reported E
parameters for electrophiles in three other types of displace-
ment reactions: chlorination by attack on Cl−C bonds,
fluorination by attack on F−N bonds, and (trifluoromethyl)-
sulfenylation. Mayr has noted that “deviations are expected for
SN2 type reactions, where making one σ-bond is coupled with
breaking another σ-bond.”14 E and sE parameters can be
estimated based on published kinetic data for SN2 attack on
CH3S

+R2 (E = −10),2 CH3I (E = −23),2 and CH3Br (E =
−22)60 in protic solvents and for CH3I (E = −17),61 in DMSO
but the resulting E and sE values are less reliable for calculation
of rates than for other types of electrophiles.61 Thus, it is not
surprising that a plot of MAA* versus these renegade E
parameters does not fall on the same line as the other types of
electrophiles for which E parameters have been vetted, even
after correction for translational entropy differences62 and
distortion energies.63 It is ironic that the relative reactivity of
SN2 substrates, long studied with linear free energy relation-
ships,58 remains among the most pressing issues of our time in
the field of physical organic chemistry.
Perhaps free carbenium ions and iminium ions give good

agreement with MAA* because the experimental counter ions
like BF4

− do not interact strongly with the reactants or the
transition state for nucleophilic attack. Naked carbonyl
compounds may end up fitting a second parallel linear
function that could easily be applied to canonical electrophiles,
but we lack high quality Mayr E parameters for aldehydes and
ketones at this lower end of the reactivity scale. The Mayr E
parameters were determined in the presence of t-BuOH and
K+ (which were not included in calculation of MAA*) with
careful control experiments involving 18-crown-6 and
phosphazene bases. To explore the issue of carbonyl activation,
we compared MAA*s calculated from electronic energies for
various forms of cyclobutanone. The cyclobutanone·K+

·18-
crown-6 adduct, modeled from the butanone crystal
structure,64 had an even lower MAA* than free cyclobutanone
but the MAA* for cyclobutanone·K+ was 31 kJ/mol higher
than that for naked cyclobutanone. The MAA* for
benzaldehyde·HOt-Bu was 21 kJ/mol higher than that of
free cyclobutanone.
Which value best reveals the “electrophilicity” of a carbonyl

group: the MAA*, which matches the naked arrow-pushing
depiction or a Mayr E parameter determined in the presence of
species that are not depicted? After philosophical reflection,
the answer is probably: both.

Quantifying the Reactivity of the Canonical Electro-
philes on the Mayr Scale. With good confidence in the
linear correlation between MAA* (G298 from PBE0/def2-
TZVP COSMO(∞)), we were then motivated to calculate
MAA*s for unsubstituted canonical electrophiles (Figure 5)
and convert them to the logarithmic Mayr E scale. On this
scale, the C−C bond of ethane corresponding to the intrinsic

Figure 4. Correlation between experimental parameters and theory.
There is good correlation between the calculated MAA* (PBE0/def2-
TZVP COSMO(∞)) and Mayr E parameter across a broad range of
organic electrophiles.
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barrier for attack on σCC* has a value of −70. The acetylide
cation and cyanide cation have values of +87 and +111,

respectively. To the extent that methyl anion affinity,
calculated with solvation correlates with solution phase

Figure 5.MAA* for the Canonical Electrophiles in Organic Chemistry. Methyl anion affinity, calculated with a solvation model, and plotted on the
logarithmic Mayr E scale offers insight into electrophilicity.
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reactivity, we begin to glimpse the breathtaking range of
electrophilicity for canonical organic functional groups, as
commonly depicted with arrow-pushing representations on the
scale of the Mayr E parameter.
Accuracy and Relevance of Methyl Anion Affinities. If

the correlation between MAA* and Mayr E is linear and the
distribution is normal, then the furthest reaches of predicted
electrophilicity, from H3C−CH3 to +C≡N will range from
MAA* of −70 (±3) to +111(±5) on the Mayr E scale at a
95% confidence level. The structure of the Mayr equation, log
k20° = sN sE (E + N) suggests that a truly independent scale of
nucleophilicity and electrophilicity may be out of reach for
some classes of polar reactions such as SN2. Approaches
involving deep learning could allow us to make predictions
based on complex nonlinear structure-reactivity relation-
ships.65−67

What is the significance of electrophiles that cannot be
studied in solution? Reactions of the simplest carbenium ion,
methyl cation68 (H3C

+), and even the supremely reactive
cyanide cation (+C≡N)69,70 have been studied in gas phase
experiments. Singlet methylidene71 and vinyl, ethyl, and
propargyl cations have been identified in the atmosphere
within our solar system and in interstellar environments.72

Until there is a comprehensive database of E parameters that
includes these gas phase species, it seems expedient to assess
electrophilicity on the familiar Mayr scale. Allyl cation and less
reactive carbenium ions have been studied in solution on our
own planet under superacid conditions.73 The ubiquitous C−
C σ* is at the bottom end of the electrophilicity scale.
Understanding the kinetic electrophilicity of these species on a
common scale inspires us to think about their potential
reactivity on Earth and beyond.

■ CONCLUSIONS

MAA* is an economical tool for estimating the log scale
electrophilicity of the canonical organic functional groups,
covering a staggering range of 180 orders of magnitude.
Moreover, such experimental determinations of Mayr E
parameters are needed to explore the limits of the linear
correlation with methyl anion affinity.
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