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Abstract

Methyl Quantum Tunneling and Nitrogen-14 NQR Studies Using A

dc SQUID Magnetic Resonance Spectrometer

by

Bruce Elmer Black

Doctor of Philosophy in Chemistry

University of Califomia at Berkeley

Professor Alex Pines, Chair

Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR)

techniques have been very successful in obtaining molecular conformation and dynamics

information. Unfortunately, standard NMR and NQR spectrometers are unable to

adequately detect resonances below a few megahertz due to the frequency dependent

sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a de

SQUID (Superconducting Quantum Interference Device) detector, which has no such

frequency dependence, has been developed. Previously, this spectrometer was used to

observe liB and 27A1 NQR resonances. I have increased the scope of this study to include

23Na, 51V, and 55Mn NQR transitions.

Also, I present a technique to observe 14N NQR resonances through cross

relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman

splitting matches one nitrogen quadrupolar transition the remaining two 14N transitions can

be detected by sweeping a saturating rf field through resonance. Additionally,

simultaneous excitation of two nitrogen resonances provides signal enhancement which

helps to connect transitions from the same site. In this way, we have observed nitrogen-14

resonances in several amino acids and polypeptides.

This spectrometer has also been useful in the direct detection of methyl quantum

tunneling splittings at 4.2 K. Tunneling frequencies of a homologous series of carboxylic



acids were measured and for solids with equivalent crystal structures, an exponential

correlation between the tunneling frequency and the enthalpy of ftts_on is observed. This

correlation provides information about the contribution of intermolecular interactions to the

energy barrier for methyl rotation.
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Chapter 1
Introduction

Magnetic resonance has become an important tool in the modem scientist's arsenal

for the determination of structural and dynamical information. One source of molecular

information is the quadrupolar coupling which describes the interaction of the electric

quadrupole moment of the nucleus with a surrounding electric field gradient. 1"3 This

electric field gradient is caused primarily by the asymmetric distribution of bonding

electrons, but may also result from ions and lattice defects. Thus the quadrupolar

interaction reflects the environment around the nucleus and can provide information about

coordination number, bonding symmetry, lattice symmetry, and defects.

Solid state NMR and NQR are used to examine this interaction. Unfortunately,

unlike liquid NMR, solid state NMR suffers from a deficiency in resolution due to the lack

of molecular motion, which in a liquid serves to average anisotropic interactions to zero. In

solid state powder samples, anisotropies from the dipolar and quadrupolar couplings

broaden the spectrum often to the point where all information is lost. 4' 5 To combat this

problem several techniques have been developed. For spin-l/2 nuclei (those with no

quadrupolar moment) magic-angle spinning (MAS) sharpens the resonances by eliminating

the dipolar anisotropy. 6

However, for nuclei with I>1/2 this is not good enough as the quadrupolar

anisotropy is not completely averaged. For nuclei with I=3/2, 5/2, 7/2 .... and small

quadrupolar couplings, dynamic angle spinning (DAS) and double rotation spinning (DOR)

have been proven to be very successful in providing resolved spectra of the central

transition (-1/2 _ + 1/2).7-9 From these experiments information about the sample can be

obtained including the dipolar and quadrupolar couplings. For integer spin nuclei,

however, there is no central transition and a good direct technique such as this is not

available.
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It is also possible to study the quadrupolar interaction by zero field techniques,

primarily Nuclear Quadrupole Resonance (NQR). 1 In NQR the quadrupolar splittings are

directly measured rather than calculated from simulated lineshapes as in the NMR

experiments discussed above. Typical NQR experiments can measure large quadrupolar

couplings of nuclei such as the halogens.

Unfortunately, both standard NMR and NQR techniques suffer when it comes to

measuring low frequency resonances. This is due to their detection scheme. Most

magnetic resonance spectrometers use a Faraday detector. This is simply a coil which

measures the voltage produced by the Faraday effect as the transverse magnetization

oscillates after rf irradiation at the resonance frequency. 10 The sensitivity of the Faraday

effect is proportional to the rate of change in magnetization (d_/dt).11 Thus the voltage

decreases linearly with the resonance frequency. This places a limit of several MHz on the

detectable resonances. However, many important nuclei such as liB, 14N, 23Na, and

27A1have smaller splittings. So a new technique must be found to study these materials.

One such method is field cycling 12' 13 which, however, is an inherent two dimensional

experiment and has the disadvantage of long experimental times.

Another promising technique is described in this thesis. This spectrometer uses a

dc SQUID 1416 (Superconducting Quantum Interference Device) as a detector of magnetic

resonance signals. 17' 18 The SQUID is able to directly detect changes in magnetic flux.

This type of detector has no inherent frequency dependence. 19 Thus the SQUID magnetic

resonance spectrometer is able to observe quadrupolar splittings in a frequency range that

was difficult to investigate before. Chapter 2 describes the theory behind the utilization of

the SQUID as a detector. It also presents a brief outline of the SQUID magnetic resonance

spectrometer. Chapter 3 continues with a general description of the experimental technique

and an overview of the expected spectra.

While working on this project I have expanded the range of samples that have been

investigated. During this time we have added 23Na, 5 IV, and 55Mn to the nuclei that have

2



already been studied: 11B and 27A1.17' 18, 20-22 Chapter 4 presents results from my

experiments involving these materials.

Also, we have developed a new technique for the study of integer spin NQR,

primarily 14N, which now allows us to analyze some biologically important molecules.

The theory and results of these experiments are presented in Chapter 5.

There is even information to be gained from very low field (50-200 G) NMR

experiments. One example is methyl quantum tunneling. 23 In high magnetic fields these

transitions are forbidden. However, in low field the nonsecular parts of the dipolar

Hamiltonian provide a means whereby tunneling transitions become slightly allowed. 24

The SQUID spectrometer has proven useful in studying methyl groups attached to sp3

hybridized carbon atoms which normally have tunneling frequencies less than 1 MHz. 25' 26

These results are presented in Chapter 6 along with an interesting correlation between the

tunneling frequency and thermodynamic properties of the straight-chained carboxylic acids.

Overall the SQUID detection scheme proves to be a viable technique for the study

of low frequency magnetic resonance and compares favorably with other methods.



Chapter 2
The SQUID Magnetic Resonance

Spectrometer

This chapter focuses on a brief description of the dc SQUID and the SQUID

spectrometer. Both of these subjects are presented in greater detail elsewhere, 15' 17,18,21,

27-36
my purpose is simply to provide a working knowledge of the spectrometer and the

SQUID that will allow one to understand the experiments in this thesis.

Because the SQUID is a device designed to use the unique properties of a

superconductor in a magnetic field I will begin this chapter with a discussion of that subject

including descriptions of the Meisner effect or flux exclusion, flux trapping and

quantization, and the .Iosephson junction. The second part of the chapter will introduce the

theory behind the operation of a dc SQUID and explain how it can be used as a magnetic

resonance detector. The third section will present a survey of the spectrometer and outline

several recent changes in operation.

2.1 Superconductivity in a Magnetic Field

In 1911, Kammerlingh Onnes found that cooling mercury to a temperature below

4.2 K resulted in a precipitous drop in resistivity. 37 Thus was born the study of

superconductors. In 1957, Bardeen, Cooper, and Schrieffer formulated a theory which

characterized a majority of superconductors. 38 It described the net attraction of two

electrons coupled by a phonon. These sets of electrons became known as Cooper pairs. In

this coupled state they behave like bosons, in that all electron pairs can be described by the

same bound-state wavefunction. The BCS theory describes many superconductors

successfully, but is found to be inadequate for many materials such as high TC and organic



superconductors. However, in this thesis I will be concerned only with materials that do

act in accordance with the BCS theory.

When superconductors are placed in a magnetic field, it was found that they can be

classified into two distinct types. 31 Type I materials remain in the superconducting state as

long as the field is below a specific critical value which is dependent on the type of material

and its purity. Above that field it is no longer superconducting. Type II superconductors

have two critical field values, HC1 and HC2 (Hc1 < HC2). Below HCI the entire substance

is superconducting like the Type I materials. Between the two critical fields, parts of the

sample become nonsuperconducting. The amount of superconducting material varies

linearly with the field until above HC2 the entire sample is nonsuperconducting. The

critical fields for many superconductors are in the low to moderate field strengths. One

example is lead which has a critical field of 803 gauss at absolute zero. 39 All magnetic field

strengths in the experiments described in this thesis are well below the critical fields of the

superconducting materials used in the spectrometer.

2.1.1 Flux Exclusion: The Meisner Effect

When a magnetic field is applied around a superconductor, the material generates

currents to oppose the field according to Lenz's law. Because there is no resistance in the

superconducting state, these persistent currents will eliminate the magnetic field in the

interior of the superconductor. Thus magnetic flux is excluded from the material except for

a narrow region near the surface, the depth of which is calculated below.

More interesting is the related phenomenon discovered experimentally by Meisner

and depicted in Figure 2.1. 40 He found that if a piece of potentially superconducting

material is placed in a magnetic field at high temperature and then cooled below its critical

superconducting temperature, TC, the magnetic field will also be excluded from the interior
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Figure 2.1. Superconducting material in a magnetic field, a) Before it is cooled the

magnetic flux penetrates the sample, b) After it become superconducting, the flux is

excluded from the interior of the sample. This is the Meisner effect, c) When the magnetic

field is removed from a superconducting ring, currents flow around the surface that keep

the magnetic flux through the ring constant. This is flux trapping.



of the superconductor. The explanation of this result can be found by first developing the

London equation. 41' 42

The velocity of a particle, as determined by kinematics, is

v---(p- A) 2.1m

where m is the mass of the particle, p its momentum, q its charge, c the speed of light, and

A the vector potential due to the magnetic field. When p is replaced by its quantum

mechanical analog,-ihV,

v ;-- (-ihV - A). 2.2
m

Let the superconductor wavefunction be written as

• - "_'p-pexp(i0(r)) 2.3

where p is the concentration of Cooper pairs in the superconductor which we will assume

to be relatively constant over the sample. The particle flux is then given by

= P--(fiV0 - fl A)Wvq_* 2.4
m

and we can express the electric current density as

j = q_Fvqj, = pcl (hV0- _ A).
2.5

m

Taking the curl of each side eliminates the V0 term (the curl of a scalar is zero) and gives

the London equation:

VXj= pq2- (V X A)=- pq__22B. 2.6
mc mc

One of Maxwell's equations states that



411;.

V X B = --_--j. 2.7

Taking the curl of 2.7 and substituting in 2.6 gives

4_ 4rcpq2 B 2.8
VXVXB='V2B=--_-VXj =- mc2 •

We will define the London penetration depth, _., to be

_.=_ mc2 2.94_:pq2'

Equation 2.8 then reduces to

1

V2 B = _-_B 2.10

which has a solution

B(r) = B(0) exp(- _). 2.1 1

Thus the magnetic field drops asymptotically to zero. A typical penetration depth into the

superconductor, _., is calculated to be on the order of 100 A. From this result we see that

the bulk of the superconductor feels no net magnetic field.

2.1.2 Flux Trapping and Quantization

Something interesting happens if, instead of a solid sample, a ring of

superconducting material is placed into a magnetic field at high temperature and cooled

below TC .43 Even when the magnetic field is removed the flux through the ring remains

constant, as depicted in Figure 2.1, and is quantized. The field is retained by a

supercurrent that circulates around the ring surface which maintains the flux despite any

8



change in the surrounding magnetic field. This is commonly called flux trapping. We use

this property to provide a small steady field for our magnetic resonance experiments.

We start with equation 2.5;

1

Let's examine a closed path C through the interior of the superconductor but well away

from the surface. We know from the previous section that B and thus j "-re zero in this

region. So,

hcV0 = qA. 2.12

When we integrate the left side of equation 2.12 around the path C and realize that the

wavefunction, W, must be single valued we find that

hc _ VO dl = 2nnhc. 2.13
C

Integrating the right side of equation 2.12 and applying Stoke's theorem gives us

q(_Adl) = q_(V X A) d_ = q_B d_ = qO 2.14
C

where • is the magnetic flux through the region bound by C. Combining equations 2.12,

2.13, and 2.14 renders

2rthc
- n. 2.15

q

Thus we see that the magnetic flux through the ring is constant and quantized in units of a

magnetic flux quantum, Oo, where

O0 _ 2_hc _ 2.0678 X 10-7 Gauss cm 2. 2.16q



This information will have significance later when we consider the SQUID which is

primarily a superconducting ring.

2.1.3 The Josephson Junction

The next subject in this review is the Josephson junction. 27' 28, 43,44 A Josephson

junction is formed by two bulk superconductors separated by either insulating material or a

much narrower superconducting region as depicted in Figure 2.2. 27,28,44 If this barrier is

small enough, significant tunneling across the junction will occur when a bias current is

applied. The tunneling of Cooper pairs in this manner provides a supercurrent. A definite

phase relationship exists between the wavefunctions of the two bulk superconductors. 38

But first we will start with two superconducting materials and assume isolated

wave functions;

W1 = _Pl exp(i01(r)) 2.17a

W2 = _P2 exp(i02(r))" 2.17b

When tunneling of electrons from one piece to the other is allowed and a potential, V, is

applied across the junction the following time dependent Schr/Sdinger equations can be

written;

ih _gq_------l-I= hTq_2 + eVW 1, 2.18a
_t

ih ___2= hT_ 1 "eV_2 2.18b
bt

where hi" represents the tunneling of electrons across the junction and T has the dimensions

of a rate or frequency.

10
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Figure 2.2. The Josephson junction is made of two bulk superconductors connected by a

small nonsuperconducting region or a narrower band of superconducting material. If the

two bulk samples are not to far away from one another and a biasing current is applied,

electrons can tunnel between the two samples and still retain their Cooper pair identity. The

current from these tunneling electrons is called the supercurrent.
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Combining equations 2.17a and 2.18a gives

ieV_l
0qJ1 _ 1 exp(i01) 0pl + i_ 100--!=-iTqJ2- 2.19

ot 2_ ot ot h

and a similar equation for _2" Multiplying 2.19 by _91 exp(-i01) and setting A = 02 - 01

leaves

1 0P____!.1+ ip 00---!-1- - ievpl - iT_plp 2 exp(iA). 2.20a
2ot 10t h

Multiplying the corresponding equation for W2by _'PP2 exp(-i02) gives

_ _ 002 ieVp 2
1 0P2 + iP2_ = + _. iT_plp 2 exp(-iA). 2.20b
2ot ot h

By letting exp(iA) = cos(A) + i sin(A) and equating real and imaginary part we find that;

2T_Plp 2 sin(A)= - _092 2.21& &'

00----J-1= - e_/.- T"_kP__cos(A ) , 2.22
0t _/ Pl

eV ,_/Plco
002
ot - h "T s(A). 2.23P2

If the two junctions are the same then

P l = P2 2.24

and thus

0(02-01 ) 0A 2eV- 2.25m .

0t - 0t h "

Upon integration,

12



i

I

2eVt

A(t) = A(0) + --_--. 2.26

The supercurrent flow, Js, is proportional to ___99which combined with equation
3t'

2.26 results in

2eVt.

Js = Js0 sin(A(t)) = Js0sin(A(0) + _). 2.27

We see that the current between the two bulk superconductors oscillates at a frequency,

2eV
m - 2.28

h

which is 486 MHz for a potential of 1 l.tV. In our dc SQUID spectrometer the junction is

biased by several microvolts giving oscillations in the gigahertz range. We are able to

ignore these oscillations by using a narrowband detector, which retrieves only the time

averaged value of the supercurrent.

2.2 The dc SQUID

As mentioned earlier the dc SQUID is essentially a superconducting ring. It also

has two Josephson junctions placed in the ring as shown in Figure 2.3. The characteristics

of the SQUID are governed by these two facts which create quantum interference between

the supercurrents flowing through each side of the SQUID. 31' 38 These supercurrents will

have a phase based on the magnetic flux penetrating the ring and thus be a function of the

strength of the magnetic field. This attribute makes the SQUID a sensitive detector of

change in magnetic flux. We will utilize this property in order to measure magnetic

resonance signals. A more detailed and mathematical description of the process is given

below.

13



A

Q

B

Figure 2.3. A dc SQUID (left) consists of two Josephson junctions (right), a and b,

connected in parallel. As superconducting electrons travel through the SQUID, they

acquire a phase which depends on the amount of magnetic flux threading the loop.

Quantum interference between the pairs produces a periodic voltage across the SQUID

which is a function of _L.

14



2.2.1 Fundamental Description 27,32-35

The dc SQUID in our detector (depicted in Figure 2.3) contains two parallel

Josephson junctions; a and b, a magnetic flux, OL, penetrating the loop; a potential, V,

across the junctions; and a current, Jb' biasing the SQUID. A supercurrent is generated

through the Josephson junctions as described above which can be separated into two parts,

one component going between points P and Q through junction a and the other going

through junction b. Each part of the supercurrent will gain a phase due to both the

Josephson junction and the vector potential of the magnetic field:

Q

2e JAds 2.29a
A_a(t) = Aa(t) + tic p

2e _Ads. 2.29b
A_b(t) = Au(t) + _c

By recognizing that the current must be single valued we know that

A_b(t) - A_ba(t)= 2_n. 2.30

For simplification we will set n=0. Thus

2e
A ds

2e

Ab(t) - Aa(t) = hc = _ _L. 2.31

We combine equations 2.30 and 2.31 to give

e

A_)a'(t)= Aa(t) - _ _L, 2.32a

e

AOb'(t) = Ab(t) + _cc_L. 2.32b

The total supercurrent will then be

Js = Jsa sin(A_ba'(t))+ Jsb sin(A._b'(t)) 2.33

15



where Jsa and Jsb are the maximum supercurrents going through each half of the SQUID.

For simplification we will assume that the two junctions are equivalent so that Jsa = Jsb = Js0

and Aa(t) = Ab(t)= A(t). Thus

e e

Js = Js0 sin(A(t) - hc _) + Js0 sin(A(t) + hc t/_L)

sin(A(t)) coS(_cc OL). 2.342j 0

Therefore the supercurrent is a sinusoidal function of the magnetic flux.

The voltage across the SQUID is proportional to the normal current (the difference
i

between the bias current and the supercurrent so long as jb>2js0):

V(t) = ROb- 2js0 sin(A(t)) coS(_cc t_L)).
2.35

We note also that A(t) is a function of the voltage and oscillates at a very high frequency,

however as mentioned above, a narrowband detector will only observe the time averaged

voltage. This is not simply zero.

From equation 2.25, we know that

h _A(t) 2.36
V(t)- 2e Ot

Rearranging to find the period of one oscillation gives

2rt

T _'dA(t)

2_

_h___f dA(t) 2.37
m2e

JR0b(t) - 2js0 sin(A(t))cos(h- _ OL))

We can also calculate the time averaged value of the voltage over one period as
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1 iV(t )dt_ h fdA(t) hV= T 2eT _ dt- 2eT 2ft. 2.38

Combining equations 2.37 and 2.38 provides

_3_

V= 2_e2/1:_-_ (jb(t) - 2jsOsin(A(t))coS(_c ¢L))

Which upon evaluation of the integral leaves

V = R jb 2 - (2js 0 coS(_c _L)) 2. 2.40

Therefore, the time averaged voltage is also a function of the magnetic flux penetrating the

SQUID. Figure 2.4 plots the voltage dependence of the magnetic flux.

2.2.2 The SQUID as a Detector

There are several simple ways in which the SQUID can be used as a detector.

First, for changes in magnetic flux that are much greater than a single flux quantum, one

can simply count the number of oscillations in the voltage to obtain the number of flux

quanta in the signal. Alternatively, for flux changes much less than one flux quantum, one

can set the SQUID at the linear part of the flux versus voltage curve. As long as the flux

change is small the voltage change will be a linear function of the flux. Neither of these

two schemes is satisfactory for most applications.

More typically the SQUID is used as a null detector in a negative feedback loop 45 as

shown in Figure 2.5. The output from the SQUID due to the change in the magnetic flux is

fed through the appropriate electronics and a portion of the voltage obtained is then used to

drive a coil around the SQUID that will offset the actual magnetic flux change. This means
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Figure 2.5. A schematic of the SQUID system with the coils, lock-in detection electronics,

and feedback circuit. This scheme has low system noise and high sensitivity.
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that the magnetic flux through the SQUID will remain constant. The size of the magnetic

flux change is no longer a limitation as long as it doesn't vary faster than the electronics can

react.

The SQUID is very useful for detecting low frequency resonances. These are

difficult to observe by standard NQR techniques which use the induction of current in a

wound coil for detection. This Faraday detector measures the changes in the oscillating

magnetic flux as a function of time (dO/d0. This is obviously frequency dependent, i.e. as

the frequency decreases so does d_/dt. Therein lies the strength of the SQUID detector. It

measures the magnetic flux directly, which has no frequency dependence.

With this advantage we want to use the SQUID to detect low frequency (down to

dc) signals. However, the system's noise power has a l/f characteristic which dominates

at low frequencies. 30 This is important in our experiments where we measure a change in

the magnetization of a sample over several seconds, which corresponds to frequencies very

close to dc. The usual remedy for this problem is frequency modulation, also known as

lock-in detection. 46

In this process the low frequency signal is mixed with a higher frequency carrier

wave. This higher frequency signal can then be detected with only the typical white noise.

One disadvantage of this system is that signals with frequencies greater than the mixing

frequency are lost. Because the modulation frequency is limited by unavoidable stray

reactances in the detection and feedback circuits it is generally less than a few hundred

kilohertz. For our cw-spectrometer this is not important because the signals are always

near dc. But it does provide an important limitation for a pulsed SQUID NMR/NQR

spectrometer, where the signal is detected at the frequency of the resonance.

The next problem to be solved is how to couple the signal into the SQUID. One

47
could build a SQUID and rf coils around the sample container. Then when a resonance

frequency is irradiated the change in magnetization of the sample will be detected directly

by the surrounding SQUID. This however is not practical. First, SQUIDs are typically
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very small, on the order of micrometers or less, therefore the sample must be that small as

well. Also, the ability to change the sample would be severally hampered by the size and

delicacy of the SQUID. And lastly, the sample would always have to remain at the

temperature of the SQUID which, as will be seen in Chapter 3, is often not an

advantageous situation.

A typical solution for many uses is a flux transformer or pickup coil. 48 To detect

low frequency signals an untuned superconducting circuit couples the sample flux into the

SQUID as shown in Figure 2.6. The circuit is simply two superconducting coils made

from a single piece of superconducting wire with one coil around the SQUID and the other

coil, the pickup coil, surrounding the sample. As we sweep through a resonance the

sample magnetization, and thus the magnetic flux through the pickup coil, will change. As

described previously, the flux through a superconducting ring, or coil, is kept constant. So

as the flux changes in the pickup coil a supercurrent is generated that produces a flux

change of equal magnitude but opposite direction in the coil around the SQUID which is

then detected.

This circuit, as all others, suffers losses and so it is worthwhile to discuss the

circuit design. The magnetic flux generated in the pickup coil by a sample of

magnetization, M, is

Op = 4rt2fr2pNpM 2.41

where f is the filling factor, rp is the radius of the pickup coil, and No is the number of

turns in the pickup coil. This magnetic flux will induce a current in the superconducting

circuit of

_P 2.42
Ip-(1 s + lp)'l
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Figure 2.6. A schematic of the superconducting transformer used to couple the sample flux

into the dc SQUID. A change in magnetic flux through the pickup coil causes an opposing

change at the other coil. This it then coupled into the SQUID by mutual inductance, MCS.
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where Is and lp are the inductances of the coil around the SQUID and the pickup coil

respectively. The amount of flux ultimately coupled into the SQUID depends on the mutual

inductance between the coupling coil and the SQUID, Mcs, as given by

Mes *(4g2fr2pNpM). 2.43
q_s= IpMcs-(lp + Is)

Previous work has shown that the maximum signal is attained when lp=ls, for a fixed

sample size. 3° So to maximize the signal other factors must be considered as Is is fixed

because the coil is manufactured with the SQUID.

Assuming the ideal case,

lp _ rpNp2, 2.44

the flux through the SQUID will increase approximately as r3/2 for a given sample
i

magnetization.49, 50 The actual dependence is greater when it is realized that for larger

samples the filling factor is better because the walls of the sample container are usually kept

constant. However, we must balance the size of the pickup coil with the type of samples

that we wish to study. Expensive or toxic samples may not be practical to use in large

quantities. These considerations led to the spectrometer design described below.

2.3 The Spectrometer

In this section I will not attempt to describe the spectrometer in mechanical detail for

that has been done before.17' 18,21 I do however want to give the reader a sense of the

overall design and the method of operation for zhe experiments described in this thesis.

There are some design and operational details that have been changed and I will discuss

those in more detail.
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2.3.1 Hardware Overview

Figure 2.7 shows an overall view of the SQUID spectrometer and Figure 2.8

presents a more detailed display of the lower portion of the SQUID spectrometer probe.

The dc SQUID (BTi Model DP probe with Model DSQ DC Hybrid SQUID) is hermetically

sealed inside a niobium shield. Two copper screws provide the means whereby the pickup

coil leads can be attached to the coupling coil of the SQUID. The SQUID is connected to a

room temperature feedback controller (BTi Model 400) which functions essentially as

described above. The signal from the SQUID is passed through the feedback unit to the

SQUID controller (BTi Model 40) where it is amplified (xl, xl0, xl00, xl000) and filtered

(5 or 50 kHz bandwidth). That signal is then sent through a home built low-pass filter with

a bandwidth from 200 to 0.02 Hz and a variable gain from 10 to 120. It is then transmitted

into an AT clone computer through a digital oscilloscope (Rapid Systems Model R 1000).

The spectra can be stored and analyzed on the computer.

The pickup coil is supported on a macor form and is made of 10 turns of 0.5 cm

diameter NbTi wire which is superconducting at liquid helium temperatures. Surrounding

the pickup coil is a second form which contains two Helmholz rf coils. These two coils are

orthogonal to one another and provide two channels of rf irradiation for the magnetic

resonances experiments. They are connected to a programmable frequency sweeper

(Hewlett-Packard 3326A Two Channel Synthesizer) which is also controlled by the AT

clone computer. The sweeper can provide two separate rf channels for frequency sweeps

of up to 13 MHz at an output level of up to 10 V with sweep times varying from 1 ms to

1000 s.

A third coil form supports a lead tube that is surrounded by a copper coil. Before

the probe is cooled the copper coil is charged with current to produce a specific magnetic

field (usually 10-150 Gauss). After the probe is placed in the liquid helium bath (4.2 K)

the current is turned off. However, because the lead tube is now superconducting the
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1 cm
I I

Figure 2.8. Cross-section of the low-temperature probe. The dc SQUID is on the left

hand side.
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magnetic field due to the previous current in the coil is kept constant (as described in

Section 2.1.2). This provides a variable magnetic field of up to at least 300 Gauss. The

field can be easily changed by lifting the probe slightly above the helium bath so that the

lead tube is no longer superconducting, applying a new current to the copper coil, and

returning the probe to the liquid helium where the lead tube is again superconducting. This

seems to have no detrimental effect on the SQUID if it is turned off during this operation.

The rf field is on during detection and is coupled by mutual inductance into the

pickup coil. Thus, a low pass filter must be used to eliminate the coupled rf and retain the

signal (which is near dc). 51' 52 This places a limit on the rf frequency that can be used for

irradiation. In this spectrometer, the rf must be greater than approximately 100 kHz to be

effectively filtered. Also, a lead lined brass can surrounds the coil form, which serves as a

superconducting filter of stray magnetic and rf fields. 53

The entire probe is placed into a cryostat so that the SQUID, probe, and sample are

all at 4.2 K. We now use a much larger and better cryostat which allows us to run the

experiment for 10+ hours per helium fill.

2.3.2 Software Improvements

I have rewritten both the data acquisition and processing software to make it more

user friendly with menus and better graphics. The data processing software can now

display up to 10 spectra simultaneously for easy comparison. Also resonance frequencies

can be read directly from the screen rather than manually calculated as before. The

acquisition program also writes the sweep start and stop frequencies, sweep time, and rf

strength onto the data file for reference during processing.

All this improves the data handling aspect of the experiment, but the biggest

advances are in the actual control of the spectrometer. The software is now designed to use

the second channel on the HP sweeper (when it is not needed for rf irradiation) to control
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the output signal level by adjusting the dc offset of that signal. This allows the computer to

maintain the signal within the range of the digital oscilloscope by resetting the dc offset

after each scan, which had to be done manually before. We can now set the spectrometer

to do multiple sweeps without constant human oversight. This allows for efficient

averaging. Also, up to 20 different scans (with separate sweep parameters) can be run

sequentially. The overall savings in time and effort for this experiment are significant.

2.3.3 Operation

In a typical experiment the sweep is usually between 100 to 500 kHz in length and

50 to 250 seconds in duration. We typically use around 3 volts of rf from the sweeper.

This value is a compromise. We want to use as much rf as possible to completely saturate

the resonance, but more rf means more noise. Also, the HP sweeper switches synthesizer

switches circuits for voltages above 3 volts and this higher voltage circuit is much noisier.

Three volts does however seem to be enough, as will be shown in the next chapter, to

saturate most resonances.

There is also a two channel mode where two separate frequency sweeps can be

initiated simultaneously. If the sweeps are over the same region circularly polarized rf can

be produced. However, more useful is the simultaneous sweep over a frequency region

while applying another specific irradiation frequency. This type of experiment is especially

important in the double irradiation scheme presented for 14NNQR (Section 5.3.4).

This spectrometer allows us to do many NMR and NQR experiments at low

frequency and in low field that are normally very difficult to accomplish by other means.

This advantage makes the SQUID spectrometer a valuable asset in the field of magnetic

resonance.
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Chapter 3
Z-Axis cw NMR and NQR

This chapter provides the basic theoretical description of the NMR and NQR

techniques utilized in these experiments. More specialized theory and techniques will be

discussed in chapters 5 and 6. I will begin by detailing the Hamiltonians that are used to

describe the spin system, after which there will be a section on relaxation phenomena. The

third part of the chapter will describe z-axis cw NMR and NQR detection. And, finally,

there is a short discussion of experimental lineshapes and intensities. Table 3.1 is included

as a reference to the relevant constants associated with the nuclei studied in this thesis.

3.1 Hamiltonians

Several Hamiltonians describe the basic interactions studied in NMR and NQR

experiments. The first is the quadrupolar Hamiltonian which arises from the electrostatic

interaction between an electric field gradient and the electric quadrupole moment of a

nucleus. Such nuclei are non-spherical in shape and have a spin, I, greater than 1/2. This

is the primary Hamiltonian in NQR. For NMR experiments the Zeeman Hamiltonian is the

most important. It characterizes the interaction of the nuclear magnetic moment with an

external magnetic field. For the experiments described in this thesis a magnetic field is

applied even in the NQR case (which is atypical of most NQR techniques). Thus the

Zeeman interaction is also present in our NQR experiments, although it is typically only a

small but, as we will see, necessary perturbation of the quadrupolar Hamiltonian.

Two other Hamiltonians are also required to describe the experimental situation: the

dipole-dipole Hamiltonian, which represents the interaction between the magnetic moments

of neighboring nuclei, and the rf field Hamiltonian which characterizes the excitation of the

29
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Nucleus Spin Natural NMR Frequency Quadrupole

Abundance at 1 Gauss Moment

(%) (Hz) (e. 10"24cm 2)

1H 1/2 99.99 4258 NA

11B 3/2 80.1 1366 +0.04065

14N 1 99.63 308 +0.0156

23Na 3/2 100 ! 126 +0.101

27A1 5/2 100 1109 +0.140

51V 7/2 99.75 1119 -0.052

55Mn 5/2 100 1050 +0.40

Table 3. I Properties of the nuclei discussed in this thesis.
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nuclear spins by rf irradiation in order to detect signals. Each of these Hamiltonians will be

described in the following sections.

3.1.1 The Quadrupolar Hamiltonian

The quadrupolar Hamiltonian arises from the interaction between the electric

quadrupole moment of a nonspherical nucleus (one with I> 1/2) and the surrounding electric

field gradient as shown in Figure 3.1.1 The bonding electrons are the typical source of the

unsymmetric distribution of charge surrounding the nucleus which creates the electric field

gradient.3, 6, 54 Ions and other electric field anomalies, such as defects in the lattice, can

also contribute. The quadrupolar interaction provides information about the local bonding

configuration such as the coordination number, the symmetry of the molecular bonding, the

symmetry of the lattice, and the effect of defects on the environment of the nucleus. Non-

crystalline structures such as those in glasses can also be studied. 55' 56

The electric field gradient, Vab (where a, b = x, y, or z), is typically described in

terms of a principal axis system, which is defined such that all off-diagonal terms are zero

and Vzz > Vyy > Vxx. The magnitude of the electric field gradient, eq, is designated as

eq= Vzz 3.1

and the asymmetry parameter, rl, as

Vxx - V
YY 3.2

1"!- Vzz

When this is combined with the Laplace equation,

Vzz + Vyy + Vxx = 0, 3.3

the value of rl is restricted to the range between 0 and 1.
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Figure 3.1 A nonspherical quadrupolar nucleus (center) has a preferred orientation in an

electric field gradient. This gradient is usually due to the unsymmetrical distribution of

bonding electrons, but can also arise from nearby ions and defects.
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1] characterizes the degree of symmetry of the electric field gradient. If 1"1equals

zero then the z-axis has C3 or better symmetry. 2 If 1]equals 1 then Vxx = 0 and the electric

field gradient is limited to the zy plane with the symmetry of the color group, C4. If there

are two perpendicular C3 or better'symmetry axes then Vzz = Vyy = Vxx = 0 and thus no

electric field gradient. One of the well-known cases for such an occurrence is the cubic

lattice such as in NaC1. There is no quadrupolar interaction for sodium or chlorine in this

sample except where the material deviates from perfect cubic symmetry, such as near a

defect site.

The quadrupolar Hamiltonian can be written in its principal axis system as

e2qQ

[3Iz2 - 12+ _ (I+2 + I 2)], 3.4HQ = 4I(2I- 1)

where eQ is the electric quadrupole moment of the nucleus. Typical energy level diagrams

are displayed in Figures 3.2 and 3.3. Figure 3.2 presents a half odd integer spin system,

in this case I = 7/2, but a similar diagram can be drawn for I = 3/2, 5/2 .... In all cases the

energy levels are doubly degenerate in zero field. Figure 3.3 shows the I = 1 energy level

diagram. Again a similar diagram can be drawn for I = 2, 3,... Integer spin energy levels

are only degenerate when rl = 0. All nondegenerate levels for integer spin nuclei have a

vanishing magnetic moment as indicated in the spin-1 energy level diagram. 57 This

presents an important problem for the direct detection of integer spin NQR signals by the

SQUID spectrometer which will be discussed in detail in Chapter 5.

e2qQ is commonly referred to as the quadrupole coupling constant (CQ) andh

describes the strength of the quadrupolar interaction, rl and CQ are the two parameters that

are calculated from the quadrupolar resonances and completely characterize the electric field

gradient. Figures 3.4 and 3.5 plot the relative splittings expected for nuclei with I=3/2,

5/2, 7/2, 9/2, and 1 as a function of 1].
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Figure 3.2. The energy level diagram for a spin 7/2 nucleus in both zero (left) and nonzero

(right) magnetic fields. The O_Q'Sare the quadrupolar frequencies, which in this case must

be numerically calculated from the quadrupolar parameters, CQ and 1"1. co0 is the Zeeman
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The two quadrupolar parameters provide information about the surroundings of the

nucleus. A detailed quantum electronic treatment would be necessary for an accurate

calculation of these parameters, but at this time the precision of these calculations is not

great enough for quantitative predictions. However, from the magnitudes of these two

parameters we can obtain information such as the symmetry around the nucleus, the size of

the deviation from a specified lattice symmetry, paramagnetism (paramagnetic atoms

usually have a much larger CQ), coordination number, the effect of impurities and lattice

defects, and the distribution of sites in an amorphous material.

Although the electric quadrupole moments of most nuclei vary over only about 2

orders of magnitude, the quadrupolar frequencies can vary from less than 10 kHz to

hundreds of MHz. The large quadmpolar frequencies are typically found for nuclei with

very polarizable electrons, such as the halogens, or paramagnetic atoms, which include

many transition metal compounds. As mentioned in Chapter 1, the SQUID is used to study

NQR at the low frequency end of this range. This is the region for nuclei such as liB,

14N, 23Na, 27A1, and nonparamagnetic transition complexes involving nuclei such as 51V

and 55Mn. The spectrometer could also be used to study slight deviations from cubic

symmetry such as chlorine near defect sites in NaCI.

3.1.2 The Zeeman Hamiltonian

The Zeeman Hamiltonian describes the interaction between the nuclear magnetic

moment and an external magnetic field. This is the principal Hamiltonian for NMR. In our

NQR experiments the Zeeman interaction will serve as a perturbation of the pure

quadrupolar Hamiltonian. For NMR, we write the Zeeman Hamiltonian as

Hz = -yhlzB0 3.5
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where y is the gyromagnetic ratio of the specific nucleus and B0 is the applied magnetic

field. This determines the z axis of the nuclear spin.

For our study of NQR, the Zeeman interaction is smaller than the quadrupolar

interaction, so we must rewrite the Zeeman Hamiltonian in the principle -,axissystem of the

quadrupolar interaction:

Hz = -yhBo(IzcoS0 + Ixsin0cost _ + Iysin0sint_). 3.6

The angles 0 and _ relate the magnetic field axis to the quadrupolar principle axis system.

The Zeeman interaction alone provides no information. Rather, quantities such as

the chemical shift of the Zeeman line are studied. In our experiments we use such small

fields that this shift would be less than 10 Hz for protons, much too small to be resolved by

this spectrometer. Instead we use the magnetic field primarily to split degenerate

transitions. This will be discussed further in the section on NQR detection in this chapter

as well as in Chapter 6 on methyl quantum tunneling. We also use the Zeeman interaction

to match transitions of different nuclei. This application will be discussed further in

Chapter 5 on 14N NQR.

3.1.3 The Dipolar Hamiltonian

The dipole-dipole interaction describes the coupling between a nuclear spin and the

magnetic moments of neighboring nuclei. 58 The strength of the interaction depends on the

distance between the nuclei and their gyromagnetic ratios as shown in the Hamiltonian, Hd,

which is written in terms of spherical coordinates related to the Zeeman or quadrupolar

principle axis system as

7172h2

Hd = r3 (A+B+C+D+E+F) 3.7
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where

A=(1 - 3 cos 2 0) IlzI2z, 3.8a

1 (IlI 2 IiI_), 3.8bB =- _(1 - 3 cos2 0) +
3 +

C = - _ sin0 cos0 e-i¢ (I 112z+ IlzI_) 3.8c
3

D =- _ sin0 cos0 ei¢ (I1 I2z + Ilzr2) 3.8d
3

E =- _ sin20 e-2i0 (I1L_) 3.8e
3

F =- _ sin20 e2i_ (Ili'2). 3.8f

The dipolar interaction can involve nuclei of the same (homonuclear) or of different

(heteronuclear) types. If there is more than one neighboring nucleus with a dipole moment

near the atom of interest, the dipolar interaction can be calculated for each case separately

and summed for the total effect.

The dipolar Hamiltonian provides the major contribution to line broadening in NMR

spectra and, along with the Zeeman interaction, in NQR spectra. The dipolar Hamiltonian

is weaker than either of the two previous interactions in the experiments described in this

work. For our proton NMR experiments it is about 5-10% of the strength of the typical

Zeeman interaction. This is significantly different from the normal high field NMR

experiments where the dipolar interaction is many orders of magnitude smaller than the

Zeeman term. In that case only the "A" and "B" terms of the homonuclear and "A" term of

the heteronuclear dipolar Hamiltonian are considered. These are known as the secular

terms and describe energy conserving transitions. However, in our experiments the other

terms can not be ignored and provide a driving force for several of the experiments in this

thesis.

The "B" term of the dipole-dipole Hamiltonian is often called the flip-flop term. It

describes an energy conserving transition if the nuclei are of the same type or if two

different nuclei meet the level t_atching condition (see Chapter 5). This provides for

efficient cross-relaxation and spin diffusion. The "C"-"F" terms allow mixing between
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states that would be isolated in high field. This is especially important in the methyl

tunneling experiments (Chapter 6) where the dipole-dipole coupling makes transitions

between states of different symmetry slightly allowed. These tunneling transitions are

forbidden in high field.

3.1.4 rf Irradiation

rf irradiation provides the means for the detection of NMR and NQR signals. As rf

is swept through resonance, the irradiation causes spins to be excited from the more

populated to the less populated state thereby inducing a change in the net magnetization of

the sample. The Hamiltonian for linearly polarized rf along the x-axis of a principle axis

system is

H l =-yhBlI x cos(c0t). 3.9

where co is the frequency of the rf field and B 1 is its strength. For circularly polarized rf

the proper form is

H l = -'fhBl(I x cos(cot) + Iy sin(cot)) 3.10

where the sign of Iy determines the direction (right or left) of circular polarization.

3.2 Relaxation

Relaxation effects also must be understood in order to characterize the spectra

obtained in these experiments, especially in the case of 14NNQR where it turns out to be a

very important part of the detection scheme. Relaxation is usually not treated as a

Hamiltonian operator, but rather as a decay process with a characteristic decay time, T 1

(spin-lattice relaxation) or T2 (spin-spin relaxation). Although the relaxation processes in
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these experiments are not strictly exponential we approximate them as such as that is good

enough for our purposes.

3.2.1 Spin-lattice Relaxation

Relaxation between the spins and the lattice returns the entire spin system to the

lattice equilibrium temperature, the typical starting point for magnetic resonance

experiments. This process causes a change in the sample's longitudinal magnetization, 58

therefore the decay time, T 1, can be measured easily by the SQUID. An experimental

example of this decay is shown in Figure 3.6.

T1 determines how often the resonance can be swept for the spins must relax back

to equilibrium in order to obtain the maximum signal intensity. This usually requires

waiting for 5T 1 between experiments. Herein lies one of the greatest limitations of the

spectrometer. Many samples, especially inorganics, have T l'S of tens of minutes to hours

or longer at 4.2 K. Waiting for these samples to relax is impractical. One solution to this

dilemma is to put the sample in a variable temperature container. Then the temperature can

be raised to a point where the spin-lattice relaxation time is sufficiently short for the

experiment to be practical. However, the signal intensity is inversely proportional to the

equilibrium temperature so a sample at 77 K would have a signal approximately 18 times

less intense than the same material at 4.2 K. At the present time most resonance signals

would be lost in the noise at 77K. But with improvements in the detection circuitry and the

sensitivity of the SQUID, we may overcome this problem.

On the other hand if T 1 is very short compared to the sweep time, the signal

intensity is decreased because spins relax almost as fast as they are excited. This we have

observed for some organic glasses, such as toluene which has been rapidly quenched to

4.2K.
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Figure 3.6. A sample relaxation decay of the protons in L-serine at 4.2 K.
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The ideal sample for this spectrometer would be one with T 1 on the order of the

sweep time of the experiment. This would allow for efficient signal averaging, but the

lineshape of the resonance would not be significantly altered by ongoing relaxation (as

discussed in section 3.5).

Fortunately, many interesting samples fit our T1 requirements. Among these are

organic molecules with methyl groups. The motion of the methyl group is enough to

provide a convenient mechanism for coupling between the spin bath and the lattice. Also,

all the borate glasses we have examined have had short Tl'S. Thus despite the limitations

there are still many interesting samples to be investigated.

3.2.2 Spin-spin Relaxation (Cross-relaxation)

Spin-spin relaxation is the process whereby the spins exchange energy amongst

themselves. I wish to focus here on cross-relaxation, or spin diffusion, which is an energy

conserving process that involves mutual transitions of two or more spins. 59' 60 Cross-

relaxation takes place between two levels that are close to or exactly in resonance with each

other. The dipole-dipole interaction facilitates this transfer in polarization. In the case of

NMR, spin diffusion is accomplished by the "B" or so called "flip-flop" term of the dipole-

dipole Hamiltonian. It involves an exchange in polarization between two spins with no net

change in magnetization.

Another type of cross-relaxation is depicted in Figure 3.7 between two quadrupolar

nuclei with I = 3/2. In this case the "E" and "F" terms of the dipolar interaction facilitate

this exchange. 58 This type of cross-relaxation is important for NQR of half odd integer

spin nuclei. The zero field transitions are doubly degenerate so cross-relaxatio_ is energy

conserving. In this case there is no net change in magnetization and therefore nothing for

the SQUID to detect, despite irradiation of the transitions. Thus a magnetic field is

necessary to separate the resonance frequencies. 36 When a field is added, the two
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Figure 3.7. Samples of cross-relaxation between a) quadrupolar states, mediated by the

"E" and "F" terms of the homonuclear dipole coupling, and b) a quadrupole nucleus (I=1)

and Zeeman split states of a spin-l/2 system, promoted by the "B" term of the

heteronuclear dipolar Hamiltonian.
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previously degenerate transitions now become tOQ 4" o_z (for a single crystal sample) where

OQ is the quadrupolar frequency and o z is the Zeeman splitting. Cross-relaxation is no

longer energy conserving. This solution, however, is limited for powder samples, because

the signal intensity will be spread over the entire region from OQ- coz to _Q + t0 z. For

these samples one must balance the decrease in cross-relaxation versus the decrease in

intensity caused by the spreading of the signal over a wide frequency range.

The final type of cross-relaxation that I wish to address is that between two

different nuclei. This is especially important for our 14N experiments as will be described

in detail in Chapter 5. If conditions are such that energy level splittings for two different

nuclei are equal, we have what we call a level matching condition. This situation is shown

in Figure 3.7 for the quadrupolar splitting of 14N and the Zeeman splitting of IH. This

condition is easily met by simply applying a magnetic field such that the proton splitting is

exactly equal to a 14N quadrupolar transition frequency. Cross-relaxation occurs between

the protons and nitrogens via the heteronuclear dipole-dipole coupling provided that the

atoms are in close proximity to each other. In this case, a net magnetization change in the

sample (from the protons) occurs during cross-relaxation which provides the basis for

detecting 14N resonances.

3.3 Z-axis cw Magnetic Resonance

3.3.1 Single Crystal NMR (I=1/2)

To describe z-axis cw NMR, I begin with the simplest case, that of a single crystal

with isolated (no dipolar coupling) spin-1/2 nuclei in a magnetic field. 5° I will also ignore

relaxation effects.

This is a simple two level system as depicted in Figure 3.8 with an energy splitting

of hi0z. The populations of the two levels, using the high temperature approximation, are
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Populations
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Figure 3.8. Energy level diagram and equilibrium populations of a spin-1/2 nucleus in a

_ _z
magnetic field, B0 - --.

h_
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1 _ 3.11a
P-l/2-_-(1- 2kT)

1 h0)z 3.11b
P+I/2=_(I + 2kT).

i

Thelongitudinalmagnetizationofthesamplecanbecalculatedby summingtheproductsof

thepopulationsofeachlevelmultipliedbyitsrespectiveIzvalue,

M z= Nyh _(PiIzi) 3.12
I

where N is the number density of the spins. For this case,

Nyh2°z 3.13
Mz- 4kT "

The SQUID will measure the change in sample magnetization as rf is swept through

resonance. Under ideal saturating conditions the populations of the two levels will

equalize,

1 3.14
P-I/2 = P1/2 = _"

This will leave a longitudinal magnetization value of

Mz=0. 3.15

Therefore, the net change in magnetization that the SQUID measures is

N'_rh2°z 3.16
AMz - 4kT "

This is shown in Figure 3.9 as a single step at the resonance frequency.

Several factors distort this idealized spectrum. Dipole-dipole coupling to nearby

nuclei will split the line and provide a manifold of states about the original energy level. 61

These separate splittings are typically not seen due to efficient cross relaxation and overlap
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Theoretical Single Crystal Signals

NMR

I

NQR

I I I

coQ-_ tzQ coQ+coz

Figure 3.9. Simple theoretical examples of single crystal NMR and NQR spectra. The

quadrupolar resonance frequency of the NQR example is calculated by simply averaging

the frequencies of the two transitions.
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between the dipolar split states. Also, spin lattice relaxation will be manifest as a return to

the original equilibrium value of magnetization if the spin-lattice relaxation time, T 1, is of

the same order or shorter than the sweep time. This is one of the primary reasons why it is

necessary to combine equal numbers of sweeps in different directions (high to low

frequency and low to high frequency) in order to avoid biasing the spectrum and the

resulting experimental resonance frequency by the direction of the sweep.

3.3.2 Half Odd Integer Spin Single Crystal

NQR

As shown in Figure 3.2, the +m states in these systems are degenerate in the

absence of a magnetic field. If transitions are excited in this situation we would find no

signal because both transitions would be simultaneously irradiated with a net change in

longitudinal magnetization of zero. For this reason a magnetic field is applied. The field

splits the two transitions by an amount proportional to the field strength. Each resonance

can then be separately excited.

For a detailed example let's look at a spin-3/2 nucleus with an axia!ly symmetric

electric field gradient (11= 0) as depicted in Figure 3.10.1' 62 The energy levels in this

system are

E+_.3r2= _ _ 3/2(yhB o) 3.17a

E+_.lt2= - eZ4-_ -T-l/2(yhBo) 3.17b

with NQR resonances at ¢gQ,.T.n = _Q + ¢,0z where t0Q = _ and _z YB0'-- h =

The equilibrium populations of the spin states, applying the high temperature

approximation, 58 are

1 fitOO 3ht0z
P-3/2 = _ (1 - 4kT - _)' 3.18a
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:igure 3.10. Energy level diagram and equilibrium populations of a spin-3/2 nucleus in a

/magnetic field, B0 = mz
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/
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1 fi___+ 3.18b
P+3/2 = 4 (1 - 4kT 2k,T )'

P-I/2 = _ (1 + 4kT " 2kT )'

1 h_.___Q+ 3.18d
P+I/2 = _ (1 + 4kT 2kT )"

At thermal equilibrium the total magnetization of the sample is, according to equation 3.12,

Nyh210_z 3.19
Mz- 4kT 2 "

For any half odd integer spin system equation 3.19 generalizes to

Nyh2

Mz = (2"i-_TkT _z Em_ • 3.20
1

As rf is swept from low to high frequency, it first saturates the +1/2 _ +3/2 transition

resulting in an equalization of the populations of those two levels,

' ' 1 hOz
P+3/2 = P+l/2 =_(1 +-_-). 3.21

The longitudinal magnetization is now

M'z=NYh24k--''_(-'_9°)z + -_) 3.22

which generalizes for any transition, m ---) m + 1 (except + 1/2 ---) -1/2 which is not a

quadrupolar transition) as

6m+3

, ((y.m2.1/2).Mz = (2I+ 1)kT .
3.23

1

where ¢.OQis the frequency of the quadrupolar resonance excited. Because OQ is much

larger than o z a dramatic change in the sample magnetization occurs when an NQR

transition is excited.
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As the sweep continues through the -1/2 --> -3/2 transition and equalizes the

populations of those two levels, the final magnetization is found to be

,, Nyh 2 8o_z
Mz- 4kT _ ,. 3.24

Again this generalizes to

. 325Mz = (21+1)kT .
1

There is also a change in the magnetization on the order of t.0Q but now in the opposite

direction of the first transition. These calculations lead directly to the theoretical signal

shown in Figure 3.9. The quadrupole frequency is then simply the average of the two

transition frequencies. Note that this theoretical signal is also broadened and changed by

the dipolar couplings and relaxation effects as described in the previous section.

3.3.3. Integer Spin NQR

There is a very fundamental problem when one is working with integer spin nuclei.

Nondegenerate quadrupole levels have no longitudinal magnetization in zero field. 57 This

is easily seen in the case of the spin-1 nucleus. When r I = 0 the I+1) levels are degenerate

and split from the 10) level by the quadrupolar coupling constant. This is similar to the

previous case and we can use a magnetic field to split the levels and obtain the quadrupolar

information. However when 1"1_:0 then the two levels split into what we call the Ix) and ly)

states. These are an cqual admixture of the I+1) states: I+1) + I-1) and I+1) - I-1).53 These

states have no z-axis magnetization and any transition between the three quadrupolar levels

will result in no net change in the sample magnetization and therefore no signal is detected.

A magnetic field resulting in a Zeeman splitting on the order of the asymmetry splitting will

correct this problem, but typically those fields are much to large and perturb the spectrum
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so that the quadrupolar information is difficult to extract. Thus, direct detection of integer

spin quadrupolar splittings is limited to the case of rl close to zero. However, there is an

indirect method that will be presented in Chapter 5.

3.3.4 Powder Samples

As usual the situation becomes more complex when powder or amorphous

materials are used instead of single crystal samples. (This is not the case for zero field

NQR however). In NMR experiments, the reason is that the dipolar interactions are

randomly oriented with respect to the magnetic field. Thus, there is a range of splittings

leading to the typical powder pattern.

In NQR, the quadrupolar principle axis system (PAS) is also randomly aligned with

respect to the laboratory static magnetic field. To see what happens, we will look at the

case where the quadrupolar interaction is much larger than the Zeeman splitting (which is

true in all our NQR experiments). First, we truncate the Zeeman Hamiltonian (equation

3.6) to Hz = -yhBoIzcos0 where 0 is the angle between the quadrupolar and Zeeman z-

axes. The energy levels of the quadrupolar states are now shifted by AE(+m) =

-T-yhB0mcos0. It is not as simple for the __.1/2states which are also mixed by the Ix and Iy

terms of equation 3.6 to give two new states, 1

I+) = + sinot 1+1/2) + cosot I-1/2) 3.26a

I-) = - cosot I+112)+ sino_I-112) 3.26b

where tan ot = (_]--)f+l 1/2and f = {1 + (I + l/2)2tan20} 1/2. The resulting energy level shifts
f

are AE = -T-2-q,hB0cos0. Thus different crystallites in the sample will have different

resonance frequencies depending on their orientation. The intensity of the transition is thus

spread out over the range between :t:myhB 0 rather than at two distinct transition
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frequencies. Figure 3.11 displays the difference between single crystal and powder spectra

for 27A1in sapphire.

The range of splittings is not the only factor in the decreased intensity of powder

signals. Because the energy levels are split by a smaller effective field, Beff = B0c°s0 the

cross relaxation rate is increased for quadrupolar nuclei not aligned with the magnetic field.

Also, as the pickup coil and rf coils are aligned in the laboratory frame (as is the

magnetic field) they are less effective in detecting or irradiating quadrupolar nuclei not

aligned with the magnetic field. 63' 64 The pickup coil is designed to measure changes in

longitudinal magnetization as defined by the static magnetic field. For a nucleus with the

quadrupolar z-axis not aligned with the magnetic field only the projection of its

magnetization (and thus only the projection of its change in magnetization) on the

laboratory z-axis affects the pickup coil. This indicates that nuclei perpendicular to the

magnetic field contribute little intensity to the signal.

For much the same reason rf irradiation is less effective in promoting transitions for

nuclei not correctly aligned. Thus complete saturation of the resonance is not necessarily

accomplished by employing the same rf strength as used in the single crystal experiment.

Finally, the filling factor of the sample is much less for a powder than a single

crystal occupying the same volume. There is much empty space between crystallites in a

powder.

Despite all of the problems associated with the signal intensity of powder samples

the main advantage is accessibility. Single crystals of many substances can simply not be

obtained. We must therefore be satisfied with powders and seek to increase the signal to

noise ratio to compensate for the loss in intensity. It should also be pointed out that for

amorphous materials, such as glasses, there is no analog to a single crystal and they

likewise suffer all of the problems described above, as well as often having a distribution in

quadrupolar parameters causing an even larger spread in resonance frequencies and

resulting in even less intense signals.
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Figure 3.11. Comparison of powder and single crystal 27A1 NQR spectra of sapphire.

The upper spectrum is an average of 8 scans and the lower is from 3 scans. The spectra are

normalized to the same height, but the powder spectrum is actually has only about 15% of

the intensity of the crystal spectrum.
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3.4 Experimental Lineshapes and Intensities

Several experimental parameters affect the lineshapes of the observed resonances.

Although we do not simulate any of these lineshapes to obtain additional information, it is

worthwhile to understand the expected shape because that will affect the way the data is

processed as well as the ideal sweep parameters.

The first effect considered is from spin lattice relaxation (see also section 3.2.1). If

T 1 is much longer than the sweep time then the theoretical lineshapes described in sections

3.3.1-2 are good guides to the experimental shapes. However, if TI is on the order of the

sweep time the experimental lineshape is significantly altered. Figure 3.12 shows

simulated lineshapes for NMR experiments. NQR lineshapes are similar, with relaxation

effects observed for both transitions. Often rf absorption and spin-lattice relaxation are

occurring at comparable rates, so the measured transition frequency of a single spectrum

can be shifted. In order to obtain the correct value it is imperative to combine spectra of

sweeps in opposite directions (low to high frequency and high to low frequency). An

experimental rule of thumb for this combination is to add the spectra if TI is less than the

sweep time and subtract the spectra otherwise. Contemplation on the effect of relaxation on

the lineshape proves this provides the largest signal intensity in all cases. Also, if at all

possible, the sweep time should be made less than TI. However, this can not always be

done and still provide a saturating rf field.

If T I is on the order of or less than the time actually spent sweeping through the

resonance, the signal intensity is often reduced. It is diminished because both rf absorption

and relaxation are now directly competing at approximately the same rate and it becomes

harder to saturate the transition. The only solution is to sweep faster and average many

spectra. We have not found many samples that fit in this category other than organic
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Effect of T 1 on NMR Lineshapes
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Figure 3.12. Simulated NMR spectra for different ratios of T 1 to sweep time. Note the

change in lineshape and intensity as T 1becomes shorter.
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glasses, such as rapidly quenched toluene and bromoalkanes. At 4.2 K, short T l's are a

rarity and the opposite, very long Tl'S, prove to be a more intractable problem.

The intensity of the signal is also obviously dependent on how many spins are

excited. In the previous calculations, I have assumed saturation (i.e. the populations of the

two states involved are equalized) however, this need not be the case. The number of spins

that flip is experimentally controlled by the rf field strength and the sweep rate. 65 Figures

3.13 and 3.14 demonstrate both effects. As mentioned above, the optimal sweep rate is

often limited by the relaxation rate. The rf field strength is restricted by the noise it

generates in the pickup coil. Thus a saturating field can not always be obtained. The ideal

sweep parameters are a balance between all of these effects.

For the 14N experiments one more parameter enters into the picture. This is the

cross relaxation time between the protons and the nitrogen (see Chapter 5 for the details of

the experiment). Figure 3.15 shows spectra with varying sweep time. Comparing this

with Figure 3.14, it becomes plain that the cross relaxation process is slower than rf

absorption and therefore stronger rf fieids or longer sweep times are needed for these

experiments.
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Intensity vs rf strength
Alanyl-histadine
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Figure 3.13. Experimental spectra of the IH resonance in L-alanyl-L-histadine for varying

rf strengths with a constant sweep time of 100 seconds. The resonance appears to be

saturated with 2.0 volts of rf.
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Intensity vs Sweep Time (1H)
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Figure 3.14. Experimental spectra of the IH resonance in L-alanyl-L-histadine for varying

sweep times with 3.0 volts of rf. The resonance appears to be saturated with a sweep time

of 10 seconds.

61



Intensity vs Sweep Time (14N)
L-alanyl-L-histadine
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Figure 3.15. Experimental spectra of the 14N resonance in L-alanyl-L-histadine for

varying sweep times with 3.0 volts of rf. Compare these spectra to those for proton

saturation (Figure 3.14).
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Chapter 4
NQR of I=3/2, 5/2, and 7/2 Nuclei

4.1 Boron-ll (I = 3/2)

The SQUID spectrometer has proven its usefulness in studying 11 B quadrupole

spectra for such powder samples as BN, B20 3 and its hydrated forms (such as boric acid,

H3BO3), as well as B20 3 glass. 21' 22 The glass compounds are of particular interest in

that there is a distribution of sites due to the amorphous nature of the sample that broadens

the resonance. For binary glasses such as xNa20.B20 3, studies can also be made detailing

the change in crystal structure and borate species as the composition is varied. Bray and

coworkers have accomplished much in this field.66"7°

The one drawback of liB NQR is that there is only one resonance for each site.

Because of this we can not uniquely determine the quadrupolar parameters by zero field

NQR. However, when a small magnetic field is applied the powder lineshape is modified

to reveal features from which the quadrupolar parameters can be calculated. 71

I will present data from the SQUID spectrometer that suggest the important potential

it has for the study of both binary borate glasses and the measurement of spin-3/2

quadrupolar parameters by means of NQR in a small magnetic field.

4.1.1 Sodium Borate Glass

Sodium borate glasses can be made by heating NaOH and H3BO 3 to the melting

point and then rapidly quenching the mixture. I made samples where x = 0, 0.11, 0.12,

and 0.33. liB spectra of these samples are shown in Figure 4.1. Although these are

poorly made samples, due to incomplete melting of the components, the spectra still show
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Figure 4.1 A series of quadrupolar spectra of vitreous xNa20.B20 3 where x = 0, 0.11,

0.12, and 0.33 (top to bottom). A second peak grows at 1310 kHz, probably due to

diborate and tetraborate structures, at the expense of the 1360 kHz boroxol peak as the

sodium concentration increases.
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an overall change as the sodium concentration increases. A second peak grows in around

1310 kHz at the expense of the 1360 kHz peak that is also found in B20 3 glass. Bray and

coworkers have conducted similar experiments on a wider range of samples and find the

same pattern. 66' 69, 70 B203 glass consists primarily of boroxol structures 66' 68 which

would account for the 1360 kHz line. Bray suggests that the other resonance of

xNa20.B20 3 comes from either tetraborate or diborate structures. 70 Finding these two

separate signals implies that different boron-oxygen structures can be resolved by NQR

methods.

-o I
\_--o \ / _,

0 B_O 0 B.l 0 _B O B----

B----O B----O O----B i 0

/ / \ o--o II

Boroxol Tetraborate Diborate

To continue this study we obtained quadrupolar spectra of the ternary glass system,

xNa20.ySiO2.B203. According to Bray, there should be many different types of borate

structures,67, 72-75but we observed only one resonance in each case. This could very well

be due to extensive overlapping among the lines so they could not be separately resolved.

A potential solution to this problem is 10B (I=3) NQR, which contains many more lines per

site. These resonances would not necessarily overlap even when the 11B transitions do.

65



4.1.2 Boron Nitride

One very real problem of spin-3/2 nuclei is the existence of only one quadrupolar

transition. Thus the quadrupolar parameters can not be independently determined by zero

field NQR. However, there is a solution based on calculations and experiments with

chlorine NQR done by Morino and Toyama. 71 If a weak magnetic field is applied (weak

meaning that the Zeeman interaction is much smaller than the quadrupole as in these

experiments) then sharp features in the powder spectrum should be found at 5:(1 + r I) "/nz.
2rc

Figure 4.2 displays a spectrum of BN from the SQUID spectrometer in a field of

approximately 60 gauss. Measurements from the spectra indicate features at 1330, 1378,

1566, and 1615 kHz with "tI'I-----zz= 150 kHz. From this, rl < 0.13 can be calculated. This
2_

value of 1"1near zero is substantiated by the crystal structure of BN at this temperature. The

material is essentially an analog to graphite with hexagons made of alternating boron and

nitrogen atoms. 76 This structure has a C3 symmetry axis which would then indicate that rI

should be zero.

The results of this analysis are encouraging for the future of spin-3/2 NQR. The

SQUID spectrometer could be used to obtain an accurate frequency measurement at a lower

field and then 1"1information from a higher field spectrum. Because a magnetic field must

be supplied anyway, experiments of this type would require no extra effort, but yield the

extra information needed to determine the quadrupolar parameters.

4.2 Sodium-23 (I = 3/2)

Sodium is an important element in many ionic compounds. Most of these

materials, however, have symmetry that preclude the quadrupole interaction, such as the
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cubic lattice of NaCI. NaBrO4 is not among that group and has been extensively studied by

NMR lineshape analysis of single crystal samples. 77"79 I measured the NQR resonance of

23Na for a powder sample of NaBrO 4 and found it to be 444 + 12 kHz which agrees with

the literature value of 443 kHz at 4 K.77 The spectrum is displayed in Figure 4.3. Because

23Na is a spin-3/2 nucleus only one transition frequency can be measured. However, from

single crystal NMR studies it is found that 11= 0. Thus, our transition frequency would

lead to a quadrupolar coupling constant of 888 + 24 kHz.

4.3 Aluminum-27 (I = 5/2)

4.3.1 Sapphire (cx-Al203) Crystal

Sapphire has become the primary test material for the SQUID spectromet¢-. We

have both a single crystal and powder samples of sapphire. Spectra of both samples are

shown in Figure 3.11. Sapphire consi _minum sitting in a distorted octahedron

formed by six oxygen atoms. It can mought of as an aluminum atom sitting

asymmetrically between two equilateral triangles with an oxygen atom at each apex. 8° This

model would indicate that rl = 0 due to the C3 symmetry axis. From the resonance

frequencies of 357 + 2 kHz and 714 + 2 kHz, the quadrupolar parameters are calculated to

be CQ = 2.38 + 0.01 MHz and 11= 0.00 + 0.06, which supports this model. 20 However,

these findings have recently been disputed by Bray and coworkers. They use an NQR

spectrometer with a Robinson oscillator for detection and obtain resonance frequencies of

361.6 +_0.4 kHz and 715.5 + 0.7 kHz with corresponding quadrupolar parameters of CQ

= 2.389 + 0.002 MHz and 1"1= 0.091 + 0.007. 66

They also proceeded to calculate quadrupolar parameters from SQUID data in

Figure 3 of reference 20 wh;ch they claim gives q = 0.12 + 0.03. However, it must be

noted that the figure displayed a spectrum obtained in only one sweep direction and so

68



' I I ' I '

NaBrO 3

400 450 500

Frequency (kHz)

Figure 4.3 23Na NQR spectrum of NaBrO4 in a field of approximately 15 Gauss. A

resonance is found at 444 + 12kHz.
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therefore should not be relied upon to give accurate frequency information due to

distortions caused by relaxation and saturation effects.

They suggest that the deviation between our SQUID results and their values is due

to our use of a magnetic field. Of course, in this experiment a magnetic field is necessary

to separate the degenerate quadrupolar states and minimize cross relaxation. To test their

hypothesis, I measured the quadrupolar resonances at different field strengths. Figure 4.4

displays the results. There was no change in the frequency of either resonance despite a

change in the field by a factor of 2.5.

A more recent paper by Bray lists new values of the quadrupolar parameters, CQ=

2.386 + 0.002 MHz and 11-- 0.034 + 0.016. 81 Note that the two values of eta from Bray

are not within the experimental error of each other. Perhaps the error can be found in the

fact that their spectra are obtained in only one sweep direction and so may be biased by

relaxation and saturation effects. Alternately, their relatively fast sweep rates/time constant

could cause a distortion in the line. Bray's experiments give ratios of 8.1 kHz/time

constant and 3.4 kHz/time constant for the low and high frequency regions respectively. 66

Our experiments typically have a range between 0.2 - 0.5 kHz/time constant. This ratio

expresses approximately the frequency range of signal that is averaged for each point in the

spectrum. Because the differences in the two sets of resonance frequencies are about half

the ratio of Bray's experimental sweep rates/time constant, Av ! = 4.6 kHz and AVla= 1.5

kHz, it seems possible that this may have affected the measurement of the resonances. The

correct answer is still unknown, but we are preparing experiments that will measure these

transitions using a pulsed SQUID spectrometer. Because those experiments require no

magnetic field, they may be able to provide a resolution to this debate.
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Figure 4.4 A series of quadrupolar spectra taken at fields of approximately 5, 7.5, and 13

Gauss. Note that in all three spectra the resonances remain at 357 + 2 kHz and 714 + 2

kHz. Thus these frequencies are not a function of the magnetic field strength.
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4.3.2 Petalite

Petalite is a naturally occurring polycrystalline lithium aluminosilicate. It has only

one distinct aluminum site, which is a distorted AIO4 tetrahedron with AI-O bond distances

of 1.742 and 1.732/_.82 Figure 4.5 shows the 27A1 quadrupolar spectra of petalite with

two resonances at 834 + 5 kHz and 1314 + 5 kHz. The quadrupolar parameters are

calculated to be CQ = 4.56 + 0.01 MHz and 11= 0.47 + 0.1. These values agree with those

later found by dynamic angle spinning (DAS) experiments: CQ = 4.62 + 0.05 MHz and rl

= 0.48 + 0.03. 83

The linewidths of these spectra are relatively large (100 - 200 kHz) as compared to

the sapphire powder (20 kHz) and are most likely due to the polycrystalline nature of the

sample. Structural disorder can lead to broadened lines as found in this sample and in

glasses. This is due to a distribution of electric field gradient values resulting from

variation in the structural parameters.

4.4 Vanadium-51 (I = 7/2)

Vanadium-51 provides the first example of a transition metal compound and a

nucleus with I = 7/2. As mentioned in Chapter 3, low frequency quadrupolar resonances

can be found for transition metals only in nonparamagnetic states or in compounds which

deviate only slightly from symmetry that would eliminate the quadrupolar interaction. In

this case, I obtained a compound, ammonium metavanadate (NH4VO3), with a V(V)

configuration. V(V) is not paramagnetic and many examples of such compounds have

been studied previously by lineshape analysis and Bray's Robinson oscillator

spectrometer.70, 84,85 NH4VO3 has been observed by both of these methods. Figure 4.6

displays the 51V resonances obtained by the SQUID spectrometer. The transitions at 388 +
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Ammonium Metavanadate (51V NQR)

' I .... I .... I .... I .... I .... I

610 + 3 kHz

292 + 7 kHz

388+5 kHz

200 300 400 500 600 700

Frequency (kHz)

Figure 4.6 51V NQR spectra of NH4VO 3 in a field of approximately 7.5 Gauss.

Resonances are found at 292 + 7 kHz, 388 + 5 kHz, and 6 I0 + 3 kHz. The quadrupolar

parameters are calculated to be CQ = 2.88 + 0.04 MHz and rl = 0.38 + 0.03.
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5 kHz and 610 + 3 kHz agree well with those found by Bray (388.4 + 0.5 kHz and 606.3

+ 0.3 kHz). 85 They were not able to detect the lowest frequency transition which we find

at 292 + 7 kHz.

For spin-7/2 nuclei there is no analytical solution for the quadrupolar parameters,

CQ and rl. The secular equation (with E = hCQ/28),

2 21"1 '!'!

E4 _
42(1 + .,:-_-)E2- 64(1- rl2)E + 105(1 + __)2 = 0, 4.1

must be solved numerically (see Figure 3.4). Doing this gives values of CQ - 2.88 + 0.04

MHz and rl ---0.38 + 0.03. These agree with Bray's results of CQ = 2.868 + 0.005 MHz

and rl = 0.363 + 0.013. 85 (He correctly assumes that the resonances he measured were the

two higher frequency transitions.)

Attempts were made to study other vanadium compounds, most notably vanadium

oxide as a catalyst on a silica surface. However, no resonances were found. This may be

due to one or more of the following causes. First, there may not have been enough

vanadium in the sample for detection or it may have been in the wrong oxidation state.

Also, V205 has a very small quadrupolar coupling constant and so the transitions may have

been to low in frequency for detection. Or T 1 may have been to long. Further

investigations into these catalysts could, however, be profitable given their importance in

chemistry.

4.5 Manganese-55 (I = 5/2)

Another transition metal nucleus which I have studied is 55Mn. The only

nonparamagnetic oxidation state of this element is Mn(VII) which forms the basis for the

permanganates, XMnO 4. One problem with these samples is their light sensitivity. So

care was taken to recrystallize the materials and then avoid as much exposure to light as

possible.
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4.5.1 Potassium Permanganate

The first sample is KMnO 4, the most common of the permanganate family.

Resonances were measured on two separate occasions with transitions detected at 374 + 7

kHz and 730 + 7 kHz as shown in Figure 4.7. From this data, the quadrupolar parameters

are calculated to be CQ = 2.44 + 0.02 MHz and rl = 0.1 + 0.1. Previous measurements

from an NMR lineshape analysis of a room temperature sample found CQ = 1.70 + 0.07

MHz and T1< 0.05. 86 The difference between the quadrupolar parameters in these two

experiments may come from several sources. First, a structure change between room

temperature and 4.2 K could easily account for the difference. Or, perhaps the samples

were not prepared under similar conditions so that again crystal structures are not

equivalent. With this in mind I conducted two sets of experiments with different samples,

both times after recrystallization of KMnO 4. I obtained the same resonance values each

time.

The one area of agreement for both sets of data is the value of 11. From room

temperature crystal structure data it is found that the MnO 4"group is a nearly regular

tetrahedron with Mn-O distances of 1.622, 1.625, 1.634, and 1.635 ,t..87 Thus the electric

field gradient arises primarily from the electric charges of the ions in the orthorhombic

crystal structure. This leads to the high degree of symmetry evidenced by 1"1---0.

4.5.2 Silver Permanganate

In the second sample, AgMnO 4, this symmetry is lacking. Experimental

resonances were found at 2309 + I5 kHz and 145I + I0 kHz and are shown in Figure 4.8.

The calculated quadrupolar parameters are CQ = 7.99 + 0.06 MHz and rl = 0.462 + 0.016.

At least part of the difference between the two permanganates can be attributed to the much
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Figure 4.7 55Mn NQR spectra of KMnO 4 in a field of approximately 13 Gauss.

Resonances are found at 374 + 7 kHz and 730 + 7 kHz. The quadrupolar parameters are

calculated to 'oe CQ = 2.44 + 0.02 MHz and rl = 0.1 + 0.1.
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Figure 4.8 55Mn NQR spectra of AgMnO 4 in a field of approximately 13 Gauss.

Resonances are found at 2309 + 15 kHz and 1451 + 10 kHz. The quadrupolar parameters

are calculated to be CQ = 7.99 + 0.06 MHz and 1"1= 0.462 + 0.016.
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larger deviation from a perfect tetrahedron of the MnO 4"unit in AgMnO 4. Here the Mn-O

distances are found to be 1.612, 1.631, 1.625, and 1.571 /_88 which show larger

differences among the bond lengths than those found for KMnO 4. This can easily change

the value of rI from its symmetric value of zero. It would also increase the strength of the

electric field gradient, and therefore CQ, because it deviates more from the symmetric

tetrahedron which would have no electric field gradient. Also, because it is more

covalently bonded, the molecular volume of AgMnO 4 is 15% smaller than KMnO 4. This

could also increase the electric field gradient due to the closer proximity of the valance

electrons.

Further studies of permanganates as a function of the cation could be very

interesting. Perhaps a comparison of quadrupolar parameters with the ionicity of the

cation-MnO 4- bond should be investigated. Also, information about the effect of crystal

structure changes and deviations in basic units such as MnO4 could be gained.
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Chapter 5
NQR of Nitrogen-14 (I-1)

As mentioned in Chapter 2, the case of integer spin nuclei is special. Only under

unusual circumstances can these resonances be directly detected. I will begin this chapter

with a detailed explanation of the problem in detection of integer spin NQR. Then I will

present some data on solid o_-N2 which has been directly detected and illustrates the special

case where 11is close to 0. Following that I will introduce the indirect method of detection

which involves level matching between a proton NMR transition and a nitrogen NQR

resonance. Finally, I will describe some samples that we have studied, among which are

amino acids and small peptides, to demonstrate the method and show what information we

can learn.

5.1 The Integer Spin Problem

Integer spin systems present a problem because all nondegenerate states of the

system have a vanishing magnetic moment in zero magnetic field. 57 I will focus on the I =

1 case because that includes the most important nuclei: 2D and 14N. The same ideas will

also apply to other integer spin systems, such as I = 3 (1°B) and I = 5 (50V).

The vanishing magnetic moment can be derived in two distinct but equivalent ways.

First, the brute force method requires the calculation of eigenvalues and eigenstates from

the quadrupolar Hamiltonian;

e2qQ
[312z- 12+ 1"1(12++I2)]. 5.1HQ - 4I(2I- 1) 2 "

For I=1 this leaves eigenstates;
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Ix) = 14-1). I-1), 5.2a

lY)= 14-1)-I-1), 5.2b

Iz)-I0), 5.2c

with eigenvalues;

hC4-_l + _), 5.3a

h4-_l -rl), 5.3b

h__ 5.3c
" 2

respectively, where CQ = e2h-_. This leads to three possible transitions;

v+ = _ (3 + rl), 5.4a

v. = C4-_(3 - rl), 5.4b

v0 = -_ rl. 5.4c

The corresponding energy level diagram for this situation is found in Figure 5.1. Note that

all three eigenstates have no magnetic moment (i.e. (_P*llziq-')= 0).

Another way to show that the magnetic moment must vanish is through the use of

group theory and time reversal symmetry. An electric field is in not affected by time

reversal, but a magnetic field would be reversed as it is created by charges traveling in a

specific direction. Therefore, a set of energy levels that results from an electric field, such

as the nuclear quadrupole levels, will not be changed by the reversal of time.

The Schr6dinger equation,

H_P =-ih _---_ 5.5
_t

is invariant under time reversal if 1) H is time reversal invariant and 2) we reverse time (t

---) -t) and take the complex conjugate (i ---)-i and W _ q_*). Because a nondegenera:e
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Figure 5.1. Energy level diagram for a spin-1 nucleus. Note that for the case where rl¢ 0

all states have zero longitudinal magnetization.
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state produced by an electric field can in no way be altered by time reversal but must be

changed to its complex conjugate due to the Schr6dinger equation condition;

_P= _*. 5.6

Therefore _Pis real. However, an angular momentum operator, for example

(Lz>=-ih(x0-_ - yoO----x), 5.7

is imaginary and earl not be time reversal invariant unless its eigenvalue, Lz, is zero. Thus

the expectation value of an ar:Lgularmomentum operator (and therefore a magnetic moment)

of a nondegenerate state in a quadrupole system must be zero in the absence of a magnetic

field.

Both of these arguments demonstrate that the nondegenerate states of an integer

spin nucleus have no magnetic moment. There is no net change in magnetization with rf

irradiation at a resonance frequency despite a change in the spin populations of the various

levels. Because the SQUID measures such changes in magnetization, we see that there is

no signal to detect.

i

i

5.2 Direct Detection

We could, however, apply a magnetic field to break the time reversal symmetry and

thereby obtain a magnetic moment. To calculate this magnetic moment we will assume the

most favorable of conditions, a single crystal sample with the magnetic field aligned along

the quadrupolar z axis. The Hamiltonian is then

e2qQ r3I 2 12
HQ + Hz = 4I(21-i)" z " + _ (I2++ 1.2)]- Th IzBo. 5.8

Solving this Hamiltonian leads to eigenvalues, 89"91
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Ex= e24-_[1 + TI(I+ f2)I/2], 5.9a

Ey= e24-_Q[1-TI(I+ f2)I/2], 5.9b

Ez= -e-_2, 5.9c

with eigenstates

Ix):cosOl+1)+sinOl-I), 5.10a

ly)= sinOl+I)-cosOl-I), 5.10b

Iz):I0), 5.I0c

where

cos0: _[I + f2+ f(1+ f2)I/2]-I/2, 5.1la

sin0 : _22[I+ 1.2.f(1+ :)I/2]-I/2, 5.11b

f- TB0 5.11c

e2qQrl"
4h

We seethatthemagneticmoment isnolongerzero,buta functionoftheparameter,f.If

we calculatetheexpectationvaluesofthewavefunctionswe findthat

(Ix): (Iy}: 0, 5.12a

(ZlIzlZ)= 0, 5.12b

and

(xllzlx) = -(yllzly) =- f
(I+ f2)I/2= -F(f). 5.13

Thisfactor,F(f),isthemagneticmoment oftheIx)andIY)states.ThisiswhattheSQUID

willmeasurewhen a nucleusisexcitedfrom,forexample,theIz)totheIx)state.Figure

5.2showsaplotofF(f)fortypicalvaluesofourNQR experiments.
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From this diagram it is easily seen the magnetic moment is nearly zero unless TI=

O. One could increase the field, but for powder samples this would mean spreading the

signal over a larger frequency range making the corresponding signal intensity smaller. So

we arrive at the conclusion that direct detection of 14N NQR by the SQUID is limited to

samples with 11= 0. Here the magnetic field serves to split the I+1) and I-1) states,

analogous to the ease of the half odd integer spins (see section 3.3.2).

5.2.1 Solid ¢x-N2

We have been able to directly detect integer spin NQR in one sample, solid a-N 2.

According to the literature, rl for this sample is identically or very close to zero. Figure 5.3

shows the 14N NQR spectrum of this material in a 35 G field. The resonance frequency

was determined to be 3488 +_2 kHz and agrees well with previous measurements of

3487.73 + 0.03 kHz at 4.2 K.92'93

The linewidth can be used to place an upper limit on the value of _. This width

comes from two sources; 1) the splitting due to the magnetic field, which is TB0, and 2) the

splitting between states due to TI,which is _h 11. The observed splitting in this spectrum

puts an upper limit on the value of TI of 0.006, which corresponds well to a literature limit

from Scott of T!< 0.00016. 93

5.3 Indirect Detection

Because direct detection of 14N NQR is limited to circumstances where rl = 0, we

need to find a way of indirect detection. It should be noted that the detection of 14N NQR

through standard means is not typically inhibited by the vanishing magnetic moment but

rather by the low frequency of 14N transitions (typically < 5 MHz), so indirect methods
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Figure 5.3. Spectrum of solid ct-N2. This sample was made by blowing nitrogen gas into

the sample container which was placed into liquid helium. The very low asymmetry

parameter of this sample allows for reasonable signal intensity.
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must also be used. Techniques have been developed to study 14N NQR using field

cycling. Several of the most productive of these techniques exploit level crossings between

the proton and the nitrogen spins of a sample during field cycling. 57' 94-97 A typical

experiment would involve three phases: 1) preparation, 2) irradiation, and 3) detection.

During the preparation phase the sample is placed in a large magnetic field for a time

sufficient for both spin species to reach equilibrium with the lattice (i.e. the proton and

nitrogen spin temperatures and the lattice temperature are the same). The sample is then

removed from the magnet to an area where the magnetic field is essentially zero. While the

field is changing, the proton spins will interact with the nitrogen spins at level crossings.

These occur when the proton Zeeman splitting (due to the field) is equal to one of the

nitrogen quadrupolar frequencies. When this happens, the heteronuclear dipolar coupling

can induce energy conserving spin flips between the two systems. However, since both

systems are at the same spin temperature, there can be no net change in the polarization of

either spin bath.

At low field, ff irradiation is applied at a specific frequency. If this frequency

corresponds to a quadrupolar resonance then the nitrogen spin system will absorb energy.

While returning to high field for detection the protons will again interact with the nitrogen

spins. If the nitrogen bath has absorbed energy during the irradiation some of that energy

will be transferred to the protons during the level crossing.

In the final phase, the proton magnetization is measured at high field. If the

irradiation frequency corresponded to a nitrogen quadrupolar transition then the proton

magnetization will have decreased due to the energy absorbed during the level crossings.

This cycle is repeated with incremental stepping of the irradiation frequency until the entire

spectrum is mapped out. Many such cycles must be carried out in order to obtain a single

N- 14 NQR spectrum.

Other techniques have also been developed that differ from the one described above

in either the way of providing contact between the two spin baths or in the property of the
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proton spins which is measured during the detection period. However, they all provide a

coupling between the protons and the nitrogens and then measure the effect of this coupling

on the protons.

Our technique does essentially the same thing, but no longer involves any field

cycling. I call it the level matching method. Essentially, we keep the protons in constant

contact with the nitrogen spin system during the entire experiment rather then only

intermittent contact as in the experiment described above. This is done by picking a

magnetic field such that the proton Larmor frequency, vh, or a multiple of the Larmor

frequency (usually 2Vh)is equal to a nitrogen quadrupolar frequency: v0, v., or v+.

In this experiment, one of the non level matching NQR transitions is excited with

rf. This irradiation changes the population of one of the spin states involved in the level

matching transition. Thus the nitrogen spin reservoir associated with the level matching

resonance is either heated or cooled. Through cross-relaxation between the nitrogen and

nearby protons, mediated by the heteronuclear dipole-dipole interaction, the protons are

correspondingly warmed or cooled to finally achieve an equilibrium spin temperature for

the level matching states. This change in the magnetization of the protons creates a

detectable signal for the SQUID spectrometer. One of the advantages of this method is that

the entire spectrum earl be obtained in one scan, with, typically, a considerable savings in

time over the field cycling methods.

5.3.1 Single Sweep

I will begin by describing the simplest of the level matching methods, the single

sweep experiment. To describe this mathematically I will begin with a discussion on the

concept of spin temperature.

A spin temperature can be mathematicallydefined for any two level in the following

way,58
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PI _ exp(- bY-12) 5.14
P2- kl12

where PI and P2 arethepopulationsofthetwo states,V I2 isthefrequencydifference

betweenstates,andT12isthespintemperatureofthesystem.Forquadrupolarnuclei,one

spintemperaturemay notdescribetheentiresystem.ForI=I,a maximum oftwo spin

temperaturesarerequiredbutatthermalequilibriumonlyoneisneeded.Inthisdiscussion,

theonlynitrogenspintemperaturethatwc useisderivedfromtheratioofthepopulations

ofthetwostatesthatdefinethelevelmatchingtransition.

InNMR, hv<<kT forT>IK sowc canusethehightemperaturelimit.5s This

allowstheexponentialtobe expandedina serieswhere allbutthefirsttwo termsare

ignored.Thusequation5.14canbewrittenas

hVl2Pl = 1-_ 5.15
P2 kT12"

The spin temperature is then simply

1 k (1 . pPl2) 5.16-

If cross-relaxation between the proton and nitrogen spin baths is complete, then at all times

Tproton= Tnitrogen 5.17

where Tnitrogen is the spin temperature derived from the two level matching states. From

equations 5.16 and 5.17 we derive that

1(1 P-P-!'=I(1-p_ 2) 5.18
Vp -Pp2j vn
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where Vp and v n are the proton and nitrogen level matching frequencies respectively and

Ppl, Pp2, Pnl , and Pn2 are the populations of the states involved in the level matching.

This will provide a condition for our calculation of the signal intensity below.

For the next part of the discussion I will use the situation shown in Figure 5.4 as an

example of a system with N nitrogens and P protons. These results will then lead to

generalized solutions. At thermal equilibrium with the lattice we can write the populations

of the three nitrogen levels as

N
Nz = _, 5.19a

Ny ---_ l-a), 5.19b

Nx = _-(1-b) 5.19c

where

hv hv

1-a = exp(- _-_)= 1- _ 5.20a

hv+ hv+
1-b = exp(- --k--_--) = 1 - "k"T-" 5.20b

(Again the high temperature approximation has been used.) The populations of the two

proton levels are

P
P+ =_ 5.21a

P. = 2_-(1-a). 5.21b

During the experiment the nitrogen v+ transition is saturated by rf irradiation thus
Ns

causing the transfer of-]-- spins from the Nz level to the Nx level. In the mean time, Nr3

spins will relax from the Ny level to the Nz level as the protons equilibrate the spin
PRr

temperature by means of cross-relaxation. This will mean that --T spins will be moved

from the P+ level to the P_ level where
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Single Sweep

Nx /\

Vobs

Vcr

/
/

Nz .... P +

Populations

Before After

N x N(1 - b)/3 N(1 - b + s)/3

Ny N(1 - a)/3 N(1 - a- r)/3

N N/3 N(1 - s + r)/3
Z

p P(1 - a)/2 P(1 - a + Rr)/2

p P/2 P(1- Rr)/2
+

Figure 5.4. Example of the single sweep method. In this case, v+ is the observed

transition and the proton Zeeman frequencyis matchedto v. to provide efficient cross-

relaxation.
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N2 2N
R-3 P-3P" 5.22

T,ae final populations, assuming no spin-lattice relaxation, will be

Nz - 3_(1-s+r), 5.23a

Ny = 3_(1-a-r), 5.23b

Nx = _-(1-b+s), 5.23c

P. = _ 1-a+Rr), 5.23d

P+ = _( 1-Rr). 5.23e

Two conditions exist at the end of the experiment. First, due to complete saturation

by the rf,

Nz = Nx. 5.24

Second, thermal equilibrium between the proton and nitrogen spin baths due to cross-

relaxation is maintained. Using equation 5.18 we find that

P 1 N

1(1- _-_+)=--(1-_z ). 5.25v h v.

In this case, 5.25 reduces to

P -N-N-z 5.26
P+ -N z

because v h = v..

Substituting 5.23a and 5.23b into the first condition leads to

3_-(1-s+r)= 3-_-(1-b+s) 5.27

thus
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(b+r)
s =- 2 " 5.28

The second condition gives

_(1-Rr) 3-_-(1-s+r)

Doing the required algebra renders

s(1-a+Rr) -- r(2-a+2R). 5.30

We realize, however, that the difference in populations in typical NMR experiments are

actually very small (in the high temperature limit) which means that a,r<< 1. Thus rewriting

equation 5.30 and eliminating all the negligible terms gives

S

r- (2+2R) 5.31

Combining this result with 5.28 and 5.20b leaves

b _v+ 5.32
r- (4R+3) - kT(4R+3)"

PRr
is the number of proton spins that have flipped and therefore the magnetization

change is

•yfiPRr 'yh2pRv+
AM=- 2 -'2kT(4R+3)

"_th2pR3 e2qQ(1 +-_)

-" 2 4 kT(4R+3)" 5.33

Thus,

A M 0_v+. 5.34
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The generalization of this formula is

AM *_+Vobs 5.35

where the sign of the magnetization change is positive if Vobs or Vcr is v+. The solid lines

in Figure 5.5 display the calculated relative intensities in all experimental cases. Figure 5.6

is a spectrum of the v. (1972 4-4 kHz) and v+ (2590 4-3 kHz) transitions of glycyl-glycine.

This sample demonstrates both the method and the sign difference expected for different

combinations of irradiation and level matching frequencies.

This calculation assumes that cross-relaxation amongst the protons and between the

proton and nitrogen spin baths is faster than the time scale of the sweep through resonance.

Where this does not occur, the full expected intensities of the signals will not be realized.

This means that the ideal operating procedure for the spectrometer is to use long sweep

times and as much rf power as possible.

5.3.2 Single Sweep (Vcr _--" 2V h)

If, instead of the nitrogen level matching resonance equaling vh, it matches 2v h the

following adjustments must be made to the derivation. Assuming the situation in Figure

5.7, the original populations (equations 5.19a-c and 5.21a) remain the same except

P. = _1-_). 5.21b'

Ns Nr
The final populations, with T spins transferred by the saturating rf, and T spins relaxing

in the nitrogen spin bath leaves the nitrogen spin populations (5.23a-c) the same but now

P a
P. = _(1-_4-2Rr), 5.23d'

P+ = _(1-2Rr). 5.23e'
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Figure 5.5. A plot of the relative intensities as calculated in sections 5.3.1 (solid lines) and

5.3.2 (dotted lines) for all different combinations of cross relaxing and observed
transitions.
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Figure 5.6. Spectra of diglycine taken by level matching the proton Larmor frequency with

the v 0 frequency (618 kHz) of the amino acid nitrogen and sweeping over the v. (1972

kHz) and v+ (2590 kHz) transitions.
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Single Sweep

Nx /\

Vobs

cr ,, p_

_,,V/ 2Ver
Nz p+

Populations

Before After

Nx N(1 - b)/3 N(1 - b + s)/3

N y N(1 - a)/3 N(1 - a - r)/3

N N/3 N(1 - s + r)/3z

P P(1 - a/2)/2 P(1 - a/2 + 2Rr)/2
,m,

p + P/2 P(1 - 2Rr)/2

Figure 5.7. Example of the single sweep method. In this case, v+ is the observed

transition and twice the proton Zeeman frequency is matched to v. to provide efficient
cross-relaxation.
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This is because two proton spins must now flip for every nitrogen spin relaxed. The

saturation condition (eq. 5.24) is still met so equations 5.27 and 5.28 are correct. But the

thermal equilibrium condition is

P N

2(1- _--_+)=(1-_--_) 5.25'

because v. = 2vh. Substitution of the populations gives

_(1 a- g+2Rr) _(1 -a-r)
2(1 - )=(1 - ). 5.29'

_l-2Rr) -_-(1-s+r)

Working out the complex fractionsproduces

a

-4Rr a+2r-s2( 2Rr ) = (1 - s + r )" 5.30'

Again, r,s<< 1 so this leaves

a - 8Rr = a + 2r - s 5.36

or

s
5.31'r-8R + 2"

This leads to

b
r= 16R + 3" 5.32'

magnetization change due to the-_ proton spins that flip is then
The

_2pRv+

AM2vh=-ThPrR = "kT(16R+3)" 5.33'

Comparing this to equation 5.33 gives
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2(4R + 3)AM2vh = AMvh 16R + -- 5.37

This will lead to a slight increase in signal as displayed in by the dotted lines in Figure 5.5.

Because absolute intensity measurements are not very accurate with the SQUID system this

slight increase has not been observed. It should also be noted that the tran,,ition matrix

elements for this experiment should be smaller than in the previous ease because higher

order terms in the dipolar interaction would be needed, namely those involving 3 spins: 2

protons and 1 nitrogen. Thus the actual final intensifies may be reduced.

5.3.3 Double Sweep

The next two methods are attempts to increase the signal intensity by also irradiating

the third transition in the nitrogen spin system. These experiments are meant to accomplish

two objectives. First, by increasing the signal intensity we will be able to observe weak

signals such as the v0 transition. Because intensity is proportional to frequency, the v0 line

usually is very weak due to its low frequency (typically 100 - 600 kHz) as confirmed in

Figure 5.5.

The second goal is to connect transitions that are from the same nitrogen site.

Polypeptides and even some amino acids have more than one nitrogen site, so it will be

important to match transitions from the same nitrogen in order to calculate the quadrupolar

parameters. This is easily done if the intensity of the signals can be selectively modified.

The double sweep method utilizes a sweep first through one resonance and then

through the other while detecting the resultant signal as shown in Figure 5.8. In this case,

v+ is irradiated first and at the end of that sweep the final conditions in section 5.3.1 are
Ns' Nr'

achieved. Now v 0 is swept. _ spins are transferred due to the rf and --_ spins are

relaxed by the protons. At the end of this sweep, assuming no spin-lattice relaxation, the

final populations are
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Double Sweep

Nx /_, i\

1 ! Wilt

i/ ,i

"" C)$

Ny _ /\ P_

v.

Nz P+

Populations

Before Intermediate After

N x N(1 - b)/3 N(1 - b + s)/3 N(1 - b + s . s')/3

Ny N(1 - a)/3 N(1 - a- r)/3 N(1 - a- s'- r- r')/3

N z N/3 N(1 -s + r)/3 N(1 - s + r + r')/3

P _ P(1- a)/2 P(1 - a + Rr)/2 P(1 - a + Rr + Rr')/2

P + P/2 P(1 - Rr)/2 P(1 - Rr- Rr')/2

Figure 5.8. Example of the double sweep method. In this case, v+ is swept first and

following that we sweep through v0 for observation. The proton Zeeman frequency is

matched to v. to provide efficient cross-relaxation.
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N

Nz = _ 1-s+r+r ), 5.23a"

Ny = _-(1-a-r-r'-s'), 5.23b"

N x = _ 1-b+s+s'), 5.23c"

P. = _(1-a+Rr+Rr'), 5.23d"

P+ = _l-Rr-Rr'). 5.23e"

The final conditions will be

N = Nx. 5.24"

1(1 P y 1 (1 N). 5.25
Vh V.

The same mathematics as applied in the previous section leads to

b(2R+3)
-(b-a) + 4R+3

r = (4R+3) • 5.32"

SO

2R+3

T hPrR _2pR('vo + 4R+3 v +,_AM
" 2 -" 2kT ", 4R+3 ,/ 5.33"

The generalization of this formula is

2R+3

yh2pR(+-Vobs + 4R+3 Virr)AM =- 2kT \ 4R+3 " 5.35"

The first sign is negative if rob s and Vcrare a combination of v. and v0. The second sign is

negative if rob s is v+. A comparison of these intensities with those from the original

method is shown by the dotted lines in Figure 5.9. An analysis of this figure indicates that

in some, but not all, cases the signal is enhanced. This has not yet been confirmed

experimentally.
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Figure 5.9. A plot of the relative intensities as calculated for the single sweep (solid lines)

and double sweep (dotted lines) methods for all different combinations.
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5.3.4 Double Irradiation

When two transition frequencies have been elucidated then another type of

experiment can be done, namely double irradiation. This method enhances the intensity of

any resonance and so can be used to detect difficult to find transitions (usually v0 because

of its low frequency and therefore low intensity) and also to connect transitions when more

then one nitrogen site is present in the material.

In this experiment, shown in Figure 5.10, two rf irradiation frequencies are used.

One, Virr, is held constant at the frequency of a known transition. This transition is

saturated before and during the experiment. The second rf channel is swept through a

range containing the unknown or possibly connected resonance. Thus, we simultaneously

irradiate the two non-level matching transitions. This leads to the following conditions:

N z = Nx, 5.38a

N x ffiNy, 5.38b

P. Ny.ffi
p+-Nz I. 5.38c

The protonspinsareentirelysaturatedintheexperiment,ifwe assumecompletecross-

relaxation.Thusthefinalpopulationsofthestatesattheendoftheexperimentare

N

N x = Ny = Nz = _- 5.39a
P

P+ = P = _-. 5.39b

The number of proton spins flipped during detection is then the difference between the final

population and the population after irradiationof Virr:

RuP.(end) - P.(intermediate) - a - 4R + 3.). 5.40
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Double Irradiation

Nx I i\

u 4

"^'Z)$

Ny_ /_ p_

Nz - ,, P+
Populations

Before Intermediate After

Nx N(1 - b)/3 N(1 - b + s)/3 N/3

Ny N(1 - a)/3 N(1 - a- r)/3 N/3

N z N/3 N(1 -s + r)/3 N/3

P. r,(1- a)/2 P(1 - a + Rr)/2 P/2

P + P/2 P(1 - Rr)/2 P/2

Figure 5.10. Example of the double irradiation method. In this case, v. is irradiated

before and during the sweep through v 0 for observation. The proton Zeeman frequency is

matched to v to provide efficient cross-relaxation.
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Thus the f'mal magnetization is

"_2pR Rv+
AM=-_(v -4R + 3) 5.33'"

and the generalized formula is

_2pR RVirr
AM=- 2kT (vcr+4R + 3) 5.35"'

the minus sign occurring when Vcr and Virr are a combination of v. and v 0. These

intensities are compared to those for the single sweep method in Figure 5.11. The full

effect of this enhancement has not been observed experimentally, but a significant increase

in signal intensity has been seen as presented in Figure 5.12.

5.3.5 Level Matching Conditions

Figure 5.13 shows a series of derivative spectra of L-serine taken at different fields

(the broadest transition is at twice the proton Larmor frequency, 2v h,which is proportional

to the magnetic field strength). It demonstrates two possible level matching conditions.

The first situation is where the proton frequency exactly matches the nitrogen quadrupolar

frequency. In this case, the level matching transition is completely overwhelmed by the

proton signal, but the other resonances are clearly visible.

In the second case, the frequency of the level matching transition deviates, within

the range of the dipolar interaction of the protons, from the proton Zeeman splitting. Here

the level matching signal can often be observed, especially if it is swept before saturating

the Proton resonance. Usually cross-relaxation is efficient enough to detect the other

transitions. This allows us to find resonances although the exact level matching condition

is not met and therefore makes the experiment less rigid as far as choice of magnetic field

strength.
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Double Irradiation
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Figure 5.11. A plot of the relative intensities as calculated for the single sweep (solid lines)

and double irradiation (dotted lines) methods for all different combinations.
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Figure 5.12. Comparison of the three nitrogen transitions of L-alanine t,v0 = 160 kHz, v
= 828 kHz, and v. = 988 kHz) under single and double irradiation.
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Figure 5.13. Derivative spectra of DL-serine for different magnetic field strengths. The

broad proton line appears at double the Larmor frequency. The nitrogen transitions, v.

(882 kHz) and v+ (961 kHz) become visible near level matching.
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5.4 Experimental Results

Tables 5.2 and 5.3 provide a list of the.14N NQR resonances that we have obtained

up to this time. Also included arc field cycling measurements at 77 K from the literature.57'

98-102 It can be seen that the agreement is quite good. Most of those resonances are below

2 MHz, a frequency range where standard NQR experiments don't work. However, first I

wish to mention some higher frequency experiments.

The first 14N NQR resonances measured by this method were those for a urea

inclusion compound with octanoic acid. The measured quadrupole parameters for this

compound are CQ = 3487 :!:20 kHz and 11= 0.344 :!:0.011. These compares well with

urea at 77 K (CQ = 3507 and 11= 0.323). 103 The other two high frequency compounds are

pyridine (CQ = 5216 :!:6 kHz, 11= 0.019 :!:0.002) and uracil. For uracil, l°0' 104a nucleic

base used in DNA, the two resonances observed correspond to v+ for different nitrogen

sites as described by Edmonds. 100 The parameters of these three materials are typical NH

and NI-I2 values.

Amino acids provide good examples of NH3+ groups which typically have CQ _-

1.0 - 1.5 MHz and ¢1< 0.2 .102 Thus the resonance frequencies are less then 1300 kHz.

These types of resonances are difficult to observe except with the SQUID spectrometer or

field cycling experiments.

When there are several nitrogens per molecule it becomes imperative to try and

assign the lines to specific sites. One useful tool is symmetry. An NH3+ group has a C3

axis along its bond to the carbon skeleton. This translates into _ = 0 for that site (see

section 3.1.1). 102 This situation only occurs for a perfectly tetrahedral NH3+ group.

However, referring to Tables 5.2 and 5.3, we find that most of the NH3+ groups have 11<

0.2 making them easy to spot as opposed to other sites. Alanine, histidine, and serine

provide good examples of the near tetrahedral NH3+ group.
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Name Site v+ (kHz) v- (kHz) v0 (kHz) CQ (kHz) 11 Ref. T(K)
L-Alanine NH3. 988 + 3 828 + 10 160 + 3 1208 :t: 3 0.267 + 0.005 4.2

(982) (825) (1205) (0.261) 57 (77)
Glycine NH3+ 1099 :!:2 782 + 3 -- 1254 + 3 0.506 + 0.005 4.2

(1093) (780) (313) (1249) (0.501) 57 (77)
L-Histidine NH3+ 1032 + 5 939 + 5 -- 1314 + 5 0.142 + 0.008 4.2

(mono) (1025) (932) (1305) (0.143) 57 (77) _
NH3. 984 :!:6 908 + 4 -- 1261 + 5 0.121 + 0.008 4.2 --
(ortho) (974) (903) (1251) (0.113) 57 (77)
NH 1412+4 .... 4.2

(1406) (749) (657) (1437) (0.915) 57 (77)
D-Serine NH3. 976 + 4 859 + 2 116 + 8 1223 + 3 0.190 + 0.005 4.2
L-Serine NH3+ 977 + 3 860 + 3 _ 1225 + 3 0.191 + 0.005 4.2

(967.5) (855.5) (1215) (0.184) 57 (77)
DL-Serine NH3+ 961 + 3 882 + 3 -- 1227 + 3 0.128 + 0.005 4.2

(949) (875) (1217) (0.118) 57 (77)

Table5.1 AminoAcid14N results.Literaturevaluesaregivenin parenthesesbelowourexperimentalresults.



Name Site v+ (kHz) v- (kHz) v0 (kHz) CQ (kHz) rl Ref. T(K)
Diglycine NH3. 2590 + 3 1972 :!:3 -- 3041 + 3 0.407 + 0.005 4.2

(2585) (1975) (620) (3030) (0.41) 57 (77)
NH 1058 :t: 3 .... 4.2

(1090) -- (260) (1280) (0.41) 57 (77)
Triglycine ? 1167 ± 6 4.2

? 898 ± 8 4.2
? 843 ± 7 4.2

NH (2900) (1175) (3080) (0.76) 57 (77)
NH (2620) (720) (3010) (0.48) 57 (77)
NH3+ (1025) (275) (1180) (0.46) 57 (77)

L-alanyl-L- NH3+ 1203 + 6 933 + 4 -- 1424 -1-5 0.379 + 0.007 4.2
histidine NH3+ 1160 + 3 834 :t:4 327 + 5 1329 :!:4 0.491 + 0.006 4.2

NH 1550 -I-3 .... 4.2 -_
NH 1477 ± 3 -- 524 + 7 1620 ± 6 0.647 _+0.008 4.2

L-alanyl- NH3+ 1033 2:13 837 + 5 183 ± 6 1247 :!:9 0.314 + 0.014 4.2

diglycine
Urea/Octa- Urea 2915 ± 20 2315 + 20 -- 3487 _+20 0.344 _+0.011 4.2
noic Acid

Pyridine 3937 + 7 3887 + 5 -- 5216 + 6 0.019 +_0.002 4.2
Uracil NH 2318 + 7 .... 4.2

(2320) (1585) (740) (2600) (0.569) 57 (77)
Nil 2285 4-5 .... 4.2

(2290) (1620) (675) (2600) (0.519) 57 (77) i

Table5.2 Polypeptideandother14Nresults. Literaturevaluesaregivenin parenthesesbelowour experimentalresults.



COO" COO" COO"
HC-NH I

I I // +

+H3N- C- H +H3N - C- CH2-C _ I H3N- C- HI
I I N=CH H- C- OH
CH 3 H I

H

Alanine Histidine Senne

We investigated D-, L-, and DL-serine in order to confirm an hypothesis about the

crystal structures of these compounds. D and L isomers are simply mirror images of one

another so one would expect to see crystal structures that are also mirror images. For the

quadrupolarinteraction this should make no difference and thus the quadrupolar parameters

should be the same. This is confirmed by D- and L-serine. However, for DL-serine,

which is a racemic mixture of D and L isomers, the crystal structure should be significantly

altered to accon,_modate both molecules. This change in crystal structure should have an

impact on the quadrupolar parameters, which is also confirmed by our results. This is

another indication of the importance of crystal structure in the quadrupolar interaction and

illustrates the type of information that we can obtain.

Another interesting sample is L-histidine because it has three nitrogens per

molecule. Quadrupolar transitions for both the NH3+ and the NH groups have been

observed. No resonances arising from the ring nitrogen with no attached protons have

been detected probably because it does not have very efficient cross-relaxation with any

nearby protons. Perhaps slower sweeps and more ff power might help in detecting these

kinds of resonances. Only one transition for the NH group has been measured but the level

matching requirement for that experiment implies that v. = v 0 so _ = 1. We are unsure why

we can not detect the v. and v 0 transitions, but work is continuing in this regard.

The four NH3 . resonances in this sample imply two separate sites. Edmonds also

observes these signals for certain preparations of histidine. 1°1 He explains that the sample
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is a mixtureof two crystalstructures: monoclinic and orthorhombic. They were able to

obtain a pure orthorhombic sample and from that assign the resonances to the

correspondingstructure.We follow theirassignment. Thissamplecould providea perfect

opportunityto use the doubleirradiationtechniqueto connecttransitions.

Glycine seems to breakthe pattern of NH3+groups with 11<

C00" 0.2. A look at the crystal structure,however, explains the difference.
I

+H3 N- C- H Two of the protonsin the NH3+ groupare strongly hydrogenbonded
I

H to neighboring molecules, however the third proton participates in a

weaker bifurcatedhydrogen bond with two adjoiningmolecules. ]02'

Glycine 10s Thus the three protons areno longer equivalent and the C3 axis

symmetry does not exist. This again confirms the fact that crystal

structurecan often havea profoundimpacton quadrupolarparameters.

The next step on the way to proteinsis polypeptides. We have studied several di-

and tripeptideswith mixed success. The problemshere arisefrom several sources. First,

the intensity of the signal is decreased by the increased size of the molecule. Fewer

nitrogens from a given site are found in the sample. Second, there is more than one

nitrogen site in the sample and therefore there are many resonances which must be

assigned. Despite the predictionsmade in the theoretical section there has been only limited

success in connecting resonances from the same site. However, our ability to conduct

these experiments is _ncreasingand shouldresult in easier assignments.

The first attempts at polypeptides were di- and triglycine.99 Diglycine resonances

were found at 2590 + 3 kHz, 1972 + 3 kHz, and 1058 +_3 kHz. The first two are assigned

to the bridging nitrogen bond based on comparison with typical NH quadrupolar

parameters. We also expect that the terminal diglycine nitrogen should have quaclrupolar

splittings similar to those for glycine and the third resonance fits that profile.

Unfortunately, the v. and v0 transitions have not yet been observed for the terminal
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H O H H O H O H

I II I I II i ii I

+ H3N- C- C- N- C- COO" + H3N- C- C- N--C- C- N- C- COO"
I I I I I I I I

H H H H H H H H

Diglycine Triglycine

nitrogensowe arenotabletocomparethequadrupolarparametersofthissamplewith

thoseofglycine.

Triglycinehasproventobeadifficultsample.Longspin-latticerelaxationtimes

havepreventedusfromaveragingscansanduntilnow resonanceshavebeenfoundonlyat

1167+ 6 kHz,898± 8kHz,and843± 7 kHz. Earlyconjecturewouldplacethe1167

resonanceandoneoftheothertwoasterminalglycinenitrogensignals,becausethatwould

besimilartoglycineitself.Theotherresonanceswouldbev.orv0(foralargeTlsite)ofa

bridgingnitrogen.

L-alanyl-L-histidinehasproventobeamuch bettersample.We haveobserved

severaltransitions.My coworkers,MarciaZiegeweidandUlrikeWemer,haverecently

proposedconnectionsbetweentheresonances(seeTable5.2).Theiranalysisindicatesthat

therearetwodistinctNH3+ groupsinthissample.Thiswouldimplythattherearetwo

H O COO" H O H O H

I II I HC -NH// I Ii I II I

+H3N- C- C- N- C- CHz-C +H3N- C- C- N- C- C- N--C- CO0 "

I I I 'N=CH I I I I I

CH3 H H CH3 H H H H

Alanyl-Histidine Alanyl-Diglycine

distinct lattice sites as there is only one NH3+ group in the molecule (the terminal alanine

nitrogen). In addition they have identified two NH groups which could either be the

bridging amino group of histidine or one of the nitrogens in the histidine ring. This model

indicates that there are still several nitrogens and their resonances to be found in order to
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provide a final assignment. Also, a crystal structure of this sample would be helpful in

conf'mning the existence of twolattice sites.

Finally, we have been able to find resonances from the NH3+ site in L-alanyl-

diglycine. Unfortunately, we have not observed transitions from either of the glycine

nitrogens and a furthersearch for these resonances is warranted.

The di- and tripeptides are a step towards biologically important molecules.

Realistically, however, it must be noted that many of these resonances occur in the same

frequency range (100-1300 kHz for terminal nitrogens and 700-3000 kHz for bridging

nitrogens). Thus significant overlap of transitions would occur with larger molecules.

Also, assignmentof the nitrogensiteto a specificamino acid residuemay be difficult,again

because of the overlapin the frequencyrange. These problems must be resolved for 14N

NQR to be useful in biological molecules.

As indicatedby theincomplete listof resonances for severalof these samples,much

workremains to perfectthe technique. This is, however, an importantbeginning for the

studyof 14NNQRby the SQUID spectrometer.
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Chapter 6
SQUID NMR and Methyl Quantum

Tunneling

Methyl quantum tunneling provides an important example of quantum processes in

molecules, it has been widely studied by inelastic neutron scattering (INS) 106 and

NMR. 23 In this chapter I will show how we use the SQUID spectrometer to measure

tunneling splittings and discuss the advantages of this approach as compared to the field

cycling method. I will also present a correlation between the microscopic methyl tunneling

splittings and macroscopic thermodynamic properties. This correlation may then be used to

learn about the surroundings and interactions of the methyl group.

6.1 Theory

An understanding of the methyl quantum tunneling experiments first requires an

analysis of the effects of symmetry on the methyl group wavefunction, t07"113 If we

assume that the equilibrium temperature is low enough that classical internal rotation is

frozen then the usual model for a methyl group is an equilateral triangle confined by a

hindering barrier to small oscillations about its symmetry axis. Rotation of the methyl

group is treated as a sudden transition from one orientation to one of the two other

equivalent alignments. This model of the methyl group introduces C3 geometrical

symmetry. The C3 symmetry table is reproduced below for reference during this

discussion.
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C_ E C_ C2

A 1 1 I

Ea 1 8 t_*

Eb I _*

¢ = exp(2_i/3)

Table6.1 C2.CharacterTable

Thetotal wavefunctionfor themethylgroupcanbe expres.wAas

_total -- _e _v _Pr _s' 6. i

The fourtermson therightside referto the electronic,vibrational,rotational,and spinparts

of the total wavefunction. We do notconsiderthe electronicor vibrationalwavefunctions

furtheras they arenot involved in the methylgrouprotation. But we will assume thatthey

are in a symn_tric groundstate althoughthis is nota generalrequirementfor the validityof

the following argument. This discussion begins by examining the rotational partof the

wavefunctionfirst.

The rotationalHamiltonian,I-Ir, consists of a kineticenergyterm,correspondingto

the free rotation of the methyl group,and a potential energy term, which describes the

barrierto free rotation. This canbe writtenas

_2 _2

Hr = - _- _ + V(_) 6.2

where I is the moment of inertiaand _ is the angle of rotationfrom a specific orientation.

Because of the C3 symmetrythe potentialcanbe describedby the following Fourierseries

V(_) = 1 _V3n(1.cos(3n_)) ' 6.3
n
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In these experiments the fast term in the series dominates and so we ignore all others.

V

V(_) _ -_ 1-cos(3_)). 6.4

This is true for the samples we study because they have high barriers and no other local

symmetry. For samples with lower barriers, which are usually analyzed by inelastic

neutron scattering, this approximation is not good and a second term in the expansion is

oftenneeded.

TherotationalHamiltonianisnow

h2 v

Hr=- _" _ + "_ 1-cos(3(_)). 6.5

For small variations in the angle _ the potential term can be expanded around the three

minima, _0 -- 0, :b.2r43, to givel08

V(,)- 49-(,-%)2 V3 = + Iu,'2(,-%)2 6.6

where

°,
ThustherotationalHamiltonianisnow;

h2 _2

Hr =-_]"_'_ + ½ I032((_-(_0)2, 6.8

which is the harmonic oscillator Hamiltonian and has eigenvalues

Ek = ho3(k+ 1). 6.9

The triply degenerate ground state wavefunction is calculated to be
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tP0= (_)I/2exp(-Ico(_2_0)2 ) 6.10

with _0 = 0 or :!:2r,,/3.Figure 6.1 depicts this situation, which deliberately ignores any

tunneling between the potential wells.

Returningto equation 6.5, the eigenstates of this Hamiltonian can be expressedin a

basis formed by the three harmonic oscillator ground states. To do this calculation we

def'methe off-diagonal elementsto be

iX_p0(¢) Hv_Po(,+?)d, = 8_
---_- 6.11

where cot is what we call the tunneling splitting.10s The eigenstates of the rotational

Hamiltonianare then foundto be

• _=_(_o(,)+_._'o(,---)+_.*_o(,+ )) 6.12

where _,= 1, e or e* with e = expk-_]. The correspondingeigenvalues are

2h_
El = E0 - _, 6.13a

h_
Ee = Ee* = E0 + _, 6.13b

where E0 is the groundstate euergy found in the harmonicpotential.

We classify the three eigenstates according to the irreduciblerepresentationsof the

C3 symmetry as A, Ea, and E b for _p0 _p_* and _P¢ respectively. Figure 6.2 displays an

energy level diagramof several rotational states. The A and E states are split by what we

have defined as the tunneling frequency, cot. We can use this parameter to numerically

calculate the barrierheight to rotation,V3.

Now to the spin part of the wavefunction, because this is, of course, an NMR

experiment. First,we define an operatorwhich cyclicallypermutesthe space coordinates,
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Rq_o((_)= _P0((_+_ = R'IWo(( _ _ 6.14

Fromthisoperatora Hamiltonian can be built, Ht, that, so longas the systemis limited to

the ground torsional state, can replace Hr (equation 6.5) since both have the same

, eigenvalues apart from an unimportant additive constant:

Ht 8_t (R + R'l). 6.15=- 3

An operator, P, can also be defined which cyclically permutes the spin coordinates. The

indistinguishability of the three orientations means that PR is the unit operator so

hc'°t p-IHt=--_(P + ). 6.16

ThisHamiltoniancannowbeappliedtothemethylgroupspinstateswhicharewrittenin a

basis,1123>,where1,2,and3=o_or_dependingonwhethermemagne0¢momentofme

particularprotonspin is alignedparallelor antiparallelto the orientationof an applied

magneticfield. The eigenstatesof thecombinedZeeman(equation3.5)and tunneling

Hamiltoniansare1°7

A+3/2 = Io_clot), 6.17a

1 (Io_oq_)+ Ionia) + 113omQ), 6.17b
A+l/2 =

1 (l<x_i_)+ ll3tx[_)+ li3_ot)), 6.17c
A.It2= _

A.3/2 = I_), 6.17d

a 1 (Itxctl]) + _lOq3oQ+ _*l_o_ct)), 6.17e
E+I/2 =

1 (Ict_]3)+ El_ctl_) + 8.1_[3oQ), 6.17f
E_.l/2 = _

b 1 (itxotl3)+ _*Ict[3tx)+ _ll3ottz)), 6.17g
E+ I/2= _"

I (I0q3]3)+ e.*l[3ct_)+ e.l_]3OQ). 6.17h
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In each case we give the state a short hand name which specifies the irreducible

representation of the C3 symmetry group which it transforms as and its magnetic quantum

number, m = m I + m 2 + my For example, A+3/2 means an A symmetry state with a total

magnetic quantum number of 3/2 (all spins aligned in the direction of the field). The

corresponding eigenvalues are

E(A+3/-2)=- 23-h0._z- 2 8C.0t, 6.18a

E(A+I/2) = - 21-hOz - _ hC0t, 6.18b

E(A.I/2)= + 1 8oh:-2 8cot, 6.18c

E(A.3/2)= + _ 80h:-_hC.0t, 6.ISd

8_

E(_+l/2) = - 21-hO_z+ 1 htot, 6.18e
1 1

E(E.al/2) = + _ hfDz+ _ hf0t, 6.18f

1 1E(E+ 1/2) = - hf,0z + _ hf,0t, 6.18g

1 1

E(Ebl/2). = + _ hca_z+ _ hf0t. 6.18h

An energy level diagram for the methyl group in a magnetic field is shown in Figure 6.3.

A second variation describing the coupling between the rotational and spin states

invokes the Pauli principle instead of the Hamiltonian described in equations 6.14 to 6.16.

Beginning with the 1123) states, one can symmetrize them to conform with the C3

symmetry group. This leads to the same eigenstates listed above. We recall that the Pauli

principle states that a wavefunction must be antisymmetric with regards to the exchange of

two indistinguishable fermions. 114 Also, we realize that a C 3 rotation of an equilateral

triangle of indistinguishable protons corresponds to a double exchange of particles. Thus,

the total wavefunction must be symmetric under a C3 rotation. As stated above, the

electronic and vibrational wavefunctions are assumed to be in a symmetric ground state

hcoe h_ v
because our experiments take place at 4.2 K (i.e. --_--, _ >> 4.2 K). Thus the
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Spin States of the Methyl Group

Zero order Tunneling Magnetic Field
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Figure 6.3. Rotational energy levels of a methyl group. (a) Without tunneling. (b) With

tunneling: The eight spin states of the v = 0 rotational state, degenerate in zero order, are

split by the tunneling frequency, cot, into two manifolds, A and E, consisting of four

degenerate states each. (c) When a magnetic field is applied, the A states split according to a

spin-3/2 manifold and the E states split according to a doubly degenerate spin-1/2 manifold.

125



combination of rotational and spin wavefunctions must also be symmetric. Therefore only

a b b a
certain combinations are allowed, namely ArotAspin,E rotE spin, and E rotE spin"Because

the E and A rotational state are split by tot, the E and A spin states must be split by the same

amount due to this coupling as depicted in Figure 6.3.

Professor S. Clough has recently taken exception to the concept of the

indistinguishability of the protons in the methyl group and so he rejects the two previous

explanations of the coupling between the spin and rotational systems. 115 He claims that the

methyl group can be treated as an anyon and he then uses a Hamiltonian similar to equation

6.15 seemingly without justifying the coupling suggested by this Hamiltonian. Whether

this interpretation is true or not is contested but seems necessary to support some of

Clough's other contentions such as rotational pressure and rotational friction, both of

which could lead to a rotational polarization of the methyl group (i.e. the energies of the Ea

and Eb states are inequivalent). 24' 116

Figure 6.3 displays the steps taken to find the final energy level diagram for the

methyl group. Several transitions can now be identified. Those involving transitions

between states of the same symmetry: coz, 2toz, and 3toz; and those between states of

different symmetry: tot, toz + tot, and 2toz _+tot" An experimental spectrum of hexanol is

presented in Figure 6.4 and displays most of these transitions.

In the experiment we must irradiate the system with rf in order to detect the

transitions from which the tunneling frequency can be calculated. This, however, is not

trivial when one realizes that rf can not excite transitions between states of different

symmetry. This is easily understood by looking at the transition probability;

]_F0* H tF l dz, 6.19

where _F0 is the original state, LF1 is the new state, and H is the Hamiltonian used to induce

the transition. This integral vanishes unless the direct product _F0*®H®_F ! has a

component with A type symmetry. 117 For rf excitation the Hamiltonian given in equations
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3.9 and 3.10 have only A type symmetry. The matrix element is, therefore, a direct

product of terms with A, A, and E type symmetry respectively. This direct product is

completely of E type symmetry and therefore the transition probability is zero. Thus a

transition between states of A and E states is forbidden. However, in low field the dipolar

interaction helps overcome this problem.

The dipolar Hamiltonian promotes mixing between all states in the energy level

system. 109 The A and E states are specifically mixed together by the nonseeular parts of

the dipolar interaction (terms "C"-"F" of the dipolar Hamiltonian, equations 3.8c-f).

Because it is the nonseeular terms that cause the mixing, these experiments can not be

performed at high field, where these parts of the dipolar Hamiltonian are very small

compared to the Zeeman term and rotating off resonance so as to have little effect on the

eigenstates. The SQUID provides the ideal environment for these experiments because it

easily satisfies both requirements for success: low temperature (where classical rotation is

frozen) and low field (where the dipolar coupling makes the tunneling transitions slightly

allowed),

Clough and eoworkers have proposed an additional mechanism for excitation to

account for the intensities of the tunneling lines in their field cycling experiments. 118 They

find that the transitions corresponding to Am- ±l and Am -- +_.2have comparable

intensities and are larger than the Am - ±3 transitions. If rf irradiation provided the only

means for causing transitions, one should find that the _un -- ±l transitions would be much

larger then the others and that the Am - ±2 and Am - ±3 transitions should be

comparable.119 To account for this anomaly in their experiments they propose what they

call dipolar driven NMR. They suggest that the rf and magnetic fields can be added to give

a time dependent field. In a reference frame moving with this composite field, part of the

dipolar Hamiltonian becomes time dependent. This now produces a spectrum with

transitions defined by the selection rules of the dipolar Hamiltonian, That leads to a

spectrum with the Am - ±l and Am - ±2 transitions of comparable magnitude.
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Dipolar driven NMR appears to also explain our spectra. We do not see any

transitions corresponding to Am = .+.3,but those with Am = +2 are approximately 112to

1/4 the intensity of the Am = +1 transitions. Thus, it would seem that the dipolar

interaction takes a more active role in the experiment rather than just mixing states of

different symmetry.

6.1.1 Barrier Heights

The objective of these experiments is to obtain the tunneling frequency and from

that calculate the barrier to rotation, V3 .120 This barrier comes from both intramolecular

andintcrmolecular sources:

Vbarrier = Vintra + Vinter. 6.20

Some generalizations can be made about the barrierheight and its intra- and intermolecular

elements.

Usually, the intramolecular part dominates and that in turn is dominated by the

sections of the molecule closest to the methyl group. One can estimate the size of the

barrierby looking at the hybridization of the carbon to which the methyl group is attached.

If that carbon atom is sp or sp2 hybridized, such as in acetone or toluene, the barrier is

approximately 10-30 meV with tunneling frequencies in the MHz-GHz range. 106 If,

however, the carbon atom is sp3 hybridized, such as in the alkanes or the alcohols, the

barrier is much larger due to the increased steric hindrance around the methyl group.25'26

These barriers tend to be in the 130-150 meV region with tunneling frequencies less than 1

MHz. Figure 6.5 graphs several representative samples and displays this overall trend.

This last range is the ideal environment for the SQUID spectrometer and will be the focus

for the rest of our discussion.
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Methyl Quantum Tunneling
'"_..... " ' '" 1 ' ' ' " 1 ' " '_' ....' "'i' ' ' " '

1010 \ta lead acetate

_ toluene

_ 109 _x_xmethylpyridine

;_ _,xmagnesium acetate

ta_methyl malonic acid
108 -

_._ rl_er acetate

_1_ 107 nzene

_ 106

",ooctane .
",,ppropanolc

105 acid

.... , ,,,, I , , , , I .......... I ,

5 10 15

Barrier Heights (kJ/mol)

Figure 6.5. Plot of the tunneling frequency vs. barrier height for several representative

samples. TM Note the wide range of tunneling frequencies. Those with high values,

usually methyl groups attached to sp or sp2 hybridized carbon atoms, are measured by

inelastic neutron scattering. The materials with tunneling frequencies less than 1 MHz,

typically those attached to sp3 hybridized carbons, can be analyzed by field cycling NMR

or the SQUID spectrometer. (1 kJ/mol = 10.36 meV)

130



Although the intramolecularpart of the barrierdominates, information can be

obtainedabout the intermolecularinteractions. One way of doing this is by analyzingthe

same compound but different crystal structure. However, the difference in the barrier

heights is then not strictlydue to intermolecularchanges but also reflects the influence of

crystalstructureon themolecularconformationnearthe methyl group.

Anotherway to gaininformationaboutintermolecularinteractionsis by the studyof

a seriesof relatedmoleculeswith the sametypeof crystal_:ucture. The ideais to keepthe

intramolecularcontributionconstantwhile studyingchanges in the tunnelingbarrierversus

differences in the crystalline parameters. For small changes in the barrierheight due to

intermolecularinteractionssuch as these, the tunnelingfrequencybecomes appro:zimately

anexponentialfunctionof V3.122

The high barriersamples in these experiments have a dominatingintrarnolecular

potential. However, because the importantcontributionsto the intramolecularpotential

come only from those parts of the molecule that are very close to the methyl group,

lengthening the chain will not be important as the methyl group feels essentially only

methylene units. So the intramolecularpotential is kept relatively constantfor a series of

compounds where the only structuralmodification is in the length of the chain. The

difference in the barrierbetween molecules due to changes in the intermolecularpotential

shouldbecomeapparentso long as theyhave the samebasic crystal structure.

6.1.2 Previous Methods

The earliest measurementsof the tunnelingfrequencywere frommicrowavespectra

of small molecules in the gas phase.123'124This method is of limited usefulness because

the rotational spectrum becomes excessively complicated and unresolvable for larger

molecules. However, tunnelingmeasurementson molecules such as methanol, ethanol,

andacetonewerecardedout.
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More recently, investigators have primarily used techniques such as inelastic

neutron scattering (INS), a T! temperature minimum correlation, and field cycling

experiments. For tunneling frequencies in the hundreds of MHz to GHz range, INS

providesthe best methodfor measurement.Also, Cloughandcoworkerswerealso able to

correlatetheTI temperatureminimumandthe tunnelingfrequencyto give a roughestimate

of barrier to rotation.125 Recently, he showed thatthis correlationis true for the entire

rangeof tunneli_,gfrequencies.126

However, the method i wish to focus on is the field cycling experiment, used

primarily by Clough et. al., because it is in direct competition with the SQUID

spectrometer. These expe'runentsme verysimilar to those describedin Chapter5 for ]4N

NQR detection. The method canbe dividedinto threeparts: 1) preparation,2) irradiation,

and 3) detection. In the preparationphase the sampleis left in a high field magnetlong

enough for the protonsto achieve anequilibriumpolarization. The sample is thenplaced

into zeroor low fieldeither by movingthe sampleor decreasingthe fieldof the magnet. In

this low or zero field, the sample is irradiatedat a specific rf frequency. If this frequency

correspondsto a resonance then the protonspin bath absorbsenergy, otherwise nothing

happens. Upon returning to high field the proton magnetization is measured. If the

irr&liationfrequency correspondedto a resonance then that final magnetizationwill be

smaller. Eachcycle gives a single point for the final low field spectrum. This process is

repeated, each time stepping either the irradiationfrequency or the low field magnet

strengthby a specific amount untilthe entirespectrum is obtained. This can take a long

periodof time, especially when signalaveragingis needed.

The SQUID spectrometer has several advantages over field cycling. First, as

alluded to above, the SQUID method can have a greatsavings in experimental time. A

spectrumcanbe obtainedin one scan by theSQUIDspectrometer(althoughusually at least

one scan in each sweep direction for each resonance is preferred) compared to the many

cycles neededfor field cycling experiments. Also, the SQUID spectrometer is specifically
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built to operate at low temperatures, which is a requirement for observation of the tunneling

phenomenon. A low temperature field cycling apparatusrequires either the shuttling of the

sample at 4.2 K or changing the field strength of the NMR magnet with the sample in a

cryostat. Neither of which is particularly simple to construct and use. Thus the SQUID

spectrometer may ultimately be the method of choice for low frequency methyl quantum

tunneling measurements.

6.2 Experimental Results

In this section i present the results that we have obtained from the SQUID

spectrometer. We studied a series of straight chained carboxylic acids with 3-15 carbon

atoms.22, 127 The results are given in Table 6.2. The tunneling frequency for propanoic

acid was previously measured by field cycling to be 210 kHz24 which agrees with that

obtained in these experiments. I have also provided in this table a key of the crystal

structures of the acids as the tunneling frequency is a function of this parameter. The

symbols for these structures are based on the literature.128

A tunneling frequency was not found for butanoic acid. It could be that the

tunneling frequency was to small to detect due to the overlapping of the tunneling

resonance with the much stronger Larmor line or perhaps butanoic acid formed a glass

upon cooling to low temperature which would produce a distribution of sites over which

the signal intensity would be spread. It is interesting to note that of all the carboxylic acids

studied, butanoic acid is the only one to have a low temperature phase transition as

demonstrated by heat capacity measurements, t29"131Quite possibly something about this

phase transition prevents us from finding the tunneling resonances.

We have also obtained tunneling splittings for other molecules, most notably simple

organic molecules with six carbon atoms, in order to compare their barriers to rotation.

These are also shown in Table 6.2. All of these samples have barriers of the same order of
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Name Crystal Phase Tunneling Barrier Height

.....(No.OfCarbons) ........ Frequency(kI-Iz) (meV)

PropanoicAcid(3) m 215 140.0
• .;

ButanoicAcid(4) See text

PentanoicAcid(5) m 250 137.7

HexanoicAcid(6) m* 168 143.8

HeptanoicAcid(7) m* 193 141.6

OctanoicAcid(8) m* 170 143.6

Nonanoic Acid (9) m* 156 144.9

Denanoic Acid (10) A 189 141.9

Undecanoic Acid (11) C' 140 146.8

" A' 193 141.6

Dodecanoic Acid (12) C 177 142.9

" A 168 143.8

Tridecanoic Acid (13) A' 191 141.8

Tetradecanoic Acid (14) A 162 144.3

Pentadecanoic Acid (15) A' 190 141.9

Hexadecanoic Acid (16) B 179 142.8

1-Bromohexane 246 138.1

1-Bromooctane 207 140.7

1-Bromodecane 207 140.7

Hexanol 155 145.0

Table 6.2 Methyl group tunneling frequencies ( + 4 kHz) obtained from SQUID-NMR

measurements. The crystal phases are taken from refs. 128, 132-134. A and A' are

triclinic crystals and B, C, C' and m are monoclinic structures, m* denotes an assumed

monoclinic phase inferred from the known crystal structures of the other acids.
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magnitude, however trends due to the functionality at the end of a carbon chain can't be

determined because the crystal structures of these molecules are not similar.

Figure 6.6 shows a graph of the tunneling frequencies of the carboxylic acids

versus the number of carbon atoms in the molecule and includes lines connecting acids of

similar crystal structure. This plot indicates some general trends in the series. First, the

acids with odd and even numbers of carbons have different but related crystal structures 128

and that the trends in tunneling frequency confirm this information. Clough and coworkers

found a similar odd-even effect in their study of a series of alkanes. 25 The next interesting

feature is the large variation in tunneling frequency for the smaller acids and relative

constancy for the larger acids. This makes sense as we expect the shorter acids to show

bigger changes between their crystal structures and those of slightly longer acids. It is also

of interest that the tunneling frequencies of the same molecule in unlike crystalline forms

are significantly different, especially in the case of undecanoic acid.

Another interesting feature is the overall maximum tunneling frequency of pentanoic

acid. This is unusual for we would expect a maximum at either end of the series.

However, when one looks at other properties of this series such as melting point

temperatures and enthalpies of fusion one finds that pentanoic acid is also an extreme. 135

This leads us to consider possible correlations between the thermodynamic properties of the

carboxylic acids and their tunneling frequencies.

6.3 Correlations with Thermodynamic Properties

As mentioned above the anomalous behavior of pentanoic acid led us to study other

features of the carboxylic acids. We were able to make a correlation between the tunneling

frequency and the enthalpy of fusion 129"131'136 for carboxylic acids of the same crystal

structure. The plots are found in Figure 6.7 with the correlation:

135



Carboxylic Acids
I I I I I I '

240-

t_

220

_200 -

180

160-

140 -

I ! I I I I I ,1 I I I I I

3 4 5 6 7 8 9 10 11 12 13 14 15

No. of Carbons

Figure 6.6. Plot ef the tunneling frequency vs. number of carbons for the carboxylic

acids. Those materials with the same type of crystal structure are connected by lines.
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Figure 6.7. Experimentally determined tunneling frequencies as a function of the

enthalpies of fusion for a series of carboxylic acids. For pentanoic acid there is

considerabledisagreement about the enthalpy of fusion.
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cat = a exp(-AI-Ifus/b); 6.21

where a and b are fitting parameters. This also implies that

V3 _ AI-Ifus. 6.22

A fundamental question is raised by this correlation about how a macroscopic

property, such as the enthalpy of fusion, can be related to a microscopic property, the

barrier height to rotation. Perhaps even more puzzling is why would a property, like the

enthalpy of fusion that depends upon the interactions of the entire molecule, be correlated to

the tunneling frequency, which is concerned only with the region around the methyl group.

A close look at the origin of the enthalpy of fusion and barrier height to rotation in relation

to the crystal structureof these materials may provide some answers.
l

Looking at the crystal structures of the carboxylic acids (for example Figure 6.8), it

becomes apparent that the methyl group of one acid is between the four carboxylic acid

(timer groups above and below. 128'132-134 These groups tend to get closer together as the

acids get longer and in general correlate to the tunneling frequency although a quantitative

measure of this can not be obtained due to the lack of crystal structure data. As the acid

groups get closer together, the methyl group is squeezed between them causing a higher

barrierto rotation and thus a smaller tunneling frequency.

Another indication of the influence of the acid groups is the tunneling barrier for

long chain molecules. For long chained alkanes and ketones this tunneling frequency is on

the order of 300 kHz. 25' 26 However, for the carboxylic acids this frequency is around

180 kHz. This lower frequency and thus higher barrier is probably due to the stronger

interactions between the highly polar carboxylic acid groups which squeeze the methyl

group.
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It is well known that the carboxylic acids have a much higher enthalpy of fusion

than equally heavy alkanes. This, of course, is because of the hydrogen bonding and

electrostatic interactions of the highly polarizable carboxylic acid groups. The strength of

these interactions increases as the acid groups get closer together. Thus giving a

corresponding increase in the enthalpy of fusion as the acids gets longer and the carboxylic

groups get closer together which is almost entirely due to the acid functionalities.

And thus we have our correlation. Both the enthalpy of fusion and the changes in

the barrierto rotation are influenced by the surroundingcarboxylic acid groups. This kind

of experiment indicates that the study of methyl quantum tunneling can give us some

insight into what is happening around a specific part of a molecule, namely the methyl

group.
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