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Abstract

Background: Age is one of the strongest predictors of cancer, chronic disease, and mortality, but biological responses to aging
differ among people. Epigenetic DNA modifications have been used to estimate “biological age,” which may be a useful
predictor of disease risk. We tested this hypothesis for breast cancer.
Methods: Using a case-cohort approach, we measured baseline blood DNA methylation of 2764 women enrolled in the Sister
Study, 1566 of whom subsequently developed breast cancer after an average of 6 years. Using three previously established
methylation-based “clocks” (Hannum, Horvath, and Levine), we defined biological age acceleration for each woman by com-
paring her estimated biological age with her chronological age. Hazard ratios and 95% confidence intervals for breast cancer
risk were estimated using Cox regression models. All statistical tests were two-sided.
Results: Each of the three clocks showed that biological age acceleration was statistically significantly associated with
increased risk of developing breast cancer (5-year age acceleration, Hannum’s clock: hazard ratio [HR] ¼ 1.10, 95% confidence
interval [CI] ¼ 1.00 to 1.21, P¼ .04; Horvath’s clock: HR ¼ 1.08, 95% CI ¼ 1.00 to 1.17, P¼ .04; Levine’s clock: HR ¼ 1.15, 95% CI ¼
1.07 to 1.23, P< .001). For Levine’s clock, each 5-year acceleration in biological age corresponded with a 15% increase in breast
cancer risk. Although biological age may accelerate with menopausal transition, age acceleration in premenopausal women
independently predicted breast cancer. Case-only analysis suggested that, among women who develop breast cancer, in-
creased age acceleration is associated with invasive cancer (odds ratio for invasive¼1.09, 95% CI ¼ 0.98 to 1.22, P¼ .10).
Conclusions: DNA methylation-based measures of biological age may be important predictors of breast cancer risk.

Chronological age is the dominant risk factor for chronic dis-
ease, cancer, and death (1,2). Although age correlates with, and
presumably acts through, the accumulation of biological
changes, individuals undergo these changes at different rates
(3). Age therefore serves as an imperfect surrogate for time-
related biological changes. Increasing age correlates with a
variety of molecular changes, including telomere shortening,
differential gene expression, and mitochondrial decline (4–6),
which have in turn been investigated as potential biomarkers
for the prediction of disease onset and mortality (7–11). Among
such age-associated biomarkers, those based on epigenetic
modifications to DNA appear particularly promising (12). Age-
related changes in DNA methylation (DNAm) may reflect long-
term changes in transcriptional regulation (13), are widespread

across the genome (14–16), and can be used as “clocks” that are
strongly correlated with chronological age (17).

Several epigenetic clocks have been proposed (18,19), includ-
ing Hannum’s clock (20), Horvath’s multi-tissue clock (21), and
Levine’s phenotypic age (“PhenoAge”) clock (22). The Hannum
and Horvath clocks were developed by regressing chronological
age on individual CpG sites using supervised machine learning
algorithms to select the most informative set to predict chrono-
logical age (20,21). The Horvath clock was developed using
DNAm from multiple tissues whereas the Hannum clock was
developed using only blood DNAm. Although the Hannum and
Horvath clocks were designed solely to estimate chronological
age, the Levine clock uses blood DNAm to estimate a previously
developed biological age metric called PhenoAge (22). The
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PhenoAge metric, based on the combination of chronological
age and selected blood parameters (eg. albumin, creatinine,
white blood cell count, proportion of lymphocytes, and others),
was designed as a predictor of age-associated mortality.
The Levine clock and its PhenoAge metric have yet to be widely
examined in independent studies.

Despite differences in construction, all three epigenetic
clocks are correlated with chronological age. Individuals whose
clock-based estimates of age (DNAm age) are greater than their
chronological age are said to have “age acceleration” that may
be predictive of increased risk of morbidity and mortality (23–
26). Whether cancer risk is increased in people with age acceler-
ation remains to be explored. Breast cancer incidence increases
rapidly with age (27), and we here report results of a large, na-
tionwide, prospective study of methylation-based age accelera-
tion and breast cancer risk.

Methods

Study Population

The Sister Study is a prospective cohort study of 50 884 women
recruited from the United States and Puerto Rico between 2003
and 2009 (28). To be eligible, women had to be age 35–75 years,
could not have had breast cancer themselves, and must have
had a biological sister who was diagnosed with breast cancer.
Women are re-contacted annually for information on breast
cancer; the response rate for annual updates is approximately
95%. Women reporting incident breast cancer are contacted 6
months following diagnosis and asked to provide authorization
to retrieve medical records. Among women for whom we
obtained pathology reports, the positive predictive value of a
self-reported breast cancer was 99.4% (29). The final sample size
of our case-cohort analysis included a random sample of 1289
non-Hispanic white women (91 of whom were diagnosed with
in situ or invasive breast cancer before October 2016; data re-
lease 6.0) drawn from the full cohort. Cases included 1475 non-
Hispanic white women diagnosed with incident in situ or inva-
sive breast cancer during the time between enrollment and
when the case-cohort was sampled (July 2014) (30). Therefore, a
total of 2764 women were included in the baseline blood DNAm
analysis, of whom 1566 (1475þ 91) developed incident breast
cancer. Pathology reports were obtained for 1538 (98%) of the
women diagnosed with breast cancer. Informed consent and
blood samples were obtained during a home visit. The study
was approved by the institutional review boards of the National
Institute of Environmental Health Sciences and the Copernicus
Group.

Genomic DNA Processing and DNAm Age Estimation

DNA processing procedures have been previous reported (31).
Briefly, genomic DNA was extracted from aliquots of whole
blood drawn using an automated system (Autopure LS, Gentra
Systems) in the NIEHS Molecular Genetics Core Facility or using
DNAQuik at BioServe Biotechnologies LTD (Beltsville, MD). One
microgram of DNA was bisulfite-converted in 96-well plates us-
ing the EZ DNA Methylation Kit (Zymo Research, Orange
County, CA). Methylation analysis was carried out at the NIH
Center for Inherited Disease Research (Baltimore, MD). Samples
were tested for completion of bisulfite conversion, and con-
verted DNA was analyzed using Illumina’s Infinium
HumanMethylation450 BeadChip following the manufacturer’s

protocol. The arrays were analyzed with high throughput robot-
ics to minimize batch effects.

Methylation data preprocessing and quality control were
completed using the ENmix R software package (32). This in-
cluded reducing background noise with the ENmix method; cor-
recting fluorescent dye-bias using the RELIC method (33);
quantile normalization to make overall array fluorescence in-
tensity distribution comparable between arrays; and reducing
Infinium I and II probe design bias using the RCP method (34).
Sister Study data can be requested via https://sisterstudy.niehs.
nih.gov/English/coll-data.htm. Using the processed DNAm data,
DNAm age was calculated using R code provided by the clock
developers (20–22).

Statistical Analysis

To capture epigenetic age effects that are independent of chro-
nological age, we examined associations with epigenetic age ac-
celeration. For each of the three epigenetic clocks, we defined
epigenetic age acceleration by regressing DNAm age on chrono-
logic age and calculating the difference between the observed
DNAm age and the fitted DNAm age. We calibrated the fitted
DNAm age both for the whole analytic sample and restricting to
the random subcohort; we did not observe meaningful differen-
ces using the two approaches; therefore, we used DNAm age fit
to the full dataset. We estimated age acceleration with and
without adjustment for blood cell composition (BCC) because it
can change with age (23). BCC was estimated using the
Houseman method (35). In analyses adjusting for BCC, we ex-
cluded B-cell proportion to avoid model overfitting; B-cell pro-
portion was not statistically significantly associated with
chronological age and had the smallest amount of variation
within the study population. DNAm age and epigenetic age ac-
celeration metric correlations with chronological age and each
other were examined using Pearson correlations and corre-
sponding two-sided P values. We excluded any participants if
the absolute value of their age acceleration estimate was greater
than four SDs based on the distribution of residuals, resulting in
the exclusion of 10 women (including four incident breast can-
cer cases) from our final analyses.

To examine associations with breast cancer risk, we used a
case-cohort Cox proportional hazards model to calculate hazard
ratios, 95% confidence intervals, and two-sided P values (36);
chronological age was used as the primary time-scale. In the
primary analysis, invasive breast cancer and ductal carcinoma
in situ (DCIS) were combined to represent all breast cancer risk.
In follow-up analyses, we separately considered those catego-
ries to enable separate estimation of associations with risk of
DCIS and invasive breast cancer. For the invasive breast cancer
analysis, DCIS diagnosis was treated as a censoring event.
Similarly, for the DCIS analysis, invasive diagnosis was treated
as a censoring event. We further investigated associations
restricting the risk sets by menopausal status during follow-up
and considering specific outcomes based on tumor estrogen re-
ceptor (ER) status; in these analyses, we treated diagnoses with
other types of breast cancer as censoring events. To reduce the
potential that observed associations were a result of underlying,
undiagnosed breast cancer, we repeated analyses excluding the
first 2 years of follow-up. Because menopausal transition has
previously been reported to increase age acceleration (37), we
conducted an analysis restricted to women who were premeno-
pausal at baseline and tested associations with overall breast
cancer risk and postmenopausal breast cancer risk. Potential
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effect heterogeneity for postmenopausal breast cancer risk was
tested using an interaction term between the age acceleration
metric and menopause status at enrollment. Finally, we used a
case-only approach to examine whether age acceleration was
differentially associated with specific breast cancer characteris-
tics where the calculated two-sided P values represent a statisti-
cal test of etiologic heterogeneity (38). We adjusted for
confounding by alcohol intake (drinks per week, continuous),
body mass index (BMI; kg/m2, continuous), and menopause sta-
tus at study enrollment (pre- vs postmenopausal), because they
may influence DNAm age (37, 39) and have previously been as-
sociated with breast cancer risk in this cohort (40, 41). To ac-
count for differing effects of BMI on breast cancer risk by
menopause status (42), we included an interaction term of the
two variables. Adjustment for other breast cancer risk factors,
including age at menarche (years), parity (total births), and age
at first live birth (years) produced only negligible changes in ef-
fect estimates. We tested the proportional hazards assumption
by including an interaction term between the age acceleration
metric and age at the end of follow-up, and it was not violated.
We performed a complete case analysis, excluding women who
were missing information on alcohol intake (n¼ 6), BMI (n¼ 2),
and menopausal status at enrollment (n¼ 1). For all analyses, a
P value of less than .05 was considered statistically significant
and all tests were two-sided. Analyses were conducted using
Stata version 14.2 (College Station, TX).

Results

Sample Population

The characteristics of the sample population at enrollment are
described in Table 1. As expected, all three epigenetic clocks
were strongly correlated with chronological age (Hannum:
Pearson r¼ 0.88, P< .001; Horvath: Pearson r¼ 0.87, P< .001;
Levine: Pearson r¼ 0.83, P< .001) (Figure 1, A–C) . The Hannum
and Horvath clocks share six CpG sites and the three clocks had
five common CpGs (Supplementary Figure 1, available online).
By construction, all six age acceleration metrics were indepen-
dent of chronological age (all Pearson r¼ 0.0, all P> .7)
(Supplementary Figure 2, available online). There was moderate
correlation among the six age acceleration metrics, with the
Horvath clock showing the smallest change following BCC ad-
justment (Pearson r¼ 0.98) (Figure 2A). The six age acceleration
metrics had median values near zero with a majority of the val-
ues falling between �5 and 5 years (Figure 2B).

Epigenetic Age Acceleration and Breast Cancer Risk

After accounting for BMI, menopause status, and alcohol intake
at enrollment, BCC-adjusted age acceleration metrics by all
three clocks were statistically significantly associated with
breast cancer risk (Hannum þ BCC: hazard ratio [HR]¼ 1.10, 95%
confidence interval [CI] ¼ 1.00 to 1.21, P¼ .04; Horvath þ BCC:
HR¼ 1.08, 95% CI ¼ 1.00 to 1.17, P¼ .04; Levine þ BCC: HR¼ 1.15,
95% CI ¼ 1.07 to 1.23, P< .001) (Table 2; Figure 3A). After parsing
cancers into DCIS and invasive breast cancer, we found that
none of the age acceleration metrics was statistically signifi-
cantly associated with DCIS (Figure 3B). For invasive cancers, ac-
celeration based on both the Horvath and Levine clocks was
statistically significant (Horvath þ BCC: HR¼ 1.10, 95% CI ¼ 1.01
to 1.20, P¼ .02, Levine þ BCC: HR¼ 1.17, 95% CI ¼ 1.09 to 1.27,
P< .001) (Figure 3C).

Stratification of invasive breast cancers by menopausal status
at diagnosis revealed that, although there were no statistically sig-
nificant associations with premenopausal breast cancer (Figure 4A;
Supplementary Table 1, available online), both the Horvath and
Levine age acceleration metrics were statistically significantly asso-
ciated with postmenopausal invasive breast cancer (Horvath þ
BCC: HR¼ 1.10, 95% CI ¼ 1.00 to 1.20, P¼ .04; Levine þ BCC:
HR¼ 1.18, 95% CI¼ 1.09 to 1.28, P< .001) (Figure 4B). Stratification of
all invasive tumors by ER status showed ER-positive invasive breast
cancer risk was predicted by the Horvath and the Levine clocks
(Horvath þ BCC: HR¼ 1.11, 95% CI ¼ 1.02 to 1.21, P¼ .02; Levine þ
BCC: HR¼ 1.18, 95% CI ¼ 1.09 to 1.28, P< .001) (Figure 4C). Although
none of the three clocks was statistically significantly associated
with ER-negative breast cancer, the Levine metrics showed sugges-
tive positive associations (Figure 4D).

Epigenetic Age Acceleration and Time to Diagnosis

To examine the possibility that epigenetic clocks were affected
by clinically occult cancer, we reanalyzed our data excluding
the first 2 years of follow-up. Compared to the full follow-up,
hazard ratios for all breast cancer were similar for both the

Table 1. Participant characteristics at study enrollment

Characteristic*

Cancer status at follow-up†

Non-event Event
No. (%) No. (%)

Total 1198 (100.0) 1566 (100.0)
Age, mean (SD), y 55.6 (9) 58.1 (9)
Alcohol, mean (SD), drinks/wk 2.9 (4) 3.2 (5)
Smoking, mean (SD), pack-years 7.1 (14) 7.6 (13)
Physical activity, mean (SD), METs/wk 52.4 (32) 49.6 (30)
Hormone therapy, mean (SD), y 3.7 (6) 4.8 (7)
Parity, mean (SD), total births 2.0 (1) 1.9 (1)
Menarche age, mean (SD), y 12.6 (2) 12.6 (1)
Education

High school or less 201 (16.8) 226 (14.4)
Some college/college degree 714 (59.6) 920 (58.8)
Advanced degree 283 (23.6) 420 (26.8)

BMI, kg/m2

Underweight/normal (�24.9) 481 (40.2) 588 (37.6)
Overweight (25–30) 381 (31.9) 515 (32.9)
Obese (30þ) 334 (27.9) 463 (29.6)
Missing 2 0

Menopause status
Premenopausal 407 (34.0) 417 (26.6)
Postmenopausal 790 (66.0) 1149 (73.4)
Missing 1 0

Stage at diagnosis
DCIS (0) — 335 (21.4)
Invasive (1–4) — 1227 (78.6)
Missing — 4

ER status (invasive only)
ER-positive — 1040 (86.2)
ER-negative — 167 (13.8)
Missing — 20

*Women with missing continuous covariate information: alcohol, 5 non-cases, 1

case; smoking, 4 non-cases, 6 cases; physical activity, 11 non-cases, 11 cases;

hormone therapy, 5 non-cases, 4 cases; parity, 2 non-cases; menarche age, 1

non-case, 2 cases. BMI ¼ body mass index; DCIS ¼ ductal carcinoma in situ; ER ¼
estrogen receptor; METs ¼metabolic equivalent of tasks.

†Cancer status defined as incident DCIS or invasive breast cancer.
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Hannum and Horvath age acceleration metrics (Table 2).
However, the Levine metrics were increased (Levine þ BCC, be-
fore exclusion: HR¼ 1.15, 95% CI ¼ 1.07 to 1.23, P< .001; after ex-
clusion: HR¼ 1.18, 95% CI ¼ 1.10 to 1.28, P< .001). In a stratified
analysis, the 2-year exclusion strengthened DCIS hazard ratios
for all three clocks but, for invasive breast cancer, slightly atten-
uated the Hannum and Horvath hazard ratios. Notably, the 2-
year exclusion resulted in increased hazard ratios for invasive
breast cancer using the Levine clock.

Menopausal Transition, Epigenetic Age, and Breast
Cancer Risk

We also explored whether our observed associations were af-
fected by the menopausal transition. Although the Horvath
clock may accelerate following menopause (37), it is unclear

whether women who have age acceleration before menopause
have higher breast cancer risk. When we restricted our analysis
to women who were premenopausal at baseline, we found that
the BCC-adjusted Levine clock acceleration remained positively
associated with breast cancer risk (HR¼ 1.18, 95% CI ¼ 1.02 to
1.36, P¼ .02). Premenopausal women who transitioned through
menopause during follow-up also showed increased postmeno-
pausal breast cancer risk (HR¼ 1.42, 95% CI ¼ 1.09 to 1.85,
P¼ .009), but there was limited statistical evidence that risk
from age acceleration differed by pre- and postmenopausal sta-
tus at baseline (Pinteraction¼ .12). Although we did not detect
associations with premenopausal breast cancer, these data sug-
gest that age acceleration predating menopausal transition is
an independent risk factor for breast cancer.

Epigenetic Age Acceleration as a Risk Factor for Breast
Cancer Subtypes

Given the possibly differential associations by invasiveness and
menopausal status, we used a case-only analysis to explicitly
examine effect heterogeneity. Based on the BCC-adjusted
Levine metric of age acceleration, although not statistically sig-
nificant, there was some evidence of case-case differences for
invasive cancer vs DCIS (odds ratio for invasive¼ 1.09, 95% CI ¼
0.98 to 1.22, P¼ .10) (Table 3). There was no evidence of effect
heterogeneity by menopause or tumor ER status.

Discussion

Using a nationwide, prospective cohort of women who were
cancer-free at enrollment, we found that women with biological
age estimates greater than their chronological age were at in-
creased risk of developing breast cancer. Three different biologi-
cal age estimators, all derived from DNAm, showed statistically
significant associations with risk. The Levine clock had the
strongest effect estimate, with each 5-year increase of biological
age above chronological age resulting in a 15% increase in breast
cancer risk. Separate analysis of DCIS and invasive cancers
showed that age acceleration was most strongly associated
with invasive cancer. Although effect sizes using Levine’s clock
were similar for ER-negative and ER-positive cancers, the sam-
ple size for ER-negative cancers was smaller and associations
were only statistically significant for ER-positive disease.
Additional analyses excluding the first 2 years of follow-up did
not diminish the effects, suggesting that results are not due to
clinically occult disease and that increased age acceleration
exists years before cancer development.

Figure 1. Association between chronological age and the three epigenetic clocks. Scatterplots and Pearson correlation coefficients for chronological age and DNA meth-

ylation (DNAm) age estimated by the Hannum (A), Horvath (B), and Levine clocks (C) among non-Hispanic white women in the Sister Study.

Figure 2. Age acceleration correlations and distributions. Pearson correlation

matrix of the epigenetic age acceleration metrics (A) and violin plots of the dis-

tributions (B). “Clocks” þ blood cell composition (BCC) are age acceleration met-

rics adjusted for BCC.
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Chronological age is the strongest risk factor for many ad-
verse health events, including cancer, cardiovascular, and neu-
rodegenerative diseases, and serves as a marker for the diverse
biological changes that occur over the life course (43–45).
Although single biological measures that correlate with age (eg.
telomere length) can be measured directly and used for risk pre-
diction (5–7), the associations of these measures with disease
have been inconsistent across studies (46–49). Metrics

combining multiple biological measures can have stronger cor-
relations with chronological age and are increasingly under
study as potential predictors of morbidity and mortality (8–11).
Risk markers developed using age-associated CpGs may be the
most promising because they reflect, in part, shifts in transcrip-
tional programs and possibly cumulative effects of exposures
over time. These sites are often enriched at polycomb complex
binding sites located in promoter regions of genes that control

Table 2. Epigenetic age acceleration metrics (per 5-year increase) and breast cancer risk using the full sample and excluding first 2 years of fol-
low-up*

Age acceleration metrics

Full follow-up† Excluding first 2 years‡

HR (95% CI) P§ HR (95% CI) P§

All breast cancer risk
Hannum 1.06 (0.97 to 1.15) .19 1.05 (0.96 to 1.15) .33
Hannum þ BCC 1.10 (1.00 to 1.21) .04 1.09 (0.98 to 1.20) .10
Horvath 1.08 (1.00 to 1.16) .06 1.07 (0.98 to 1.16) .11
Horvath þ BCC 1.08 (1.00 to 1.17) .04 1.07 (0.99 to 1.17) .10
Levine 1.12 (1.04 to 1.19) .001 1.15 (1.07 to 1.24) <.001
Levine þ BCC 1.15 (1.07 to 1.23) <.001 1.18 (1.10 to 1.28) <.001

DCIS risk
Hannum 1.10 (0.96 to 1.26) .17 1.13 (0.98 to 1.31) .10
Hannum þ BCC 1.12 (0.97 to 1.30) .13 1.16 (0.98 to 1.35) .08
Horvath 1.02 (0.90 to 1.16) .73 1.04 (0.91 to 1.19) .56
Horvath þ BCC 1.02 (0.90 to 1.16) .73 1.04 (0.91 to 1.18) .61
Levine 1.06 (0.95 to 1.19) .27 1.10 (0.97 to 1.24) .13
Levine þ BCC 1.07 (0.95 to 1.20) .26 1.10 (0.97 to 1.25) .13

Invasive breast cancer risk
Hannum 1.04 (0.95 to 1.14) .35 1.02 (0.92 to 1.13) .71
Hannum þ BCC 1.09 (0.99 to 1.20) .08 1.06 (0.95 to 1.18) .28
Horvath 1.09 (1.01 to 1.18) .03 1.07 (0.98 to 1.17) .11
Horvath þ BCC 1.10 (1.01 to 1.20) .02 1.08 (0.99 to 1.18) .09
Levine 1.13 (1.05 to 1.22) .001 1.17 (1.08 to 1.26) <.001
Levine þ BCC 1.17 (1.09 to 1.27) <.001 1.21 (1.12 to 1.31) <.001

*Models adjusted for BMI, menopause status, alcohol intake at enrollment, and a BMI by menopausal status interaction term. BCC ¼ blood cell composition; BMI ¼
body mass index; CI ¼ confidence interval; DCIS ¼ ductal carcinoma in situ; HR ¼ hazard ratio.

†Full follow-up counts: all breast cancer risk: 2754 participants, 1564 events; DCIS: 1600 participants, 334 events; invasive: 2430 participants, 1226 events.

‡After 2-year exclusion counts: all breast cancer risk: 2378 participants, 1199 events; DCIS: 1434 participants, 255 events; invasive: 2119 participants, 940 events.

§Two-sided P values calculated using Cox regression hazard models.

Figure 3. Adjusted hazard ratios (and 95% confidence intervals [CI]) for the epigenetic age acceleration metrics (per 5-year increase). Associations shown for all breast

cancer risk (A) and stratified by ductal carcinoma in situ risk (B) and invasive breast cancer risk (C). “Clocks” þ blood cell composition (BCC) are age acceleration metrics

adjusted for BCC.
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cell development and signaling pathways (14–16). To the degree
that DNAm is a long-term marker of transcriptional control, it
potentially offers a stable biological measure for disease risk
prediction. Because age-associated CpG sites are differentially
methylated in tumors (14, 50–54), including breast cancer (55),
methylation at these sites may be involved in carcinogenic
processes.

Using different sets of CpGs, Hannum and Horvath’s epige-
netic clocks were developed to simply predict chronological age.
In contrast, the Levine clock uses CpG methylation to predict a
previously proposed metric of age-related mortality, PhenoAge,
that is strongly correlated with chronological age. These three
clocks have only a few CpGs in common, and their resulting
estimates of age acceleration are moderately correlated with
one another. The CpGs that are common to all three clocks are
found in the promoter regions of P2RX6, SCGN, EDARADD, IPO8,
and NHLRC1; methylation of these genes has not previously
been associated with breast cancer carcinogenesis. Importantly,
DNAm age estimates from the three clocks do not perfectly cor-
relate with chronological age. The divergence between a clock-
based estimate of DNAm age and chronological age gives rise to
the hypothesis that such differences reflect biological variation
in aging; people with a DNAm age older than their chronological
age would be predicted to be at increased risk for age-related
disease and mortality. This hypothesis has found some support
in studies using mortality endpoints (23–26).

We find associations with breast cancer risk for all three
clocks, with the largest effect sizes for the Levine clock.
Although a few prior studies have examined clock associations
with cancer risk, none examined risk associated with the Levine
clock and all have used smaller sample populations. Among the
Women’s Health Initiative, compared with cancer-free controls,
the Horvath clock was accelerated for 43 women who developed

lung cancer (56). Using the Normative Aging Study, including
132 elderly men with mostly incident prostate or skin cancers,
the Hannum clock was associated with both all-cancer inci-
dence and mortality (57). An initial study conducted within the
European Prospective Investigation into Cancer and Nutrition,
using 87 male colorectal cancer cases and 233 breast cancer
cases, found some associations with colorectal cancer but not
for breast cancer, whereas a subsequent study of 451 breast can-
cer cases found evidence of an association for the Horvath clock
(58, 59). Using prospectively collected data, the current analysis
offers the most comprehensive examination of epigenetic
clocks and cancer risk to date. Our large sample afforded us the
ability to examine age acceleration effects separately by tumor
invasiveness, ER status, and menopausal status.

Although we find evidence that age acceleration is associ-
ated with increased breast cancer risk, our study has limita-
tions. First, our findings on DNAm age do not provide direct
mechanistic insights into how these age-related changes influ-
ence breast cancer development. Second, our study population
may not reflect the general population of women at risk of
breast cancer. By design, all the women enrolled in the Sister
Study have a family history of breast cancer. Although age ac-
celeration appears to be stable in adults (22) and shows some
evidence of heritability (21, 22) and genetic control (60), there is
no evidence to date that age acceleration is associated with
family history or genetic risk of breast cancer. This hypothesis
remains to be examined in more detail. Our study also has cer-
tain strengths, notably, unlike previous studies of epigenetic
clocks and breast cancer risk, we accounted for factors that
could bias our effect estimates, including alcohol intake and
BMI, both of which are known to influence epigenetic age accel-
eration and breast cancer risk (39–41, 61). We also adjusted for
blood cell proportions, which resulted in stronger effect

Figure 4. Adjusted hazard ratios (and 95% confidence intervals [CI]) for epigenetic age acceleration metrics (per 5-year increase) for invasive breast cancer risk.

Associations stratified by menopausal status at diagnosis (A and B) and tumor estrogen receptor (ER) status (C and D). “Clocks” þ blood cell composition (BCC) are age

acceleration metrics adjusted for BCC.
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estimates, perhaps reflecting subtle shifts in BCC that partially
mask age acceleration associations.

In summary, we find evidence that epigenetic clocks capture
age-related biological variability, which may be used to improve
breast cancer risk prediction. A natural extension of these con-
cepts may lead to the development of epigenetic clocks
designed for specific chronic diseases. Such clocks may be
based on known disease risk factors and might further our abil-
ity to identify populations at increased risk who may benefit
from increased screening or preventative interventions.
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