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Background: Skull-base chordomas are rare malignant bone cancers

originating from the remnant of the notochord. Survival is variable, and

clinical or molecular factors cannot reliably predict their outcomes. This

study therefore identified epigenetic subtypes that defined new chordoma

epigenetic profiles and their corresponding characteristics.

Methods: Methylation profiles of 46 chordoma-resected neoplasms between

2008 and 2014, along with clinical information, were collected. K-means

consensus clustering and principal component analysis were used to identify

and validate the clusters. Single-sample gene set enrichment analysis,

methylCIBERSORT algorithm, and copy number analysis were used to

identify the characteristics of the clusters.

Results: Unsupervised clustering analysis confirmed two clusters with a

progression-free survival difference. Gene set enrichment analysis indicated

that the early and late estrogen response pathways and the hypoxia pathway

were activated whereas the inflammatory and interferon gamma responses

were suppressed. Forty-six potential therapeutic targets corresponding to

differentially methylated sites were identified from chordoma patients.

Subgroups with a worse outcome were characterized by low immune cell

infiltration, higher tumor purity, and higher stemness indices. Moreover, copy

number amplifications mostly occurred in cluster 1 tumors and the high-risk

group. Additionally, the presence of a CCNE1 deletion was exclusively found in

the group of chordoma patients with better outcome, whereas RB1 and
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CDKN2A/2B deletions were mainly found in the group of chordoma patients

with worse outcome.

Conclusions: Chordoma prognostic epigenetic subtypes were identified, and

their corresponding characteristics were found to be variable.
KEYWORDS

DNA methylation, prognostic biomarker, infiltration immune level, stemness indices,
copy number variation
Introduction

Skull-base chordomas are rare malignant bone tumors that

originate from the remnant of the notochord (1) and can

develop on the sacrococcygeal area (2). These chordomas have

infiltration characteristics, which make them difficult to safely

remove, thus leading to high recurrence and malignant

progression. Additionally, the recurrence of chordomas is very

high in skull-base cases, although they grow slowly and can be

satisfactorily resected (3). Moreover, clinical progression is more

malignant with the occurrence of a recurrence status. However,

the treatment and the identities of molecular biomarkers are still

poorly characterized.

Accurate subtype identification and prognostic stratification

are helpful for treatment and for understanding potential

mechanisms contributing to the progression of cancers. DNA

methylation is often associated with gene silencing because it

inhibits the interaction of chromatin with DNA-binding

proteins or transcription factors required for gene expression

(4). In addition, DNA methylation profiling has been proven to

be a useful signature for subgroup samples and for redefinition

of risk scores (5–10). Chordoma methylation profiles have been

reported in some studies (11–13), especially in a recent study

reporting that chordomas could be divided by epigenetic

changes and could be used as prognostic factors for clinical

outcomes (14). CA2 (carbonic anhydrase II) has been identified

in switched compartments, cell-specific boundaries, and loops

(15) of chordomas. Inhibition of histone H3K27 demethylases

inactivates brachyury (TBXT) and promotes chordoma cell

death (16). Cancer-specific, differentially methylated loci are

involved in various networks, including cancer, nervous

system development and function, cell death and survival,

cellular growth, cellular development, and proliferation (12).

In this study, we used 46 skull-base chordoma samples to

identify methylation-based prognostic subtypes with the help

of unsupervised hierarchical clustering and copy number

variation profiles. Signatures that could predict skull-base
02
chordoma outcomes based on methylation-based prognostic

subtypes were then identified and validated.
Materials and methods

Patient cohort

A total of 46 patients were enrolled in this study. Patients

were treated with surgery between 2008 and 2014. Reviewers

blinded to the original diagnoses conducted histological assays

using formalin-fixed, paraffin-embedded hematoxylin and eosin

sections, and selected tumor tissues to obtain DNA methylation

profiles. The Ethics Committee of Beijing Tiantan Hospital

approved this study, and all patients signed written informed

consent forms for the study. Clinical information including age,

sex, therapeutic modalities, and follow-ups was recorded. The

extent of resection was identified based on surgical record

information and postoperative magnetic resonance imaging

(MRI) within 1 month of treatment. The definition of gross

total resection involved no evidence of residual intraoperative

neoplasm using postoperative MRI. Conversely, the definition of

subtotal resection was any evidence of residual intraoperative

neoplasm using postoperative MRI. Disease-specific survival was

defined as the interval between the time of surgery and death or

tumor progression.
Methylation profiling of
chordoma tissues

Total DNA was extracted from fresh frozen tissues.

Approximately 400 ng bisulfite-converted DNA was then

profiled using an Infinium Methylation 450K BeadChip array

(Illumina, San Diego, CA, USA) according to the manufacturer’s

protocol. The.idat files, including our cohort and external data

sets, were processed using the minfi package, and the data were
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normalized using the preprocessIllumina function. CpG sites

involving low-quality data (one sample CpG detection with p >

0.01), those on the X and Y chromosomes, and the sites that

overlapped with single-nucleotide polymorphisms were

removed. The quality of sample controls was then assessed

using p< 0.05 as the level of significance. Beta values were

obtained for downstream analyses.
Identification and validation of
prognostic clusters

The K-values of two samples and optimal clustering

parameters (10,000 CpG sites) were confirmed by silhouette

scores and consensus cumulative distribution functions (17). K-

means consensus clustering was performed with the optimal

clustering parameters across all samples, with the results

visualized using a heat map with dendrograms. Principal

component analysis (PCA) was performed to define the above

clusters, followed by visualization. The two clusters were

compared using Kaplan–Meier plots with disease-free survival

(DFS). Univariate and multivariate Cox regression analyses

incorporating methylation-based clusters and clinical features

were used to evaluate the independent factors predicting DFS.
Differential methylation between
prognostic subtypes

CpG sites were annotated using standard Illumina Infinium

Methylation 450K BeadChip criteria. RefSeq genome

annotations (hg19) were used to identify the exon regions and

transcription start site coordinates. Regions at 2 kb upstream

and downstream of the transcription start sites were defined as

the promoter region. Only overlapping gene promoters were

chosen after the CpG site was mapped to the genome. The DMP-

CHAMP pipeline was assessed to identify the differential

methylation sites between the two clusters and visualized using

a volcano plot of probes that were selected based on the mean b
value difference; Db > 0.15 and p< 0.05 were considered

differentially methylated (18) (Benjamini and Hochberg p-

value). Gene set enrichment analysis (GSEA) (19) was

performed using differentially methylated gene data with the

clusterProfiler package (20) (p< 0.05 of the false discovery rate).

The hallmark gene sets (h.all.v7.4.symbols.gmt), which were

downloaded from the Molecular Signatures Database, were

used in the analysis. To further identify potential drug targets

corresponding to the methylation sites in chordomas, the Open

Targets database was used to screen the drug targets of

chordomas (accessed in May 2022). The Open Targets

database is a powerful data integration platform for potential

identification and validation of diseases (21). To improve
Frontiers in Oncology 03
prediction accuracy, overlap of predicted genes from the Open

Targets database and differential genes between cluster 1 and

cluster 2 were used to represent the final results of predicted

target genes.
Identification and validation of
prognostic signatures

First, a univariate Cox regression analysis was conducted to

determine the relationship between the above differential

methylation sites and DFS. Candidate methylated sites were

defined as methylated sites having a significant statistical

difference (p< 0.01). Using the glmnet package, least absolute

shrinkage and selection operator (LASSO) analyses were then

conducted to reduce the candidate methylated sites (22). Finally,

a stepwise multivariate regression analysis was conducted to

select the final methylated sites for a predictive model that had

the lowest Akaike information value. Risk scores were then

calculated using the methylated sites from the predictive

model. The specific formula is as follows:

risk score =o   (coefficient n �  b value of site 1nÞ 
Based on the largest difference value between the true

positive and false positive as the cutoff values, the patients

were divided into high-risk and low-risk groups. Similarly, a

Kaplan–Meier plot was used to compare the DFS between the

two groups. In addition, using the timeROC package, the area

under the curve (AUC) was calculated for 3, 5, and 10 years to

assess the discriminability of the model (23).
Single-sample gene set
enrichment analysis and tumor
microenvironment analysis

Single-sample GSEA (ssGSEA) was conducted to assess the

immune infiltration level of 28 different immune cell types. The

marker gene set of 28 different immune cell types was obtained

from a published study (24), including innate immune cells

(activated dendritic cells, CD56 bright natural killer cells, CD56

dim natural killer cells, eosinophils, immature dendritic cells,

macrophages, mast cells, myeloid-derived suppressor cells,

monocytes, natural killer cells, natural killer T cells,

neutrophils, and plasmacytoid dendritic cells) and adaptive

immune cells (activated B cells, activated CD4 T cells,

activated CD8 T cells, central memory CD4 T cells, central

memory CD8 T cells, effector memory CD4 T cells, effector

memory CD8 T cells, gamma delta T cells, immature B

cells, memory B cells, regulatory T cells, T follicular helper

cells, Type 1 T helper cells, Type 17 T helper cells, and Type 2 T

helper cells). As in our previous study (25), the ssGSEA
frontiersin.org
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algorithm transformed the marker gene expressions into

infiltration levels of immune cells.

The composition of the tissue microenvironment

was determined from DNA methylation data using

the methylCIBERSORT package, which used the support

vector regression adopted in CIBERSORT (26, 27). The

methylCIBERSORT algorithm deconvoluted the samples into

the fraction of estimated cancer cells, neutrophils, B

lymphocytes, natural killer cells, cytotoxic T lymphocytes,

monocytes/macrophages, regulatory T lymphocytes, effector T

lymphocytes, endothelial cells, fibroblasts, and eosinophils.

Additionally, the fraction of stromal cells, the fraction of

immune cells, and the tumor purity in tumor tissues were

determined using the ESTIMATE algorithm. This algorithm

analyzed the corresponding gene expression signatures of

immune and stromal cells to calculate immune and stromal

scores that determined the infiltration level of tumor

microenvironment cells (28).
Immunohistochemistry validation

Immunostaining analysis was used to assess the CD8

(ab32620; Abcam, Cambridge, UK), CD56 (ab133345; Abcam),

Treg (72338; Cell Signaling Technology, Danvers, MA, USA),

and fibroblast (ab207178; Abcam) expression levels following

the manufacturers’ protocols using formalin-fixed, paraffin-

embedded tissue slides. The stained slides were independently

evaluated by two experienced pathologists who were blinded to

the identities of the samples. Discrepancies between the two

observers were resolved by consensus.
DNA methylation–based
stemness indices

Stemness indices in the tumor were correlated with

radiotherapy resistance, chemotherapy resistance, and the

outcomes of patients. In 2018, pluripotent stem cell samples

from the Progenitor Cell Biology Consortium data set were used

to build a model that could predict stemness indices with the DNA

methylation data using the OCLR algorithm (29, 30). The model to

obtain stemness indices was found on https://bioinformaticsfmrp.

github.io/PanCanStem_Web/. We used the stemness index model

to score the stemness indices of our cohort and to transform the

results in the [0, 1] range using a linear transformation that

subtracted the minimum data and divided by the maximum data.
Copy number alterations

Copy number alterations were obtained from normalized raw

methylation data using the conumee package (Bioconductor).
Frontiers in Oncology 04
Amplification or deletions were defined with a log2 copy

number ratio of >0.3 or a log2 copy number ratio of<−0.3 (31).

Copy number alteration analyses were then identified in the

external chordoma data sets, including 46 DNA methylation

data from GSE14068629 (32).
Statistical analysis

All statistical analyses were performed with R, version 4.1.2

(The R Foundation for Statistical Computing, Vienna, Austria),

and a value of p< 0.05 was considered statistically significant.

The Kaplan–Meier method was performed and compared using

the log-rank test. Data are presented as the mean ± standard

deviation. Fisher’s exact test was used to compare sex, extent of

surgery, and adjuvant radiotherapy between groups. The age,

disease-free time, immune scores, and stemness index difference

between groups were analyzed using an independent samples t-

test. Prism 9.0 software (GraphPad, San Diego, CA, USA) was

used to plot the results (***p< 0.001, **p< 0.01, *p< 0.05).
Results

Identification of DNA methylation–based
chordoma subtypes

Unsupervised learning clustering of the 46 tumor samples

using the top 10,000 most variably methylated CpG sites

identified two clusters, with the corresponding clinical

information shown in Figure 1A. To confirm the two clusters,

PCA was used to further compare the DNA methylation profiles

between the two clusters, which showed that the clusters had a

clear distinction (Figure 1B). PCA results revealed that the

samples within cluster 1 were well separated from the samples

in cluster 2. The corresponding clinical information of the two

clusters is shown in Table 1 and Supplementary Table S1.
Characterization of the two clusters

The baseline clinical information of the 46 chordoma

samples is listed in Table 1. There was no difference in sex,

age, extent of surgery, and adjuvant radiotherapy between the

two clusters. In addition, cluster 2 had a significantly better DFS

than cluster 1 (Figure 1C, log-rank test, p = 0.0036). The mean

survival time was 45.3 months in cluster 1, whereas in cluster 2,

it was 76.3 months.

Table 2 shows the results of univariate and multivariable

regression analyses combining the clinical information and the

methylation-based clusters. Using univariate analysis, the cluster

was a statistically significant independent prognostic factor

[cluster 1 vs. cluster 2; hazard ratio (HR): 0.3, 95% confidence
frontiersin.org
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TABLE 1 Clinical characteristics of skull-base chordomas.

Characteristics Combined cohort Cluster 1 (n = 27) Cluster 2 (n = 19) p-value

Gender (male vs. female) 60.9% vs. 39.1% 59.2% vs. 40.7% 63.2% vs. 36.8% 1.00

Age (mean ± SD) 36.8 ± 14.2 37.1 ± 13.8 36.4 ± 15.1 0.88

Extent of surgery (gross total vs. subtotal) 78.3% vs. 21.7% 70.4% vs. 29.6% 89.5% vs. 10.5% 0.24

Adjuvant radiotherapy 73.9% vs. 26.1% 74.1% vs. 25.9% 73.7% vs. 26.3% 1.00

Disease-free survival (months) (mean ± SD) 58.1 ± 41.9 45.3 ± 35.1 76.3 ± 44.9 0.01
Frontiers in Oncology
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FIGURE 1

Identification of two prognostic chordoma subtypes with tumor DNA methylation signatures. (A) Unsupervised learning cluster identified two
skull-base subtypes in the 46 DNA methylation samples with the most variable 10,000 probes. Color annotations display the distribution of
clinical features (sex, age, extent of surgery, adjuvant radiotherapy, and the recurrence status). (B) Principle component analysis results of the
cohort samples showed that the samples within cluster 1 were well separated from the samples within cluster 2, with the top 10,000 most
variable methylated probes. (C) Kaplan–Meier plot showing cluster 1 had a worse disease-specific survival time when compared with cluster 2
(p< 0.01). (D) Volcano plot showing 1,496 probes with differentially methylated promoters between cluster 1 and cluster 2. (E) Gene set
enrichment analysis revealing the activated and suppressed pathways within hallmark gene sets in cluster 1 when compared with cluster 2. The
early and late estrogen response pathways and the hypoxia pathway were activated, whereas the inflammatory and interferon gamma responses
were suppressed in cluster 1 (adjusted p< 0.05).
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interval (CI): 0.1−0.7, p = 0.006]. Additionally, the cluster was

also a statistically significant independent prognostic factor

(cluster 1 vs. cluster 2; HR: 0.2, 95% CI: 0.1−0.6, p = 0.003)

after controlling for age, sex, extent of resection, and adjuvant

radiotherapy. In a similar manner as in a previous study, the

extent of resection was not a significant factor for the

outcomes (14).

A volcano plot of the probes showed that the differentially

methylated sites were those with a mean b value difference (Db)
of >0.15 and a Benjamini and Hochberg p-value of<0.05

(Figure 1D). GSEA showed that the early and late estrogen

response pathways and the hypoxia pathway were activated,

whereas the inflammatory and interferon gamma responses were

suppressed in cluster 1 (Figure 1E). In addition, 46 potential

therapeutic targets corresponding to differentially methylated

sites were found in chordoma patients (Supplementary

Table S2).
Construction of the prognostic signature

Univariate Cox regression analysis determined 502

candidate methylation sites with prognostic significance (p<

0.01). Of the 502 methylation sites, 5 were determined using

the LASSO regression analysis (Figure 2A). Then, a stepwise

multivariate Cox regression analysis of the five sites revealed

three methylation sites (cg15645309, cg01234517, and

cg10847094; Figure 2B). The risk score formula was as follows:

Risk score  =   − 2:40984 �  b value of cg15645309  +  3:55817 

�  b value of cg01234517  − −4:36864 

� b value of cg10847094

The DNA methylation level of cg01234517 was correlated

with high risk, whereas cg15645309 and cg10847094 were

correlated with low risk. Basic leucine zipper ATF-like

transcription factor (BATF), actin-related protein 3C

(ACTR3C), and fibroblast growth factor-binding protein 2

(FGFBP2) were three protein-coding genes that corresponded

to the three methylation sites (cg15645309, cg01234517, and
Frontiers in Oncology 06
cg10847094). The results of the three methylation sites

identifications, their chromosomal locations, gene types, gene

symbols, feature types, coefficients, and p-values obtained using

multivariate Cox regression analysis are listed in Table 3.
Evaluating risk stratification

The patients were divided into high-risk (n = 30) and low-

risk (n = 16) groups. The risk score, survival status, and heat map

of the three methylation sites are shown in Figure 2C. The three

methylation sites were associated with the outcomes of patients

(p< 0.01; Figures 2D–F). In addition, low-risk patients exhibited

a better DFS when compared with high-risk patients (p< 0.001;

Figure 2G). The 10-, 5-, and 3-year AUCs of the predictive

model were 0.904, 0.795, and 0.775, respectively (Figure 2H).

Moreover, we found that the high-risk group and cluster 1

patients had higher methylation levels of cg01234517 and

lower methylation levels of the other two sites when compared

with the corresponding group (Figures 2I, J; p< 0.001).
Immune characteristic of chordoma
patients within different groups

The methylCIBERSORT results are shown in Figures 3A, B.

Figure 3A shows a greater abundance offibroblasts (p< 0.05), Treg

(p< 0.001), and CD56 (p< 0.001) and a lower abundance of

CD8 (p< 0.05) in cluster 2 chordomas, which was confirmed

using immunohistochemistry (Figure 3E). The risk group had an

identical result with the cluster group. However, the low-risk

group had a greater abundance of fibroblasts (p< 0.01), Treg

(p< 0.05), and CD56 (p< 0.01) and a lower abundance of CD8

(p< 0.05) when compared with those of the high-risk

group (Figure 3B).

Among the 28 immune cell types, cluster 2 was characterized

by relatively high infiltration of adaptive immune and innate

immune cells, including activated CD8 T cells (p< 0.01), effector

memory CD8 T cells (p< 0.05), gamma delta T cells (p< 0.01),

immature B cells (p< 0.001), memory B cells (p< 0.001), type 1 T
TABLE 2 Multivariable Cox analysis of the methylation cluster and clinical features.

Covariate Univariable Cox Multivariable Cox

HR (95% CI) p-value HR (95% CI) p-value

Methylation cluster (cluster 1 vs. cluster 2) 0.3 (0.1–0.7) 0.006 0.2 (0.1–0.6) 0.003

Gender (male vs. female) 1.2 (0.5–2.5) 0.703 1.2 (0.5–2.6) 0.655

Age (years) 1.0 (0.9–1.0) 0.667 1.0 (0.9–1.0) 0.285

Extent of surgery (gross total vs. subtotal) 1.6 (0.7–3.7) 0.297 0.9 (0.4–2.5) 0.911

Adjuvant radiotherapy (not received vs. received) 1.6 (0.7–3.6) 0.585 2.1 (0.8–5.2) 0.123
fronti
HR, hazard ratios; CI, confidence intervals.
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helper cells (p< 0.05), macrophages (p< 0.01), and mast cells (p<

0.01; Figures 3C, D). In addition, cluster 2 had low infiltration of

CD56dim natural killer cells (p< 0.001).

Additionally, the low-risk group had significantly higher

proportions of immature B cells (p< 0.05), activated CD8 T

cells (p< 0.01), and memory B cells (p< 0.01) when compared

with those of the high-risk group (p< 0.01; Figure 3F). Among
Frontiers in Oncology 07
the 11 innate immune cell types, the high-risk group possessed

significantly higher proportions of CD56dim natural killer cells

when compared with those of the low-risk group (p<

0.05; Figure 3G).

Similar with the above results, analyses of tumor

microenvironments also showed that cluster 1 had a lower

ESTIMATE score (p< 0.05) and immune score (p< 0.05) and a
TABLE 3 Three cluster-related methylation sites in the prognostic signature analysis.

Probe ID Chromosomal location Gene type Gene symbol Feature type Coefficienta P valuea

cg15645309 Chr14 Protein coding BATF TSS200 −2.40984 0.1061

cg01234517 Chr7:150019950–150020752 Protein coding ACTR3C TSS1500 3.55817 0.0167

cg10847094 Chr4 Protein coding FGFBP2 TSS1500 −4.36864 0.0671
fron
aIn multivariate Cox regression analysis.
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FIGURE 2

Identification and validation of prognostic signatures. (A) The LASSO process of developing a prognostic signature from 502 methylation sites.
(B) The hazard ratio and the coefficients of the three methylation sites in the model calculated from multivariate Cox regression analysis. (C) The
distribution of risk scores of 46 samples, the survival status of the 46 samples, and the heat map of the three methylation sites. (D) A Kaplan–Meier
plot showing that the high-risk group had a significantly worse disease-specific survival time than the low-risk group. (E–G) A Kaplan–Meier plot
showing that the high cg15645309 and cg10847094 groups had significantly worse disease-specific survival times than the low-expression group
whereas the low cg01234517 group had a significantly worse disease-specific survival time than the low-expression group. (H) Prognostic signature
analysis showing the 3-, 5-, and 10-year area-under-the-curve values of 0.775, 0.795, and 0.904, respectively. (I) Violin plots of the beta values of
the three methylation sites between cluster 1 and cluster 2 samples. (J) Violin plots of the beta values of the three methylation sites between high-
risk and low-risk samples (***p< 0.001, *p< 0.05).
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FIGURE 3

Immune cell infiltration and tumor microenvironment analyses between clusters. (A) Immune cell infiltration scores in cluster 1 and cluster 2
chordomas. (B) Immune cell infiltration scores in high-risk and low-risk chordomas. (C) Adaptive immune cells in cluster 1 and cluster 2
chordomas. (D) Innate immune cells in cluster 1 and cluster 2 chordomas. (E) Representative images (×20) showing more frequent presence of
CD8, Treg, CD56, and fibroblasts in cluster 1 (upper panels) than cluster 2 (lower panels). (F) Adaptive immune cells in high-risk and low-risk
chordomas. (G) Innate immune cells in high-risk and low-risk chordomas. (H) The association between known clinical and molecular features
(sex, extent of resection [EOR], radiotherapy, recurrence status, cluster status, and risk status) and mDNAsi values of our cohort. Columns
represent the sorted chordoma samples by mDNAsi values (low to high). Rows represent clinical information. (I) Violin plots of mDNAsi values in
cluster 1 and cluster 2 chordoma patients. (J) Violin plots of mDNAsi values in the high-risk and low-risk chordoma patients. (K) Distribution of
stromal scores, immune scores, ESTIMATE scores, and tumor purity of cluster 1 and cluster 2 chordoma patients. (L) Distribution of stromal
scores, immune scores, ESTIMATE scores, and tumor purity of high-risk and low-risk chordoma patients (***p< 0.001, **p< 0.01, *p< 0.05).
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higher tumor purity (p< 0.05) when compared with cluster 2

(Figure 3K). Additionally, the high-risk group exhibited a lower

ESTIMATE score (p< 0.05) and a higher tumor purity (p< 0.05)

when compared with the low-risk group (Figure 3L). Together,

these results indicated that the groups had different outcomes

and different immune types, and the group having better

outcomes was characterized by a less immune infiltration level

and activation.
Analysis of stemness indices

The 46 chordoma samples were ranked according to the

DNA methylation–based stemness index (mDNAsi) value from

low to high and according to their corresponding clinical

information (Figure 3H). The mDNAsi was assessed for the

cluster and high-risk/low-risk groups. Cluster 1 and high-risk

samples had higher mDNAsi values than cluster 2 (p< 0.01) and

low-risk samples (p< 0.05) (Figures 3I, J).
Copy number alterations of
the subgroups

Copy number deletions and amplifications are shown in

Figure 4. All amplifications occurred in cluster 1 tumors and the

high-risk group, including EGFR, MET, TP53, and GLI2

(Figure 4A). Additionally, the presence of a CCNE1 deletion

occurred exclusively in cluster 2 (8/10) chordomas and low-risk-

group (6/10) chordomas, whereas all RB1 and CDKN2A/2B

deletions occurred in cluster 1 and RB1 (5/6) deletions and

CDKN2A/2B (2/3) deletions patients who were in the high-risk

group. In the external GSE14068629 data set, the copy number
Frontiers in Oncology 09
alterations were identified and assessed (Figure 4B). CDKN2A/

2B and PTEN gene deletions occurred the most, and TP53,

EGFR, and MET were identified in the amplifications. CDK6,

ERBB2, MYC, MYCN, KRAC, CDK4, and MDM2 were

identified in the external cohort, whereas MCL1 and GLI2

were identified in our cohort.
Discussion

Two subtypes of skull-base chordomas were identified based

on DNA methylation data. The two subtypes had distinct

outcomes, infiltration immune levels, activation profiles,

stromal scores, tumor purities, and stemness indices.

Moreover, we found that the early and late estrogen response

pathways and the hypoxia pathway were activated, whereas the

inflammatory and interferon gamma responses were suppressed

in the worse-outcome skull-base chordomas. Previous studies

reported that estrogen beta and hypoxia-inducible factor-1a
were identified in chordomas (33, 34). However, their

potential mechanisms of action were unclear. To further

confirm that subtypes with distinct outcomes had distinctly

corresponding characteristics, we divided the samples into

high-risk and low-risk groups by constructing a prognostic

model. In a similar manner as the clusters, high-risk and low-

risk groups displayed similar outcomes, infiltration levels,

activations, stemness indices, and tumor purities.

The types of treatments for skull-base chordomas may result

from tumor heterogeneity, which potentially responds to different

treatments. These subtypes displayed skull-base chordoma

subtypes that may reveal heterogeneity despite their

corresponding clinical features. The information could

contribute to resolving chordoma outcomes that are clinically
BA

FIGURE 4

Copy number alteration of our cohort and the external GSE14068629 data set. (A) Copy number of the alteration plot of 46 chordoma patients
and the corresponding cluster information from our cohort. (B) Copy number alteration plot of the 46 chordoma patients from the external
GSE14068629 data set.
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observed despite standards-of-care treatments. In addition,

subtypes with a better DFS had higher fractions of immune cells

within tumors, which included fibroblasts, Tregs, and CD56,

whereas the subtype with better DFS had higher fractions of

CD56dim natural killer cells. Similar with our results, some

studies reported that chordomas with distinct outcomes had

distinct immune levels, and chordoma patients with better DFS

had higher fractions of immune cells (14, 35, 36). Additionally,

our recently published study has revealed that inflammatory

activity–associated proteins were associated with the invasion

characteristics of skull-base chordoma (37). As for stemness

indices, a study showed that stem cell signature expressions

correlated inversely with patient survival (38, 39). In a similar

manner with this report, the worse DFS subgroups exhibited

higher expression levels of stem cell genes when compared with

the contrast group. The protein coding genes corresponding to the

three methylation sites in the prognostic model were BATF,

ACTR3C, and FGFBP2. Additionally, BATF, ACTR3C, and

FGFBP2 have been implicated in cancers other than chordomas

(40–42). However, the functional effects of the three aberrant

methylation genes require more studies to elucidate. Notably,

BATF-driven gene regulation could be used as a potential target

for delaying CD8 T-cell aging and restoring function (43).

Importantly, some studies have reported that BATF was

correlated with the response of immune cells in humans (44–

46). ACTR3C was found hypermethylated in keloids, and the

mRNA expression of ACTR3C was statistically significantly

different between keloid and normal skin (47, 48). Moreover,

CD8+ FGFBP2+ T cells and FGFBP2+ natural killer cells were

found to display high levels of cytotoxic effectors and low levels of

inhibitory markers (49). FGFBP2 showed six- to eightfold higher

levels in clear cell stage I carcinomas compared with the more

advanced staged carcinomas and correlated positively with an

improved clinical outcome (42). The molecular differences may

help these subtypes to respond separately to specific

therapeutic approaches.

Finally, all amplifications occurring in subgroups had worse

outcomes. The presence of a CCNE1 deletion was seen

exclusively in patients with better outcome, whereas all RB1

and CDKN2A/2B deletions occurred in cluster 1. Similarly,

CCNE1 deletions in gliomas were also correlated with a better

outcome (50), which was similar with our result. In another

study, the authors also revealed that CDKN2A/2B deletions were

found in skull-base chordoma patients (51), but the underlying

mechanism was unknown. RB1 and TrP53 could cooperate to

suppress prostate cancer lineage plasticity, metastasis, and

antiandrogen resistance (52).

This study described methylation-based reclassification and

risk stratification of skull-base chordomas. However, the sample
Frontiers in Oncology 10
size was limited because of the relative rarity of chordomas.

Whether the immune infiltration level and activation, along with

copy number variation and stemness indices, could be used as

prognostic features or potential therapeutic targets in skull-base

chordomas needs to be studied in the future. Additionally, the

subtypes should be validated in another independent data set to

assess their prognostic performance.
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