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Abstract

DNA methylation is an essential epigenetic modification involved in regulating the expres-

sion of mammalian genomes. A variety of experimental approaches to generate genome-

wide or whole-genome DNA methylation data have emerged in recent years. Methylated

DNA immunoprecipitation followed by sequencing (MeDIP-seq) is one of the major tools

used in whole-genome epigenetic studies. However, analyzing this data in terms of accu-

racy, sensitivity, and speed still remains an important challenge. Existing methods, such as

BATMAN and MEDIPS, analyze MeDIP-seq data by dividing the whole genome into equal

length windows and assume that each CpG of the same window has the same methylation

level. More precise work is necessary to estimate the methylation level of each CpG site

in the whole genome. In this paper, we propose a Statistical Inferences with MeDIP-seq

Data (SIMD) to infer the methylation level for each CpG site. In addition, we analyze a real

dataset for DNA methylation. The results show that our method displays improved precision

in detecting differentially methylated CpG sites compared to the existing method. To meet

the demands of the application, we have developed an R package called “SIMD”, which is

freely available in https://github.com/FocusPaka/SIMD.

1 Introduction

Several studies have shown that methylation in DNA is highly related to diverse biological pro-

cesses and that aberrant methylation results in severe effects, including different types of can-

cers [1, 2]. Therefore, the research on epigenetic modifications throughout the human genome

is meaningful. Analyzing DNA methylation profiles is now feasible due to the development

of next-generation sequencing techniques, such as MethylC-seq, MeDIP-seq, MBD-seq, and

MRE-seq. In particular, bisulfite genomic DNA sequencing is the gold standard to profile

genome-wide DNA methylation [3]. Although there are several approaches (such as MethylC-

seq and whole-genome shotgun bisulfit sequencing (WGSBS)) that are reasonable for whole-

genome analysis, it is rather expensive. MeDIP-seq can achieve nearly the same results as some
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more expensive approaches at a lower cost [4]. We therefore propose a method based on

MeDIP-seq data to analyze methylation levels.

MeDIP [5] involves enrichment of the methylated DNA fractions immunoprecipitated by

5-methylcytosine-specific antibodies. Although MeDIP-seq cannot provide base pair-specific

profiles, it reflects methylation levels by the number of immunoprecipitated DNA fragments.

Compared to MeDIP-seq, which only enriches the methylated portion of the genome, we com-

bine methylation-sensitive restriction enzyme sequencing (MRE-seq) to identify unmethylated

CpGs. It utilizes methyl-sensitive restriction enzymes (MREs), such as HpaII (CĈGG), Hin6I

(GĈGC), and AciI (CĈGC) to specifically identify unmethylated CpGs [6]. The integrative

method improves accuracy to identify intermediate methylation regions and enables whole-

genome identification for epigenetic states [7].

Several computational tools have been developed for analyzing MeDIP-seq data. BATMAN

[8] defines a coupling factor to measure the varying densities of methylated CpG sites and

then implements a Bayesian deconvolution strategy to infer the methylation status at each

CpG site. Mattia Pelizzola [9] believes that the relationship between the MeDIP enrichment

estimates and the actual methylation levels are not linear and presented MEDME, which is

based on experimental and analytical methods to evaluate the actual relationship and predicted

methylation levels. The MEDIPS [10] approach is similar to the former two methods and pro-

duces similar results as BATMAN with higher computational efficiency, which significantly

reduces running time for processing MeDIP-seq data. To obtain more information for methy-

lome coverage at a lower cost, R. Alan Harris [7] has proposed a strategy to combine MeDIP-

seq and MRE-seq to calculate the methylation scores, which can be used to infer individual

CpG methylation status. The M&M [11] algorithm is another method for analyzing integrative

data, and is more accurate than other methods.

In this paper, we build a model of MeDIP-seq data based on [7] to estimate the methylation

level for a single CpG site. We attempt to summarize the algorithm into a model, which will

enable us to understand how to integrate the MRE-seq data. After MeDIP-seq and MRE-seq

experiments, we map two kinds of short reads to the reference genome. It is known that MRE-

seq short reads can be accurately mapped to the CpG site that contributes to it, but MeDIP-seq

short reads cannot be. A short read of MeDIP-seq will cover one or more CpG sites (the short

reads that cannot cover CpG sites will be discarded). Then, one short read in MeDIP-seq is

pulled from only one CpG site or several neighboring CpG sites; however, we do not know

which one. In order to identify the actual CpG sites that contribute to the short read and to

obtain the actual number of short reads on each CpG site, it is necessary to build a model and

provide statistical inferences for the MeDIP-seq data. After obtaining the actual number of

short reads on each CpG site, we utilize them to detect differentially methylated CpG sites.

The remainder of the paper is organized as follows. In Section 2, we provide a brief descrip-

tion of the model and two possible cases and then propose theorems for those assumptions. In

Section 3, we use an example to illustrate the SIMD method. In Section 4, we apply the pro-

posed method to analyze a real dataset and compare it to the existing method. In Section 5, we

end with a discussion and the conclusion.

2 Model for MeDIP-seq reads

In the MeDIP-seq experiment, genomic DNA is first isolated and sheared by sonication to

short fragments of a few hundred basepairs. In this step, the DNA fragments contain both

methylated fragments and unmethylated fragments. After immunoprecipitation with an anti-

body that can specifically bind the DNA methylation sites, the immunoprecipitated DNA

fragments will almost only comprise methylated fragments and can be PCR amplified and
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sequenced. By aligning the MeDIP-seq short reads to the reference genome, the methylation

levels of CpG sites in a region can be estimated based on the read counts in the region. This

region-based method can provide insightful answers to numerous important biological ques-

tions, but it is of low resolution and cannot provide information about the methylation status

of single CpG sites.

Though difficult, inferring the methylation level of single CpG sites based on MeDIP-seq

data is not impossible. For example, provided that the coverage of MeDIP-seq data is suffi-

ciently large, the methylation level of an isolated CpG site (a CpG site that is far away from

other CpG sites) can be easily derived. If there are MeDIP-seq reads covering the site, these

reads will not be able to cover other CpG sites, which implies that this CpG site is methylated;

otherwise, this site is not methylated. When two or more CpG sites are close to each other (the

distance between two neighboring CpG sites is less than the read length), an MeDIP-seq read

covering one CpG site will also cover its neighboring CpG site, which makes it very difficult to

determine which CpG site is methylated. However, as breakage induced by sonication is ran-

dom, with sufficient sequencing coverage we may still be able to distinguish between the meth-

ylated and unmethylated CpG sites. For example, suppose that only two CpG sites are close to

each other and are far away from other CpG sites. If only one of the two CpG sites is methyl-

ated, the DNA fragments obtained from the sonication in this region (the region that contains

the two CpG sites) can be classified into three categories: the fragments overlapping with both

CpG sites, the fragments overlapping only with the methylated CpG sites, or the fragments

overlapping only with the unmethylated CpG sites. Because the fragments in the first two (the

last) categories contain a methylated (unmethylated) CpG site, they can (cannot) be immuno-

precipitated and sequenced. Therefore, we would obtain significantly more MeDIP-seq reads

covering the methylated CpG site. Similarly, if both CpG sites are methylated, the number of

reads covering both CpG sites should be roughly the same. Based on this observation, we can

develop a statistical model to estimate the methylation level of single CpG sites.

Considering that a region C consists of G CpG sites, it is supposed that R is a random

MeDIP-seq read sequenced from the region overlapping with some of the G CpG sites. From

the MeDIP-seq experimental flow, we know that this read is sequenced because it contains at

least one methylated CpG site and therefore allows an antibody to bind to its methylated CpG

sites, which in turn makes it immunoprecipitated and sequenced. Let XRj = 1 (j = 1, � � �, G) if

the jth CpG site contributes to the sequencing of the short read R, or in other words, if the short

read R contains the jth CpG site and an antibody binds to the jth CpG site, thereby allowing the

immunoprecipitation and sequencing of short read R. Otherwise, we denote XRj = 0. Note that

because R is a random read, XRj is a random variable taking values of {0, 1}. Assume that we

have n short reads overlapping with the region C. Let Xij (i = 1, � � �, n and j = 1, � � �, G) be the

random variable as introduced above for the ith read. We denote Xi = (Xi1, Xi2, � � �Xij, � � � XiG).

We make the following assumptions about the random variables Xij.

Assumption 1. Assume that Xi1, Xi2, � � �Xij, � � � XiG are independent and follow two-point

distribution, that is,

Xij �

1 qj ¼
lj

1þ lj

0 1 � qj ¼
1

1þ lj
;

8
>>><

>>>:

where j = 1, 2, � � �G, i = 1, 2, � � �n, and qj is the probability of the jth CpG site contributing to

the sequencing of a short read. Note that this probability is composed of two parts: one is the

probability that a short read contains the jth CpG site and the other is the probability that an
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antibody actually binds to this CpG site and thus allows immunoprecipitation and sequencing

the short read.

This assumption essentially tells us that the random vectors Xi are independently and iden-

tically distributed (i.i.d.) and that their components are independent. The i.i.d. assumption of

the random vectors Xi is reasonable because the short reads can be safely viewed as indepen-

dently sampled with the same sampling procedure. The independence assumption of the

components of Xi is relatively strong because if a read contains two methylated CpG sites, the

antibody binding to one CpG site may influence the binding to the other CpG site.

Assumption 2. Assume one short read in MeDIP-seq is pulled from only one CpG site (the

case is the same as Ting’s algorithm), that is, SG
j¼1

Xij ¼ 1.

Assumption 3. Assume one short read in MeDIP-seq is pulled from not less than one

CpG site (each observed short read must be associated with not less than one CpG site on the

genome), that is, SG
j¼1

Xij � 1.

Under the above assumptions, there are some theoretical results.

Theorem 1. Under Assumptions 1 and 2, the joint distribution of Xi1, Xi2, � � �, Xij, � � �, XiG

is a multinomial distribution with probability P = (p1, p2, � � �, pj, � � �, pG), where pj ¼ lj=SG
j¼1

lj.

That is,

Xi j S
G
j¼1

Xij ¼ 1 � MultinomialðPÞ:

Proof: Please see Appendix A.

Theorem 2. Under Assumptions 1 and 3, the joint distribution of Xi1, Xi2, � � �, Xij, � � �, XiG

is:

pðXi1; � � � ; Xij; � � � ; XiG j S
G
j¼1

Xij � 1Þ ¼

QG
j¼1

qXij
j ð1 � qjÞ

1� Xij

1 �
QG

j¼1
ð1 � qjÞ

:

Proof: Please see Appendix B.

The goal of the model is to compute the number of actual short reads in each CpG site,

and to infer the methylation level. The short reads are indeed impacted by the CpG site. In

real data, a short read covers some continuous CpG sites of all G CpG sites. Then, the ith
short read is xi ¼ ð0; � � � ; 0; xiki

; � � � ; xili
; 0; � � � ; 0Þ. The CpG sites of ki, � � �, li are covered by

the ith short read. At least one of xiki
; � � � ; xili

are equal to 1, but we do not know which one.

Therefore, we assume that the xiki
; � � � ; xili

are missed. Then, we compute the actual short

read number of each CpG site using the EM algorithm. The EM steps are presented in

Appendix C.

3 An example of the model

We use a simple example to explain the model. We assume that there are five CpG sites in a

region and six short reads are mapped on the region (Fig 1).

Let Xij comes from a two-point distribution. That is,

Xij �

1 qj ¼
lj

1þ lj

0 1 � qj ¼
1

1þ lj
;

8
>>><

>>>:

ð1Þ

where j = 1, 2, � � �, 5 and i = 1, 2, � � �, 6. Therefore, the combination distribution of all CpG sites
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is:

f ðXiÞ ¼ f ðXi1;Xi2; � � � ;Xi5Þ

¼ P5

j¼1
ðqjÞ

Xijð1 � qjÞ
ð1� XijÞ

¼ P5

j¼1
ð

lj

1þ lj
Þ

Xijð
1

1þ lj
Þ
ð1� XijÞ:

In the model, there will be two cases.

3.1 Only a single CpG contributes to a short read

If one short read covers several CpG sites, it actually only comes from one of them, even

though we do not know which one it is. That is, given S5

j¼1
Xij ¼ 1, the joint distribution of

Xi1, Xi2, Xi3, Xi4, and Xi5 is a multinomial distribution with probability P = (p1, p2, p3, p4, p5),

where pj ¼ lj=S5

j¼1
lj. A short read is an observation that is Xi = (xi1, xi2, xi3, xi4, xi5), where

xij = 0 or 1. A note is that only one element of Xi is 1 and the others are 0. The xij will be 0

when the jth CpG is not covered by the ith short reads. That is,

Xi j S
5

j¼1
Xij ¼ 1 � MultinomialðPÞ:

Then, the profile log likelihood is:

lðx; PÞ ¼
X5

j¼1

X6

i¼1

xijlogðpjÞ:

We know the observation from Fig 1 is:

X ¼

1 0 0 0 0

x21 x22 0 0 0

x31 x32 x33 0 0

0 0 x43 x44 0

0 0 x53 x54 x55

0 0 0 0 1

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

: ð2Þ

In the second short read, we know that one of x21 and x22 is 1, but we do not know which

one. Therefore, we consider x21 and x22 as latent variables and estimate P using the EM algo-

rithm, which is given below:

Fig 1. Short reads mapped to reference regions. For example, there are six short reads that cover five CpG sites.

https://doi.org/10.1371/journal.pone.0201586.g001
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E-step:

Given the current estimation P− for P, the conditional expectation of the log complete data

likelihood is:

QðP j P� Þ ¼ EðlðP j XðobsÞÞÞ j P� Þ

¼
X5

j¼1

X6

i¼1

~xijlogðpjÞ:

Given this observation, E-step [12] consists of computing the following quantities:

~xij ¼ EðXij j P� ;XðobsÞÞ;

therefore,

QðP j P� Þ ¼ ð1þ
p�

1

p�
1
þ p�

2

þ
p�

1

p�
1
þ p�

2
þ p�

3

Þlogðp1Þ

þ ð
p�

2

p�
1
þ p�

2

þ
p�

2

p�
1
þ p�

2
þ p�

3

Þlogðp2Þ

þ ð
p�

3

p�
1
þ p�

2
þ p�

3

þ
p�

3

p�
3
þ p�

4

þ
p�

3

p�
3
þ p�

4
þ p�

5

Þlogðp3Þ

þ ð
p�

4

p�
3
þ p�

4

þ
p�

4

p�
3
þ p�

4
þ p�

5

Þlogðp4Þ

þ ð
p�

5

p�
3
þ p�

4
þ p�

5

þ 1Þlogðp5Þ:

M-Step:

During the M-step, the goal is to maximize Q(P j P−) with respect to P, which requires solv-

ing @Q(P j P−)/@P = 0 subject to
P5

j¼1
pj ¼ 1. That is,

Q� ¼ QðP j P� Þ � lð
X5

j¼1

pj � 1Þ:

Then, we solve the following equation system to obtain updated parameter estimates:

@Q�

@Pj
¼ 0:

Therefore, the update formula of P changed, as follows:

p̂1 ¼ ð1þ
p�

1

p�
1
þ p�

2

þ
p�

1

p�
1
þ p�

2
þ p�

3

Þ=6;

p̂2 ¼ ð
p�

2

p�
1
þ p�

2

þ
p�

2

p�
1
þ p�

2
þ p�

3

Þ=6;

p̂3 ¼ ð
p�

3

p�
1
þ p�

2
þ p�

3

þ
p�

3

p�
3
þ p�

4

þ
p�

3

p�
3
þ p�

4
þ p�

5

Þ=6;

p̂4 ¼ ð
p�

4

p�
3
þ p�

4

þ
p�

4

p�
3
þ p�

4
þ p�

5

Þ=6;

p̂5 ¼ ð
p�

5

p�
3
þ p�

4
þ p�

5

þ 1Þ=6:

Methylation-level and differential methylation
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The iteration process is the same as Ting’s algorithm when we give equal value to the start-

ing value for pð0Þi . In fact, the starting value does not affect the convergence value. Then, [6P] is

the number of short reads at each CpG site.

3.2 At least a CpG contributes to a short read

If one short read covers several CpG sites, it actually comes from at least one of them, even

though we do not know which CpG sites they are. Then, under the condition S5

j¼1
Xij � 1, the

distribution of Xi = (Xi1, Xi2, Xi3, Xi4, Xi5) is:

pðXi1; Xi2; Xi3; Xi4; Xi5 j S
5

j¼1
Xij � 1Þ;

¼
pðXi1; Xi2; Xi3; Xi4; Xi5Þ � pðXi1; Xi2; Xi3; Xi4; Xi5; S5

j¼1
Xij ¼ 0Þ

pðS5

j¼1
Xij � 1Þ

¼

Q5

j¼1
qXij

j ð1 � qjÞ
1� Xij

1 �
Q5

j¼1
ð1 � qjÞ

;

where qj is defined in formula (1).

We know the observation is expressed in the matrix as (2). In the second read, we know

that some of x are indeterminate. Therefore, we consider the missed values of x as latent vari-

ables and estimate q = (q1, � � �q5) using the EM algorithm.

E-step:

Given the current estimation q− for q, the conditional expectation of the log complete data

likelihood is given as:

Qðq j q� Þ ¼ Eðlðq j xðobsÞÞÞ j q� Þ

¼
X5

j¼1

X6

i¼1

~xijlogðqjÞ � 6logð1 � P5

j¼1
ð1 � qjÞÞ;

where ~xij is replaced by the condition expectation.

~xij ¼ EðXij j q� ; xðobsÞÞ;

for example, ~x21 ¼ EðX21 j P� ; x23 ¼ 0; x24 ¼ 0; x25 ¼ 0Þ ¼
q�

1

1� P2
j¼1
ð1� q�j Þ

.

Therefore,

QðP j P� Þ ¼ ð1þ
q�

1

1 � P2

j¼1
ð1 � q�j Þ

þ
q�

1

1 � P3

j¼1
ð1 � q�j Þ

Þlogðq1Þ

þ ð
q�

2

1 � P2

j¼1
ð1 � q�j Þ

þ
q�

2

1 � P3

j¼1
ð1 � q�j Þ

Þlogðq2Þ

þ ð
q�

3

1 � P3

j¼1
ð1 � q�j Þ

þ
q�

3

1 � P4

j¼3
ð1 � q�j Þ

þ
q�

3

1 � P5

j¼3
ð1 � q�j Þ

Þlogðq3Þ

þ ð
q�

4

1 � P4

j¼3
ð1 � q�j Þ

þ
q�

4

1 � P5

j¼3
ð1 � q�j Þ

Þlogðq4Þ

þ ð
q�

5

1 � P5

j¼3
ð1 � q�j Þ

þ 1Þlogðq5Þ � 6logð1 � P5

j¼1
ð1 � qjÞÞ:

M-Step:

Methylation-level and differential methylation
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During the M-step, the goal is to maximize Q(q j q−) with respect to q, which requires solv-

ing @Q(q j q−)/@q = 0. That is,

Q� ¼ Qðq j q� Þ � lð
X5

j¼1

qj � 1Þ:

Then, we solve the following equation system to obtain updated parameter estimates:

@Q�

@qj
¼ 0:

Therefore, the update formula of q is changed, as follows:

q̂1 ¼ ð1þ
q�

1

1 � P2

j¼1
ð1 � q�j Þ

þ
q�

1

1 � P3

j¼1
ð1 � q�j Þ

Þð1 � P5

j¼1
ð1 � q�j ÞÞ=6;

q̂2 ¼ ð
q�

2

1 � P2

j¼1
ð1 � q�j Þ

þ
q�

2

1 � P3

j¼1
ð1 � q�j Þ

Þð1 � P5

j¼1
ð1 � q�j ÞÞ=6;

q̂3 ¼ ð
q�

3

1 � P3

j¼1
ð1 � q�j Þ

þ
q�

3

1 � P4

j¼3
ð1 � q�j Þ

þ
q�

3

1 � P5

j¼3
ð1 � q�j Þ

Þð1 � P5

j¼1
ð1 � q�j ÞÞ=6;

q̂4 ¼ ð
q�

4

1 � P4

j¼3
ð1 � q�j Þ

þ
q�

4

1 � P5

j¼3
ð1 � q�j Þ

Þð1 � P5

j¼1
ð1 � q�j ÞÞ=6;

q̂5 ¼ ð
q�

5

1 � P5

j¼3
ð1 � q�j Þ

þ 1Þð1 � P5

j¼1
ð1 � q�j ÞÞ=6:

The starting value does not affect the convergence value. Then, ½6q=ð1 � P5

j¼1
ð1 � qjÞÞ� is

the number of short reads at each CpG site.

4 Real data analysis

To evaluate the performance of the proposed method, we compare it with the existing

method (Raw) that directly uses the observation fragments. The data comes from paper

[11], which includes 19 human samples. In this paper, we only consider two samples,

embryonic stem cells (the ES cell line H1) and human fetal neural stem cells (NSCs) culture

(HuFNSC02, neurosphere cultured cells, ganglionic eminence derived, fetal age of 21

weeks). Then, we obtained the MeDIP-seq and MRE-seq data for each sample. Similar to the

analysis procedure for the M&M method, we test the performance of SIMD and the existing

method by pair-wise comparisons between two H1-ESC replicates and between H1-ESCs

and fetal NSCs. The difference between the two tests is that we detect differentially methyl-

ated CpG sites in this paper; however, the test of the M&M method is to determine differen-

tially methylated regions (DMRs).

We consider the false positive rates for two methods. We apply SIMD and the existing

method to the two H1-ESC replicates and use the hypothesis test to obtain the P-values for

each CpG site. Because the H1-ESC samples are biological replicates, we consider the different

methylated CpG sites as the false discovery sites at any P-value cutoff. The results are repre-

sented in Table 1. It is evident from the table that at the same P-value cutoff, SIMD usually

reports fewer differentially methylated CpG sites than the exisiting method; for example, when

the P-value cutoff equals 10−5, the number of differentially methylated CpG sites for the exist-

ing method is seven times more than for SIMD. There are approximately 1751273 CpG sites in
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chromosome 1 of the human reference sequence (excluding blacklist regions). We can

then calculate the false positive rates for two methods at any P-value cutoff. Obviously, from

Table 1, we can see that false positive rates of SIMD are significantly less than those of the exist-

ing method.

Next, we consider the false discovery rates(FDRs) for two methods. We compare two differ-

ent cell types, H1-ESC and fetal NSCs, and use the same P-value cutoffs as the first test. We

obtain the number of differentially methylated CpG sites for two methods. Combining the

results of the two H1-ESC replicates for analysis, we obtain the false discovery rates at any P-

value cutoff. From Table 2, we can see that the number and FDRs of SIMD are no better than

the existing method when the cutoffs are larger than 10−6. However, when cutoffs are smaller

than 10−6, the FDRs of SIMD are obviously less than those of the existing method. Next, we

further consider the q-value cutoffs in Table 3, similar to the P-value cutoff, and find that the

number of differentially methylated CpG sites of SIMD is far less than in the method at each

q-value level (approximately 1/20 of the existing method). However, the FDRs of the existing

method are larger than the overall SIMD.

Table 1. The false positive numbers of two methods at each p-value cutoff (two H1-ESCs).

Levels 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8

False positive numbers

SIMD 3621 1054 295 115 45 33

Raw 13336 4915 2089 1047 607 415

https://doi.org/10.1371/journal.pone.0201586.t001

Table 2. The differentially methylated site number of two methods at each p-value cutoff (chr1 of H1 vs HuFNSC02).

Levels 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8

Differentially methylated

CpG sites number

SIMD 7830 2518 838 395 198 135

Raw 31653 12796 5997 3304 2110 1474

FDRs of two methods

SIMD 0.46245 0.41858 0.35202 0.29113 0.22727 0.24444

Raw 0.42131 0.38410 0.34834 0.31688 0.28767 0.28154

https://doi.org/10.1371/journal.pone.0201586.t002

Table 3. The number of differentially methylated sites derived from two methods at each q-value cutoff (chr1 of H1 vs HuFNSC02).

Levels 5e-2 1e-2 1e-3 1e-4 1e-5 1e-6

Differentially methylated

CpG sites number

SIMD 1259 542 199 105 67 33

Raw 27412 11106 4070 2100 1363 885

FDRs of two methods

SIMD 0.36536 0.31549 0.22110 0.22857 0.17910 0.2121

Raw 0.41853 0.38015 0.32776 0.29142 0.27953 0.2655

https://doi.org/10.1371/journal.pone.0201586.t003
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5 Discussion

Identifying differentially methylated CpG sites across a whole genome is an effective way to

study epigenetic modification. In dealing with the data integrated by MeDIP-seq and MRE-

seq, estimating the methylation level is the first choice. In this paper, we proposed a SIMD

method that considers the possible structure whereby immunoprecipitated short reads are

mapped to the methylated CpG sites. We then proposed two cases based on it, one in which

only a single CpG site contributes to a short read and another in which more than one CpG

site contributes to a short read. By applying the SIMD method, we can obtain the real number

of short reads in each CpG site. Last, we employ the hypothesis test framework to detect the

differentially methylated CpG sites.

In real data analysis, we compare the proposed SIMD method with the existing method

(Raw). The results demonstrate that although the number of differentially methylated CpG

sites detected by the SIMD method is less than those detected by the existing method, the

FDRs of the SIMD are much smaller than those of the existing method. The conclusion is that

the proposed method performs better than the existing method. There are still some problems,

such as the assumption of independence between the short reads. When the independence

condition cannot be satisfied, the proposed method may work not very well. Therefore, in our

future work, we will take the correlation between the short reads that are mapped to the neigh-

boring CpG sites into account.

Appendix A: Proof of Theorem 1

Under Assumption 1, the joint distribution of (Xi1, Xi2, � � �, Xij, � � �, XiG) is

PðXi1; Xi2; � � � ;Xij; � � � ; XiGÞ ¼
YG

j¼1

ð
lj

1þ lj
Þ

Xijð
1

1þ lj
Þ

1� Xij ;

then,

PðXi1; Xi2; � � � ;Xij; � � � ; XiG j S
G
j¼1

Xij ¼ 1Þ

¼
PðXi1; Xi2; � � � ;Xij; � � � ; XiG;S

G
j¼1

Xij ¼ 1Þ

PðSG
j¼1

Xij ¼ 1Þ

¼

QðG� 1Þ

j¼1
ð

lj

1þ lj
Þ

Xijð
1

1þ lj
Þ

1� Xijð
lG

1þ lG
Þ
ð1�
PðG� 1Þ

j¼1
XijÞ
ð

1

1þ lG
Þ

PðG� 1Þ

j¼1
XijÞ

PG
j¼1

lj

¼

QðG� 1Þ

j¼1
l

Xij
j l

ð1�
PðG� 1Þ

j¼1
XijÞ

G
PG

j¼1
lj

¼
YðG� 1Þ

j¼1

ð
lj

PG
j¼1

lj

Þ
Xijð

lG
PG

j¼1
lj

Þ
ð1�
PðG� 1Þ

j¼1
XijÞ
:

This is the end of the proof.
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Appendix B: Proof of Theorem 2

PðXi1; Xi2; � � � ;Xij; � � � ; XiG j S
G
j¼1

Xij � 1Þ

¼
PðXi1; Xi2; � � � ;Xij; � � � ; XiG;S

G
j¼1

Xij � 1Þ

PðSG
j¼1

Xij � 1Þ

¼
PðXi1; Xi2; � � � ;Xij; � � � ; XiGÞ � PðXi1; Xi2; � � � ;Xij; � � � ; XiG;S

G
j¼1

Xij ¼ 0Þ

1 � PðSG
j¼1

Xij ¼ 0Þ

¼

QG
j¼1

qXij
j ð1 � qjÞ

1� Xij

1 �
QG

j¼1
ð1 � qjÞ

;

where PðXi1; Xi2; � � � ;Xij; � � � ; XiG j S
G
j¼1

Xij ¼ 0Þ ¼ 0 in real data. This is the end of the proof.

Appendix C: EM algorithm for Theorems 1 and 2

We know the observation is

X ¼

0 � � � 0 x1k1
� � � x1l1

0 � � � 0

0 � � � 0 x2k2
� � � x2l2

0 � � � 0

� � � � � � � � � � � � � � �

0 � � � 0 xiki
� � � xili

0 � � � 0

� � � � � � � � � � � � � � �

0 � � � 0 xnkn
� � � xnln

0 � � � 0

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

;

where xiki
; � � � ; xili

are missed data. However, we know some of xiki
; � � � ; xili

are 1 and others

are 0. Therefore, the observation of each read is xðobsÞ ¼ ðxðobsÞ
1 ; xðobsÞ

2 ; � � � ; xðobsÞ
n Þ, where

xðobsÞ
i ¼ ðxi1 ¼ 0; � � � ; xiðki � 1Þ ¼ 0; xiðliþ1Þ ¼ 0; � � � ; xiG ¼ 0Þ. There are two cases.

(1) Only a single CpG contributes to a short read:

If one short read covers several CpG sites, it actually only comes from one of them, even

though we do not know which one it is. That is, we have known that SG
j¼1

Xij ¼ 1, the joint dis-

tribution of Xi1, � � �, and XiG is a multinomial distribution with probability P = (p1, � � �, pG),

where pj ¼ lj=SG
j¼1

lj. A short read is an observation that is Xi = (xi1, xi2, � � �, xiG), where xij = 0

or 1. A note is that only one element of Xi is 1 and the others are 0. The xij will be 0 when the

jth CpG is not covered by the ith short reads. That is,

Xi j S
G
j¼1

Xij ¼ 1 � MultinomialðPÞ:

Then, the profile log likelihood is:

lðx; PÞ ¼
XG

j¼1

Xn

i¼1

xijlogðpjÞ:

The EM algorithm is

E-step:

Given the current estimate P− for P, the conditional expectation of the log complete data

likelihood is given as:
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QðP j P� Þ ¼ EðlðP j xðobsÞÞÞ j P� Þ

¼
XG

j¼1

Xn

i¼1

~xijlogðpjÞ:

Given this, the E-step [13] consists of computing the following quantities:

~xij ¼

(
EðXij j P� ; xðobsÞ

i Þ ki � j � li;

0 others:

We know that the marginal distribution of xiki
; � � � ; xili

is also a multinomial distribution or

binomial distribution. Then ~xij ¼
p�jPli
s¼ki

p�s
, where ki� j� li.

M-Step:

During the M-step, the goal is to maximize Q(P j P−) with respect to P, which requires solv-

ing @Q(P j P−)/@p = 0 subject to
PG

j¼1
pj ¼ 1. That is,

Q� ¼ QðP j P� Þ � lð
XG

j¼1

pj � 1Þ:

Then, we solve the following equation system to obtain updated parameter estimates:

@Q�

@Pj
¼ 0:

Thus, given below is the updated formula of P:

p̂j ¼
Xn

i¼1

~xijðP
� Þ=n:

The iteration process is the same as Ting’s algorithm when we give equal value to the start-

ing value for pð0Þi . In fact, the starting value does not affect the convergence value. Then, [nP] is

the number of short reads at each CpG site.

(2) The case that at least a CpG contributes to a short read:

The process of the proof is the same as (1).
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