M ethylation: lost in hydroxylation?
 SarahC. Trewidk*, Paul J. Md_aughlin* \& Rdbin C. Allshire ${ }^{+}$
 WellcomeTrust Centrefor Cell Biology, University of Edinburgh, Edinburgh, UK

Abstract

Methylation of histone tails is a key determinant in forming active and silent states of chromatin. Histone methylation was regarded as irreversible until the recent identification of a lysinespecific histone demethylase (LSD 1), which acts specifically on mono- and dimethylated histone H3 lysine 4. Here, we propose that the fission yeast protein Epe1 is a putative histone demethylase that could act by oxidative demethylation. Epel modulates the stability of silent chromatin and contains a JmjC domain. The Epel protein can be modelled onto the structure of the 2-oxoglutarate-Fe(II)-dependent dioxygenase, factor inhibiting hypoxia inducible factor (FIH), which is a protein hydroxylase that also contains a JmjC domain. Thus, Epel and certain other chromatin-associated JmjC-domain proteins may be protein hydroxylases that catalyse a novel histone modification. Another intriguing possibility is that, by hydroxylating the methyl groups, Epel and certain other JmjC-domain proteins may be able to demethylate mono-, di- or trimethylated histones.

Keywords: JmjC; chromatin; Epel; oxidative demethylation
EMBO reports(2005) 6, 315-320. doi:10.1038/sj.embor.7400379

Introduction

In eukaryotic cells, DNA is packaged in the form of chromatin. The nucleosome is the basic unit of chromatin and consists of 146 base pairs of DNA wrapped around an octamer of four core histones ($\mathrm{H} 2 \mathrm{~A}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 3$ and H 4). The amino-terminal tails of the histone proteins protrude from the nucleosome core and are subject to a diverse array of post-translational modifications that include acetylation, methylation, phosphorylation and ubiquitination. It has been suggested that distinct histone modifications act sequentially or in combination to form a 'histone code' (Strahl \& Allis, 2000). The code can be read and interpreted by nonhistone proteins that bind chromatin in a modification-sensitive manner, which regulates chromatin organization, transcription,

[^0]Submitted 9 D ecember 2004; accepted 28 January 2005

DNA replication and repair. For example, methylation of individual lysine or arginine residues within histone tails has been causally linked to either transcriptional activation or repression (Kouzarides, 2002; Zhang \& Reinberg, 2001). M ethylation of histone H3 on lysine 9 allows binding of chromodomain proteins, such as heterochromatin protein 1 (HP1) or Swi6, which contribute to the formation of silent chromatin. In contrast, methylation of histone H 3 lysine 4 is linked to transcriptional activation (Lachner et al, 2003).

As gene expression is often regulated temporally during the cell cycle or development, particular chromatin modifications must also be dynamic. It is clear that histone acetylation, phosphorylation and ubiquitination are reversible; pairs of antagonistic enzymes catalyse the addition and removal of these modifications (Jenuwein \& Allis, 2001). However, for many years, histone methylation was regarded as a stable and irreversible epigenetic mark, which committed the chromatin to a specific transcriptional state (Jenuwein \& Allis, 2001; Rice \& Allis, 2001). This view was supported by the lack of any identifiable histone demethylase activities and by studies suggesting that histone proteins, and the methylated residues within them, have a similar turnover rate (Byvoet et al, 1972; Duerre \& Lee, 1974).

Histone methylation is dynamic

The dogma that histone methylation is irreversible has now been disproved. Analysis has shown that certain forms of histone methylation are dynamic. For example, H3 lysine 9 methylation in certain inducible inflammatory genes is erased on activation and restored with post-induction transcriptional repression (Saccani \& Natoli, 2002), and histone H3 lysine 4 methylation at a tandem array of mouse mammary tumour virus promoters is rapidly downregulated on glucocorticoid treatment (Ma et al, 2001).

Several mechanisms have been proposed for the removal of histone methylation, such as the replacement of methylated histones by histone exchange. Higher eukaryotes have a histone H3 variant, H3.3, which is deposited in a replication-independent fashion at transcriptionally active foci throughout the cell cycle (Ahmad \& Henikoff, 2002). In real-time analysis of a single cell, H3 lysine 9 methylation was depleted as histone H3.3 was deposited at active foci (Janicki et al, 2004). Methylated histone tails could also be cleaved off, which effectively removes methylation. Evidence for this exists in Tetrahymena, in
which the tails of histones H 3 and H 4 are subject to proteolytic processing (Allis et al, 1980; Lin et al, 1991). Both of the above mechanisms ultimately require replacement of the resident histones, but the most direct way of removing histone methylation is by enzymatic demethylation.

Histone demethylases

Arginine is susceptible to enzymatic conversion forming a nonstandard amino acid. Human peptidylarginine deiminase 4 (PAD4/PADI4) is capable of converting monomethylated arginines in histones H 3 and H 4 to citrulline by demethylimination. How ever, although this is effectively histone demethylation, it does not represent simple reversal of arginine methylation as the arginine residue is converted to citrulline. The fate of the citrulline residues remains unknown. It is possible that the citrulline is converted back to arginine by an aminotransferase or that the histones containing citrulline are replaced by unmodified versions. H ow ever, PAD 4/PADI4 also acts on unmethylated arginine to create citrulline, which can no longer be methylated by methyltransferases, suggesting that the role of PAD 4/PADI4 may be to deplete the histone substrate for methyltransferases (Cuthbert et al, 2004; Wang et al, 2004).

The existence of enzymes that directly demethylate histone arginine and lysine residues had been doubted, partly because the amino-methyl bond is refractory to direct cleavage. A histone demethylase activity was described in 1973 (Paik \& Kim, 1973), but its molecular identity was never established. How ever, a direct histone demethylase has recently been found.

Amine oxidases were suggested as potential histone demethyIases (Bannister et al, 2002), and the elucidation of the function of lysine-specific demethylase 1 (LSD 1) confirms this hypothesis. LSD 1 is a flavin-dependent amine oxidase that is able to specifically demethylate mono- and dimethylated histone H3 lysine 4 (Shi et al, 2004). LSD 1 is proposed to catalyse the oxidation of amine via the oxidative cleavage of the $\alpha-\mathrm{CH}$ bond of the substrate to form an imine intermediate with the concomitant reduction of the flavin cofactor. The imine intermediate is hydrolysed via a non-enzymatic process to produce a carbinolamine-an unstable group that degrades to release formaldehyde-thereby regenerating the demethylated lysine residue. LSD 1 is specific for histone H3 lysine 4 methylation and although LSD 1-related proteins could act on other types of histone methylation, only mono- and dimethylated lysine or arginine resides can be demethylated by amine oxidases. This is because formation of the imine intermediate requires a protonated lysine, thereby precluding trimethylated lysines as substrates for amine oxidases. Therefore, other classes of enzymes may also carry out histone demethylation.

It has been hypothesized that direct demethylation of histones could also be catalysed by a subfamily of histone acetyltransferases that are related to elongation protein 3 (Elp3; Chinenov, 2002). In addition to a histone-acetyltransferase domain in the carboxyl terminus, these proteins have an amino-terminal domain similar to that of S-adenosylmethionine (SAM) radical enzymes. These enzymes all catalyse reactions starting with the creation of a reactive 5'deoxyadenosyl radical from SAM. The 5'deoxyadenosyl radical could abstract a proton from the N -methyl group of methyl-lysine or methyl-arginine, which yields an ammonium cation radical. This intermediate is unstable

Fig1| Predicted structure of Epel modelled on the structure of FIH . The three-dimensional-jury algorithm implemented on the meta-server http://Biol nfo.PL/M eta/ was used to predict the fold of the Epel protein (Ginalski etal, 2003). All 11 algorithms found FIH to be the best hit. The consensus score of 145 is much greater than the cut-off value of 40 , at which there is 90% confidence that the prediction has found the correct fold. The JmjC domain including the double-stranded β-helix (DSBH) is shown in cyan and the eight strands of the DSBH arenumbered 1-8, corresponding to β-strands $8-15$ of FIH, as defined by the PDBsum entry for 1 h 2 k . The fold is viewed roughly in the direction of attack of the substrate, which would be positioned over the Fe^{2+} ion. The black dots represent insertions in Epel not present in FIH and the magenta-striped regions are deletions in Epel not present in FIH . Insertions or deletions are in surface loops, not within the secondary structure elements or the core of the molecule. Trimethyl-lysine can be modelled in our predicted structure; none of the methyl groups makes a steric clash in the model and all can be accommodated simultaneously.
to hydrolysis and produces a demethylated residue and formaldehyde. Because a protonated nitrogen is not required, this reaction mechanism is compatible with demethylation of trimethylated substrates. Elp3 has been isolated as part of a larger six-subunit complex that is specifically associated with elongating RN A polymerase II (W inkler et al, 2001).

Theoretically, methylation could be removed from histones by hydroxylation of the methyl group. This reaction could be catalysed by enzymes such as the 2-oxoglutarate (2-OG)-Fe(II)dependent dioxygenases, which use Fe(II) in their active site to activate a molecule of dioxygen to form a highly reactive oxoferryl $(\mathrm{Fe}(\mathrm{IV})=0)$ species, which can hydroxylate the substrates of the enzyme. Hydroxylation can lead to demethylation; an example of this is the catalysis by the DNA repair demethylase AlkB. AlkB is a 2-OG-Fe(II)-dependent dioxygenase that hydroxylates the methyl groups of certain forms of DNA methylation damage. The oxidized products are thought to be unstable and spontaneously degrade to release formaldehyde, which results in the removal of the methyl group from DNA (Falnes et al, 2002; Trewick et al, 2002). Recently, a protein, Epe1, has been described in fission yeast, Schizosaccharomyces pombe, that affects heterochromatin integrity (Ayoub et al, 2003). We predict that Epel and other related proteins are good candidates for enzymes that act to remove methyl groups from histones by this hydroxylation mechanism.

Epel affects heterochromatin and has a JmjC domain

The Epel protein is required for heterochromatin integrity in fission yeast. In the absence of Epe1, silent chromatin at centromeres and the mating type loci are destabilized, which leads to
the disruption of the pattern of histone H 3 lysine 4 and lysine 9 methylation within and adjacent to these domains (Ayoub et al, 2003). Using yeast two-hybrid assays, we have also identified Epel as a protein that interacts with Swi6 (equivalent to metazoan

Q9NWT6	186-297 FIH
hs Q8NHH6	162-273 PASS1
Q9H7H5	199-299 FXLB
Q8NHM5	229-329 JEMMA
m Q7YU79	231-331
075151	236-336 PHF2
Q7T0U8	237-337
094603	284-385 EPE1
013977	225-332
Q7YWV4	139-241
Q9UPS0	1573-1730 5qNCA
Q63679	993-1150 TSGA
Q9P2G7	1048-1206
Q8C5Q9	167-325
043593	994-1140 Hair
Q9Y3Q5	486-602 PLU-1
P29375	470-586 RBP2
Q9BY66	491-607 SMCY
P41229	501-617 JD1C
Q9HFW4	737-853 RUM1
P47156	414-532 YJ89
Q9STM3	233-352
P39956	222-338 YEZ9
Q8BXY9	102-218
Q03833	191-307
Q92833	916-1031 Jumon
014607	1080-1188 UTY
Q7Szz1	1088-1196
Q8IUM5	174-288 PTDSR
097101	150-261 CBFA

hs Q9NWT6 186-297 FIH hs Q8NHH6 162-273 PASS1
hs Q9H7H5 199-299 FXLB $\begin{array}{ll}\text { hs Q8NHM5 } & 229-329 \\ \text { dm Q7YU79 } & 231-331\end{array}$ hs 075151 236-336 PHF2 xl Q7T0U8 237-337 sp 094603 284-385 EPE1 $\begin{array}{lll}\text { SP O13977 } & 225-332 \\ \text { ce O7YWV4 } & 139-241\end{array}$ hs Q9UPSO 1573-1730 5qNCA rn Q63679 993-1150 TSGA hs Q9P2G7 1048-1206 mm Q8C5Q9 167-325 hs 043593 994-1140 Hair hs Q9Y3Q5 486-602 PLU-1 hs P29375 470-586 RBP2 hs Q9BY66 491-607 SMCY hs P41229 501-617 JD1C um Q9HFW4 737-853 RUM1 sc P47156 414-532 YJ89 at Q9STM3 233-352 sc P39956 222-338 YEZ9 mm Q8BXY9 102-218 sc Q03833 191-307 hs Q92833 916-1031 Jumonj hs 014607 1080-1188 UTY br Q7SZZ1 1088-1196 hs Q8IUM5 174-288 PTDSR dd 097101 150-261 CBFA
 ITAEDRRVGTTNLHLDVSDAVNVMVYVGIPIGEGAHDEE.VLKTIDEGDADEVTKQRIHDGKEKPGALWHIYAAKDAEKIRELIR ITPEDRKYGTTNLHLDVSDAANVMVYVGIPKGQCEQEEE.VLRTIQDGDSDELTIKRFIEGKEKPGALWHIYAAKDTEKIREFLK VAAKDHDIGTTNLHIEVSDVVNILVYVGIAKGNGILSKAGILKKFEEEDLDDILRKRLKDSSEIPGALWHIYAGKDVDKIREFLQ VSPHRGHLGTKNL CVEVADIVSILVHAIAKGNGVLSKAGILKKFEEEELDDVLRKRLKDSSEIPGALWHIYAGKDVDKIREFLQ
 WLYVGMCFSSFCWHIEDHWSYSINYLHWGEP WLYVGMCFSSFCWHIEDHWSYSINYLHWGEP WLYVGMVFSAFCWHIEDHWSYSINYLHWGEP
WLYVGMVFSAFCWHIEDHWSYSINYLHWGEP WLYVGMVFSAFCWHIEDHWSYSINYLHWGEP WIYVGMIFSTFCWHNEDHYTYSINYQHWGET WIYIGSLFSTFCWHMEDQYTLSANYQHEGDP
MVYVAMMFSWFAWHVEDHDLHSLNYLHMGAG MVYVAMMFSWFAWHVEDHDLHSLNYLHMGAG
YLYAGLWKASFSWHLEDODLYSINYIHFGAP YLYAGLWKASFSWHLEDQDLYSINYIHFGAP YLYFGMWKTTFAWHTEDMDLYSINYLHFGEP RLITGQSKCIFPWHLDEQNKCSINYLHFGAP WLNIGMVFSTSCWSRDQNHLPYIDYLHTGAD QLYMKVPGSRTPGHQENNNFCSVNINIGPGD QLYMKVPGSRTPGHQENNNFCSVNINIGPGD WFVMGPPRSGTGIHIDPLGTSAWNALVQGH. LVYIGSNGTYTPGHIDMCGSLSQNLMVSSDQD

KTWYGVPGYAAEQLENVMK
KTWYGVPSHAAEQLEEVMR
TWYGVPSHAAEQLEEVMR
KTWYGVPSLAAEHLEEVMK
KTGUR
KTWYGIPGEDAEKFENAMR
KVWYSIPESGCTKFNDLLN
KTWYGVPKDAALAFEEVVR
KQWYS IPQEDRFKFYKFMQ
KSWYAIPPEHGKRLERLAQ
KQWYSIPSANTDQFLKILS
CIWYCIPAEEENKLEDVVH
CEWFVVPEDYWGVLNDFCE
CEWFAVHEHYWKAISDFCE
KRWCLFPTSTPRELIKVTR
AFAWWFIVPTEYKDEA
■
$\xrightarrow{4}$
KRCILFPPDQFECL
KRWHLFPPEDTPFL
KVFWLIPPTAHN
IFWLIPPTLHN
VFWLIPPTDRN
KTFYLIRPASAN
KFYLIQPTKTN
KIFYLIPGTSKN
KCWLFIDPKDLQ KQWFMMPPG

YPTRVHHP. CDRQSQVDFDNPDYERFPNFQNVVGYETVVGP EESSVFSKINVVNPDLKRFPQFRKAQRHAVTLSP LELYENWLLSG. KQGD. IFLGDRVSDCQRIELKQG LALYEEWVLSG. KQSD. IFLGDRVERCQRIELKQG ISLYERWRSAS. NHSE.MFFADQVDKCYKCIVKQG LALFECWSSSS. NQNE. MFFGDQVDKCYRCPVKQG WEAYTAWLTSS. NDSDKKFLPNMVDVCYCVEVHSQ ASAYTAWLTSS. NDSDKKFLPNMVDVROLPSITKDDLFRGPLVNHRHITKIIFQ...QTILVPSGWIYAVVTPCD ASLYDDQQLPSWITKDDLFRGPLVNHRHLIKILFQYPGOTVFVPSGWYHOVLNIGT TLSINHNW CISINHNW CIKVAEDF CIKVAEDF CIQVTEDF CVQVTEDF TVSVTQHF NFAEAVNF NFAEAVNF NFAEAVNF
NFAEAVNF NFAEAVNF NLNEAVNF NFNEAVNF NFGEASNI NLAESVNF NCAESTNF NFGESIEF SVSETVHF CNNIAWNV
CNNIAWNV CNNIAWNV
TIAITQNF GISTKVAW

Fig2|Multiplesequencealignment of JmjC domains. TheJmjC domains of several proteins werealigned using Clustal W. The position of the β-sheets from the crystal structure of Q9NM T6 (Homo sapiensFIH) areillustrated above the alignment. Positions with similarity scores greater than 0.5 arehighlighted in yellow. TheFe(II) co-ordinating residues (predicted) are marked with a red asterisk. The2-OG-Fe(II)-dependent dioxygenases bind Fe(II) using the consensus HXD/EXnH. These residues are conserved in most of theJmjC-domain sequences. A subgroup of JmjC domains, including Epel and thePH D-finger protein 2, use another Fe (II) co-ordinating residue, tyrosine, in place of the second histidine in this motif, which leads us to predict that Epel co-ordinates Fe (II) with H is 297, Glu 299 and Tyr 370. Thehairless and Jumonji proteins havecysteine and serineresidues, respectively, instead of thefirst conserved histidine of the ironbinding motif. TheJumonji protein also has a valine residueinstead of the second histidineso may be catalytically inactive. The 2-OG binding residues (predicted) are shown with green squares. In general, the 2-OG-Fe(II)-dependent dioxygenases use an arginineor lysine residue downstream of the iron-binding motif in strand 8 of theDSBH to interact with the5-carboxylate of 2-OG. However, structural and sequence analysis of theJmjC-domain protein FIH demonstrates that FIH interacts with 2-OG in a different manner via a threonine (Thr 196) and alysine (Lys 214) residue in strand 2 and strand 4 of theDSBH, respectively, and by an upstream tyrosine (Tyr 145) residue (Elkins et al, 2003). These 2-OG-interacting residues are conserved in many of theJmjC proteins including Epe1. Species abbreviations: at, Arabidopsisthaliana; br, Brachydanio rerio; ce, Caenorhabditis elegans; dd, Dictyostelium discoideum; dm, Drosophila melanogaster; hs, H omo sapiens; mm, M us musculus; rn, Rattus norvegicus; sc, Saccharomyces cerevisiae; sp, Schizosaccharomyces pombe; um, Ustilago maydis; xl, Xenopuslaevis.

A

B

Methyl-lysine

Fig3| Demethylation by hydroxylation. (A) M echanism of demethylation of 3-methylcytosine by AlkB. (B) Proposed mechanism of demethylation of histones by Epel and/or other JmjC-domain proteins. The demethylation of monomethyl-lysineisillustrated for simplicity; however, di- or trimethylated residues could also be substrates.

HP1), which in turn uses its chromodomain to bind histone H3 which is methylated at lysine 9 (E. Minc, R. Antonelli, H. Teunissen and R. Allshire, unpublished data). Epel contains a JmjC domain, a motif that was first noted in the mammalian jumonji, retinoblastoma (Rb)-binding protein 2, and Smcx proteins (Takeuchi et al, 1995). Subsequently, more than 100 JmjC domain containing proteins have been identified in prokaryotic and eukaryotic organisms (Balciunas \& Ronne, 2000; Clissold \& Ponting, 2001). The presence of DNA and/or chromatin-binding motifs, such as plant homeodomain (PHD), AT-rich interactive domain (ARID) and zinc fingers, in many JmjC-domaincontaining proteins led to the proposal that these proteins regulate the integrity of chromatin structure (Clissold \& Ponting, 2001). Several JmjC-domain-containing proteins have been characterized, including the human hairless protein that is mutated in individuals with alopecia universalis. The hairless protein is a putative transcription factor and a regulator of apoptosis during hair follicle development (Ahmad et al, 1998). Another JmjC protein, Rb-binding protein 2 (RBP2), has been reported to act as a co-activator of nuclear receptors by enhancing receptor-mediated transcription (Chan \& Hong, 2001). Msc1, an S. pombe JmjCdomain protein, is associated with histone deacetylase activity (Ahmed et al, 2004).

Epe1 resembles 2-0 G-Fe(II)-dependent dioxygenases

Epel can be modelled onto the known structure of FIH (factor inhibiting hypoxia inducible factor), the only JmjC-domain protein with a known three-dimensional structure and biochemical function (Fig 1). FIH is a protein hydroxylase that mediates the hydroxylation of an asparagine residue in the transcription factor hypoxia inducible factor (Hewitson et al, 2002). FIH belongs to the 2-0 G-Fe(II)-dependent dioxygenase superfamily, a large group of enzymes that catalyse two electron oxidations using an ion of iron in their catalytic core and $2-0 \mathrm{G}$ as a cosubstrate. Structural analysis of FIH and other 2-OG-dependent
dioxygenases shows that the catalytic core of these dioxygenases contains a motif known as a double-stranded β-helix (DSBH) which consists of two antiparallel β-strands that form a jelly-roll topology (Elkins et al, 2003). The predicted structure of Epe1 contains this DSBH motif (Fig 1).

A multiple sequence alignment of JmjC domains from various proteins (Fig 2) shows that Epel and many members of the JmjC family show several distinctive features of the 2-OG-Fe(II)dependent dioxygenases. This suggests that the JmjC-domain proteins may catalyse similar types of reactions. The secondary structure of FIH can be overlaid on the multiple sequence alignment of the JmjC domains and inserts are only seen between the β-strands (Fig 2), which suggests that other JmjC-domain proteins contain the DSBH structural motif. Members of this dioxygenase family co-ordinate $\mathrm{Fe}(\mathrm{II})$ at their active site through a 2 -His-1carboxylate triad of amino-acid residues. The carboxylate is normally supplied by the side chain of an aspartate or glutamate residue (Prescott \& Lloyd, 2000; Schofield \& Zhang, 1999). This Fe(II)-binding motif, which is distinct from the 2-OG-Fe(II)dependent dioxygenases, has the consensus sequence HXD/EXnH and is found in most of the JmjC-domain sequences, including RBP2, JEMMA (Jumonji domain, EM SY-interactor, methyltransferase motif) and PASS1 (protein associated with small stress; Fig 2). H ow ever, the JmjC-domain proteins appear to use different amino acids to interact with their co-substrate, 2-O G. Conserved, positively charged residues appear at distant positions in sequence in the JmjC and 2-0 G-Fe(II)-dependent dioxygenases. When the DSBH from representative structures of each class are overlaid, these residues occupy similar positions, which compensates for the buried negative charge on the carboxylate group of the co-substrate 2-0 G (supplementary Fig 1 online). In both the FIH asparagine hydroxylase and 2-OG-Fe(II)dependent dioxygenases family, $\mathrm{Fe}(\mathrm{II})$ is liganded in the same way by protein residues and by the proximal carboxylate of 2-OG. The signature residues that differ between families are
involved in liganding the distal region of 2-0 G. There are no further signature residues near the reactive centre in either family.

Epel is a potential histone demethylase

Epel is required for the integrity of heterochromatin in fission yeast and interacts with Swi6 at regions of silent chromatin (Ayoub et al, 2003). We suggest that Epel ligates $\mathrm{Fe}(\mathrm{II})$ at its active site; as the $\mathrm{Fe}(\mathrm{II})$ forms a very reactive species with O_{2}, there is no need to invoke stabilization of a transition state, and so presentation of the substrate to this system may be sufficient for a reaction with molecular oxygen to occur. This leads us to speculate that Epel and certain other JmjC proteins may catalyse the addition of hydroxyl groups to histone tails, which is a novel histone modification. However, although Epel may be a protein hydroxylase, there is also an intriguing possibility that if Epel were to hydroxylate a methyl group on the histone tails, Epel might be able to catalyse oxidative demethylation of histones. The hydroxylation of amines that leads to N -dealkylation is widespread in the biochemistry of natural products and occurs in many drugs and xenobiotics (Walsh, 1979). An example of this mechanism is the catalysis by AlkB, which demethylates certain forms of DNA methylation damage by hydroxylation (Falnes et al, 2002; Trewick et al, 2002). AlkB is also a member of the 2-OG-Fe(II)-dependent dioxygenase family and hydroxylates the methyl group of two lesions in DNA, 1-methyladenine and 3-methylcytosine. The oxidized products spontaneously degrade to release formaldehyde, which results in the removal of the methyl group from DNA (Fig 3A). We propose that Epel and certain other JmjC-domain-containing proteins may act as hydroxylases that demethylate lysine or arginine residues in the N -terminal tails of histones. Hydroxylation of the methyl group of mono-, di- or trimethyl-lysine would result in the formation of a carbinolamine, a generally unstable group, which would be expected to release formaldehyde and remove a methyl group from the amino-acid residue (Fig 3B). Unlike the amine oxidase LSD1, which is strictly limited to mono- and dimethylated substrates, the mechanism we propose for Epel could allow for the demethylation of mono-, di- or trimethylated histones. This is because demethylation could occur through multiple rounds of hydroxylation, which would result in complete demethylation of even trimethylated lysines. How ever, Epel or other JmjC-domain proteins could be involved in removing the first methyl group from trimethyl-lysine, thereby allowing the action of demethylases such as LSD 1.

Many JmjC-domain proteins contain domains that are indicative of chromatin interactions. On the basis of the structural alignments presented here, we predict that some of these proteins may have the ability to directly hydroxylate histones, a novel histone modification, or may represent potential histone demethylases.

Supplementary information is available at EMBO reports online (http://www.emboreports.org).

ACKNO W LED GEMENTS

We thank A. Bird and S. Chapman for helpful discussions. We also thank members of the EC FP6 Network 'The Epigenome' LSH G-CT-2004-503433 for input. This work was supported by theWellcome Trust. RCA is a WellcomeTrust Principal Fellow; SCT is a Royal Society D orothy Hodgkin Fellow.

REFERENCES

Ahmad K, H enikoff S (2002) The histone variant H 3.3 marks active chromatin by replication-independent nucleosome assembly. M ol Cell 9: 1191-1200
Ahmad W et al (1998) Alopecia universalis associated with a mutation in the human hairless gene. Science 279: 720-724
Ahmed S, Palermo C, Wan S, W alworth NC (2004) A novel protein with similarities to Rb binding protein 2 compensates for loss of Chk1 function and affects histone modification in fission yeast. Mol Cell Biol 24: 3660-3669
Allis CD, Bowen JK, Abraham G N, Glover CV, Gorovsky M A (1980) Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena micronuclei. Cell 20:55-64
Ayoub N, Noma K, Isaac S, Kahan T, Grewal S, Cohen A (2003) A novel jmjC domain protein modulates heterochromatization in fission yeast. M ol Cell Biol 23: 4356-4370
Balciunas D, Ronne H (2000) Evidence of domain swapping within the jumonji family of transcription factors. Trends Biochem Sci 25: 274-276
Bannister AJ, Schneider R, Kouzarides T (2002) Histone methylation: dynamic or static? Cell 109: 801-806
Byvoet P, Shepherd GR, H ardin JM, N oland BJ (1972) The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells. Arch Biochem Biophys 148: 558-567
Chan SW, Hong W (2001) Retinoblastoma-binding protein 2 (Rbp2) potentiates nuclear hormone receptor-mediated transcription. J Biol Chem 276: 28402-28412
ChinenovY (2002)A second catalytic domain in the Elp3 histone acetyltransferases: a candidate for histone demethylase activity? Trends Biochem Sci 27: 115-117
Clissold P, Ponting C (2001) JmjC: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2beta. Trends Biochem Sci 26: 7-9
Cuthbert $G L$ et al (2004) Histone deimination antagonizes arginine methylation. Cell 118: 545-553
Duerre JA, Lee CT (1974) In vivo methylation and turnover of rat brain histones. J N eurochem 23: 541-547
Elkins J, Hewitson K, M cN eill L, Seibel J, Schlemminger I, Pugh C, Ratcliffe P, Schofield C (2003) Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1. J Biol Chem 278: 1802-1806
Falnes P, Johansen R, Seeberg E (2002) AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. N ature 419: 178-182
Ginalski K, Eloffsson A, Fischer D, Rychlewski L (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19: 1015-1018
Hewitson K et al (2002) Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277: 26351-26355
Janicki SM et al (2004) From silencing to gene expression: real-time analysis in single cells. Cell 116: 683-698
Jenuw ein T, Allis CD (2001) Translating the histone code. Science 293: 1074-1080
KouzaridesT (2002) Histone methylation in transcriptional control. Curr O pin Genet Dev 12: 198-209
Lachner M, O 'Sullivan RJ, Jenuw ein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116: 2117-2124
Lin R, Cook RG, Allis CD (1991) Proteolytic removal of core histone amino termini and dephosphorylation of histone H 1 correlate with the formation of condensed chromatin and transcriptional silencing during Tetrahymena macronuclear development. Genes Dev 5: 1601-1610
M a H, Baumann CT, Li H, Strahl BD, Rice R, Jelinek MA, Aswad DW, Allis CD, H ager GL, Stallcup MR (2001) H ormone-dependent, CARM 1directed, arginine-specific methylation of histone H3 on a steroidregulated promoter. Curr Biol 11: 1981-1985
Paik W K, Kim S (1973) Enzymatic demethylation of calf thymus histones. Biochem Biophys Res Commun 51: 781-788
PrescottA, Lloyd M (2000) The iron(II) and 2-oxoacid-dependent dioxygenases and their role in metabolism. N at Prod Rep 17: 367-383
Rice JC, Allis CD (2001) H istone methylation versus histone acetylation: new insights into epigenetic regulation. Curr O pin Cell Biol 13: 263-273

Saccani S, Natoli G (2002) Dynamic changes in histone H 3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes. Genes Dev 16: 2219-2224
Schofield C, Zhang Z (1999) Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr O pin Struct Biol 9: 722-731
Shi Y, Lan F, M atson C, M ulligan P, Whetstine JR, Cole PA, Casero RA (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD 1. Cell 119: 941-953
Strahl BD, Allis CD (2000) The language of covalent histone modifications. N ature 403: 41-45
Takeuchi T, Yamazaki Y, Katoh-Fukui Y, Tsuchiya R, Kondo S, M otoyama J, Higashinakagawa T (1995) Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev 9: 1211-1222

Trewick S, Henshaw T, Hausinger R, Lindahl T, Sedgwick B (2002) O xidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419: 174-178
Walsh C (1979) Enzymatic Reaction M echanisms. W. H. Freeman \& Co, San Francisco, CA, USA
WangY et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306: 279-283
Winkler GS, PetrakisTG, Ethelberg S, Tokunaga M, Erdjument-Bromage H, Tempst P, Svejstrup JQ (2001) RN A polymerase II elongator holoenzyme is composed of two discrete subcomplexes. J Biol Chem 276: 32743-32749
ZhangY, Reinberg D (2001)Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15: 2343-2360

[^0]: WellcomeTrust Centrefor Cell Biology, Institute of Cell Biology,
 School of Biological Sciences, TheUniversity of Edinburgh, 6.34 Swann Building,
 M ayfield Road, Edinburgh EH 93 JR, UK
 *These authors contributed equally to this work
 +Corresponding author. Tel: +44 (0)131 650 7117; Fax: +44 (0)131 650 7778;
 E-mail: robin.allshire@ed.ac.uk

