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Abstract Methylene blue is used primarily in the treatment
of patients with methemoglobinemia. Most recently, meth-
ylene blue has been used as a treatment for refractory
distributive shock from a variety of causes such as sepsis
and anaphylaxis. Many studies suggest that the nitric oxide–
cyclic guanosine monophosphate (NO–cGMP) pathway
plays a significant role in the pathophysiology of distribu-
tive shock. There are some experimental and clinical expe-
riences with the use of methylene blue as a selective
inhibitor of the NO–cGMP pathway. Methylene blue may
play a role in the treatment of distributive shock when
standard treatment fails.
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Introduction

Methylene blue is a phenothiazine-related heterocyclic
aromatic molecule (C16H18N3SCl). It is a solid, odorless,
dark green powder at room temperature that yields a blue
solution when it is dissolved in water. Methylene blue is
used in a wide variety of settings and for many purposes;
for example, as a redox indicator or as a dye/stain [1, 2].

The medicinal use of methylene blue dates back to the late
1800s as a treatment for malaria, a urinary analgesic, and in the
treatment for cyanide and carbon monoxide poisoning [3–6].
Methylene blue is currently utilized as a treatment for
ifosfamide neurotoxicity [7, 8]. Methylene blue is most com-
monly used as a reducing agent in the treatment of patients with
methemoglobinemia [9–11]. Most recently, methylene blue has
been used as a treatment for refractory distributive shock
through a lesser known property: inhibition of the downstream
effect of nitric oxide (NO). The objective of this review is to
explain the pathophysiological basis of methylene blue for the
use in distributive shock and review the current literature.

Methods

The authors conducted a scientific review of all available
literature published over the last 20 years. Our primary objec-
tive was to evaluate the use of methylene blue as a treatment
for distributive shock from causes such as sepsis and anaphy-
laxis. Our secondary objective was to summarize the proposed
mechanisms for the use of methylene blue based on existing
human, animal, and in vitro studies. We initiated a PubMed
database search using the MESH terms “methylene blue,”
“sepsis,” “anaphylaxis,” “nitric oxide,” “nitric oxide
synthase,” and “cGMP.” Articles were selected and agreed
upon by the authors based on relevance and impact. Effort was
made to include both positive and negative studies where
appropriate. Emphasis was placed on well-conducted

D. H. Jang (*) : L. S. Nelson :R. S. Hoffman
Division of Medical Toxicology, Department of Emergency
Medicine, New York University School of Medicine,
Bellevue Hospital Center, 455 First Avenue, Room 123,
New York, NY 10016, USA
e-mail: Jangd01@nyumc.org

L. S. Nelson
e-mail: lnelsonmd@gmail.com

R. S. Hoffman
e-mail: bobhoffmd@gmail.com

J. Med. Toxicol. (2013) 9:242–249
DOI 10.1007/s13181-013-0298-7



experimental data, case studies, and controlled trials when
possible. Studies were only excluded due to redundancy. After
analysis of the available data, this paper concludes with rec-
ommendations based on the existing scientific evidence.

Physiology of Vascular Tone

Nitric Oxide Synthase General Structure and Function

NO has many functions, such as serving as a messenger
molecule, regulating gene transcription and mRNA transla-
tion, as well as assisting in neurotransmission [12, 13]. NO
also plays an important role in the regulation of vascular
tone (Fig. 1) and pathophysiology of shock when it is
excessively produced. Initial evidence that NO plays an
important role in the regulation of vascular tone was dem-
onstrated with nitrate production in experimental models
[14]. Later work revealed that L-arginine was the substrate
and that L-citrulline was a by-product for the production of
NO by an enzyme known as nitric oxide synthase (NOS)
[15]. NOS, the enzyme that produces NO, is a
homodimer with a substrate access channel which ex-
tends from the active site toward the dimer interface
along with a reductase domain and an oxygenase do-
main (heme and H4B binding) [16]. In humans, there
exist three different isoforms of NOS known as: neuronal
NOS (nNOS, NOS1), inducible NOS (iNOS, NOS2), and
endothelial NOS (eNOS, NOS3) [17]. All isoforms of
NOS utilize L-arginine as a substrate along with oxygen

and reduced nicotinamide-adenine-dinucleotide phos-
phate as co-substrates [18]. In addition, all isoforms of
NOS bind calmodulin and calcium; activated calmodulin
is important for the regulation of eNOS and nNOS activity
[19]. Production of NO is a two-step process: In the first step,
NOS hydroxylates L-arginine to an intermediate known
asN-hydroxy-L-arginine. In a second step, NOS oxidizes this
intermediate to L-citrulline and NO. Inactivation of NO
occurs when it combines with a superoxide anion, O2

−,
to form a very potent oxidant known as peroxynitrite.
Peroxynitrite causes DNA damage and oxidation, nitration,
and S-nitrosylation of lipids and proteins [20, 21].

Certain neurons of the brain express nNOS that is regulated
by calcium and calmodulin [22]. Although nNOS exists in the
brain, spinal cord, adrenal glands, and sympathetic ganglia, the
largest source of nNOS in mammals is found within skeletal
muscle [23]. The physiologic functions of nNOS are varied
and include modulation of learning, neurogenesis, and memo-
ry [24, 25]. There is strong evidence that nNOS also centrally
regulates blood pressure [26, 27]. Certain neurogenerative
diseases such as Parkinson’s and Alzheimer’s disease are
associated with increased nNOS function. Increased nNOS
function may lead to neuron cell death from large calcium
influx mediated by N-methyl-D-aspartate receptors. Increased
nNOS activity may also result in increased NO production
with peroxynitrite formation leading to cell injury and mi-
tochondrial dysfunction [28].

Endothelial NOS (eNOS) exists primarily in endothelial
cells, but also occurs in other cell types including platelets and
cardiac myocytes [29]. eNOS activity significantly increases

Fig. 1 Regulation of the
relaxation of vascular smooth
muscle by nitric oxide. Nitric
oxide is produced from
L-arginine by nitric oxide
synthase leading to the
activation of soluble guanylyl
cyclase with production of
cyclic guanosine 3′,5′-
monophosphate (cGMP).
cGMP-dependent protein
kinase is activated, leading to
(1) decreased sensitivity of
myosin to calcium-induced
contractions, (2) activation of
calcium-sensitive potassium
channels which in turn
decreases calcium entry through
calcium channels, and (3)
inhibition of release of calcium
from the sarcoplasmic
reticulum. This results in
relaxation of smooth muscle
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with a rise in intracellular calcium with resultant increased NO
production [30]. The physiologic functions of eNOS are var-
ied and include inhibition of platelet aggregation and adhesion
and inhibition of leukocyte aggregation, all of which help
prevent atherogenesis [31, 32]. The primary role of eNOS
appears to be regulation of cardiovascular functions such as
blood pressure [33]. Dysfunction of eNOS activity is associ-
ated with cardiovascular disease through either inability to
generate adequate amounts of NO for proper vasodilation
and inhibition of platelet/leukocyte aggregation or excessive
production of NO with resultant oxidative stress and endothe-
lial cell dysfunction [34].

Inducible NOS (iNOS) expression is regulated by a variety
of factors such as cytokines, interleukins, and bacterial lipo-
polysaccharide. iNOS was first identified in macrophages.
However, further work revealed that expression of iNOS can
be stimulated in almost any cell line [35, 36]. The primary
physiologic function of iNOS inmacrophages is to produceNO
as a major cytotoxic agent. Thus, iNOS plays a role in immune
defense and mediation of inflammation. NO can also inhibit
enzymes that contain iron within their catalytic centers, as is
often found in microorganisms. The production of NO has a
cytotoxic effect on tumors and variousmicroorganisms, such as
parasites [37, 38]. While the production of NO from iNOS
plays an important role in host defense, large concentrations of
NO may also injure surrounding host cells. Overproduction of
NO contributes to allograft rejection and is also implicated in
the pathogenesis of various forms of distributive shock such as
sepsis and anaphylaxis characterized by arteriolar vasodilation,
hypotension, and poor response to vasopressors [39–41].

Guanylyl Cyclase and Signaling by Cyclic Guanosine
Monophosphate

An important signaling pathway of NO is the activation of
soluble guanylyl cyclase (sGC) resulting in the production of
cyclic guanosine monophosphate (cGMP) [42]. sGC are a
family of proteins composed of membrane-bound and soluble
isoforms and expressed in virtually all cell types [43]. sGC
catalyze conversion of the purine nucleoside guanosine-5′-
triphosphate to cGMP in response to various messengers such
as peptide ligands, calcium influx, and NO [44].

Intracellular cGMP gates specific ion channels, modulates
nucleotide concentrations by regulating various phosphodies-
terases, and activates protein kinases [42]. cGMP has a
central role in many other vital processes such as retinal
phototransduction, electrolyte regulation, and mediation of
vascular smooth muscle tone [45, 46]. Excessive cGMP pro-
duction, generally through abundant NO availability, is impli-
cated in the pathophysiology of distributive shock such as
sepsis and anaphylaxis [47]. Dysfunction within the NO–
cGMP pathway has been implicated in certain disease states
of distributive shock such as sepsis and anaphylaxis.

Distributive Shock

The definition of shock has evolved over centuries. The term
“shock” was defined as sudden deterioration of a patient’s
condition from major trauma in the 1700s. This term was
translated by the English physician Clarke from the writings
of a French surgeon Le Dran who is often credited with the
origin of the term “shock.” While the term “shock” has taken
onmanymeanings, the current emphasis is on tissue perfusion
in relationship to cellular function. Shock is often a syndrome
caused by a systemic derangement of perfusion leading to
widespread cellular hypoxia and organ dysfunction. While
hypovolemic shock from blood loss following trauma was
the first form of shock to be recognized, other etiologies of
shock are now recognized. These include cardiogenic (e.g.,
heart failure), obstructive (e.g., tension pneumothorax), and
distributive shock. Distributive shock is characterized by loss
of vasomotor tone or an overall decrease in systematic vascu-
lar resistance, and is often accompanied by an increase in
cardiac output. Sepsis and anaphylaxis are the two most
common etiologies of distributive shock. Also, drug-induced
shock from certain medications such as calcium channel
blockers may have a distributive component as well.

The NO–cGMP Pathway in Anaphylaxis and the Role
of Methylene Blue

Anaphylaxis is a serious allergic reaction with a systemic
response that can be life-threatening. The most common
causes of anaphylaxis include allergic reaction to medications,
food, and hymenoptera venom, although in up to 75 % of
cases, there is no previous history of allergy [48]. The signs
and symptoms of anaphylaxis manifest in all organ systems,
but the life-threatening effects occur in the respiratory (e.g.,
bronchospasm) and cardiovascular system (e.g., refractory
hypotension from peripheral vasodilation) [49].

The pathophysiology of distributive shock from anaphy-
laxis is complex involving many mediators such as brady-
kinin and other leukotrienes, but the mediator believed to
have the most significant role is histamine [50]. Early ex-
periments demonstrate that histamine-induced vasodilation
is dependent on intact endothelium containing eNOS which
suggests that histamine’s action is at least partly mediated
through nitric oxide [51, 52]. Further evidence to support
the role of the NO–cGMP pathway in anaphylaxis is dem-
onstrated by the finding that increased histamine results in
upregulation of eNOS gene expression with increased pro-
duction of NO leading to vasodilation through increased
activity of GC. Inhibition of GC reduces vasodilation in-
duced by histamine [53–55]. This evidence provides support
that histamine-induced vasodilation is at least partly medi-
ated through the NO–cGMP pathway and that inhibition of
this pathway reverses the vasodilation.
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The treatment of anaphylaxis-induced hypotension consists
of isotonic fluids, antihistamines, steroids, and in severe cases
epinephrine.While sufficient in many instances, severe cases of
anaphylaxis may not respond to these interventions, and pa-
tients may remain persistently hypotensive. There are some
experimental and clinical experiences with the use of methy-
lene blue as a selective inhibitor of the NO–cGMP pathway in
anaphylaxis. A study of anaphylactic shock in rabbits showed
that the use of methylene blue (3 mg/kg) as a single dose
increased survival time compared to controls. Plasma nitrate,
a marker of NO release, did not differ between groups. This
finding suggests that methylene blue does not mediate its action
throughNOS inhibition or NO scavenging, and suggests that its
primary action may be mediated through GC inhibition [56].

The use of methylene blue for the treatment of humans
with refractory anaphylactic shock is limited to case reports
and case series. Methylene blue was used successfully to
treat three patients who experienced anaphylactic shock
following radiocontrast injection during coronary angiogra-
phy. All had prompt improvement and hemodynamic stabi-
lization without obvious adverse effects [57]. The successful
use of methylene blue for refractory hypotension secondary
to protamine during cardiac bypass is also reported [58].
Table 1 lists reported cases of methylene blue administration
for treatment of anaphylactic shock.

The Role of the NO–cGMP Pathway in Septic Shock
and Treatment with Methylene Blue

Sepsis is defined as a constellation of clinical findings that
result from an infection and a subsequent inflammatory
response from a combination of pathogenic products and
the body’s own immune response. The most severe form of

sepsis is “septic shock,” which is defined as hypotension
with signs of tissue hypoperfusion despite fluid resuscitation
in the presence of overwhelming infection [59]. There are
over 700,000 cases of severe sepsis in the USA annually,
and it is the leading cause of ICU mortality [60].

Sepsis is associated with a complex hemodynamic profile
when compared to other causes of shock. Septic shock can
have features of hypovolemia from capillary leak (i.e.,
hypovolemic shock) and depressed myocardial function with
resultant reduction in cardiac output (i.e., cardiogenic shock).
The most characteristic finding with septic shock is profound
peripheral vasodilation (i.e., distributive shock). The patho-
genesis of septic shock is a complex response of cellular
activation that releases a multitude of proinflammatory medi-
ators which includes excessive NO [61]. The overproduction
of NO by iNOS in sepsis results in increased production of
cGMP contributing to the refractory hypotension observed
with septic shock. Numerous animal studies demonstrate large
increases of NO after exposure to lipopolysaccharide (i.e.,
endotoxin) with resultant hypotension [62–67].

The current management of septic shock includes early
goal-directed therapy centered on early administration of
empiric antibiotics, volume resuscitation, frequent monitor-
ing, and cardiac support with appropriate use of vasopres-
sors. Despite these therapies, the mortality rate remains
around 30 % [68]. As a result, the need for additional or
alternative therapy for septic shock is clear. One such treat-
ment modality may involve inhibition along the NO–cGMP
pathway. Earlier work with nonspecific competitive NOS
inhibitors, such as N-monomethyl-L-arginine for the treat-
ment of distributive shock in sepsis noted an increase in
mean arterial pressure but no mortality benefit. In fact, the
use of nonspecific nitric oxide synthase inhibitors resulted in

Table 1 Summary of publishing cases of methylene blue use for refractory shock from anaphylaxis

Reference Age/gender Cause of
anaphylaxis

Clinical presentation Interventions IV methylene
blue dose

Time of effect Outcome

[57] 57-year-old
woman

Radiocontrast Refractory hypotension,
angioedema

Hydrocortisone,
epinephrine

1.5 mg/kg bolus 20 min Survival

[57] 48-year-old
woman

Radiocontrast Refractory hypotension,
oxygen desaturation

Intubation, Isotonic
fluids, epinephrine,
dopamine, hydrocortisone

2 mg/kg bolus
followed by
2 mg/kg/h for 2 h

10 min Survival

[57] 53-year-old
man

Radiocontrast Refractory hypotension,
angioedema

Hydrocortisone ×2 1.5 mg/kg infusion Immediate Survival

[58] 72-year-old
man

Protamine
100 mg

Refractory hypotension,
urticaria

Hydrocortisone, pressure,
calcium, cardiac bypass

100 mg 15 min Survival

[58] 72-year-old
woman

Aprotinin Refractory hypotension Hydrocortisone, pressure,
fluids, cardiac bypass

100 mg 10 min Survival

[98] 23-year-old
woman

Unknown Angioedema Antihistamine, epinephrine 1.5 mg/kg bolus with
1.5 mg/kg infusion

20 min Survival

[99] 79-year-old
man

Protamine Urticaria, angioedema,
refractory hypotension

Antihistamine pressors,
fluids

35 mg 20 min Survival

[100] 72-year-old
man

Protamine Refractory hypotension Pressors 2 mg/kg bolus 30 min Survival
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increased mortality in both animal and humans. NO has a
vital, positive role in other pathways so nonspecific inhibi-
tion of nitric oxide synthase is detrimental [69]. This begs
the questions of whether inhibition further along the NO–
cGMP pathway might be beneficial. Later studies examined
selective inhibition of guanylate cyclase. One of these se-
lective agents is methylene blue, which may restore vascular
tone and improve tissue perfusion.

There are multiple experimental models of septic shock
that support the use of methylene blue in the treatment of
refractory distributive shock [70–76]. The majority of clinical
data on the use of methylene blue for such therapy is obser-
vational with case reports and small observational studies, but
there are also small controlled clinical trials [77–82]. The
majority of these studies demonstrate an increase in mean
arterial pressure and/or decrease in pressor requirement. The
first prospective randomized controlled study usingmethylene
blue in the treatment of septic shock was published in 2001.
Patients were randomized 1:1 to receive either methylene blue
or isotonic saline as a control in addition to conventional
treatment. When compared to the control group, methylene
blue reduced pressor requirement. Although 5/10 patients
treated with methylene blue survived as opposed to 3/10
patients who received conventional treatment, this study was
not powered to find a mortality difference [83].

Another randomized control trial measured plasma concen-
trations of cytokines in severe sepsis. In this study, 15 patients
received methylene blue and 15 patients received isotonic
saline for 6 h. Various cytokines such as interleukin-2
and tumor necrosis factor alpha were measured at base-
line, immediately after treatment, 24 h posttreatment, and 48 h
posttreatment. When compared to the control group, methy-
lene blue resulted in higher mean arterial pressures, but no
difference in mortality or in the various cytokines measured.
The primary limitation of this study was the short observation
period and small sample size [84].

A prospective, randomized, double-blind, single-center
study in 15 consecutive, mechanically ventilated patients with
septic shock admitted to the intensive care unit compared
escalating doses of methylene blue. Methylene blue was in-
fused at 1 mg/kg (n=4), 3 mg/kg (n=6), or 7 mg/kg (n=5) over
20min.Methylene blue had a dose-dependent effect on cardiac
index, mean pulmonary artery and pulmonary artery occlusion
pressure as well as oxygen delivery and lactate concentrations.
The data suggested that in human septic shock, methylene blue
increases mean arterial blood pressure through an increase in
cardiac index and systemic vascular resistance [85].

In summary, the clinical studies that evaluate the use of
methylene blue for septic shock demonstrate an improve-
ment in hemodynamics and address the mechanism by
which methylene blue may work. However, no morality
benefit is shown which may be due to the small sample
sizes found in these studies.

The dosing regimen for methylene blue based on ex-
perimental and clinical data is not entirely clear but does
seem to be similar to what is used for the treatment of
methemoglobinemia: 1–2 mg/kg. The dosing used for
refractory septic shock has included a single bolus, repeat-
ed bolus based on response, low-dose infusion, and in-
fusions followed by a bolus. It is clear based on other
studies that the use of high doses of methylene blue,
typically doses greater than 7 mg/kg, is associated with
adverse effects such as paradoxical induction of methemo-
globinemia, acute hemolytic anemia, and detrimental ef-
fects on pulmonary function [86, 87].

Based on current data, it appears that the use of a single
bolus improves hemodynamics for the duration of a few
hours. It is unclear if there is any mortality benefit with
temporary improvement of hemodynamics, and for this
reason, some authors have advocated using methylene blue
as an infusion [78, 79]. However, due to limited experience
with this method of administration as well as the lack of data
on dosing methylene blue in the setting of liver or kidney
dysfunction, the use of methylene blue as an infusion cannot
be recommended at this time.

The use of methylene blue has a favorable side effect
profile, but it is associated with some adverse effects that
are important for the clinician to note. Methylene blue
rarely may cause shortness of breath, tremors, vomiting,
blue discoloration of body fluids, and acute hemolytic
anemia with high doses [88]. Another uncommon adverse
effect for clinicians to be aware of is the precipitation of
serotonin syndrome [89, 90]. Serotonin syndrome is a
potentially fatal condition characterized by autonomic
instability that includes agitation, tachycardia, hyperten-
sion, and hyperthermia due to excessive stimulation at
the 5-HT2A receptor. Serotonin syndrome is most com-
monly precipitated from drug interactions of multiple
serotonergic agents or agents that inhibit metabolism of
serotonin such as monoamine oxidase inhibitors [91].
Methylene blue may cause serotonin syndrome because
both the parent compound and metabolite, azure B, in-
hibit MAO-A [92]. Methylene blue causing serotonin
syndrome is relatively rare occurring mostly with the
use of very high doses.

The patient population that may benefit from the use of
methylene blue for refractory distributive shock requires
careful consideration. Cardiac support with catecholamines
and volume expansion should be the initial therapy of
choice. In patients who do not respond to standard treat-
ment, methylene blue may be considered. The ideal dose in
unknown, but based on the existing literature and safety
profile, we recommend a dose of 1–2 mg/kg as a single
bolus. Methylene blue should not be used in patients with
pulmonary hypertension, underlying G6PD deficiency, and
acute lung injury.
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The Use of Methylene Blue for Refractory Shock
from Cardiovascular Drug Poisoning

Methylene blue has also been utilized in a case of refractory
distributive shock from a cardiovascular drug overdose with
a dihydropyridine calcium channel blocker [93]. This case
described a confirmed isolated dihydropyridine overdose
resulting in profound distributive shock as demonstrated
by a Swan-Ganz catheter. The patient remained hypotensive
despite multiple therapeutic interventions including isotonic
saline, multiple doses of calcium gluconate, glucagon, mul-
tiple pressors and high-dose insulin euglycemic (HIE) ther-
apy for several hours. The patient then received methylene
blue at 2 mg/kg and soon after showed improvement in
hemodynamics with eventual discontinuation of both
pressors and HIE. While this case should not be used
as sole support for the use of methylene blue as treat-
ment for cardiovascular drug poisoning, this is a potential
area of research.

While the primary mechanism of calcium channel
blockers involves blockade of L-type calcium channels,
experimental studies have demonstrated an additional
vasodilatory mechanism through the release of nitric oxide.
Although the exact mechanism of NO release is not clear,
one of the reasons some dihydropyridine calcium channel
blockers increase nitric oxide production is from an in-
creased endothelial nitric oxide synthase activity through
phosphorylation of this enzyme [94–97]. It is not clear
how much of a role the NO–cGMP pathway may play in
an acute overdose with certain calcium channel blockers,
but this may explain the mechanism by which methylene
blue acts.

Conclusion

Increased NO and cGMP production in tissues is well doc-
umented in various conditions of distributive shock such as
sepsis and anaphylaxis. The NO–cGMP pathway plays a
central role in the pathophysiology of distributive shock.
There is experimental and clinical evidence that support the
use of a selective NO–cGMP pathway inhibitor, methylene
blue, as a treatment in cases of refractory vasodilatory shock
with no response to conventional treatment. Clinicians
should be aware of potential adverse effects and drug in-
teractions with serotonergic agents when considering the use
of methylene blue.
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