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The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-
product of a number of metabolic reactions, including elimination of phosphate groups
from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-
phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase
I and glyoxalase II that together with glutathione make up the glyoxalase system.
Under normal growth conditions, basal levels of MG remain low in plants; however,
when plants are exposed to abiotic stress, MG can accumulate to much higher levels.
Stress-induced MG functions as a toxic molecule, inhibiting different developmental
processes, including seed germination, photosynthesis and root growth, whereas MG,
at low levels, acts as an important signaling molecule, involved in regulating diverse
events, such as cell proliferation and survival, control of the redox status of cells, and
many other aspects of general metabolism and cellular homeostases. MG can modulate
plant stress responses by regulating stomatal opening and closure, the production of
reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward
rectifying potassium channels and the expression of many stress-responsive genes.
MG appears to play important roles in signal transduction by transmitting and amplifying
cellular signals and functions that promote adaptation of plants growing under adverse
environmental conditions. Thus, MG is now considered as a potential biochemical
marker for plant abiotic stress tolerance, and is receiving considerable attention by the
scientific community. In this review, we will summarize recent findings regarding MG
metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In
addition, we will demonstrate the importance of giving consideration to MG metabolism
and the glyoxalase system, when investigating plant adaptation and responses to
various environmental stresses.
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INTRODUCTION

Most plants live in environments where they are constantly
exposed to one or combinations of various abiotic stressors,
such as extreme temperatures, salinity, drought, and excessive
light, which can severely limit plant growth and development.
For many important crop plants, exposure to stress(es)
ultimately results in a considerable reduction in potential yields
(Atkinson and Urwin, 2012). The interaction between abiotic
stressors and plants is complex, eliciting multiple morphological,
physiological, biochemical and molecular changes that can
ultimately result in varying degrees of stress adaptation, enabling
some plants to grow and develop under environmentally induced
stress. Because of the number of metabolic pathways involved,
and the compexity of their regulation, it is often difficult for
researchers to identify the major regulatory components involved
in the abiotic stress responses of plants (Sharma et al., 2013).
Plants subjected to stress often produce toxic aldehydes (Hoque
et al., 2012a,b,c; Hoque M.A. et al., 2012; Mano, 2012), of which
methylglyoxal (CH3COCHO; MG) is the most ubiquitous. The
reactive alpha-ketoaldehyde MG is cytotoxic to plant cells at high
cellular concentrations, but it may act as an important signaling
molecule at low concentrations (Yadav et al., 2005a,b; Singla-
Pareek et al., 2006; Hossain et al., 2009; Kaur et al., 2015a,b).
MG is produced in plant cells as a result of glycolysis, and
its celluar concentrations are maintained at very low levels in
the absence of any environmental stress (Kaur et al., 2015b).
However, in response to abiotic stressors celluar concentrations
of MG rapidly increase (Yadav et al., 2005a,b). Accumulation
of MG can disrupt the normal functioning of cells, leading to
alterations in metabolic behavior and, in some instances, the
death of plants (Hossain et al., 2011). The glyoxalase pathway
has evolved to enable plants, and other organisms, to withstand
the detrimental effects of MG overproduction, by limiting the
accumulation of MG in the cells under stress (Singla-Pareek et al.,
2006, 2008; Alvarez Viveros et al., 2013). MG and the glyoxalases
are now considered as potential markers for evaluating plant
abiotic stress tolerance (Hossain et al., 2009; Kaur et al., 2014a,b,c;
Nahar et al., 2015a). Although significant progress has been
made in investigating MG metabolism and toxicity in plants,
the role of MG as a signaling molecule in stress responses and
the acquisition of stress tolerance in plants still remain unclear.
In this review, we will summarize recent findings regarding MG
metabolism and the glyoxalase system in plants under abiotic
stress, evaluate the concept of MG signaling, and discuss the
importance of MG metabolism in modulating plant abiotic stress
responses and tolerance.

MG SYNTHESIS IN PLANTS

In plant cells, the cytosol, chloroplasts and mitochondria are all
considered to be potential sites of MG production. However,
the specific rate and sites of MG production vary depending
upon the cell or tissue type, the plant organ (e.g. leaves or
roots), and the physiological state of the whole plant (Kaur
et al., 2015a,b). Spontaneous production of MG occurs as a

consequence of glycolysis, in metabolically active plant cells,
from the reaction of the triose sugar phosphates glyceraldehyde-
3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP),
both of which are photosynthetic intermediates (Yadav et al.,
2005a; Takagi et al., 2014; Kaur et al., 2015a,b). This reaction is
considered to be the principal route for MG formation under
normal physiological conditions (Figure 1). Triose phosphates
are unstable metabolites and show a high tendency to release
an α-carbonyl proton, producing an enediolate phosphate
intermediate that has a relatively low energy barrier for the
elimination of phosphate groups (Richard, 1984). Thus, MG
is formed by the deprotonation followed by the spontaneous
β-elimination of the phosphate groups of triose phosphates
(Richard, 1993). The enzymatic formation of MG occurs through
the triose phosphate isomerase (TPI) that hydrolyzes G3P
and DHAP, and removes phosphate to yield MG (Phillips
and Thornalley, 1993). MG may also be formed by Amadori
rearrangement during production of a Schiff base, which involves
the reaction of the aldehyde groups of sugars with free amino
acids or the amino acids of proteins (Vistoli et al., 2013). Other
possible sources for MG formation include the auto-oxidation of
surgars, as well as the metabolism of acetone and aminoacetone
(Kalapos, 1999), although there is little evidence that these routes
occur in plants.

MG DETOXIFICATION IN PLANTS VIA
GLYOXALASE AND OTHER METABOLIC
PATHWAYS

Methylglyoxal detoxification involves the conversion of MG to
less toxic molecules, thus limiting its detrimental effects. The
major route for MG detoxification in plants is the glyoxalase
pathway, whose prescence was demonstrated in plants over
20 years ago (Norton et al., 1990; Maiti et al., 1997). In
plant cells, the glyoxalase pathway is present in the cytosol
and organelles, with high levels of glyoxalase enzyme activity
found in chloroplasts and mitochondria (Yadav et al., 2008;
Rabbani and Thornalley, 2012). There are two main enzymes
associated with the glyoxalase pathway; glyoxalase I (Gly I;
lactoylglutathione lyase; EC 4.4.1.5) and glyoxalase II (Gly II;
hydroxyacylglutathione hydrolase; EC 3.1.2.6). These enzymes
function in tandem to transform MG, and other 2-oxoaldehydes,
to 2-hydroxyacids with the release of glutathione (GSH)
(Thornalley, 1990). The detoxification of MG involves two
irreversible reactions catalyzed by glyoxalases. The first step
involves the reaction of MG with GSH, resulting in the formation
of hemithioacetal that is then converted to S-D-lactoylglutathione
(SLG) in a reaction catalyzed by Gly I. In the second step, which
is catalyzed by Gly II, GSH is regenerated and D-lactate is formed
by the hydrolysis of SLG (Figure 1). D-lactate, which is also
considered a toxic compound if overaccumulated, is converted
into pyruvate by D-lactate dehydrogenase (Engqvist et al., 2009;
Wienstroer et al., 2012). Pyruvate, the major catabolic product
of MG, can enter the tricarboxylic acid (TCA) cycle via acetyl
CoA (Figure 1). The availability of cellular GSH is an important
factor for MG detoxification via the glyoxalase system as the
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FIGURE 1 | A diagrammatic representation of methylglyoxal (MG) synthesis and detoxification in plants (modified from Ko et al., 2005; Hossain et al.,
2011). MG is primarily produced as a by-product of carbohydrate metabolism, with small amount produced during protein and lipid metabolism. Cytotoxic MG is
efficiently degraded to form D-lactate by the action of the enzymes Gly I and Gly II, with the help of GSH. In addition, GSH-independent Gly III is able to convert MG
to D-lactate. D-lactate dehydrogenase finally converts D-lactate into pyruvate, which enters TCA cycle via acetyl CoA. The broken line separates the synthesis and
detoxification pathways of MG. For further discussion, see the text. Abbreviations are defined in the text.

lack of GSH restricts hemithioacetal formation, resulting in MG
accumulation (Hossain et al., 2011). Recently, a novel glyoxalase
enzyme, named glyoxalase III (Gly III), was detected in plants,
providing a shorter route for MG detoxification (Ghosh et al.,
2016). Gly III contains a DJ-1/PfpI domain, and the presence of
this domain has been used to confirm the existence of Gly III-
like proteins in various plant species. Conventional glyoxalases
(Gly I and Gly II) detoxify MG by converting it to D-lactate, with
the help of GSH, but Gly III is able to irreversibly convert MG to
D-lactate in a single step, without the need for GSH (Figure 1).

In addition to the glyoxalase system, several other pathways
contribute to the detoxification of MG in plants. Other enzymes,
including NADPH-dependent reductases, such as the aldo-
keto reductases and aldehyde/aldose reductases, involved in
detoxifying reactive carbonyls (Yamauchi et al., 2010), can
reduce MG to the corresponding alcohol (Simpson et al.,
2009; Narawongsanont et al., 2012). Another pathway is the
irreversible oxidation of reactive aldehydes, including MG, to
their corresponding carboxylic acids, which is catalyzed by

aldehyde dehydrogenases (Kirch et al., 2005). However, the
glyoxalase system is the most efficient MG detoxification system
in plants under normal physiological conditions (Ghosh et al.,
2016), and this pathway is very important for plants under stress
(Singla-Pareek et al., 2006; Alvarez Viveros et al., 2013).

MG LEVELS IN PLANTS UNDER
STRESSFUL CONDITIONS

Under normal metabolic conditions, plants usually maintain a
lower level (30−75 µM) of MG (Yadav et al., 2005a; Hossain
et al., 2009); however, an abrupt increase was observed in respone
to abiotic stresses (Yadav et al., 2005a; Hossain et al., 2009;
Mostofa et al., 2015a,b). Salt stress-induced inceases in MG
levels were found in various plant species, including pumpkin
(Cucurbita maxima L.) by 77%, tobacco (Nicotiana tabacum L.,
cv. BY-2) by 67% and potato (Solanum tuberosum L. cv. Taedong
Valley) by 50%, compared with the respective controls (Hossain
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et al., 2009; Banu et al., 2010; Upadhyaya et al., 2011; Ghosh
et al., 2014). Increased MG levels were also found in mung bean
(Vigna radiata L.), Lepidium sativum and rice plants in response
to drought (90–107%), and excessive Cd (60–260%) and Cu
(106–156%) stresses, respectively, when compared with control
counterparts (Nahar et al., 2015b; Mostofa et al., 2015b,c). These
findings indicate that the increase in MG levels is a common
response of plants to a variety of abiotic stressors, and that stress-
induced MG could act as a generic signal molecule for plants
under adverse environmental conditions.

MG TOXICITY IN PLANT CELLS DURING
PLANT GROWTH AND DEVELOPMENT

In plant cells, MG accumulation has been shown to correlate
with increased levels of intracellular oxidative stress, due to the
enhanced reactive oxygen species (ROS) production (Maeta et al.,
2005; Kalapos, 2008). MG accumulation may indirectly result in
increased ROS production by decreasing available GSH levels
and by impairing the function of antioxidant enzymes in plants
under oxidative stress. In addition, MG can function as a Hill
oxidant and catalyze the photoreduction of O2 to superoxide
(O•−2 ) in photosystem I (PSI) (Saito et al., 2011). The production
of O•−2 is deleterious as it can cause oxidative damage to cellular
components.

Methylglyoxal is an α,β-dicarbonyl compound that can
act both as a genotoxic and a glycation agent (Rabbani and
Thornalley, 2014). MG has two functional groups; a ketone
group and an aldehyde group, the latter being more reactive
than the former (Leoncini, 1979). The dicarbonyl group within
MG can readily react with the amine groups of proteins and
nucleic acids, including DNA and RNA. The accumulation
of MG is often called dicarbonyl stress, which has been
implicated as a cause of tissue damage and aging (Rabbani
and Thornalley, 2014). MG reacts with the amino acids lysine,
cysteine and arginine producing glycated proteins, often referred
to as advanced glycation end products (AGEs) (Ahmed and
Thornalley, 2007), which can cause inactivation of proteins
and oxidative damage to key cellular components (Thornalley,
2006). AGEs and dicarbonyl compounds, including MG, often
accumulate in plant leaves upon exposure to high light or elevated
CO2 concentrations (Qiu et al., 2008; Bechtold et al., 2009).
Thus, it appears that the increase in sugar accumulation and
changes in the metabolic flux of sugars, which occur at high
CO2 concentrations, promote the production of MG and other
reactive carbonyls, resulting in the accumulation of AGEs. In
summary, excessive MG accumulation in plant cells under stress
can inhibit cell proliferations, and cause the inactivation and/or
degradation of proteins, inactivation of antioxidant defenses,
leading to disruption of many cellular functions (Hoque et al.,
2010; Hoque M.A. et al., 2012).

Indeed, MG showed toxicity to photosynthesis in the
chloroplasts of spinach (Spinacia oleracea L.) (Mano et al.,
2009), and the accumulation of MG in the pdtpi mutant, which
lacks the plastid isoform of TPI, exhibited greatly reduced
growth and increased chlorosis (Chen and Thelen, 2010).

Yadav et al. (2005a) reported that accumulation of MG, as
a result of salt stress, directly and adversely influenced plant
developmental processes, such as seed germination and seedling
growth, in tobacco plants. Similarly, Engqvist et al. (2009) found
that Arabidopsis plants grown on MS medium supplemented
with MG (0.1 or 1 mM MG) exhibited a significant reduction in
shoot and root growth. Later, the same group reported a dose-
dependent decrease in root and shoot growth of Arabidopsis,
tomato and tobacco plants grown on MS medium containing
1 mM MG (Wienstroer et al., 2012). Furthermore, Hoque et al.
(2012b) examined the inhibitory effects of MG on growth and
development in Arabidopsis and suggested that 1 mM MG is
toxic enough to significantly inhibit seed germination and root
elongation in seedlings. However, concentrations lower than
0.1 mM MG had no influence on seed germination, but did
reduced the rate of root elongation. In addition, concentrations of
1 mM MG or higher resulted in seedling chlorosis within 4 days
of treatment. Recently, Kaur et al. (2015a) also reported that MG
exposure caused a significant growth reduction in rice seedlings
(Oryza sativa cv. IR4), with acute effects on root elongation in a
concentration-dependent manner. The above findings highlight
the growth inhibitory effects of MG on plants, and indicate that
the MG levels causing toxic effects to plants vary depending on
plant species, exposure time and perhaps age of plants.

MG AS A SIGNALING MOLECULE IN
PLANTS UNDER STRESS

MG-Induced ROS Regulation
In plants, ROS are primarily formed at low levels as metabolic
by-products of photosynthesis and respiration in organelles
through enzymatic reactions that take place in plant cell walls
and the apoplastic space in response to pathogens (Ahmad
et al., 2010; Sharma et al., 2012). In plants, the rates of ROS
production dramatically increase under abiotic or biotic stress
(Sharma et al., 2012), leading to the onset of oxidative stress.
The enzymes involved directly in ROS production include
plasmamembrane NAD(P)H oxidases, cell-wall peroxidases
(Grant et al., 2000; Torres et al., 2002), apoplastic amine oxidases,
oxalate oxidases and heme-containing peroxidases (Sewelam
et al., 2016). Recently, Kaur et al. (2014a) reported that when
MG levels in plant cells increased due to stress, ROS generation
increased directly due to the presence of MG or indirectly due to
the formation of AGEs. It has been reported that application of
exogenous MG to tobacco plants, at concentrations between 0.5
and 10 mM, reduced the activities of antioxidant enzymes, such as
glutathione S-transferase (GST) and ascorbate peroxidase (APX),
leading to oxidative stress (Hoque et al., 2010; Hoque M.A. et al.,
2012). In addition, Saito et al. (2011) also demonstrated that MG
induced O•−2 production in chloroplasts during photosynthesis.
MG, at concentrations to 1 mM, has also been shown to cause
a reversible induction of O•−2 production in leaves of both
wild-type Arabidopsis and NAD(P)H oxidase knock-out atrbohD
atrbohF mutant plants, suggesting that salicylhydroxamic acid
(SHAM)-sensitive peroxidases could be involved in this oxidative
burst.
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Regulation of Stomatal Conductance
Involving Cytosolic Ca2+ Oscillation and
Inward Kin Channel Activation
Plants appear to have well-developed systems to sense and react
to diverse environmental stimuli (Jia and Zhang, 2008). Stomata,
which control CO2 uptake and minimize transpirational water
loss, are capable of responding to various environmental stimuli,
e.g., light levels, CO2 levels, temperature and humidity, and are
often used as a model system to investigate cell-to-cell signaling in
plants (Schroeder et al., 2001; Kim et al., 2010). Stomatal closure
is an adaptive mechanism in plants, enabling them to survive
in adverse environments (Osakabe et al., 2014). Stomatal closure
is associated with increased concentrations of cytosolic calcium,
[Ca2+]cyt, with oscillations in [Ca2+]cyt occuring in guard cells
in response to a diverse range of environmental stimuli (Pei et al.,
2000; Mori et al., 2006; Young et al., 2006).

To investigate the mode of action of MG in stomatal guard cell
signal transduction, Hoque et al. (2012a,c) investigated stomatal
movement in Arabidopsis treated with different concentrations
of MG. They found that at concentrations of MG up to 1 mM,
MG behaved like a signal molecule as it induced stomatal closure,
in a dose-dependant and reversible manner, without reducing
the viability of guard cells. The induction of stomatal closure
by MG involved an extracellular peroxidase-mediated oxidative
burst and [Ca2+]cyt oscillations (Figure 2). However, this MG-
controlled induction did not require endogenous abscisic acid

(ABA) nor endogenous methyl jasmonate (MeJA), and was not
affected by deficiency in NAD(P)H oxidases. Thus, the studies of
Hoque et al. (2012a,c) provided evidence that MG can induce
stomatal closure, which is an important adaptive response of
plants to environmentally induced stress.

Regulation of stomatal opening can greatly influence plant
productivity and stress management (Dietrich et al., 2001),
with inhibition of light-induced stomatal opening likely being
occurred in plants under stress. The uptake of K+ into the
guard cells accompanies light-induced stomatal opening, and
inward-rectifying potassium (Kin) channels play important roles
in regulating K+ uptake (Schroeder et al., 2001). The K+
transporter of Arabidopsis thaliana KAT1 gene is expressed
in stomatal guard cells, and plants with a dominant negative
mutation in this gene have reduction of Kin channel currents,
which results in a reduced ability in regulating K+ ion flow
and suppression of light-induced stomatal opening (Kwak et al.,
2001). It has also been demonstrated that MG, in a concentration-
dependent manner, can interfere with light-induced stomatal
opening in Arabidopsis, and that this interference involves
inhibition of Kin channel currents in guard cells, partially due
to suppression of KAT1 channel activity (Hoque et al., 2012a,c)
(Figure 2). According to Sato et al. (2009, 2010), protein
kinase C (PKC) and stress-activated protein kinase SnRK2.6
(Snf1-related protein kinase 2.6) phosphorylate the C-terminal
regions of KAT1, which modulates the activity of KAT1 channel.
It is possible that MG can restrain the Kin channel activity

FIGURE 2 | A schematic model depicting the signaling roles of MG in plant during abiotic stresses (modified from Hoque et al., 2015; Kaur et al.,
2015a). Stress-induced MG participates in signal transduction by altering the expression of a number of genes, such as those encoding protein kinases and
transcription factors (TFs), triggering various responses, including changes in general metabolism and ion/metabolite transport, stress and defense responses, as
well as protein degradation. For further discussion, see the text. Abbreviations are defined in the text.
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by modifying C-terminal regions of KAT1, as well as other
components, which inhibits stomatal opening.

Expression of Stress-Responsive Genes
in Co-ordination with ABA
Abiotic stresses, including drought, salinity and extreme
temperatures, can induce the expression of many defense-related
genes in plants. Stress-induced genes are important for plant
survival as they encode proteins with both direct and indirect
protective functions, and proteins that play important roles
in signal transduction and gene regulation, both of which are
important for coordinated stress responses (Ma et al., 2012;
Thao and Tran, 2012; Yoshida et al., 2015). The plant hormone
ABA is an important signal molecule for plant growth and
development, as well as various physiological processes, including
abiotic stress responses (Fujita et al., 2011, 2013; Osakabe et al.,
2014). Many stress-inducible genes exhibit ABA-dependent gene
expression patterns (Hadiarto and Tran, 2011; Todaka et al.,
2015).

As ABA plays an important role in the integration of
stress signals and downstream regulation of stress responses
in plants (Hubbard et al., 2010; Weiner et al., 2010), it is
possible that ABA could be involved in the responses that occur
following MG accumulation. Hoque et al. (2012b) investigated
the expression of the stress- and ABA-responsive genes RD29B
and RAB18 in Arabidopsis wild-type and ABA-deficient (aba2-
2) mutant plants in response to MG treatment. They reported
that MG significantly enhanced transcriptional levels of RD29B
and RAB18 in WT seedlings in a dose-dependent manner. In
contrast, the transcription of neither RD29B nor RAB18 was
affected by MG in aba2-2 mutant plants, indicating that ABA
is involved in MG-induced up-regulation of RD29B and RAB18

genes. This finding suggests that stress-induced MG may regulate
stress-responsive genes in ABA-dependent pathway for plant
adaptation to stress.

MG-Responsive Signal Transduction
Pathways
Plants have developed effective detection mechanisms and
efficient signal transduction pathways to enable them to respond
to various environmental stresses (Petrov et al., 2015). These
pathways often involve multiple genes/proteins, operating in
a coordinated manner, to regulate the expression patterns of
the key genes, enabling plants to respond to a diverse range
of external stimuli (Hadiarto and Tran, 2011; Gururani et al.,
2015; Li and Tran, 2015). Kaur et al. (2015a) used microarray
analysis to investigate gene expression profiles in rice exposed to
exogenous MG, and study the molecular basis of MG responses.
MG affected genes involved in hormone signaling, cell-to-
cell communications, and chromatin remodeling. A number
of genes encoding bZIP, MYB, NAC, WRKY, AP2/EREBP,
and zinc finger transcription factors (TFs) were also found
to be MG-responsive. In addition, various genes encoding
protein kinases, including mitogen-activated protein kinases
(MAP kinases), calcium/calmodulin-dependent protein kinases
(CDPKs), Ser/Thr protein kinases, histidine kinases and receptor-
like kinases, and OsRR2 type-A response regulator showed
changes in their expression patterns. Since cellular MG levels
increase in plants in response to stressful conditions, altered
expression patterns of stress-inducible genes encoding TFs and
protein kinases are expected to be observed following MG
application (Figure 2). Using in silico analysis, Kaur et al.
(2015a) identified conserved motifs as MG-responsive elements
(MGREs) in the upstream regions of MG-responsive genes

TABLE 1 | Glyoxalase genes overexpressed in transgenic plants exhibiting enhanced abiotic stress tolerance.

Gene Plant species Response phenotype Reference

Gly I Tobacco (Nicotiana tabacum) Improved salt stress tolerance Veena et al., 1999

Gly I Black gram (Vigna mungo) Improved salt stress tolerance Bhomkar et al., 2008

Gly I Arabidopsis thaliana Improved salt stress tolerance Roy et al., 2008

Gly I Rice (Oryza sativa) Improved salt stress tolerance Verma et al., 2005

Gly I Tobacco (Nicotiana tabacum) Improved salt stress tolerance Yadav et al., 2005a

Gly I Tobacco (Nicotiana tabacum) Improved zinc tolerance Lin et al., 2010

Gly I Tobacco (Nicotiana tabacum Improved tolerance to MG, salt stress,
excessive mannitol and H2O2

Wu et al., 2013

Gly I Tobacco (Nicotiana tabacum) Improved tolerance to MG and salt stress Mustafiz et al., 2014

Gly II Rice (Oryza sativa) Improved salinity tolerance Singla-Pareek et al., 2008

Gly II Mustard (Brassica juncea) Improved salinity tolerance Saxena et al., 2011

Gly II Rice (Oryza sativa) Improved salinity tolerance Wani and Gosal, 2011

Gly II Arabidopsis thaliana Improved salt and anoxic stress tolerance Devanathan et al., 2014

Gly II Tobacco (Nicotiana tabacum) Improved salinity tolerance Ghosh et al., 2014

Gly I + Gly II Tobacco (Nicotiana tabacum) Improved salinity tolerance and set viable seeds
under zinc-spiked soils

Singla-Pareek et al., 2003,
2006; Yadav et al., 2005b

Gly I+ Gly II Tomato (Solanum lycopersicum) Improved salt stress tolerance Alvarez Viveros et al., 2013

Gly I+ Gly II Carrizo citrange
(Citrus sinensis x Poncirus trifoliata)

Improved salinity tolerance Alvarez-Gerding et al., 2015

Gly, glyoxalase.
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and provided the putative MGRE sequences (CTXXCTC and
GGCGGCGX). The ability of MG to influence the stress-
responsive signaling network highlights the importance of MG
in plant stress responses.

GLYOXALASES IN PLANT ABIOTIC
STRESS RESPONSES AND ADAPTATION
TO ENVIRONMENTAL STRESSORS

The glyoxalase system is involved in various cellular functions,
but the involvement of this system in plant stress responses and
tolerance is regarded as its most significant role (Kaur et al.,
2014a). The glyoxalase system regulates MG levels in plants
under stress and regenerates GSH. GSH and a high GSH/GSSG
ratio are required to help protect plants against oxidative stress
(Yadav et al., 2005a,b; Noctor et al., 2012), and GSH is directly
or indirectly required for the functioning of various antioxidant
enzymes, including GST, glutathione peroxidase (GPX), and
APX (Yadav et al., 2008). Several studies have shown close
links between the antioxidant and glyoxalase systems in plants,
suggesting a direct influence of the glyoxalase system on ROS

detoxification (Yadav et al., 2005a; El-Shabrawi et al., 2010;
Upadhyaya et al., 2011; Mostofa et al., 2014a, 2015a).

An increase in glyoxalase enzyme activities occurs in plants
in response to many different stressors, including osmotic stress,
extremes of temperature, heavy metals and exposure to stress-
related hormones, including MeJA, ABA and salicylic acid (SA)
(Hossain and Fujita, 2009; Hossain et al., 2009). Transcriptomic
and proteomic analyses of various plant species have improved
our knowledge and understanding of the roles of glyoxalases
in plant stress responses and tolerance (Singla-Pareek et al.,
2003, 2006; Hossain et al., 2009; Lin et al., 2010; Mustafiz et al.,
2011). Plant glyoxalase genes (Gly I and Gly II) have been
cloned from various plant species and characterized in detail.
The expression of Gly I and Gly II genes has been shown to
be up-regulated in many plant species by a diverse range of
environmental cues, and plants overexpressing either Gly I or
Gly II showed enhanced plant abiotic stress tolerance (Singla-
Pareek et al., 2003, 2006, 2008; Lin et al., 2010; Alvarez Viveros
et al., 2013; Wu et al., 2013; Kaur et al., 2014a,c). The genetic
manipulation of the glyoxalase system in plants has successfully
contributed to improved tolerance to multiple abiotic stresses,
such as salinity, heavy metals and MG treatments (Table 1).
Transgenic plants overexpressing glyoxalase pathway genes have

TABLE 2 | Effects of exogenous chemicals on glyoxalase systems and abiotic stress tolerance.

Plant species Types of stresses Exogenous
chemicals

Responses of
glyoxalases (Gly I and II)

Concentration
of MG

Reference

Rice (Oryza sativa L.) As, Cd Ca Gly I ↑ Gly II ↑ (As) ↓ Rahman et al., 2015a,b

Gly I ↑ Gly II ↑ (Cd)

Rice (Oryza sativa L.) Cu SA Gly I ↑ ND Mostofa and Fujita, 2013;
Mostofa et al., 2014aGly II ↑

Rice (Oryza sativaL.) Heat Spd Gly I ↑ ↓ Mostofa et al., 2014b

Gly II ↑

Rice (Oryza sativa L.) NaCl, Cu Tre Gly I l Gly II ↑ (NaCl) ↓ Mostofa et al., 2015a,b

Gly I ↑ Gly II ↑ (Cu)

Rice (Oryza sativa L.) Cd, NaCl H2S Gly I ↓ Gly II ↑ (Cd) ↓ Mostofa et al., 2015c,d

Gly I ↓ Gly II ↑ (NaCl)

Mung bean (Vigna radiata L.) Cd Pro and GB Gly I ↑ ND Hossain et al., 2010

Gly II ↑

Mustard (Brassica junceaL.) Drought Pro and GB Gly I l Gly II ↑ ND Hossain et al., 2014

Tea (Camellia sinensisL.) Cold Pro and GB Gly I ↑ ND Kumar and Yadav, 2009

Gly II ↑

Tobacco (Nicotiana tabacumL.) NaCl Pro and GB Gly I ↑ ↓ Hoque et al., 2008

Gly II l

Mung bean (Vigna radiata L.) Heat, Drought GSH Gly I ↓ Gly II ↑ (Drought) ↓ Nahar et al., 2015b,c

Gly I ↑ Gly II ↑ (Heat)

Wheat (Triticum aestivum) Heat, NaCl NO Gly I ↑ Gly II l (Heat) ND Hasanuzzaman et al., 2011a,
2012bGly I ↑ Gly II ↑ (NaCl)

Rapeseed (Brassica napus) Drought, NaCl, Cd Se Gly I ↑ Gly II ↑ ND Hasanuzzaman and Fujita,
2011; Hasanuzzaman et al.,
2011b, 2012a

(Drought)

Gly I ↑ Gly II ↑ (NaCl)

Gly I ↑ Gly II ↑ (Cd)

Ficusconcinna Heat BRs Gly I ↑ Gly II ↑ ↓ Jin et al., 2015

As, Cd, Cu, Ca, SA, Spd, Tre, H2S, Pro, GB, GSH, NO, Se, and BRs correspond to arsenic, cadmium, copper, calcium, salicylic acid, spermidine, trehalose, hydrogen
sulfide, proline, glycinebetaine, glutathione, nitric oxide, selenium, and brassinosteroids, respectively. Gly, glyoxalase; ↑, increased; l, unchanged; ↓, decreased; ND, not
determined.
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lower MG and ROS levels when exposed to stress, because
they have better GSH homeostasis and retain better antioxidant
enzyme functionality. Thus, glyoxalase enzyme levels can be used
as phenomic biomarkers to indicate degrees of stress tolerance,
and plants with high glyoxalase enzyme levels are potentially
tolerant to a wide range of abiotic stresses (Kaur et al., 2014c).
In Table 1, we summarized most of the successful transgenic
studies that showed that transgenic plants, including important
crop plants, overexpressing individually or together Gly I and Gly
II have increased stress tolerance.

In addition to the transgenic approach, alternative methods,
such as treatments of seeds prior to sowing and/or plants
with exogenous chemicals, e.g., plant growth regulators,
osmoprotectants, signaling molecules etc., can also alter the
glyoxalase system in plants, thereby improving stress tolerance
(Table 2). For instance, treatment of rice seedlings with Ca
has been shown to increase the activities of Gly I and Gly II,
contributing to the reduction in As- and Cd- induced growth
inhibition (Rahman et al., 2015a,b). Mostofa and Fujita (2013)
reported that a SA pre-treatment of rice seedlings under Cu
stress alleviated Cu-toxicity by increasing the capacity of both
antioxidant and glyoxalase systems. Table 2 lists most of the
important studies in which chemical treatments were used
to influence the glyoxalase system, leading to enhanced stress
tolerance.

CONCLUSION AND FUTURE
PERSPECTIVES

Recent studies of MG metabolism have revealed many important
functions of MG related to stress responses and tolerance

in plants. The excessive accumulation of MG in plants is
an inevitable stress, but MG can stimulate the components
of different stress-protection pathways (Figure 2; Engqvist
et al., 2009; Hoque et al., 2012a,b,c; Wienstroer et al.,
2012; Kaur et al., 2015a), which could be considered as
an acclimation/adaptation process. The glyoxalase pathway
scavenges MG and confers tolerance to multiple stresses;
and thus, MG levels and glyoxalase pathway are closely
associated with abiotic stress tolerance in plants. The signaling
roles of MG in up-regulating stress-responsive pathways and
its potential to active multiple pathways have made MG a
suitable marker for abiotic stress tolerance in plants. Recent
progress made by genome-wide and in silico analyses has
revealed intricate regulatory networks associated with MG
signaling, which control gene expression, protein modification
and the metabolite composition of plants. Further omic
studies investigating the roles of MG would be worthwhile
to improve our understanding of multiple abiotic stress
tolerance. In-depth understanding of the interactions of MG
with Ca2+, ROS, NO, H2S, plant hormones, TFs, and the
glyoxalase system, as well as with other MG detoxification
systems in different subcellular compartments will reveal more
regulatory roles for MG in plant abiotic stress responses and
tolerance.
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