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Abstract

Background: DNA methylation (DNAm) is an epigenetic regulator of gene expression programs that can be altered
by environmental exposures, aging, and in pathogenesis. Traditional analyses that associate DNAm alterations with
phenotypes suffer from multiple hypothesis testing and multi-collinearity due to the high-dimensional, continuous,
interacting and non-linear nature of the data. Deep learning analyses have shown much promise to study disease
heterogeneity. DNAm deep learning approaches have not yet been formalized into user-friendly frameworks for
execution, training, and interpreting models. Here, we describe MethylNet, a DNAm deep learning method that can
construct embeddings, make predictions, generate new data, and uncover unknown heterogeneity with minimal
user supervision.

Results: The results of our experiments indicate that MethylNet can study cellular differences, grasp higher order
information of cancer sub-types, estimate age and capture factors associated with smoking in concordance with
known differences.

Conclusion: The ability of MethylNet to capture nonlinear interactions presents an opportunity for further study of
unknown disease, cellular heterogeneity and aging processes.

Keywords: Deep learning, DNA methylation, High performance computing, Workflow automation, Unsupervised,
Supervised, Transfer learning, Embedding

Background
Deep learning has emerged as a widely applicable mod-

eling technique for a broad range of applications

through the use of artificial neural networks (ANN) [1].

Recently, the accessibility of large datasets, graphics pro-

cessing units (GPUs) and unsupervised generative tech-

niques have made these approaches more accurate,

tractable, and relevant for the analysis of molecular data

[2–7].

DNA methylation (DNAm) is the addition of a methyl

group to a nucleotide, typically cytosine, that does not

alter the DNA sequence and occurs most frequently to

cytosine-guanine dinucleotides (CpG). Methylated re-

gions of DNA (hypermethylated), are associated with

condensed chromatin, and when present near gene pro-

moters, repression of transcription. Unmethylated re-

gions of DNA (hypomethylated), are associated with

open chromatin states and permissive to gene transcrip-

tion. DNAm patterns are associated with cell-type-

specific gene expression programs, and alterations to
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DNAm have been associated with aging and environ-

mental exposures [8, 9]. Further, it is well-established

that DNAm alterations contribute to development and

progression of cancer. The hypermethylation of tumor

suppressing genes and the hypomethylation of onco-

genes can lead to pathogenesis and poor prognosis. Af-

fordable array-based genome-scale approaches to

measure DNAm have potentiated Epigenome Wide As-

sociation Studies (EWAS) for testing associations of

DNAm with phenotypes, exposures, and states of human

health and disease. Because DNAm patterns are cell-

type specific, EWAS often account for potential con-

founding from variation in biospecimen cell composition

using reference-based, or reference-free approaches to

infer cell type proportions [10–13].

Measuring genome-wide DNAm in large numbers of

specimens typically uses microarray-based technologies

such as the Illumina HumanMethylation450 (450 K) and

HumanMethylationEPIC (850 K) [14] arrays, which yield

an approximation to the proportion of DNA copies that

are methylated at each specific cytosine locus, and are

reported as beta values. Preprocessing pipelines such as

PyMethylProcess have simplified derivation and storage

of methylation beta values in accessible data formats

[15]. The scope of features from DNAm arrays is 20–50-

fold higher than that of RNA-sequencing data sets that

return normalized read counts for each gene. Though

DNAm data can have a similar scope of features as

genotyping array data sets, DNAm beta values are con-

tinuous (0–1), not categorical. Together, these facets of

DNAm data sets pose challenges to analyses such as

handling multi-collinearity and correcting for multiple

hypothesis testing. To address these challenges, many

downstream EWAS analyses have focused on reducing

the dimensions into a rich feature set to associate with

outcomes. By limiting the number of features through

dimensionality reduction and feature selection, analyses

become more computationally tractable and the burden

of correcting for multiple comparisons is reduced.

An important advancement to methylation-based deep

learning analyses was the application of Variational

Auto-encoders (VAE). Initial deep learning approaches

for DNAm data focused on estimating methylation

status and imputation, performing classification and

regression tasks, and performing embeddings of CpG

methylation states to extract biologically meaningful

lower-dimensional features [16–23]. VAEs embed the

methylation profiles in a way that represents the original

data with high fidelity while revealing nuances [4, 5, 24].

Thereafter, researchers attempted to develop similar

frameworks for extracting features for downstream pre-

diction tasks and identify meaningful relationships re-

vealed by VAE latent representations [25]. However,

VAE models are sensitive to the selection of

hyperparameters [26] and have not been optimized for

synthetic data generation, latent space exploration, and

prediction tasks. Many auto-encoder approaches repre-

sent the data using an encoder, and then utilize a non-

neural network model (e.g. support vector machine) to

finalize the predictions. Presently, to the best of our

knowledge there is no end-to-end training approach that

both extracts biologically meaningful features through

latent encoding and performs predictions using the de-

rived features. Further, existing frameworks do not out-

put predictions for multi-target regression tasks, such as

cell-type deconvolution and subject age prediction.

Here, we leverage deep learning latent space regression

and classification tasks through the development of a

modular framework that is highly accessible to epigen-

etic researchers (Fig. 1). MethylNet is a modular user-

friendly deep learning framework for EWAS tasks with

automation that leverages preprocessing pipelines. To

discover important CpGs for each prediction we use the

SHAP (SHapley Additive ExPlanation) approach [27].

We highlight MethylNet as an easy-to-use command line

interface that utilizes automation to scale, optimize, and

simplify deep learning methylation tasks. MethylNet’s

capabilities are showcased here with unsupervised gen-

erative and clustering tasks, cell-type deconvolution,

pan-cancer subtype classification, age regression, and

smoking status classification. These analyses will pave

the path for more robust deep learning prediction

models for methylation data. Coupled with PyMethylPro-

cess [15], we expect the MethylNet framework to enable

rapid production-scale research and development in the

deep learning epigenetic space.

Results
We show that MethylNet serves as an effective encoder

for DNAm data by capturing latent features that have

high fidelity to the original dataset. This method can

utilize encodings to make accurate predictions in com-

mon DNAm analysis tasks, and the CpGs important for

making predictions are concordant with prior observa-

tions. Finally, we demonstrate that MethylNet can also

identify CpGs consistent with a large EWAS meta-

analysis.

Datasets acquired

We selected six public DNAm data sets and use cases to

illustrate a range of tasks and demonstrate ability to cap-

ture features that meaningfully encode aging, cell

lineage, disease states, and exposures. The first dataset

(Johansson data) was used to study both age and cell

type classification and is one of the largest readily available

DNAm datasets from healthy subjects with a wide age range

(blood DNAm from individuals aged 15 to 95, GSE87571

[28]; Supplementary Figure 1 and Supplementary Table 1).
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The second dataset (The Cancer Genome Atlas, TCGA)

was used to study cancer subtypes and includes 8376

samples representing 32 different cancer subtypes (Sup-

plementary Tables 1, 2). The third dataset (Liu dataset)

was used to compare blood DNAm in current smokers

to never smokers among the controls from a rheuma-

toid arthritis study (GSE42861, subset n = 188 [29]).

These three datasets were preprocessed using

PyMethylProcess to yield 300 k, 200 k, and 300 k CpG

features respectively and then split into 70% training,

20% testing, and 10% validation. Three additional data-

sets (GSE40279, GSE84207, and GSE75067) were uti-

lized for preliminary evaluations of external validation

and breast tumor subtyping.

Motivation for DNAm encoding

First, we established MethylNet as a method for DNAm

encoding by demonstrating the ability to recapitulate the

original DNAm signal while providing superior cluster-

ing performance over state-of-the-art clustering methods

such as Recursively Partitioned Mixture Modeling

(RPMM) [30] (see Supplementary Material, “Evaluation

of Unsupervised Encoder Performance”; Supplementary

Figures 2, 3 and 4). Given MethylNet’s performance in

the unsupervised domain and its ability to meaningfully

encode DNAm features, we next used this framework to

validate performance in typical DNAm prediction tasks

of age estimation, cellular proportion estimation, and

disease classification.

Fig. 1 Step-by-step description of the modular framework: a Train feature extraction network using variational auto-encoders; b Fine-tune
encoder for prediction tasks; c Perform hyperparameter scans for (a) and (b); d Identify contributing CpGs; e Interpret the CpGs
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Age results

DNAm-based age estimators such as the Horvath and

Hannum clocks used elastic net penalized regression to

identify sets of CpGs (353 and 71 respectively) strongly

associated with age [31, 32]. Hannum et al. leveraged

DNA methylation data from whole blood measured with

the 450 K Illumina platform in 656 subjects aged 19–

101. Horvath leveraged genome-scale methylation data

from 51 tissue and cell types in 82 independent data sets

and over 8000 samples. The resulting models provide for

very accurate age estimation but the number of and

manner with which features can be associated with age

are limited. Moreover, recently there is interest in un-

derstanding what drives observed remaining residual be-

tween chronological age and methylation age. The

difference between age and methylation age has been

termed biological age or age acceleration and has itself

been associated with disease risk and all-causes mortality

[33–35]. Demonstrating consistent performance between

MethylNet and established approaches motivates future

use of our method to study complex states and interac-

tions underlying aging processes.

Again, utilizing the Johansson data, we trained Methyl-

Net on the chronological age of the individuals to pre-

dict chronological age. MethylNet-predicted age showed

excellent concordance with the actual subject age (R2 =

0.96, Fig. 2a) in the hold-out test set (n = 144), and only

had 3.0 years mean absolute error (Fig. 2b) (training and

validation performance in Supplementary Table 3).

These results are comparably accurate to those esti-

mated by the Hannum and Horvath clocks. The contri-

bution of each CpG to age groups binned by 10-year

increments from ages 14 to 94 were measured by Shap-

ley values. The CpGs with the one thousand largest

Shapley values for each age group were overlapped with

the CpGs of the Hannum clock (Fig. 2c). These CpG

contributions were compared between age groups using

correlation distance, as illustrated in Fig. 2d. The con-

nectivity between different age groups’ CpG attributions

in Fig. 2d using hierarchical clustering demonstrates the

Fig. 2 Age Results on Test Set (n = 144): a Age predictions derived using the Horvath, Hannum, and MethylNet estimators are compared to the
true age of the individual, the predicted ages are plotted on the x-axis, the actual ages on the y-axis, and a line was fit to the data for each
estimator; b Comparison of MethylNet Age estimates on Test Set (n = 144) to Horvath and Hannum Age Estimators. 95% confidence intervals for
each score were calculated using a one thousand sample non-parametric bootstrap; c Bar chart depicting the overlap of CpGs important to
MethylNet and Hannum age estimators where one thousand CpGs with the highest SHAP scores per 10-year age group are divided by the total
number of Hannum CpGs that passed QC; d Hierarchical clustering using the correlation distance between SHAP CpG scores for age groups
across all CpGs. The linkage is found between similar age groups
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sharing of important CpGs by similarly aged groups.

Further description of the derivation of the Shapley

score estimates can be found in the supplementary

materials.

We aimed to compare the highly contributing CpGs to

age predictions using MethylNet and to those calibrated

in the Hannum epigenetic clock [31]. The CpGs used by

the Hannum model were most likely associated with

those aged 60–80, the most prevalent ages in the cohort.

Since the number of Hannum CpGs rediscovered by

MethylNet appears to peak around this range, this sup-

ports evidence that MethylNet is able to recover the de-

fining CpGs of the Hannum cohort.

Cell type Deconvolution results

Reference-based cell type estimation approaches with

DNAm data use a library of cell-specific leukocyte differ-

entially methylated regions (L-DMR), to infer cellular

proportions. These cell type libraries, similar to age esti-

mation, contain a few hundred CpG features for predic-

tion (e.g. the 350 CpG IDOL library [12]), and current

deconvolution is very accurate and fast. Although

current methods like estimateCellCounts2 accurately

capture cellular proportions in blood, the future of cell

type deconvolution includes efforts to estimate

remaining sources of cell type heterogeneity, including

cellular states that currently lack L-DMR. We sought to

investigate the ability of MethylNet to capture current

capabilities of cellular deconvolution so that it may be

applied to future unsupervised domains when the

requisite amount of data is available.

As such, MethylNet was tasked with estimating the

cell-type proportions for six immune cell-types using the

same dataset as supplied for the age analysis. Unsuper-

vised derivation of six latent clusters using VAE embed-

dings demonstrated separation of cellular proportions

without training on a reference set of cellular propor-

tions for DNAm profiles (Supplementary Table 6); this

served as motivation for a supervised analysis. As com-

pared to the other EpiDISH estimator methods that

utilize the IDOL library, the prediction framework dem-

onstrates exemplary performance on this task in R2 and

mean absolute error across all cell-types save for mono-

cytes, as demonstrated in Table 1 (Fig. 3a-b; training and

validation performance in Supplementary Table 4; con-

cordance to EpiDISH estimators in Supplementary

Table 7). Using Shapley attribution, contributions for

each of the CpGs for driving the predictions of the cell-

types was derived. Figure 3c shows the connectivity of

their hierarchical clustering of these CpG attributions.

The hierarchical clustering between the SHAP scores

of each of the cell-types is consistent with the known

cell lineage, reinforcing that cell lines that have co-

evolved similarly share similar driving CpGs that are

indicative of their cell-type. Some of the cell-types ob-

tained improved concordance metrics (e.g. R2) compared

to other cell types but had similar absolute errors (i.e.

MAE). This is likely due to the fact that the total range

of proportions of monocytes, for instance, from the col-

lected data was small such that these errors could make

it difficult to correlate the predicted and true cell type

proportions. Alternatively, issues with the purity of the

reference monocytes could complicate reference-library

calibration. A similar overlap test was conducted be-

tween the MethylNet SHAP CpGs and IDOL-derived L-

DMR CpGs (Supplementary Figure 5). Little overlap was

found between the two sets, as only the B-cells were able

to capture more than 10% of the IDOL CpGs. This does

not indicate that MethylNet could not identify CpGs that

are cell-type specific. Rather, this finding serves to indi-

cate that models with different optimization objectives

and number of features available differentially attribute

CpGs.

To this point, we still do not know at what point do

CpGs, across individuals or larger groupings reach statis-

tical significance and thus warrant additional inspection.

Some preliminary analysis can be found in the Supple-

mentary Figures 6 and 7. For the Hannum and IDOL

analysis, we set this at an arbitrary cutoff value of the

top 1000 CpGs per age/cell-type group, but the distribu-

tion of these Shapley scores and their fidelity to model

predictions is an active area of research [36].

Pan-cancer prediction results

Finally, motivating uses of MethylNet as a mechanism to

uncover sources of disease heterogeneity and the cap-

ability of the workflow to capture features that are

tissue-specific, MethylNet was employed to make predic-

tions of 32 cancer subtypes (n = 1676) (one removed due

to low sample size) across the pan-cancer TCGA cohort.

This analysis yielded 0.97 accuracy, 0.97 precision, 0.97

recall and 0.97 F1-score, averaged across the different

subtypes (Fig. 4a) (training and validation performance

in Supplementary Table 5). These results outperform a

support vector machine (SVM)-based classification ap-

proach, in which MethylNet demonstrated a 0.15-unit

(18%) increase in F1-score. A breakdown of classification

accuracies for each subtype is in the supplemental re-

sults (Supplementary Tables 8 and 9). We also report on

how predictive accuracy scales with dataset size in the

supplementary materials (Supplementary Figures 8–9).

The latent profiles derived for pan-cancer subtypes

given the model training on this predictive task showed

clustering with high concordance to known cancer type

differences. Thresholding a hierarchical clustering of the

average cosine distance between cancer subtypes from

the MethylNet derived embeddings (Fig. 4b, Supplemen-

tary Table 10) indicates clustering of the test methylation
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profiles by eight unsupervised biologically corresponding

superclasses. The subtypes that define these larger group-

ings are concordant with expectations from tissue differ-

ences in cancer biology. Taken together, MethylNet not

only makes highly accurate and robust classification pre-

dictions, but also extracts latent features with high fidelity

to the biology of tissue or cancer type difference.

The similarity between some of the subtypes may ex-

plain why and how certain subtypes did not perform as

well compared to others (Supplementary Tables 8 and

10). For instance, we see that 4 KIRC and KIRP cases

were conflated with each other. In addition, two cervix

cases were predicted to be uterine. There were elevated

rates of misclassification between the colon and rectal

cancer pairings and esophageal, head and neck, and stom-

ach cancer pairings. Finally, seven predicted glioblastoma

cases were actually low-grade glioma (Supplementary

Table 8). Thus, subtypes tended to be misclassified only

within each superclass. The exception to this trend was

the misclassification of lung squamous cell carcinomas,

four of which were predicted to be its adenocarcinoma

counterpart, which is consistent with the shared

embedding profile, and likely reflects similar biology of

cellular lineage.

For the cancer subtype analysis, we sought to identify

concordance between the latent profiles of methylation

across cancer types. Because each tumor type has a dif-

ferent baseline DNAm profile for its normal tissues-of-

origin, and these differences are expected to contribute

to the prediction, we decided not to attempt derivation

of the salient CpGs for each subtype’s prediction.

EWAS application, preliminary subtyping and external

validation

Given the success of MethylNet to capture nonlinear

interacting features that cluster, recapitulate and assist

with predictions, we sought to evaluate MethylNet on the

Liu data for the prediction of smoking status (current vs.

never smoker) and compare the results to a prior robust

EWAS meta-analysis [37]. MethylNet achieved 73% accur-

acy in predicting smoking status despite relatively small

training (n = 139), validation (n = 19) and held-out test sets

(n = 30) (Supplementary Figure 10). There was a signifi-

cant correlation between the rank of CpGs most

Table 1 Comparison of MethylNet Cell Type Deconvolution Results to IDOL Library EpiDISH Methods. 95% confidence intervals
calculated using 1 k-sample non-parametric bootstrap

n = 144, RPC: Robust Partial Correlations
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important in differentiating smoking status found through

MethylNet (average SHAP ranking for each CpG) and the

rank of the CpGs significantly associated with smoking

using a significantly larger dataset by Joehanes et al. (r =

0.69; p-value = 0 for statistical test of non-correlation)

(Supplementary Figure 10). The preservation of these

ranks indicates that MethylNet can form associations with

outcomes that are concordant to known EWAS analyses,

even though it places more emphasis on interacting fea-

tures versus the traditional EWAS.

We have also conducted a preliminary subtyping

classification of the PAM50 subtypes of breast cancer

and preliminary validation of MethylNet age predic-

tion on an external cohort, the results of which are

included in the supplementary materials (Supplemen-

tary Table 11; Supplementary Figure 11). Data was

acquired from GEO accessions GSE40279, GSE84207,

and GSE75067 [31, 38, 39].

Discussion
Here, we introduce MethylNet, a modular deep learning

framework that is easy to train, apply, and share.

MethylNet employs an object-oriented application pro-

gramming interface (API) and has built-in functionality

to easily switch between analyses with respect to em-

bedding, generation, classification, and regression tasks.

We demonstrate MethylNet’s ability to capture features

that recapitulated the original DNAm data and gener-

ated accurate predictions that conform with expected

biology. MethylNet extends previous approaches by

fine-tuning the feature extractor and adding additional

layers for prediction tasks. It also employs a robust

Fig. 3 Results on test set (n = 144) for cell-type deconvolution: a For each cell type, the predicted cellular proportion using MethylNet (x-axis) was
plotted against the predicted cellular proportion using estimateCellCounts2, which has been found to be a highly accurate measure of cellular
proportions and thus serving as the ground truth for comparison, a regression line was fit to the data for each cell type: B-cell, CD4T, CD8T,
Monocytes (Mono), NK cells, and Neutrophils (Neu); b Grouped box plot demonstrating the concordance between the distributions of the
MethylNet-estimated proportions of each cell-type and the distributions derived using estimateCellCounts2; c Hierarchical clustering using the
correlation distance between two cell types’ SHAP CpG scores across all CpGs. The linkage is found between cell types of similar lineage
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hyperparameter search method that optimizes the pa-

rameters of the model for generalization to unseen

data. The pipeline is flexible to the demands of the

user. For instance, if a user only wanted to train a cus-

tom machine learning model on the latent features, the

data can be extracted before the end-to-end training

step. By demonstrating the ability to meaningfully en-

code DNAm features, predictive performance on four

tasks; age prediction, cell-type deconvolution, pan-

cancer subtype prediction, and concordance to the re-

sults of a known EWAS meta-analysis; we present fur-

ther support of the applicability of VAEs for feature

extraction, and more evidence that deep learning pre-

sents an opportunity for learning meaningful biology

and making accurate predictions from feature-rich mo-

lecular data.

Fig. 4 Results on test set for pan-cancer sub-type predictions: a Comparison of MethylNet derived pan-cancer classification of test set (n = 1676)
to UMAP+SVM method. 95% confidence intervals for each score were calculated using a 1000 sample non-parametric bootstrap; b Hierarchical
clustering of average embedding cosine distance between all pairs of cancer subtypes. Cancer subtypes from both axes are colored by cancer
superclasses, derived using the hierarchical clustering method. The clustering of similar MethylNet embeddings is concordant with known biology
of tissue/cancer type difference. Skin and connective tissue cancers, and bile and liver cancers in Cluster 1. All kidney cancers in Cluster 2. Bladder,
uterine and cervix cancers in Cluster 3. Pairing of colon and rectal cancers, both adrenal cancers in Cluster 4. A tie between lung adenocarcinoma
and mesothelioma in Cluster 5, both of which may develop in similar locations. Pairings between stomach and esophagus cancer, and pancreas
and prostate cancers in Cluster 6. Brain cancers in Cluster 7. Thymoma, Diffuse Large B-Cell lymphomas in Cluster 8. While the lung cancers were
not paired together, they experienced a high degree of embedded similarity. The connectivity between the lung squamous cell cancer and its
neighboring types prevented the two cancers from being grouped together
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Strengths, limitations, and future directions

Interpretation of our high dimensional models still has

challenges, partially due to the drawbacks of assigning

feature attributions to high dimensional multi-collinear

data. While traditional linear models can still be highly

predictive, multi-collinearity has the effect of adjusting

the coefficients of the predictors such that the results

are not as interpretable. Shapley feature attributions are

a promising method used to explain predictions estimat-

ing complex models with simpler linear ones as we able

to demonstrate agreement between age groups and cell

lineages and concordance between ranked SHAP scores

and ranked p-values of CpGs associated with smoking

status of a large EWAS meta-analysis.

Our age and cell-type analyses were conducted to

demonstrate the capabilities of the deep learning tool

and models were trained on a relatively small study of

blood samples, only a subset of those included in the

Horvath framework.

Further work can capture features indicative of age ac-

celeration, a popularized prognostic indicator tied to the

residual between the predicted and actual age. Since ini-

tial publications in 2013, investigators have started using

the difference between chronologic and predicted

DNAm age to investigate questions related to so called

biological age or age acceleration [40]. This area of epi-

genetics is moving towards understanding the relation of

the age residual with disease risk, and potential to mod-

ify it through intervention (e.g. diet and exercise). More

advanced treatment of the data underlying prediction of

age will allow opportunities for mechanistically informed

intervention studies that aim to reduce age acceleration

and improve public health [9].

MethylNet methodology presents alternative frame-

work to uncover functional gene regulation that ac-

counts for biological age acceleration and goes beyond

the limited set of features used to predict methylation

age in Horvath, Hannum, and other DNA methylation

clocks. As the biology of these clocks are still being dis-

covered [41] and due to the non-linear relationship with

both chronological age [42] and other biomarkers of cell

epigenetic cell maturation [43], further examination of

age acceleration and biology should be done through

neural networks.

Our analyses also only presented predictions across

one type of tissue without yet accounting for differences

in methylation between cell types. MethylNet was shown

to capture some of the remaining sources of cellular het-

erogeneity, which can include differential methylation of

cell subtypes and states that are known to exist, but for

which we do not currently have L-DMRs. MethylNet

represents an opportunity to improve reference-based

and reference-free deconvolution approaches. More ro-

bust and consistent estimators that address current

limitations of DNAm-based deconvolution approaches

will be the focus of future applications of the MethylNet

method.

Prior works that have explored pan-cancer prediction

in the deep learning space have limited their analyses to

a small set of CpGs that do not capture a holistic under-

standing of interaction and regulation in the cancer con-

text [44]. Our results demonstrate that models with a

larger number of CpGs are needed to accurately capture

differences in tissue/cancer subtypes. Since MethylNet

captures and confounds the biology between similar

conditions, it presents an opportunity to explore similar

therapeutic targets and treatments across disease types

of similar tissue, within and outside cancer studies.

Given the ability of MethylNet to capture the differences

in the profiles between the cancer subtypes, there is

great opportunity to better understand heterogeneity of

other diseases.

Our analyses refrain from uncovering relationship be-

tween the discovered CpGs and functional effects because

of the difficulties associated with localizing the effect of a

small set of CpGs of interest. Once the salient attributions

are found, CpG analyses experience common pitfalls when

trying to match CpGs to their nearest gene via the found

promoter region. Such analyses may ascribe the CpG’s ef-

fect in the context of what gene they appear to be regulat-

ing. However, genes are also regulated at a distance in the

3D topological space by interacting with enhancer regions

[45, 46]. Thus, enrichment methods based on individual

gene to CpGs relationships implemented in missMethyl

[47] may not be suitable for interpreting loci identified by

MethylNet. Ideally, downstream approaches to add bio-

logical interpretation would take into account chromo-

some/genome interaction (e.g. through use of Hi-C data)

and genome topological structure/organization. For in-

stance, enrichment from chromatin state and histone

modifications present in the target loci as used by

ChromHMM and LOLA [48, 49] might be more war-

ranted. Some model result interpretation issues may be

partially circumvented by integrating gene expression data

into the model or more structurally by building a deep

learning mechanism to predict gene expression from

DNA methylation using other layers of information from

the genomic context [50].

An important take-away is that as interpretation

methods for these high dimensional data are pioneered,

VAE-based deep learning models will likely find CpGs

that interact in ways we would not traditionally think

about. While the other models were trained on a much

smaller set of CpGs, MethylNet is able to make its pre-

dictions on 200-300 K CpGs, capturing complex interac-

tions between a much larger set of CpGs. Crucial next

steps should address these interpretability and con-

founding concerns through feature selection, covariate
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adjustment and more biologically interpretable informat-

ics methods for CpG interpretation.

Finally, to scale up MethylNet’s deep learning workflows

to production grade as well as incorporate information

from Whole Genome and Reduced Representation Bisul-

fite Sequencing, future renditions may utilize common

workflow language (CWL) [51]. In addition, new Bayesian

search methods may be employed to better automate the

selection of model hyperparameters and automate the

construction of the ideal neural network architecture [52,

53].

Conclusion
We demonstrate a modular, reproducible, and easy-to-

use object-oriented deep learning framework for methy-

lation data: MethylNet. We illustrate that MethylNet

captures meaningful features that can be used for future

unsupervised analyses and achieves high predictive ac-

curacy across age estimation, cell-type deconvolution,

cancer subtype, and smoking status prediction tasks.

MethylNet’s accuracy at these tasks was superior, or at

least equivalent to, other methods and interpretations of

the model’s outputs demonstrated agreement with prior

literature. We hope that MethylNet will be used by the

greater biomedical community to rapidly generate and

evaluate testable biological hypotheses involving DNA

methylation data through a scalable, automated, intui-

tive, and user-friendly deep learning framework.

Methods
Our approach uses a few simple commands, all of which

can be executed for any prediction task. First, deep

learning prediction models are pre-trained using vari-

ational auto-encoders, and the layers of the encoder are

used to extract biologically meaningful features. These

neural network layers are used to embed the data and

extract features for clustering in the unsupervised set-

ting, generating new data with high fidelity to the ori-

ginal source, and for prediction model pretraining.

Second, prediction layers are included downstream of

the encoder which fine-tune the model’s prediction and

feature extraction layers end-to-end for the tasks of

multi-output regression and classification. Training pre-

diction layers optimize the neural network for prediction

tasks. Third, autonomous hyperparameter scans are per-

formed to optimize the model parameters for the first

and second tasks while generating rich visualizations of

the data. Lastly, the contribution of the CpGs to each

prediction on varying degrees of granularity are deter-

mined through Shapley Feature Attribution methods.

MethylNet is implemented as a UNIX/Linux

command-line tool that allows users to make deep-

learning predictions on methylation data with use cases

such as embedding, generation, classification and

regression. With the specification of a single command-

line option, MethylNet can be toggled between regres-

sion and classification tasks to address a wide breadth of

problems. The modular, accessible characteristic of the

MethylNet framework enables a simple procedure to

train and produce results across multiple domains. In

addition to predictive tasks, MethylNet can encode data

into lower-dimension space from which to perform un-

supervised clustering when researchers do not have la-

beled DNAm data. Further, MethylNet can generate

realistic synthetic data with high fidelity relative to the

original samples.

Description of framework

Here, we present a description of a modular and highly

accessible framework for deep learning tasks pertaining

to unsupervised embedding, supervised classification and

multi-output regression of DNA methylation (DNAm)

data. The MethylNet pipeline is comprised of subcom-

mands specifically pertaining to embedding, prediction,

and interpretation. We have included the minimal set of

commands to run the workflow in the supplementary

materials under the section “Example Code to Run

Pipeline”.

First, after preprocessing using PyMethylProcess. The

dataset is split into training, validation, and testing sets

using train_test_val_split of the preprocessing pipeline

utilities.

Training the feature extractor to embed data

An embedding routine is used to pretrain the final pre-

diction model by using Variational Autoencoders to find

unsupervised latent representations of the data. Pre-

training is an important part of transfer-learning applica-

tions. The knowledge extracted from learning unsuper-

vised representation of the data is used towards learning

predictive tasks with a lower data requirement. Data fed

into these VAEs pass through an encoder network that

serves to compress the data and then this compressed

representation is fed into a decoder network that at-

tempts to reconstruct the original dataset while attempt-

ing to generate synthetic samples. The model attempts

to balance the ability to generate synthetic samples with

the ability of the data to be accurately reconstructed.

The weight given to generation versus reconstruction

can be set as a hyperparameter [54]. Generating syn-

thetic training examples are important for adding noise

while training a network for prediction tasks, a compo-

nent which serves as a form of regularization to make

the algorithm more generalizable to real-world data.

While synthetic data can be generated using MethylNet

via the generate_embed command, this generative

process is meaningfully utilized during training, when

the algorithm samples from the latent distribution of the
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embedded data to regularize. Nevertheless, the ability to

reconstruct the original dataset is important because it

governs how latent representations of the data are cap-

turing features that properly describe the underlying

signal.

In order to perform embeddings on the input Methy-

lationArray training and validation objects, perform_em-

bedding command is executed via the command line

interface. Hyperparameters of the autoencoder model

can be scanned via the launch_hyperparameter_scan

command. This randomly searches a grid of hyper-

parameters and randomly generates neural network top-

ologies (number of layers, number of nodes per layer).

The complexity (network width and depth), of which

can be weighted by the user. The framework stores the

results of each training run into logs to find the model

with the lowest validation loss (Binary Cross Entropy re-

construction loss plus KL-Loss of the validation set)

(hyperparameters with lowest validation loss can be

found in Supplementary Table 12). Alternatively, results

from the embedding routine can be input into any ma-

chine learning algorithm of choice. Embedding results

are visualized through interactive 3-D plots by running

transform_plot from PyMethylProcess.

Training for prediction via transfer learning

MethylNet can be used to perform classification, regres-

sion, and multi-output regression tasks via the predic-

tion subroutine, which applies a transfer learning

technique via the Python class MLPFinetuneVAE to

fine-tune encoding layers of VAE model while simultan-

eously training a few appended hidden layers for predic-

tion. A description of transfer learning has been

included in the supplementary materials (see “Further

Description of Transfer Learning Application”). We have

also included an implementation of the multi-layer per-

ceptron that can be trained within our framework which

does not utilize transfer learning from the encoder. The

make_prediction subcommand is run for these predic-

tion tasks, and hyper parameters such as model com-

plexity and learning rate and schedulers are scanned via

the launch_hyperparameter_scan subcommand (hyper-

parameters with lowest validation loss can be found in

Supplementary Table 13). The final model is chosen if it

has the lowest validation loss (Mean Squared Error for

Regression, Cross-Entropy for Prediction), and the out-

put model is a snapshot at the epoch that demonstrated

the lowest validation loss. The test set is also evaluated

immediately after the model is trained using the training

set. The results from MethylNet can be immediately

benchmarked and compared for performance to other

machine learning algorithms, which can be evaluated

using the general_machine_learning subcommand from

PyMethylProcess. Furthermore, ROC Curves and

classification resorts can be output using plot_roc_curve

and classification_report and regression reports are gen-

erated via regression_report. A confusion matrix of mis-

classifications can be generated from PyMethylProcess’s

plot_heatmap. Finally, the training curves for both the

embedding and prediction steps can be visualized using

the plot_training_curve subcommand (example predic-

tion embedding plots found in Supplementary Figure 12;

analysis training curves can be found in Supplementary

Figure 13).

Interpretation of results

Predictions from MethylNet can be interrogated in two

ways. The first approach uses SHAPley feature attribu-

tion to assign a contribution score to each CpG based

on how much it contributed to the prediction. The sec-

ond approach compares learned clusters of embeddings

of methylation samples (and corresponding subtypes),

for biological plausibility.

The SHAPley value interpretations, available using

methylnet-interpret approximate the more complex neural

network model using a linear model for each individual

prediction, the coefficients of which are Shapley values.

Shapley values represent the contributions of each CpG to

the individual predictions. They are produced after the

prediction model and test MethylationArray are input to

the produce_shapley_data command, which dumps a Sha-

pleyData object into memory. The Shapley coefficients

can be averaged by condition to yield summary measures

of the importance of each CpG to the coarser category,

and the coefficients can be clustered to demonstrate the

similarity between methylation subtypes and coarser con-

ditions, which can be compared to known biology.

Description of experiment

We evaluated our MethylNet framework (hyperpara-

meter scan, embedding, fine-tuning predictions, inter-

pretation) using 34 datasets from n = 9500 samples for

four different prediction tasks: classification (TCGA

pan-cancer subtype and smoking prediction), regression

(age prediction), and multi-output regression (cell-type

deconvolution).

PyMethylProcess was used to preprocess the data, and

yielded MethylationArray objects that contain a matrix

of beta values for each individual and the corresponding

phenotype information [15]. The MethylationArray data

for each of these three experiments were split into 70%

training, 20% testing, and 10% validation sets. The train-

ing set was used to update the parameters of the model.

The validation set was used to terminate training early

and choose hyperparameters that would be most

generalizable to a test set. The test set was used for final

model evaluation and interpretation. More information

on model training can be found in the supplementals.
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For each score, 95% confidence intervals were computed

using a one thousand sample non-parametric bootstrap.

First, MethylNet’s generative analysis was conducted

on 8 arrays representing 8 groupings of features of

the Johansson data, found by running a KMeans clus-

tering algorithm on a UMAP clustering of CpG

Methylation profiles. Each group was trained using a

50-job VAE hyperparameter scans to yield the ideal

embedding. A generate_embed command was used to

first embed methylation profiles and then decode

them to their predicted values. All of the beta values

of the CpGs of the individuals of the test set were

compared to those found by generating the data from

the latent embeddings.

MethylNet was then configured for regression tasks and

applied to derive sample age estimates in the Johansson

data, using the reported chronological age as the ground

truth. These results were compared to those derived from

the Hannum and Horvath clocks using cgageR [31, 32,

55]. The Shapley framework was employed to quantify the

importance of the CpGs in making predictions for age

across 8 different age groups split by 10-year increments.

The CpG importance was compared between the groups

through hierarchical clustering to find similarities between

the age groups. The one thousand most important CpGs

from each group were extracted and overlapped with

CpGs defined by the Hannum model to depict the con-

cordance of important CpGs between MethylNet and the

Hannum model.

For a second task, MethylNet was configured for

multi-target regression to estimate cell-type proportions.

First, estimateCellCounts2, using the 450 K legacy IDOL

optimized library [12], was used to deconvolve the cell-

type proportions from each sample to develop our best

proxy to ground truth outcomes for training the model.

The MethylNet model was trained on the estimateCell-

Counts2 estimates of cell-type proportions for six differ-

ent immune cell-types. MethylNet was then compared to

results derived from applying the 350 IDOL derived

CpGs legacy library from FlowSorted.Blood.EPIC [56]

using two different deconvolution methods Robust Par-

tial Correlations (RPC) and Cibersort implemented in

EpiDISH [57]. The importance of each CpG to each cell-

type was then quantified through SHAP. These Shapley

coefficients were compared using hierarchical clustering.

A similar clustering profile would indicate these cell-

types share similar driving CpGs, and recovery of the

cell-lineage dendrogram would demonstrate concord-

ance with known biology. The one thousand most im-

portant CpGs from each cell-type were extracted and

overlapped with the IDOL CpGs to inspect if the two

models picked up similar cell-type-specific CpGs. Add-

itional details regarding SHAP can be found in the sup-

plementary material.

In the next task, MethylNet was used to classify sam-

ples to cancer types. The data for the classification task

are from 8891 TCGA-acquired samples, representing 32

different cancer types (Supplementary Figure 1 and sup-

plementary Tables 1 and 2), and preprocessed using

PyMethylProcess to yield a 200 k CpG beta matrix. The

features with the highest mean absolute deviation across

samples were selected to both limit the computational

complexity, memory of model training and capture the

highest variation in the data. The highly variable sites

are assumed to be more biologically meaningful than the

lower variable sites. The MethylNet analysis pipeline was

conducted on the pan-cancer dataset. The results from

MethylNet were compared to a popular omics classifica-

tion approach, a uniform manifold approximation and

projection (UMAP) embedding of the samples, followed

by support vector machine (SVM) classification. UMAP

is an effective way to reduce the dimensionality of the

data as well as preserve meaningful local and global

structure in the data [58, 59]. Both were performed

using PyMethylProcess’s general_machine_learning sub-

command, which executed a hyperparameter grid search

of the SVM model. Finally, the embeddings of the differ-

ent cancer subtypes were compared by calculating of the

average cosine distance between clusters in the test sam-

ples. These distances were clustered using hierarchical

clustering to form larger superclasses of cancer that

demonstrate a shared embedding profile.

A sensitivity analysis was conducted to understand

how MethylNet scales with number of training sam-

ples and features. The TCGA cohort dataset was uti-

lized and split into MethylationArrays of increasing

number of features, scaled almost logarithmically for

low number of features and then number of features

were scaled linearly. This generated sixteen separate

datasets. These datasets were trained in parallel with

100-job hyperparameter scans to yield final predic-

tions. The sensitivity analysis on training set size split

up the training set into 10% increments from 10 to

100%, and each of the 10 sets were trained using 150-

job hyperparameter scans. The number of training

epochs was reduced to 50 for each analysis to limit the

computational compute time.

Finally, a 100-job hyperparameter scan was con-

ducted to predict smoking status on the Liu data.

Gradient-based SHAPley estimates were acquired

using SHAP. The CpG SHAP score for the test set

samples were subset by the CpGs significantly associ-

ated with smoking identified by Joehanes et al. 2016.

The average rank of the highest absolute SHAPly score

for each CpGs across individuals were compared to

the rank of CpGs most significantly associated with

smoking reported by Joehanes et al. 2016. Correlation

of these rank orders was determined through
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Pearson’s correlation coefficient and a non-correlation

statistical test was employed to find a p-value for the

relationship.

Code availability statement

MethylNet was built using Python 3.6 and utilizes the

PyTorch framework to run its deep learning models on

GPUs using CUDA, although CPUs are also supported.

The workflow is available as an easily installable com-

mand line tool and API via PyPI as methylnet and on

Docker [60] as joshualevy44/methylnet. The Docker

image contains a test pipeline that requires one line to

run through the hyperparameter training and evaluation

of all framework components and can run on your local

personal computer in addition to high performance

computing. Help documentation, example scripts, and

the analysis pipeline are available in the MethylNet

GitHub repository (https://github.com/Christensen-Lab-

Dartmouth/MethylNet). Code Ocean is an online plat-

form for the sharing of reproducible research, computa-

tional tools, and test pipelines amongst members of the

scientific community. After providing the necessary

workflow specification, researchers are able to access

and execute the uploader’s code to test its capabilities or

run their own analyses. Tests of our pipeline’s function-

ality can be conducted on Code Ocean at: https://doi.

org/10.24433/CO.6373790.v1 .

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-020-3443-8.

Additional file 1: Supplementary Table 1. Male to Female Ratio
Across Both Datasets. Supplementary Figure 1. Distribution of Age
Across Datasets. Supplementary Table 2. Number of Samples for Each
Cancer Subtype in Training, Validation, and Test Sets. Supplementary

Figure 2. a) Visual flow diagram of method used to find CpG groupings
and recapitulation of DNAm profiles. First, the 300 k CpGs are projected
into a 6-dimensional embedding using UMAP. Each point in the low di-
mensional space represents a CpG and proximity between points de-
notes a shared methylation profile across all of the training samples (n =
503). Then, KMeans clustering was used to find 25 clusters of CpGs with
similar profiles. The number of clusters of CpG features were reduced to
8 by filtering out clusters if their variance was above 1 in the 6D space.
After that, the CpG features found in each cluster were used to select
CpGs to form independent MethylationArrays across the training, valid-
ation and test sets. Finally, one autoencoder was trained per each array
and the test samples were recapitulated and compared to the original in-
put data; b) Descriptive statistics for final groupings of CpGs and recapitu-
lation scores for each resultant set of CpGs versus the original
methylation profiles input into each model. Supplementary Figure 3.

Generated/recapitulated beta values versus original beta values for each
CpG per individual of the held-out test set (n = 144); b)-f) corresponds to
each of eight chosen clusters in order of low to high cluster variance as
previously described; a) is an aggregation of the generated/recapitulated
versus true beta values of all of the CpG clusters. Supplementary Fig-

ure 4. Hierarchically clustered cosine distance matrix between test sam-
ples’ VAE-embedded methylation profiles of the held-out test set for the
TCGA cohort, colored by: a) Labels assigned to the hierarchical clustering
labels for the samples; b) Original TCGA cancer labels; c) RPMM-derived
clustering labels on 20 k CpGs. Agreement scores between the RPMM

and hierarchal clustering results and the original cancer subtypes were
calculated using the v-measure, which takes into account the homogen-
eity and completeness of the labeling. Note that the clustering colors are
not the same because the number of clusters is different from the num-
ber of cancer labels. Supplementary Table 3. MethylNet Results on
Training (n = 503) and Validation (n = 72) Sets for Sample Age Prediction.
Supplementary Table 4. MethylNet Results on Training (n = 503) and
Validation (n = 72) Sets for Cell Type Deconvolution. Supplementary

Table 5. MethylNet Results on Training (n = 5860) and Validation (n =
840) Sets for Pan-Cancer Classification. Supplementary Table 6. Tukey’s
Studentized Range Tests for identifying which of six hierarchical clusters
from unsupervised VAE embeddings differ in cellular proportions; VAE
embeddings derived from blood test dataset. Supplementary Table 7.

Correlation of MethylNet Cellular Proportions to Other Estimation
Methods’ Proportions. Supplementary Figure 5. Proportion of IDOL
CpGs that are Overlapped by the Top 1 k CpGs for Each Cell-Type. Sup-
plementary Figure 6. Bar Charts of CpGs with the 10 Largest Shapley
Scores for Each Cell-Type, linked by red, blue or green lines if shared
across subtype for: a-d) Lymphocytes; e-f) Myeloids. Not sharing top 10
CpGs does not indicate that two cell-types do not share similar CpG pro-
files. Supplementary Figure 7. Bar Charts of CpGs with the 10 Largest
Shapley Scores for Age Groups: a) 14–24 and b) 84–94. These CpGs are
linked if shared across the age groups, but this does not indicate that
they are not shared outside of this top 10 list of CpGs. The top 10 CpGs
that are associated with lower age are similar to the older age group; c)
Distribution of Shapley Scores for these two age groups. CpG contribu-
tions tend to be negative for the younger age groups and positive for
the older age groups. Supplementary Table 8. Confusion Matrix Pan-
cancer Classification (Colored Superclass). Supplementary Table 9.

Breakdown Pancancer Classification Results (Colored by Superclass). Sup-
plementary Table 10. Average Cosine Distance Between Embeddings
of Cancer Subtypes Supplementary Figure 8. Micro F1-Scores of the
held-out test samples (n = 1676) of the TCGA cohort as they relate to: a)
the fraction of training samples included for the training process, b) the
number of CpGs. Test performance scales linearly with the number of
training samples and logarithmically with the number of CpGs. Confi-
dence intervals were calculated using a 1 k nonparametric bootstrap of
the test results for each dataset size point in the line plot, and the result-
ing bootstrapped f1-scores were used to compute the confidence inter-
val for each point in the line plots; c) performance of MethylNet,
pretrained using a VAE, is compared to performance using an MLP with
the same architecture; F1-Score confidence intervals were derived using a
1 k nonparametric bootstrap; validation loss for each model is compared
at the first training epoch and their ultimate convergence point. Supple-
mentary Figure 9. V-Measure scores of the held-out test samples (n =
1676) of the TCGA cohort as they relate to: a) the fraction of training
samples included for the training process, b) the number of CpGs. V-
measure scores were derived by applying and comparing hierarchical
clustering on the VAE embeddings to known cancer subtype assign-
ments and using a knee point detection algorithm to identify the ideal
number of clusters for each tested dataset. In this figure, scores were
smoothed using an exponential moving average smoothing technique to
illustrate general trends. Supplementary Figure 10. Smoking EWAS
study via MethylNet: a) final embeddings derived when finetuning the
MethylNet VAE demonstrates cluster separation of the “never” versus
“current” smokers; b) confusion matrix for the true and predicted “never”
versus “current” smokers; c) plotted average ranks found using SHAP for
the CpGs that intersected with CpGs identified by Liu et al. versus the
ranks of those corresponding p-values of the EWAS meta-analysis. Sup-
plementary Table 11. Preliminary Results for PAM50 Breast Tumor Clas-
sification (n = 1018); 95% confidence intervals of scores estimated via
1000-sample non-parametric bootstrap. Supplementary Figure 11. In-
ternal and External Validation Cohorts: a) Boxenplot demonstrating distri-
bution of ages for internal and external cohorts; notice how age for
external validation cohort is greater than that of the internal validation
cohort; b) plotted MethylNet predicted age versus actual age. Supple-
mentary Table 12. Select Hyperparameters for Embedding Tasks. Sup-
plementary Table 13. Select Hyperparameters for Prediction Tasks.
Supplementary Figure 12. Fine-tuned embeddings (few parts
highlighted) for: a) Age Prediction, b) Cell-Type Deconvolution (colored
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by Neutrophil Cell Type Proportions), and c) Pan-Cancer Classification (La-
beled kidney cancers, lung cancers, brain cancers). Supplementary Fig-

ure 13. Model Training Curves for a) Age Predictions, b) Cell-Type
Predictions, c) Pan-Cancer Predictions. Please note that the learning rates
for the prediction curve of a) oscillates quickly every 10 training epochs
as compared to a larger timescale.
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