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DNA methylation is one of several epigenetic mechanisms that contribute to the regulation of gene expression;
however, the extent to which methylation of CpG dinucleotides correlates with gene expression at the genome-
wide level is still largely unknown. Using purified primary monocytes from subjects in a large community-based
cohort (n 5 1264), we characterized methylation (>485 000 CpG sites) and mRNA expression (>48K transcripts)
and carried out genome-wide association analyses of 8370 expression phenotypes. We identified 11 203 poten-
tial cis-acting CpG loci whose degree of methylation was associated with gene expression (eMS) at a false dis-
covery rate threshold of 0.001. Most of the associations were consistent in effect size and direction of effect
across sex and three ethnicities. Contrary to expectation, these eMS were not predominately enriched in pro-
moter regions, or CpG islands, but rather in the 3′ UTR, gene bodies, CpG shores or ‘offshore’ sites, and both
positive and negative correlations between methylation and expression were observed across all locations.
eMS were enriched for regions predicted to be regulatory by ENCODE (Encyclopedia of DNA Elements) data
in multiple cell types, particularly enhancers. One of the strongest association signals detected (P < 2.2 3
102308) was a methylation probe (cg17005068) in the promoter/enhancer region of the glutathione S-transferase
theta 1 gene (GSTT1, encoding the detoxification enzyme) with GSTT1 mRNA expression. Our study provides a
detailed description of the epigenetic architecture in human monocytes and its relationship to gene expression.
These data may help prioritize interrogation of biologically relevant methylation loci and provide new insights
into the epigenetic basis of human health and diseases.

INTRODUCTION

Methylation of CpG dinucleotides is an important contributor to
epigenetic regulation of gene expression in numerous cellular
processes, including genomic imprinting and X-chromosome in-
activation (1–5). However, the relationship between methyla-
tion of CpG dinucleotides and gene expression at the
genome-wide levels is still not well understood. Previous

studies of the relationship between DNA methylation and gene
expression have been limited to discrete genomic regions
(6,7), modest samples sizes or mixed cell types (8–16). For
example, a recent study of the association of DNA methylation
with gene expression in peripheral blood mononuclear cells of
55 subjects using Illumina HumanMethylation27 and Human
Ref-8 v3.0 Expression BeadChips reported that only 97 of the
16 419 CpG sites tested (0.6%) had significant correlations
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[false discovery rate (FDR) , 5%] between DNA methylation
and gene expression (14). However, much larger sample sizes
are required for genome-wide studies of CpG methylation and
gene expression to correct for genome-scale multiple testing,
and homogeneous or nearly homogeneous cell samples may be
necessary to avoid false positives or false negatives that could
arise from admixture of cell types.

Here, we describe the association between methylation of
cis-acting CpG loci and 8370 expression phenotypes in purified
monocytes from a subset of participants (n ¼ 1264) in the Multi-
Ethnic Study of Atherosclerosis (MESA), a large cohort of
community-dwelling subjects, aged 55–94 years from four
communities in the USA. For this study, we chose monocytes,
in part, because they are key cells of innate immunity and
major contributors to the pathogenesis of atherosclerosis. Our
goals were to describe the distribution of cis-acting methyla-
tion/expression correlations with respect to other structural fea-
tures of the genome [e.g. transcription start sites (TSSs),
regulatory regions, etc.] and to identify strong locus-specific cor-
relations between methylation and gene expression as high-
value targets for future functional evaluation.

RESULTS

General features of the monocyte methylome

We simultaneously characterized the methylomic (.485K CpG
sites) and transcriptomic (.48K transcripts) profiles in purified
monocytes from 1264 Caucasian (47%), African-American
(21%) and Hispanic (32%) MESA participants (51% female).
We excluded methylation loci and transcript expression probes
that failed quality control (QC) criteria (see Materials and
Methods) as well as probes that were rarely expressed or on
the X or Y chromosome. When multiple transcripts were avail-
able for a given gene, we selected the single transcript with the
strongest association with any of the candidate cis-methylation
loci. A total of 416 507 CpG sites and 8370 expressed genes
remained for analysis. Across the CpG sites, the distribution of
median %methylation was strongly bimodal (Supplementary
Material, Fig. S1A). In contrast, the variation of %methylation
within sites was generally quite uniform [median inter-decile
range (IDR): 4.2% methylation], with a relatively small
portion of sites demonstrating more substantial inter-individual
variation (Supplementary Material, Fig. S1B). The CpG sites
tended to be hypo-methylated in promoter regions, 5′ UTRs,
first exons and CpG islands (regions of high CpG density), and
hyper-methylated in gene bodies, 3′ UTRs, intergenic regions
and ‘offshore’ sites (sites outside of annotated CpG islands; Sup-
plementary Material, Fig. S2A and B).

In a previous study of CpG sites in promoter regions (15),
methylation levels at probes located in close proximity to one
another (up to 2 kb) were highly correlated. We investigated
the pair-wise correlations of methylation levels (across indivi-
duals) in relationship to the distance between CpG sites. The
pair-wise correlations were generally low across the genome, in-
cluding the promoter regions (median: 0.07) where the average
of pair-wise correlations of methylation was weak even for
loci ≤60 base pairs apart (median: 0.09; Supplementary Mater-
ial, Fig. S3).

Identification of potential cis-acting regulatory
methylation sites

We defined potential cis-acting regulatory methylation sites
(eMS) as CpG sites whose %methylation was associated (at an
FDR threshold of 0.001) with expression of any autosomal
gene within 1 Mb of the CpG site in question. These associations
were estimated using linear regression, with transcript expres-
sion as the outcome variable and methylation level at the corre-
sponding CpG site as the explanatory variable after adjustment
for age, sex, race/genetically inferred ethnicity, study site and re-
sidual sample contamination with non-monocytes. We identified
11 203 eMS (1.2% of CpG sites examined) associated with 3093
genes (37.0% of 8370 expressed genes examined) at a FDR
threshold of 0.001 (P-values ranged from 5.0 × 1026 to
,2.2 × 102308) in the overall analysis. In analyses stratified
by sex, we identified 4599 and 4224 eMS (FDR , 0.001) for
women and men, respectively, with 3058 (53.0%) significant
in both sex groups (Supplementary Material, Fig. S4A). We
also identified 4129, 1099 and 2168 eMS for Caucasians,
African Americans and Hispanics, respectively (Supplementary
Material, Fig. S4B). In total, 1921 eMS (40.4%) were significant
in at least two ethnic groups, and 729 eMS (15.4%) were signifi-
cant in all three ethnic groups. However, a combined analysis in-
cluding methylation by sex or ethnicity interaction did not
identify any sex-specific eMS, and only identified 52
African-American-specific eMS (FDR , 0.001). Most of the
11 203 eMS associations were consistent in the size and direction
of effect across sex and ethnic subgroups (Supplementary Mater-
ial, Fig. S5). The lower consensus of eMS across ethnicities is
likely in part due to the lower statistical power in African Amer-
icans (n ¼ 272) and Hispanics (n ¼ 402).

Compared with all CpG sites, bimodality of median %methy-
lation was attenuated in the 11 203 eMS (Supplementary Mater-
ial, Fig. S1A), and the inter-individual variation as evaluated
by the IDR was higher among the eMS (median IDR: 11.5%
methylation, Supplementary Material, Fig. S1B). We note that
among sites with low IDR, there remained instances of signifi-
cant correlation between methylation and transcript expression.
As expected, the eMS with lower IDR tend to have larger effects
(Supplementary Material, Fig. S6). This finding argues against
the frequently adopted approach of discarding methylation
probes with low variance.

Among the 3093 genes with at least one identified eMS, 67%
had two or more eMS. When methylation of more than one eMS
was associated with expression of the same gene, we used a step-
wise selection procedure to identify those eMS that were inde-
pendently associated with the transcript of interest. The
number of ‘independent’ eMS detected was 7029 (compared
with 11 203 total eMS), and the median number per associated
transcript was 2 (range: 1–28). The eMS jointly accounted for
a median of 2.9% of the variation in expression of their asso-
ciated gene transcripts (R2; range: 0.3–84.4%); R2 was .25%
for 163 transcripts (Supplementary Material, Fig. S7).

Distribution of eMS with respect to annotated features
of the genome

When considering the cis-acting eMS as a function of proximity
to TSSs, we found that the magnitude of the correlations (in
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either the positive or negative direction) was inversely related to
distance from the TSS (Fig. 1). Nearly 45% of the cis-acting eMS
were within 40 kb of the TSS of their cognate gene; however,
evidence of association was also seen over distances up to 1 Mb.

When considering the location of eMS within genes, the
number of eMS was highest in gene bodies, followed by pro-
moter and intergenic regions. However, relative to the number
of CpG sites assayed in each gene structural region, eMS were
significantly enriched in the 3′ UTR (1.33-fold enrichment;
P ¼ 1.5 × 10210) and gene bodies (1.14-fold enrichment; P ¼
5.4 × 10225), whereas intergenic regions and the first exon
contained relatively fewer eMS (Fig. 2A). There was a slight
predominance of negative correlations between eMS methyla-
tion and transcript expression across all gene structural regions
(Fig. 2B).

Similarly, the number of eMS was highest in ‘offshore’ sites,
followed by CpG ‘shores’ (regions of low CpG density within
�2 kb of CpG islands) and CpG islands. However, relative to
the number of sites assayed in each CpG annotation class, CpG
‘shores’ and ‘offshore’ sites were highly enriched with eMS,
whereas CpG islands contained relatively fewer eMS
(Fig. 3A). There were more negative correlations between
eMS methylation and transcript expression across all regions
related to CpG islands (Fig. 3B).

We also tested whether eMS were enriched for experimentally
determined DNase I-hypersensitive sites (DHSs) or transcription
factor-binding sites (TFBS), as well as bioinformatically deter-
mined functional sites defined as enhancers or insulators, using
data from the Encyclopedia of DNA Elements (ENCODE)
project (17) (Table 1). The enrichment test for DHSs in mono-
cytes (P ¼ 2.5 × 1027) and DHSs in any cell type (P , 2.2 ×

102308) was significant with the same relative enrichment
(1.18-fold enrichment). The enrichment tests for enhancers, insu-
lators or TFBS determined in any cell type were also significant,
with the strongest enrichment detected in enhancer regions
(1.49-foldenrichment,P , 2.2 × 102308).SupplementaryMater-
ial, Figure S8, shows the distribution of methylation-expression
correlations for eMS that reside in DHSs, enhancers, insulators
and TFBS. We observed more negative correlations between
eMS methylation and transcript expression across all the predicted
functional sites. In addition, we tested the enrichment of eMS in
ENCODE-annotated functional sites by specific genomic
regions (Supplementary Material, Table S1). In 3′ UTR and gene
bodies, we found significant enrichment of eMS for DHSs, enhan-
cers, insulators and TFBS (1.20–1.73-fold enrichment) relative to
the number of CpG sites assayed in each of the two regions. eMS
were enriched for enhancers in all gene structural regions (1.43–
2.13-fold enrichment) (Table S1).

Identification of individual genes and over-representation
of biological processes among the most highly correlated
cis-acting eMS/transcript pairs

The Manhattan plot (Supplementary Material, Fig. S9) of the
P-values versus genomic locations for the 416 507 CpG sites
revealed several dense regions of highly significant eMS on
chromosomes 1, 6, 7, 12, 19 and 22. Gene set enrichment analysis
suggested that the 11 203 eMS were most often associated with
genes involved in immune response and regulation, protein
transport and regulation of programmed cell death (Table 2).
Supplementary Material, Table S2, shows the 84 most highly
correlated cis-acting eMS/transcript pairs (FDR ≤ 1 × 102100).
The entire list of cis-acting eMS/transcript pairs can be accessed
through the eMS database at the MESA Epigenomics site (http://
www.wakehealth.edu/mesaepigenomics).

One of the most significant findings (P , 2.2 × 102308) was
the association of GSTT1 mRNA expression with a methylation
CpG site (cg17005068) located in the promoter/enhancer region
of GSTT1 on chromosome 22 (Fig. 4). GSTT1 is a
detoxification enzyme that plays a significant role in the reduc-
tion of environmental pollutants, mutagens, carcinogens and
anticancer drugs (2). There were 15 additional eMS associated
with GSTT1 expression (Fig. 4B). These 16 eMS are located in
close proximity to CpG islands that overlap with DNaseI hyper-
sensitivity clusters detected in monocytes, TFBS (ChIP-seq) in
many cell types, and predicted promoter and enhancer regions
in B cells (GM12878). Collectively, these eMS explained 77%
of the variation in GSTT1 mRNA expression when jointly
included in a multiple linear regression model; nine eMS
remained significant (P , 0.05) in the joint model, with CpG
site cg17005068 attaining the strongest independent signal
(P ¼ 1.7 × 10227). When correlating GSTT1 mRNA expres-
sion and methylation of CpG site cg17005068 with all the single-
nucleotide polymorphisms (SNPs) located within 1 Mb from the
gene’s TSS using single SNP regression, we identified a
cis-acting SNP, rs407257, that was most strongly associated
with both methylation and GSTT1 expression in each of the
three ethnicities (Fig. 4C). We performed causal inference
using Mendelian randomization (18) by structural equation
modeling (SEM) to compare the fit of six potential causal
models in 590 Caucasians (Supplementary Material, Fig. S10).

Figure 1. Scatter plot of partial expression–methylation correlations versus dis-
tance to the TSS for the 11 203 eMS. Most eMS were located close to TSSs and
associations between transcript expression and eMS methylation were symmet-
ric on both sides of TSSs (corrected for strand). The color scale is a measure of the
density of points in the region.
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Overall, the best-fitting model (Model 1) postulates a direct
effect of the SNP on both methylation and gene expression,
and a causal effect of methylation on gene expression (Supple-
mentary Material, Table S3 and S4). Although the causal ana-
lysis favors a causal effect of methylation on expression with
Model 1 providing an excellent fit to the data and Model 3
(with the reverse causality from expression to methylation)
fitting the data poorly, we cannot rule out the possibility that
the correlation between methylation and gene expression
resulted from an uncontrolled (hidden) confounding effect
(Model 5).

DISCUSSION

This large-scale epigenome-wide study identified and character-
ized a large number of CpG methylation sites associated with
gene expression (eMS) in purified human monocytes—an im-
portant next step toward a comprehensive understanding of the
methylome’s functional topology. We show that eMS are
located broadly across genome and enriched for regions

predicted to be regulatory, particularly enhancers. The wide-
spread sharing of eMS across sex and ethnic subgroups is a
notable feature of these data which supports a hypothesis that
basic features of the epigenetic regulation are common across
sex and ethnicities. Clearly, more work is required to determine
the precise mechanisms that underlie the correlations between
methylation and expression described here. Nevertheless,
these data provide a framework for development of more specific
hypotheses concerning epigenetic regulation of gene expression,
and identify high-value targets for further evaluation, such as
GSTT1. In addition, we illustrate the use of Mendelian random-
ization and causal inference analyses to generate statistically
derived (rather than experimentally derived) evidence from
cross-sectional data to predict the direction of causation
between methylation and expression.

Interestingly, our data suggest that eMS are similar in number
and strength of correlation with expression to the much more fre-
quently studied single-nucleotide expression quantitative trait
loci (eQTLs) (19–22). However, the generally weak local pair-
wise correlation of CpG methylation is quite different from that
of SNPs. This is anticipated given that linkage disequilibrium

Figure 2. Distribution of 416K CpG sites on the Illumina array and 11 203 eMS across the different gene structural regions, and partial expression–methylation cor-
relations of the 11 203 eMS for gene structural regions. (A) The absolute number of eMS was highest in gene bodies (end of first exon to end of last exon), followed by
promoter regions (,1.5 kb upstream of the TSS), and intergenic regions (upstream of the promoter or downstream of the 3′ UTR, but still within 1 Mb of the TSS).
Relative to the number of sites assayed in each gene structural region, the gene body and 3′ UTR regions were significantly enriched with eMS compared with other
regions, whereas intergenic regions and 1st exons contained relatively fewer eMS (P ¼ 2.8 × 1028–6.5 × 10260, chi-square test). (B) There was a predominance of
negative correlations between degree of eMS methylation and expression of their associated gene transcripts across all gene structural regions; however, this imbal-
ance was most evident in the promoter regions, 5′ UTR and first exons.
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among SNPs is caused by historical patterns of mutation and re-
combination, whereas correlation between methylation sites is
likely driven by biochemical processes that are limited to more
narrowly defined genomic locations. Importantly, the less
locally correlated structure of CpG methylation may allow

better genomic localization of signals using eMS associations
than eQTL analyses.

Hypermethylation of CpG sites is generally thought to be
associated with transcriptional inactivation when occurring in
gene promoter regions (4), but with transcriptional activation
when occurring in gene bodies (4). Negative correlation

Figure 3. Distribution of 416K CpG sites on the Illumina array and 11 203 eMS across different regions related to CpG islands, and partial expression–methylation
correlations of the 11 203 eMS for different regions related to CpG islands. (A) The absolute number of eMS was highest in ‘offshore’ sites (sites outside of annotated
CpG islands—high CpG density regions), followed by CpG ‘shores’ [low CpG density regions in close proximity (�2 kb) to CpG islands], and CpG islands. However,
relative to the number of sites assayed in each CpG annotation class, CpG shores and ‘offshore’ sites were highly enriched with eMS, whereas CpG islands contained
relatively fewer eMS (P ¼ 1.3 × 10217–5.0 × 102164, chi-square test). (B) There were slightly more negative correlations between degree of eMS methylation and
degree of expression of their associated gene transcripts across all locations in relation to CpG islands.

Table 1. Enrichment of eMS in ENCODE-annotated functional regions

Term eMS count
(%)

All CpG sites
count (%)

Fold
enrichment

P-valuea

DHSs (m)b 853 (7.6) 26 782 (6.4) 1.18 2.5 × 1027

DHSsc 6011 (53.7) 189 873 (45.6) 1.18 ,2.2 × 102308

Enhancerc 7535 (67.3) 188 212 (45.2) 1.49 ,2.2 × 102308

Insulatorc 686 (6.1) 21 690 (5.2) 1.18 1.1 × 1025

TFBSc 5905 (52.7) 195 174 (46.9) 1.12 ,2.2 × 102308

aChi-square test.
bDHSs (m), DNase I-hypersensitive sites in monocytes (ENCODE).
cDHSs, transcription factor-binding sites (TFBS), enhancers and insulators
reported in any available cell type (ENCODE).

Table 2. Gene set enrichment analysis of the 3093 genes associated with the 11
203 eMS using Gene Ontology

Term Gene hit
count

Fold
enrichmenta

P-valueb FDR

Immune response 162 1.50 2.6 × 1028 5.0 × 1025

Protein transport 169 1.42 7.1 × 1027 1.3 × 1023

Regulation of
programmed cell
death

165 1.31 1.6 × 1024 0.3

aRelative to the background set of 8370 genes examined.
bFisher’s exact test.
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Figure 4. GSTT1 gene region. (A) Lower levels of GSTT1 (glutathione S-transferase theta 1) mRNA expression are associated with hypermethylation of cg17005068.
The inverse associations between the log2-transformed mRNA expression levels of GSTT1 and %methylation of cg17005068 were consistent in Caucasians (CAU,
green), Hispanics (HIS, orange) and African Americans (AFA, purple). (B) Genomic landscape (from UCSC genome browser, hg19) and regional association plot
surrounding GSTT1; significance of cis-CpG methylation (eMS) associations with GSTT1 mRNA gene expression (2log10 P-values) is plotted on the y-axis and eMS
position on the x-axis for 16 eMS in this region that explained 77% of variation in mRNA expression in a linear regression model that included all 16 eMS as inde-
pendent variables [shown as circles, with the asterisk denoting the most significant association (cg17005068)]. The red circles and the asterisk denote the independent
eMS (P , 0.05) among the CpG sites shown in this figure (multiple linear regression). The eMS associating with GSTT1 expression are located in close proximity to
CpG islands (green) that overlap with DNase I-hypersensitivity clusters detected in monocytes, TFBS (ChIP-seq) in many cell types, and predicted promoter (red) and
enhancer (orange) regions in B cells (GM12878). (C) A cis-acting SNP, rs407257, strongly associated with both cg17005068 methylation and GSTT1 mRNA expres-
sion in Caucasians (CAU), Hispanics (HIS) and African Americans (AFA).
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between gene expression and methylation in promoter regions
was recently reiterated in a study of lymphoblastoid cell lines
from 77 individuals (15). However, our data suggest that this
paradigm may be only a weak approximation of the truth, as
the majority of observed eMS associations were negative
across all gene structural regions, with negative correlations
being most frequent in promoter regions (69.4%), but only
slightly less so in gene bodies (63.0%). On the other hand, posi-
tive correlations were not rare. Indeed, more than 30% of signifi-
cant cis-methylation/expression correlations were positive—
even in TFBS, where such positive correlations were previously
thought to be rare or anomalous findings potentially due to spe-
cialized or cell-specific mechanisms (23). These findings
suggest a great diversity and complexity of epigenetic regulatory
mechanisms and highlight the need for further basic molecular
biology investigations.

The strong association of cg17005068 methylation (and
related loci) with mRNA expression of GSTT1 is potentially
quite important given the protective role that GSTT1 plays
against endogenous oxidative stress and exogenous toxins
(24). More research is clearly warranted to understand the func-
tional and ultimately the clinical implications of methylation of
the cg17005068 loci. The full list of eMS harbors many other
strong candidates for further functional evaluation as well.

It is likely that our results underestimate the total number of
eMS. The Illumina methylation microarray does not assay
every CpG site, although it covers most of the known or poten-
tially important genomic regions with base-pair resolution.
The Illumina transcript expression microarray design has
limited sensitivity for low-abundance transcripts and limited
coverage of alternative splice forms. Also, although we investi-
gated CpG sites up to 1 Mb from TSSs, some regulation probably
occurs beyond that distance. Since our study primarily focused
on purified monocytes, it is likely that not all the identified
eMS and their features will generalize to other cell types.
Lastly, we cannot rule out effects of unmeasured confounding
or reverse causality that gene expression can affect methylation
(25).

Monocytes play a major role in immune function and are
involved in the development of common diseases such as cardio-
vascular disease and type II diabetes. The identified eMS were
enriched with immune response genes known to contribute to
these and many other chronic diseases. This study establishes
the feasibility of large-scale studies of methylation and expres-
sion, and lays the foundation for unraveling the mechanisms of
epigenetic regulation of monocyte-related diseases. Future
work in MESA will explore the associations of monocyte eMS
and gene expression with the genetic, physiological, environ-
mental and clinical characteristics of the MESA population.

MATERIALS AND METHODS

Study population

MESA was designed to investigate the prevalence, correlates
and progression of subclinical cardiovascular disease in a popu-
lation cohort of 6814 participants. Since its inception in 2000,
five clinic visits collected extensive clinical, socio-
demographic, lifestyle and behavior, laboratory, nutrition and
medication data (25). The present analysis is primarily based

on analyses of purified monocyte samples from the April
2010–February 2012 examination of 1264 randomly selected
MESA participants [55–94 years old, Caucasian (47%),
African American (21%), Hispanic (32%) and female (51%)]
from four MESA field centers (Baltimore, MD; Forsyth
County, NC; New York, NY; and St Paul, MN). The study proto-
col was approved by the Institutional Review Board at each site.
All participants signed informed consent.

Purification of monocytes

Centralized training of technicians, standardized protocols and
extensive QC measures were implemented for collection,
on-site processing and shipment of MESA specimens and
routine calibration of equipment. Blood was initially collected
in sodium heparin-containing Vacutainer CPTTM cell separation
tubes (Becton Dickinson, Rutherford, NJ, USA) to separate per-
ipheral blood mononuclear cells from other elements within 2 h
from blood draw. Subsequently, monocytes were isolated with
the anti-CD14-coated magnetic beads, using AutoMACs auto-
mated magnetic separation unit (Miltenyi Biotec, Bergisch
Gladbach, Germany). Based on flow cytometry analysis of 18
specimens, monocyte samples were consistently .90% pure.

DNA/RNA extraction

DNA and RNA were isolated from samples simultaneously
using the AllPrep DNA/RNA Mini Kit (Qiagen, Inc., Hilden,
Germany). DNA and RNA QC metrics included optical
density measurements, using a NanoDrop spectrophotometer
and evaluation of the integrity of 18s and 28s ribosomal RNA.
Additional RNA QC testing was performed using the Agilent
2100 Bioanalyzer with RNA 6000 Nano chips (Agilent Techo-
nology, Inc., Santa Clara, CA, USA) following manufacturer’s
instructions. RNA with RIN (RNA integrity) scores .9.0 was
used for global expression microarrays. The median RIN for
our 1264 samples was 9.9.

Global expression quantification

The Illumina HumanHT-12 v4 Expression BeadChip and
Illumina Bead Array Reader were used to perform the genome-
wide expression analysis, following the Illumina expression
protocol. The Illumina TotalPrep-96 RNA Amplification Kit
(Ambion/Applied Biosystems, Darmstadt, Germany) was used
for reverse transcription, and amplification with 500 ng of
input total RNA (at 11 ml). An amount of 700 ng of biotinylated
cRNA was hybridized to a BeadChip at 588C for 16–17 h. To
avoid potential biases due to batch, chip and position effects, a
stratified random sampling technique was used to assign individ-
ual samples (including 24 common control samples) to specific
BeadChips (12 samples/chip) and chip position.

Epigenome-wide methylation quantification

The Illumina HumanMethylation450 BeadChip and HiScan reader
were used to perform the epigenome-wide methylation analysis.
The EZ-96 DNA MethylationTM Kit (Zymo Research, Orange,
CA, USA) was used for bisulfate conversation with 1 mg of input
DNA (at 45 ml). An amount of 4 ml of bisulfite-converted DNA
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were used for DNA methylation assays, following the Illumina
Infinium HD Methylation Protocol. This consisted of a whole-
genome amplification step followed by enzymatic end-point frag-
mentation, precipitation and resuspension. The resuspended
samples were hybridized on HumanMethylation 450 BeadChips
at488Cfor16 h.The individual samples wereassigned to the Bead-
Chips and to chip position, using the same sampling scheme as that
for the expression BeadChips.

Pre-processing of microarray data

Data pre-processing and QC analyses were performed in R
(http://www.r-project.org/) using Bioconductor (http://www.
bioconductor.org/) packages. For expression data, data cor-
rected for local background were obtained from Illumina’s pro-
prietary software GenomeStudio. QC analyses and bead-type
summarization (average bead signal for each type after outlier
removal) were performed using the beadarray package (26).
Detection P-values were computed using the negative controls
on the array. The neqc function of the limma (27) package was
used to perform a normal–exponential convolution model ana-
lysis to estimate non-negative signal, quantile normalization
using all probes (gene and control, detected and not detected)
and samples, addition of a recommended (small) offset, log2

transformation and elimination of control probe data from the
normalized expression matrix. Multidimensional scaling plots
showed that the five common control samples were highly clus-
tered together and identified three outlier samples, which were
excluded subsequently.

The Illumina HumanHT-12 v4 Expression BeadChip
included 48K transcripts. Statistical analyses were limited to
probes retained after applying the following QC elimination cri-
teria: probes for the X or the Y chromosome, non-detectable ex-
pression in ≥90% of MESA samples using a detection P-value
cut-off of 0.0001, existence of any known SNPs, overlap with
a repetitive element or region, low variance across the samples
(,10th percentile) or putative and/or not well-characterized
genes, i.e. gene names starting with KIAA, FLJ, HS, Cxorf,
MGC or LOC. We included 8370 autosomal gene transcripts
for analysis.

Bead-level methylation data were summarized in GenomeS-
tudio. Because a two-channel system and both Infinium I and
II assays were used, normalization was performed in several
steps using the lumi package (28). We first adjusted for color
bias using ‘smooth quantile normalization’. Next, the data
were background-adjusted by subtracting the median intensity
value of the negative control probes. Lastly, data were normal-
ized across all samples by standard quantile normalization
applied to the bead-type intensities and combined across Infi-
nium I and II assays and both colors. QC measures included
checks for sex and race/ethnicity mismatches, and outlier identi-
fication by multidimensional scaling plots. The final methylation
value for each methylation probe was computed as the M-value,
essentially the log ratio of the methylated to the unmethylated in-
tensity (29). The M-value is well suited for high-level analyses
and can be transformed into the beta-value, an estimate of the
percent methylation of an individual CpG site that ranges from
0 to 1 [M is logit(beta-value)].

The Illumina HumanMethylation450 BeadChip included
probes for 485K CpG sites. Of these 485K CpG sites, 416 507

passed the QC elimination criteria including: probes for the X
or the Y chromosome, ‘detected’ methylation levels in ,90%
of MESA samples using a detection P-value cut-off of 0.05, ex-
istence of any SNPs within 10 base pairs of the targeted CpG site,
location outside of the 1 MB intervals on both sides of each gene
or overlap with a repetitive element or region.

Pre-processing with global normalization removed large pos-
ition and chip effects across all probes; however, probe-specific
chip effects were found for some CpG sites and gene transcripts,
whereas probe-specific position effects existed for some CpG
sites but were ignorable for all gene transcripts. These probe-
specific effects were included as covariates in all subsequent
analyses.

Association analyses

Association analyses were performed using the linear model (lm)
function and the stepAIC function of the MASS package in R. To
identify cis-methylation sites associated with gene expression,
we fit separate linear regression models with the M-value for
each CpG site (adjusted for methylation chip and position
effects) as a predictor of transcript expression for any autosomal
gene within 1 Mb of the CpG site in question. Covariates were
age, sex, race/ethnicity, study site, expression chip and residual
sample contamination with non-targeted cells (non-monocytes,
see what follows). Sex- and ethnicity-stratified analyses were
performed as an internal validation and check of generalizabil-
ity. To look for potential population stratification, we used
EIGENSTRAT (30) to compute principal components (PCs) to
infer the genetic ancestry for each race and overall, based on
MESA Affymetrix 6.0 array genotype data (31), and examined
the association between the first five PCs and gene expression.
Less than 0.03% expression transcripts were associated with
the first two PCs in the Caucasian and African-American popu-
lations; however, 14.7% of gene expression transcripts in the
Hispanic population were associated with the first two PCs
(FDR , 0.05). Therefore, analyses in the Hispanic population
were adjusted for the first two PCs. Adjustment for PCs
(n ¼ 1202) yielded similar results as self-reported ethnicity
(n ¼ 1264). Therefore, analyses for overall were adjusted for
the self-reported ethnicity to maximize the sample size and
control for the potential cultural and socioeconomic factors.
Normality-based P-values were obtained for all tests (they
were highly similar to permutation-based P-values and produced
essentially the same ranking in a subset of 360 samples).
P-values were adjusted for multiple testing using the q-value
false recovery rate (FDR) method (32). To minimize false-
positive results, we used the stringent FDR threshold of 0.001.

To estimate residual sample contamination for monocyte data
analyses, we generated separate enrichment scores for neutro-
phils, B cells, T cells and natural killer cells. We implemented
a gene set enrichment analysis (33) to calculate the enrichment
scores, using the gene signature of each blood cell type in the
ranked list of expression values for each MESA sample. The
cell type-specific signature genes were selected from previously
defined lists (34) and passed the following additional QC filters:
at least 4-fold more highly expressed in the targeted cell type
than in any other cell populations and low expression levels in
monocytes.
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To minimize spurious associations due to a few highly influ-
ential data points, we calculated Cook’s distance (35) for each
data point and repeated the analysis after removing the four
samples with the highest Cook’s distance. We then removed
associations whose P-values no longer fell below the FDR-based
significance threshold. Because the correlation structure of the
expression and methylation profiles may increase bias and vari-
ance of the FDR estimates (36), we verified control of the FDR by
a permutation approach, where the columns of the methylation
matrix were permuted. The permutation-based estimate of the
FDR level based on five replicates of the permuted data was
0.0018, quite close to the FDR threshold of 0.001.

Because the methylation profiles of eMS associated with the
same gene showed various degrees of correlation, for each
expressed gene with .1 significantly associated eMS, we per-
formed step-wise selection (backward/forward starting with
the full model, using the Akaike Information Criterion) to esti-
mate the ‘independent’ number of eMS jointly affecting the
gene’s expression.

Causal inference

Inference of causal relationships, utilizing Mendelian random-
ization, between gene expression and biomedical phenotypes
is well established in Genetical Systems Biology (18,37). The
SNP data were derived from MESA Affymetrix 6.0 array geno-
type data (31). To infer the relationships between eMS and gene
expression, we used structural equation modeling as implemen-
ted in the R package lavaan (38) to compare the fit to the data
of six alternative causal models depicted in Supplementary
Material, Figure S10. We then compare these six models using
well-established SEM fit indices (39) shown in Supplementary
Material, Table S3.

Functional annotation analysis

Functional annotation analysis was performed using data from
the ENCODE project (17) accessed through the UCSC
Genome Browser at http://genome.ucsc.edu/ (40). DNaseI
hypersensitive areas were assayed in a large collection of cell
types including monocytes (Digital DNaseI Hypersensitivity
Clusters from ENCODE). We examined the eMS enrichment
of DHSs in monocytes, although the monocyte samples were
collected from only one subject, as well as the enrichment of
DHSs in all available cell types. TFBS were assayed in a large
collection of cell types; however, monocytes were investigated
with only one transcription factor (CTCF); therefore, functional
studies included all TFBS, from all available cell types (Tran-
scription Factor ChIP-seq from ENCODE). Enhancer and insu-
lator regions were bioinformatically predicted in nine different
cell types, not including monocytes (chromatin state segmenta-
tion by HMM from ENCODE/Broad). The CpG sites that over-
lapped a predicted strong enhancer (State 4/5) or weak/poised
enhancer (State 6/7) in any cell type were reported as overlap-
ping an enhancer. The CpG sites that overlapped a predicted in-
sulator (State 8) in any cell type were reported as overlapping an
insulator. Additionally, annotation analysis of the methylation-
associated transcripts was performed using the Database for An-
notation, Visualization, and Integrated Discovery (DAVID) (41)

to test for over-representation of functional categories or path-
ways.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.

ACKNOWLEDGEMENTS

The authors thank the investigators, the staff and the participants
of the MESA study for their valuable contributions. A full list of
participating MESA investigators and institutions can be found
at http://www.mesa-nhlbi.org. DHSs data were collected by
the University of Washington ENCODE group. TFBS data
were collected by the Myers Lab at the HudsonAlpha Institute
for Biotechnology and by the laboratories of Michael Snyder,
Mark Gerstein and Sherman Weissman at Yale University,
Peggy Farnham at UC Davis, Kevin Struhl at Harvard, Kevin
White at the University of Chicago and Vishy Iyer at the Univer-
sity of Texas Austin. Enhancer and insulator data were generated
at the Broad Institute and in the Bradley E. Bernstein laboratory
at the Massachusetts General Hospital/Harvard Medical School,
and the chromatin state segmentation was produced by Manolis
Kellis’s Computational Biology group at the Massachusetts In-
stitute of Technology.

Conflict of Interest statement. None declared.

FUNDING

This work was supported by contracts N01-HC from the Nation-
al Heart, Lung and Blood Institute and by grants (UL1-
RR-024156, UL1-RR-025005) from the NIH. The MESA
Epigenomics and Transcriptomics Study was funded by a
National Heart, Lung and Blood Institute grant (R01HL101250)
to Wake Forest University Health Sciences. The Encyclopedia
of DNA Elements (ENCODE) project data generation and ana-
lysis was supported by funds from the National Human Genome
Research Institute (ENCODE), the Burroughs Wellcome Fund,
Howard Hughes Medical Institute, National Science Foundation,
Sloan Foundation, Massachusetts General Hospital and the Broad
Institute. ENCODE data comes from grants led by Bradley
Bernstein (Broad Institute), Richard Myers (HudsonAlpha Insti-
tute), Michael Snyder (Stanford), Gregory Crawford (Duke) and
John Stamatoyannopoulos (University of Washington).

REFERENCES

1. Bell, A.C. and Felsenfeld, G. (2000) Methylation of a CTCF-dependent
boundary controls imprinted expression of the Igf2 gene. Nature, 405,
482–485.

2. Jaenisch, R. and Bird, A. (2003) Epigenetic regulation of gene expression:
how the genome integrates intrinsic and environmental signals. Nat. Genet.,
33 (suppl.), 245–254.

3. Esteller, M. (2007) Epigenetic gene silencing in cancer: the DNA
hypermethylome. Hum. Mol. Genet., 16 (Spec no. 1), R50–R59.

4. Portela, A. and Esteller, M. (2010) Epigenetic modifications and human
disease. Nat. Biotechnol., 28, 1057–1068.

5. Thomson, J.P., Skene, P.J., Selfridge, J., Clouaire, T., Guy, J., Webb, S.,
Kerr, A.R., Deaton, A., Andrews, R., James, K.D. et al. (2010) Cpg islands

Human Molecular Genetics, 2013, Vol. 22, No. 24 5073

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/22/24/5065/569877 by guest on 20 August 2022

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt356/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt356/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt356/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt356/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddt356/-/DC1


influence chromatin structure via the CpG-binding protein Cfp1. Nature,
464, 1082–1086.

6. Hui, R., Macmillan, R.D., Kenny, F.S., Musgrove, E.A., Blamey, R.W.,
Nicholson, R.I., Robertson, J.F. and Sutherland, R.L. (2000) INK4a gene
expression and methylation in primary breast cancer: overexpression of
p16INK4a messenger RNA is a marker of poor prognosis. Clin. Cancer Res.,
6, 2777–2787.

7. Pike, B.L., Greiner, T.C., Wang, X., Weisenburger, D.D., Hsu, Y.H.,
Renaud, G., Wolfsberg, T.G., Kim, M., Weisenberger, D.J., Siegmund, K.D.
et al. (2008) DNA methylation profiles in diffuse large B-cell lymphoma and
their relationship to gene expression status. Leukemia, 22, 1035–1043.

8. Ball, M.P., Li, J.B., Gao, Y., Lee, J.H., LeProust, E.M., Park, I.H., Xie, B.,
Daley, G.Q. and Church, G.M. (2009) Targeted and genome-scale strategies
reveal gene-body methylation signatures in human cells. Nat. Biotechnol.,
27, 361–368.

9. Li, M., Balch, C., Montgomery, J.S., Jeong, M., Chung, J.H., Yan, P., Huang,
T.H., Kim, S. and Nephew, K.P. (2009) Integrated analysis of DNA
methylation and gene expression reveals specific signaling pathways
associated with platinum resistance in ovarian cancer. BMC Med. Genomics,
2, 34.

10. Sun, Z., Asmann, Y.W., Kalari, K.R., Bot, B., Eckel-Passow, J.E., Baker,
T.R., Carr, J.M., Khrebtukova, I., Luo, S., Zhang, L. et al. (2011) Integrated
analysis of gene expression, CpG island methylation, and gene copy number
in breast cancer cells by deep sequencing. PLoS One, 6, e17490.

11. Lee, S.T., Xiao, Y., Muench, M.O., Xiao, J., Fomin, M.E., Wiencke, J.K.,
Zheng, S., Dou, X., de Smith, A., Chokkalingam, A. et al. (2012) A global
DNA methylation and gene expression analysis of early human B-cell
development reveals a demethylation signature and transcription factor
network. Nucleic Acids Res., 40, 11339–11351.

12. van Eijk, K.R., de Jong, S., Boks, M.P., Langeveld, T., Colas, F., Veldink,
J.H., de Kovel, C.G., Janson, E., Strengman, E., Langfelder, P. et al. (2012)
Genetic analysis of DNA methylation and gene expression levels in whole
blood of healthy human subjects. BMC Genomics, 13, 636.

13. Pai, A.A., Bell, J.T., Marioni, J.C., Pritchard, J.K. and Gilad, Y. (2011) A
genome-wide study of DNA methylation patterns and gene expression levels
in multiple human and chimpanzee tissues. PLoS Genet., 7, e1001316.

14. Lam, L.L., Emberly, E., Fraser, H.B., Neumann, S.M., Chen, E., Miller, G.E.
and Kobor, M.S. (2012) Factors underlying variable DNA methylation in a
human community cohort. Proc. Natl Acad. Sci. USA, 109 (Suppl. 2),
17253–17260.

15. Bell, J.T., Pai, A.A., Pickrell, J.K., Gaffney, D.J., Pique-Regi, R., Degner,
J.F., Gilad, Y. and Pritchard, J.K. (2011) DNA Methylation patterns
associate with genetic and gene expression variation in HapMap cell lines.
Genome Biol., 12, R10.

16. Gibbs, J.R., van der Brug,M.P., Hernandez,D.G.,Traynor,B.J., Nalls, M.A.,
Lai, S.L., Arepalli, S., Dillman, A., Rafferty, I.P., Troncoso, J. et al. (2010)
Abundant quantitative trait loci exist for DNA methylation and gene
expression in human brain. PLoS Genet., 6, e1000952.

17. ENCODE Project Consortium (2011) A user’s guide to the encyclopedia of
DNA elements (ENCODE). PLoS Biol., 9, e1001046.

18. Schadt, E.E., Lamb, J., Yang, X., Zhu, J., Edwards, S., Guhathakurta, D.,
Sieberts, S.K., Monks, S., Reitman, M., Zhang, C. et al. (2005) An
integrative genomics approach to infer causal associations between gene
expression and disease. Nat. Genet., 37, 710–717.

19. Stranger, B.E., Nica, A.C., Forrest, M.S., Dimas, A., Bird, C.P., Beazley, C.,
Ingle, C.E., Dunning, M., Flicek, P., Koller, D. et al. (2007) Population
genomics of human gene expression. Nat. Genet., 39, 1217–1224.

20. Cheung, V.G., Spielman, R.S., Ewens, K.G., Weber, T.M., Morley, M. and
Burdick, J.T. (2005) Mapping determinants of human gene expression by
regional and genome-wide association. Nature, 437, 1365–1369.

21. Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A.S., Zink, F., Zhu,
J., Carlson, S., Helgason, A., Walters, G.B., Gunnarsdottir, S. et al. (2008)
Genetics of gene expression and its effect on disease. Nature, 452, 423–428.

22. Zeller, T., Wild, P., Szymczak, S., Rotival, M., Schillert, A., Castagne, R.,
Maouche, S., Germain, M., Lackner, K., Rossmann, H. et al. (2010) Genetics

and beyond—the transcriptome of human monocytes and disease
susceptibility. PLoS One, 5, e10693.

23. Stadler, M.B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Scholer, A., van
Nimwegan, E., Wirbelauer, C., Oakeley, E.J., Gaidatzis, D. et al. (2011)
DNA-binding factors shape the mouse methylome at distal regulatory
regions. Nature, 480, 490–495.

24. Kordi-Tamandani, D.M., Hashemi, M., Birjandian, E., Bahari, A.,
Valizadeh, J. and Torkamanzehi, A. (2011) Lack of association of GSTT1
and GSTP1 genes methylation and their expression profiles with risk of
NAFLD in a sample of Iranian patients. Clin. Res. Hepatol. Gastroenterol.,
35, 387–392.

25. Bild, D.E., Bluemke, D.A., Burke, G.L., Detrano, R., Diez Roux, A.V.,
Folsom, A.R., Greenland, P., Jacob, D.R. Jr., Kronmal, R., Liu, K. et al.
(2002) Multi-ethnic study of atherosclerosis: objectives and design.
Am. J. Epidemiol., 156, 871–881.

26. Dunning, M.J., Smith, M.L., Ritchie, M.E. and Tavare, S. (2007) beadarray:
R classes and methods for Illumina bead-based data. Bioinformatics, 23,
2183–2184.

27. Smyth, G.K., Michaud, J. and Scott, H.S. (2005) Use of within-array
replicate spots for assessing differential expression in microarray
experiments. Bioinformatics, 21, 2067–2075.

28. Du, P., Kibbe, W.A. and Lin, S.M. (2008) Lumi: a pipeline for processing
Illumina microarray. Bioinformatics, 24, 1547–1548.

29. Du, P., Zhang, X., Huang, C.C., Jafari, N., Kibbe, W.A., Hou, L. and Lin,
S.M. (2010) Comparison of beta-value and M-value methods for quantifying
methylation levels by microarray analysis. BMC Bioinformatics, 11, 587.

30. Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A.
and Reich, D. (2006) Principal components analysis corrects for
stratification in genome-wide association studies. Nat. Genet., 38,
904–909.

31. Fox, C.S., White, C.C., Lohman, K., Heard-Costa, N., Cohen, P., Zhang, Y.,
Johnson, A.D., Emilsson, V., Liu, C.T., Chen, Y.D. et al. (2012)
Genome-wide association of pericardial fat identifies a unique locus for
ectopic fat. PLoS Genet., 8, e1002705.

32. Storey, J.D. and Tibshirani, R. (2003) Statistical significance for
genomewide studies. Proc. Natl Acad. Sci. USA, 100, 9440–9445.

33. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L.,
Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S. and
Mesirov, J.P. (2005) Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad.
Sci. USA, 102, 15545–15550.

34. Abbas,A.R., Baldwin, D., Ma, Y., Ouyang,W., Gurney, A., Martin,F., Fong,
S., van Lookeren, C.M., Godowski, P., Williams, P.M. et al. (2005) Immune
response in silico (IRIS): immune-specific genes identified from a
compendium of microarray expression data. Genes Immun., 6, 319–331.

35. Henderson, A.R. (2006) Information for authors: is the advice regarding the
reporting of residuals in regression analysis incomplete? Should Cook’s
distance be included? Clin. Chem., 52, 1848–1850.

36. Schwartzman, A. and Lin, Y. (2011) The effect of correlation in FDR
estimation. Biometrika, 98, 199–214.

37. Aten, J.E., Fuller, T.F., Lusis, A.J. and Horvath, S. (2008) Using genetic
markers to orient the edges in quantitative trait networks: the NEO software.
BMC Syst. Biol., 2, 34.

38. Rosseel, Y. (2012) Lavaan: an R package for structural equation modeling.
J. Stat. Software, 48, 1–36.

39. Hooper, D., Coughlan, J. and Mullen, M. (2008) Structural equation
modelling: guidelines for determining model fit. Electron. J. Bus. Res.
Methods, 6, 53–60.

40. Rosenbloom, K.R., Sloan, C.A., Malladi, V.S., Dreszer, T.R., Learned, K.,
Kirkup, V.M., Wong, M.C., Maddren, M., Fang, R., Heitner, S.G. et al.
(2013) ENCODE data in the UCSC genome browser: year 5 update. Nucleic
Acids Res., 41, D56–D63.

41. Dennis, G. Jr., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C.
and Lempicki, R.A. (2003) DAVID:Database forAnnotation,Visualization,
and Integrated Discovery. Genome Biol., 4, 3.

5074 Human Molecular Genetics, 2013, Vol. 22, No. 24

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/22/24/5065/569877 by guest on 20 August 2022


