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Abstract: The dopaminergic system has been implicated in the pathogenesis and treatment of a variety
of neuropsychiatric disorders, such as schizophrenia, depression, and addiction. (Dys)function of the
dopaminergic system may be studied by combining [15O]H2O PET with a dopaminergic drug chal-
lenge. In this pilot study we investigated the suitability of the dopamine reuptake blocker methylpheni-
date (MP) as a dopaminergic probe. Measurements of regional cerebral blood flow (rCBF) were made
at 10 and 30 min after placebo and MP (0.25 mg/kg) injection to seven healthy volunteers. During
scanning the behavioral condition of the subjects was standardized using a continuous performance
task. Growth hormone levels were assessed and subjective ratings were obtained. MP significantly ele-
vated growth hormone levels. After receiving MP, the subjective experience varied from neutral to
highly pleasurable. Ten minutes after MP administration, significant relative increases in rCBF were
found in the rostral anterior cingulate (AC), temporal poles, and the supplementary motor area. Signifi-
cant reductions were seen in the superior temporal gyri, right medial frontal gyrus, and right inferior
parietal cortex. At 30 min after MP administration, increases were seen in the AC, temporal pole, and
right cerebellum. No changes were observed in the striatum. The activation in the right rostral AC was
significantly higher in the subjects with the highest euphoria scores compared to the subjects with min-
imal MP-induced changes in euphoria. We suggest that the combined MP challenge with functional
imaging, as described in our study, may be a useful tool to study the functional integrity of the dopa-
minergic system in psychiatric disorders. Hum Brain Mapp 28:625–635, 2007. VVC 2006 Wiley-Liss, Inc.
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INTRODUCTION

The dopaminergic system has been implicated in the
pathogeneses and treatment of a variety of neuropsychiat-
ric disorders, such as schizophrenia, Parkinson’s disease,
depression, and addiction [Kapur and Mamo, 2003;
Leenders, 2002; Naranjo et al., 2001; Volkow et al., 2002].
The involvement of dopamine (DA) in these disorders
may be related to its function in the processing of reward-
ing or salient stimuli [Kapur, 2003; Kunig et al., 2000;
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Schmidt et al., 2001]. However, the exact role of DA in
these processes is not completely known. The (dys)func-
tion of the dopaminergic system may be studied by com-
bining functional neuroimaging with a dopaminergic drug
challenge, such as the DA reuptake blocker methylpheni-
date (MP). With this approach, DA-induced changes in re-
gional neural activity can be assessed in living subjects.
The dopaminergic neurons are located in the substantia

nigra (SN) and ventral tegmental area (VTA). The dopami-
nergic cells in the SN project primarily to the dorsal stria-
tum, whereas the neurons of the VTA project most strongly
to the limbic and cortical areas such as the nucleus accum-
bens, septum, amygdala, hippocampus, prefrontal, and cin-
gulate cortex [Wise, 2004]. Administration of MP has been
shown to induce substantial increases in DA levels in the
projection areas of the dopaminergic system [During et al.,
1992; Huff and Davies, 2002; Kuczenski and Segal, 1997]
accompanied by strong subjective and behavioral effects
[Wang et al., 1999].
Both positron emission tomography (PET) and functional

MRI (fMRI) are increasingly used to measure drug-induced
changes in brain activity. These techniques provide in vivo
measures of regional cerebral blood flow (rCBF), glucose uti-
lization, or blood oxygenation, which serve as an index of
neural activity [Herscovitch, 2001]. Previous studies that
investigated the effects of dopaminergic drugs on neural ac-
tivity have mainly used [18F]fluorodeoxyglucose PET (FDG)
[Ernst et al., 1997; London et al., 1990a; Volkow et al., 1997,
1998; Vollenweider et al., 1998; Wolkin et al., 1987]. These
studies showed that psychostimulants such as amphetamine,
cocaine, or MP induce changes in cortical, subcortical, lim-
bic, and cerebellar areas. Both increases and decreases have
been reported, probably related to the route of administra-
tion, the dose administered [Vollenweider et al., 1998], the
timing of the challenge, the use of single or repeated doses
[Volkow et al., 1998], or whether changes in relative or abso-
lute glucose metabolism were measured. Using FDG, neuro-
nal glucose metabolism is established in a measurement
over a period of * 30 min. Therefore, this method it not
suitable to detect short-lasting changes in brain activation. In
our study we were interested in the effect of MP at the time
of the peak in subjective effects, which occurs *10 min after
administration [Volkow et al., 1999; Wang et al., 1999]. In
addition, we wished to investigate changes in neural activa-
tion at the time of the peak in DA concentration, * 30 min
after MP administration [Huff and Davies, 2002; Janowsky
et al., 1978]. Compared to FDG, the temporal resolution of
[15O]H2O PET and especially fMRI is much higher. The meth-
ods used to assess acute drug effects on the fMRI signal are
currently under development and need further validation
[Tracey, 2001]. Therefore, we decided to use [15O]H2O PET
in our study. In a previous study using [15O]H2O PET, the
effect of MP on absolute rCBF was investigated [Wang
et al., 1994]. MP was found to induce a global decrease in
blood flow, without any significant regional differences. In
our study we were interested in the effect of MP on changes
in relative regional CBF.

Previous studies have shown that the behavioral state of
the subject may influence the MP-induced effects on DA
release or neuronal activity [Volkow et al., 1994, 1998].
Therefore, we tried to standardize the behavioral condition
of the subjects during scanning using a continuous per-
formance task [van Leeuwen et al., 1998]. The effect of MP
on the behavioral state of the subjects was examined using
verbal rating scales. We also assessed the effect of MP on
growth hormone levels, as increases in the concentration
of this hormone are assumed to reflect dopaminergic
activity [Janowsky et al., 1978]. We used an MP dose of
0.25 mg/kg since previous studies in psychiatric patient
groups have used comparable doses [Janowsky and Davis,
1976; Joyce et al., 1986]. In this pilot study we investigated
the MP-induced effects on rCBF in a small number of
healthy volunteers. If MP induces changes in brain regions
that are known to be involved in dopaminergic (dys)func-
tion, this probe may be used in studies of dopaminergic
functional abnormalities in psychiatric patients.

SUBJECTS AND METHODS

Subjects

Seven healthy, right-handed volunteers participated in
the study (4 male, 3 female, mean age 22 years, range 19–
26 years). All subjects gave written informed consent after
written and verbal explanation of the study. Suitability to
participate in the study was determined by an independ-
ent physician (psychiatrist) after a medical examination
including an ECG and blood laboratory tests. Exclusion
criteria were current or past psychiatric, neurological,
cardiovascular, or other disease that could interfere with
the study, dependence on any substance other than caffeine,
and exposure to psychoactive drugs during the past
6 months, excluding alcohol and caffeinated products. The
study was approved by the Medical Ethical Commission
of the University Medical Center Groningen (UMCG).

General Design

The subjects were instructed to refrain from alcohol- and
caffeine-containing products for 24 h prior to each scan.
On the day of the experiment, a total of four PET scans
were made, two after placebo and two after MP injection.
After placement in the scanner either placebo or MP,
0.25 mg/kg i.v. (intravenous), injected over 1 min, was
administered and scans were made at 10 and 30 min after
each injection. These time points were chosen on the basis
of the expected peak in MP-induced subjective effects (at
10 min) and DA levels (at 30 min). In order to avoid carry
over the effects of MP, placebo injections were always
administered first. The subjects were blind to the drug
administered. Between the placebo and MP scans the
subjects were allowed to leave the scanner for * 30 min.
Thereafter, they were repositioned in the scanner using
marks on the face. During scanning the behavioral condi-
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tion of the subjects was standardized using a continuous
performance task (CPT). Immediately after each scan the
subjective ratings were obtained and blood samples were
taken for growth hormone levels. Blood pressure, heart
rate, and ECG were monitored during the experiment.

Continuous Performance Task

The CPT in our study was based on a task used by van
Leeuwen et al. [1998]. A sequence of digits (0–9) appeared
on a computer screen and the subjects’ task was to click a
mouse button with the right index finger whenever the tar-
get sequence, a 3 followed by a 7, appeared. Stimuli were
presented for 150 ms in the center of the screen, between
two vertical lines that were permanently visible. The intersti-
mulus interval was 1500 ms. The target digits and nontarget
digits were pseudorandomly distributed with equal proba-
bility (10% for the target sequence ‘‘3–7’’ and nontarget
sequence ‘‘3 non 7’’). The task was initiated 1 min before
bolus injection of [15O]H2O and continued throughout scan
acquisition. The task was practiced before scanning.

Subjective Ratings

The behavioral effects were evaluated using a verbal analog
rating scale. The subjects were asked to respond to the fol-
lowing descriptors, using a whole number between 0 (no
effects) and 10 (maximal effects): euphoria, anxiety, happi-
ness, sexual desire, desire for MP, alertness, annoyance, dis-
trust, loss of control, restlessness, depression, and tiredness
[Wang et al., 1997]. The subjects were also asked if they expe-
rienced the effects of the drug as pleasant or unpleasant.

Growth Hormone

Plasma growth hormone levels were assessed by radio-
immunoassay.

PET Scans

For administration of the radioligand and MP or pla-
cebo, a venous cannula was placed in one of the veins in
the right lower forearm. A second intravenous cannula
was placed in the left arm for sampling of hormone levels.
The subject was placed in the scanner and the head was
fixed using a head restraint. The subjects were scanned in
3D acquisition mode using a Siemens ECAT Exact HRþ
camera, giving 63 slices with a center-to-center distance of
2.425 mm. For each scan, 500 MBq of [15O]H2O in saline
was injected and flushed with saline (total volume 32 mL)
at a speed of 8 mL/s. After injection of the radioactive
bolus, data were collected for a duration of 2 min in one
frame [Poline et al., 1996].

Data and Image Analysis

Attenuation correction was performed by drawing ellip-
ses on the brain images, assuming uniform attenuation.
Statistical parametric mapping (SPM99) [Friston et al.,
1995] was used for spatial transformation and statistical
analysis. The origins were manually set at the anterior
commissure. Changes in position due to repositioning of
the subject could be adequately solved by the realignment
routine of SPM. The images were normalized to the MNI
(Montreal Neurological Institute) template and smoothed
with a Gaussian kernel of 10 mm full-width at half-maxi-
mum (FWHM). The data were analyzed using multiple-
subjects conditions and covariates model with covariate 0.
Proportional scaling was used to correct for MP-induced
changes in global blood flow. The images were scaled to a
mean global activity of 50 mL/100 mL/min. The following
contrasts were examined: differences between the two pla-
cebo scans (to assess the reproducibility of the scans),
between the first placebo scan and first MP scan, and
between the second placebo and second MP scan, using
paired t-tests. The initial T-map threshold was set at 3.69
(P , 0.001), uncorrected for multiple comparisons. Results
were considered significant at the 0.05 level, corrected for

Figure 1.

Region of interest (ROI) placement in the right anterior cingulate.

Figure 2.

Growth hormone levels at 10 and 30 min after methylphenidate

and placebo administration.
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multiple comparisons. Clusters reaching this statistical
threshold are included in the Discussion. The coordinates
of maximum relative changes were converted from MNI
space to Talairach space. To investigate the prediction that
the anterior cingulate (AC) was differentially activated in
subjects with either high or low euphoria scores, we con-
ducted a (multigroup) region of interest (ROI) analysis
using the MARSBAR toolbox [Brett et al., 2002] and ROI
library [Tzourio-Mazoyer et al., 2002] (Fig. 1). The two
groups consisted of the three subjects with the highest and
lowest scores for euphoria, respectively.
The effect of MP on subjective ratings and hormone

levels was assessed with paired t-tests.

Drugs

Methylphenidate was obtained from Fagron (The
Netherlands) and infusions were prepared and provided
by the pharmacy of the UMCG.

RESULTS

Growth Hormone

MP significantly elevated growth hormone levels at
10 min after administration (P , 0.01) and 30 min after
administration (P , 0.01) (Fig. 2).

TABLE I. Talairach coordinates of maximum relative

changes in rCBF at 10 and 30 min after intravenous

administration of methylphenidate (0.25 mg/kg)

Brain region

Cluster
Peak
voxel

Talairach
coordinates

Size P T x y z

MP . placebo t ¼ 10 min
Anterior cingulate 1277 , 0.001 9.09 �4 37 2
Right temporal pole* 710 , 0.001 7.94 52 0 �39
Left temporal pole* 652 , 0.001 8.11 �57 6 �29
Supplementary motor area 251 0.01 6.94 �4 26 54

MP . placebo t ¼ 30 min
Anterior cingulate 220 0.019 6.35 2 37 6
Left temporal pole* 280 0.006 6.18 �57 6 �29
Right cerebellum 321 0.003 6.68 40 �71 �22

Placebo . MP t ¼ 10 min
Right superior
temporal gyrus

687 , 0.001 7.14 40 1 �19

Left superior
temporal gyrus

202 0.028 5.51 �40 �8 �8

Right medial
frontal gyrus

338 0.002 5.33 30 66 �10

Right medial
frontal gyrus

183 0.041 5.03 32 50 20

Right inferior
parietal cortex

209 0.024 4.90 55 �32 24

*Activation in the temporal poles extends outside the brain and is
therefore questionable.

Figure 3.

Glass brains (sagittal, coronal, and transverse pro-

jections) showing the location of significant relative

increases (MP-placebo) and decreases (Placebo-MP)

in rCBF at 10 and 30 min after MP administration

(P , 0.001). AC: anterior cingulate, TP: temporal

pole, SMA: supplementary motor area, CRB: cere-

bellum, STG: superior temporal gyrus, MFC: medial

frontal gyrus, IPC: inferior parietal cortex.
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Subjective Effects

After receiving MP the subjective experience varied from
neutral to highly pleasurable. Due to the variability in
effects, the change in the different subjective ratings was
not significant, except for happiness, 10 min after MP
administration (P , 0.05).

Scan Results

Due to failure of the first MP scan of one of the (female)
subjects, we only have data for six subjects at 10 min after
MP administration. No differences were observed between
the two placebo scans (P . 0.6), indicating reproducibility
of the scans. Ten minutes after MP administration a signif-
icant relative increase in rCBF was found in the rostral
AC, temporal poles, and the supplementary motor area.
Significant relative reductions were seen in the superior
temporal gyri, right medial frontal gyrus and right inferior
parietal cortex. At 30 min after MP administration,
increases were seen in the AC, temporal pole, and right
cerebellum (Table I, Fig. 3). No changes were observed in
the striatum, not even after lowering the initial significance
threshold to P , 0.01 or after combining the two MP
scans. At 10 min after MP administration the activation in
the right rostral AC was significantly higher in the three
subjects with the highest euphoria scores compared to the
subjects with minimal MP-induced changes in euphoria
(T: 3.67, P , 0.01) (Fig. 4). At 30 min after MP administra-
tion, no significant differences were found in this region.
No differences were observed in the left AC.

DISCUSSION

In our study we demonstrated a significant, MP-induced
relative increase in the rCBF in the rostral AC in healthy

volunteers. At 10 min after MP administration, activation
in the right rostral AC differed significantly between the
subjects with the highest euphoria scores compared to the
subjects with low euphoria scores, suggesting a relation
between the magnitude of activation and the level of eu-
phoria. Increases were also seen in the temporal poles, the
supplementary motor area (SMA), and cerebellum. MP-
induced decreases were found in the superior temporal
gyri, right medial frontal gyrus, and right inferior parietal
cortex.
Changes in rCBF are coupled to changes in glucose con-

sumption and assumed to be an index for changes in neu-
ronal activation [Herscovitch, 2001]. Previous studies have
shown dense dopaminergic innervation of the anterior cin-
gulate and SMA [Berger et al., 1988; Gaspar et al., 1989],
which could possibly explain the changes in activation in
these areas in the current study. However, most changes
in brain energy consumption are due to changes in (post-
synaptic) glutamatergic signaling [Attwell and Laughlin,
2001]. Therefore, the findings in our study should also be
understood in terms of anatomical circuits where dopami-
nergic stimulation induces changes in glutamate release in
connected anatomical regions. Although previous studies
have shown psychostimulant-induced decreases in absolute
global blood flow [Kahn et al., 1989; Wallace et al., 1996;
Wang et al., 1994], it is unlikely that direct vasoactivity of
DA is the dominant mechanism underlying the changes in
relative rCBF [Schwarz et al., 2004]. In addition, no devia-
tions in the relationship between local glucose utilization
and local blood flow were found after administration of
the dopamine agonist apomorphine [McCulloch et al.,
1982].
The AC is part of the limbic system and includes numer-

ous specialized subdivisions with a large range of cogni-
tive, emotional, motor, nociceptive, and visuospatial func-
tions. Two major subdivisions can be distinguished: the
dorsal cognitive division and a rostral–ventral affective
subdivision [Bush et al., 2000; Philips et al., 2003; Pizzagalli
et al., 2001]. The (euphoria-related) increase in rCBF in our
study was located in the affective subdivision of the AC.
This division is primarily involved in assessing the sali-
ence of emotional and motivational information and the
regulation of emotional responses [Allman et al., 2001;
Bush et al., 2000] and may be activated during efforts to
cope with or control feelings [Posner and Rothbart, 1998].
This region has extensive connections with other limbic
areas such as the striatum and amygdala [Devinsky et al.,
1995; Kalivas and McFarland, 2003]. As stated above, the
[15O]H2O PET signal can be understood in terms of
changes in glutamate release. Therefore, the activation
in the AC may be interpreted as a result of a change in
the glutamatergic input from the amygdala [Jackson and
Moghaddam, 2001].
Most studies in animals have reported psychostimulant-

induced activations in the AC [Cash et al., 2003; Chen
et al., 1997; Marota et al., 2000; Pontieri et al., 1990; Stein
et al., 1993]. Results from human studies show decreases

Figure 4.

Relative rCBF changes in the right AC in the three subjects with

the highest euphoria scores and the three subjects with low eu-

phoria scores. P1: 10 min after placebo, P2: 30 min after pla-

cebo, MP1: 10 min after methylphenidate, MP2: 30 min after

methylphenidate.
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or no effects of psychostimulants on absolute cerebral me-
tabolism or blood flow [Ernst et al., 1997; Kahn et al., 1989;
Wallace et al., 1996; Wang et al., 1994; Wolkin et al., 1987],
except after relatively high doses [Vollenweider et al.,
1998]. However, relative glucose metabolism or blood flow
was found to be increased in the AC, comparable to the
results from our study [Breiter et al., 1997; Vollm et al.,
2004].
The AC activation in our study is probably not related

to the experience of euphoria per se. In accordance with
the role of the AC, we suggest that the activation is related
to an increased need for emotional control during MP
administration. This would agree with results from previ-
ous studies that reported increased activation of the (right)
AC after administration of various psychoactive drugs
[Gouzoulis et al., 1999; Vollm et al., 2004]. In these studies
the subjects were also asked to perform a task that may
have increased the need to control the drug-induced emo-
tional experiences. In addition, studies that specifically
asked the subjects to attend to or control their emotions
have found increased activation of the (right rostral) AC
[Beauregard et al., 2001; Childress et al., 2004; Lane et al.,
1997; Ochsner et al., 2004]. In a metaanalysis by Berthoz
and Blair [2002] it was also concluded that the AC is a key
structure in emotion regulation. The finding that the (right)
rostral AC is activated during unpleasant emotions is also
in agreement with the suggested role of the AC in emo-
tional control [Boshuisen et al., 2002; Damasio et al., 2000;
Zubieta et al., 2003]. In these studies the subjects experi-
enced strong negative emotions. The experiments were
performed in the PET scanner, thereby necessitating con-
trol of the experienced emotions.
Previous studies have shown that differences in AC acti-

vation may be related to baseline differences between the
subjects. Cue-induced activation in the rostral AC corre-
lated to baseline striatal D2 occupancy in alcoholic subjects
[Heinz et al., 2004]. In a study by Volkow et al. [1997],
baseline striatal D2 correlated with MP-induced changes in
metabolism in the frontal cortex. Differences in AC activa-
tion may also be related to personality [Canli et al., 2001,
Johnson et al., 1999; Sugiura et al., 2000]. Unfortunately, in
our study we did not measure such parameters.
Results from previous studies indicated AC abnormal-

ities in psychiatric patients. Several studies have found dif-
ferences in (right rostral) AC function between depressed
patients and healthy control subjects [Drevets, 1999; Ebert
and Ebmeier, 1996; Kumari et al., 2003]. Moreover, the
baseline activity in this region has been found to predict
the response to antidepressant treatments [Mayberg et al.,
1997; Pizzagalli et al., 2001; Wu et al., 1999]. The (right
rostral) AC may also be involved in addiction [Bolla et al.,
2004; Franklin et al., 2002; Goldstein and Volkow, 2002].
The AC abnormalities in these disorders may be related to
the disturbances in emotion regulation and motivated
behavior, probably due to a dysfunction of the dopaminer-
gic system [Drevets, 1999; Ebert and Ebmeier, 1996; Volkow
et al., 2002;Wu et al., 1999].

In our study, no changes were found in striatal activa-
tion. The striatum, and especially the ventral striatum, has
been implicated in the processing of rewarding or reinforc-
ing effects of dopaminergic drug stimuli [Ikemoto and
Panksepp, 1999; Spanagel and Weiss, 1999; Ungless, 2004;
Wise, 2004]. Therefore, we could have expected rCBF
changes in this region. However, as stated previously,
changes in rCBF are primarily caused by changes in (post-
synaptic) glutamatergic transmission and changes in acti-
vation may therefore occur at sites that are downstream of
the site of drug action [Eidelberg et al., 1997; Kadekaro
et al., 1985; McCulloch, 1982; Schwartz et al., 1979]. A
review of the literature shows that psychostimulant
administration does not consistently affect striatal activa-
tion. Previous human and animal studies have reported
activations [Chen at al., 1997; Dixon et al., 2005; Ernst
et al., 1997; Marota et al., 2000; Schwarz et al., 2004], deac-
tivations [Cash et al., 2003; Volkow et al., 1997], or no
changes [Howell et al., 2002; Mehta et al., 2000; Vollm
et al., 2004] in relative rCBF or brain metabolism. Drug
administration also resulted in variable effects on absolute
rCBF or metabolism. In most studies an increase in abso-
lute brain activation was seen [Cash et al., 2003; Howell
et al., 2002; Pontieri et al., 1990; Porrino and Lucignani,
1987; Vollenweider et al., 1998]; however, decreases have
also been reported [London et al., 1990a; Volkow et al.,
1998; Wang et al., 1994; Wolkin et al., 1987] and in other
studies no significant changes were found [Cash et al.,
2003; Ernst et al., 1997]. These differences may be due to
differences in the pharmacological challenge [Pontieri
et al., 1990], dose [Porrino and Lucignani, 1987; Vollen-
weider et al., 1998], use of anesthesia [Cash et al., 2003],
timing of the challenge [Porrino, 1993; Stein and Fuller,
1993], route of administration [Porrino, 1993], the use of
single or repeated doses [Volkow et al., 1998], immobiliza-
tion [London et al., 1990b], and the state of cortical excita-
tory modulation [Tschanz et al., 1994]. It has been sug-
gested that the effects of DA on brain activity may depend
on the state of the dopaminergic system [Volkow et al.,
1997, 1998]. The striatum receives glutamatergic projections
from the cerebral cortex [Fonnum et al., 1981]. It has been
shown that DA may both enhance or inhibit excitatory glu-
tamate release in the striatum [Cepeda et al., 1993]. The
DA-induced glutamate response in the striatum is found
to be dependent on the basal neuronal activity [Kiyatkin
and Rebec, 1996]. It may be concluded that the nature of
interaction between the cerebral cortex and striatum is de-
pendent on the experimental conditions [Bamford et al.,
2004, Morari et al., 1998].
A strong activation was seen in both temporal poles at

10 and 30 min after MP administration. Since this activa-
tion extends outside the brain, possible movement artifacts
cannot be excluded. Nevertheless, the activation is in ac-
cordance with a role of the temporal poles in emotional
processes [Dolan et al., 2000].
We have shown an MP-induced activation of the (pre)-

supplementary motor area (pre-SMA) (rostral part of BA 6).
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The pre-SMA receives projections from the cingulate cortex
[Luppino et al., 1993] and may play a role in motor control
or response inhibition [Toma et al., 1999]. Activations in
this region have been shown during response conflict or
uncertainty [Hazeltine et al., 2000; Ullsperger and Cramon,
2003]. Possibly the activation in our study was due to the
fact that subjects were required to lie still in the PET while
being distracted by MP-induced subjective experiences.
The cerebellar activation in our study is also difficult to

interpret. Although the cerebellum is low in dopamine,
there are dopaminergic projections to the cerebellum.
Within the cerebellum, different glutamatergic projections
have been described [Geurts et al., 2003]. These projections
may be responsible for the observed changes in cerebellar
activity. Evidence exists that the cerebellum is not only
involved in motor functions, but also in cognitive and
emotional processes [Rapoport et al., 2000; Schmahmann,
2004]. Increases in (right) cerebellar rCBF have also been
reported in previous studies using psychoactive drugs
[Gamma et al., 2000; Gouzoulis et al., 1999; Mehta et al.,
2000; Volkow et al., 1997]. It has been hypothesized that
dopamine affects reward-dependent learning in the cere-
bellum [Schweighofer et al., 2004].
In our study (right-sided) relative deactivations were

found in the superior temporal gyri, medial frontal gyrus,
and inferior parietal cortex. A right-sided fronto-parietal-
temporal network is most often associated with (sustained)
attention, as assessed during performance of a CPT
[Berman and Weinberger, 1990; Buchsbaum et al., 1990;
Corbetta and Shulman, 2002; Hager et al., 1998; Pardo
et al., 1991]. The deactivations in our study may related to
a decrease in attention due to task habituation or allocation
of attention to the MP-induced emotional effects [Coull
et al., 1998].
Limitations of the study include the fact that MP not

only blocks DA uptake, but has also been shown to in-
crease extracellular noradrenaline concentration [Kuczenski
and Segal, 1997]. A contribution of this neurotransmitter to
the observed effects can therefore not be excluded. Defini-
tive conclusions on the involvement of a neurotransmitter
system can only be drawn after administration of specific
antagonists [McCulloch et al., 1980; Trugman and James,
1993]. However, previous studies have found strong corre-
lations between DA increase and euphoria, the main be-
havioral effect in our study [Udo de Haes et al., 2005;
Volkow et al., 1999]. Therefore, it can be assumed that the
euphoria-related activation in the AC in our study is
indeed due to increased DA levels. Performance on the
CPT was not quantified in our study and drug–task inter-
actions therefore cannot be excluded. However, we delib-
erately choose a relatively simple task in order to avoid
such effects and previous studies in healthy volunteers did
not show significant effects of psychostimulants or changes
in task load on CPT performance [Cattapan-Ludewig et al.,
2005; Ernst et al., 1997]. In our study we did not assess
changes in absolute blood flow; the reported changes are
relative to mean global blood flow. Since MP has been

shown to reduce global blood flow, the regional increases
in our study may in fact be due to a diminished reduction
in blood flow in these areas [Black et al., 2002; Wang et al.,
1994]. However, our study was set up to study local effects
of MP and our data clearly show specific regional differen-
ces in activation. MP scans always followed the placebo
scans but effects of order seem unlikely due to the fact that
no differences in activation were observed between the
two placebo scans. Finally, the small sample size is a limi-
tation of our study and future studies should be per-
formed to confirm our results.
In conclusion, the most important finding in our study

was the euphoria-related relative increase in right rostral
AC activation after administration of MP. We suggest that
the activation is related to the role of this region in emo-
tional control. This finding may be relevant with respect to
previous studies that have shown the involvement of the
(right) rostral AC in the pathogenesis of psychiatric disor-
ders such as depression [Drevets, 1999; Ebert and Ebmeier,
1996; Kumari et al., 2003; Mayberg et al., 1997; Pizzagalli
et al., 2001; Wu et al., 1999] or addiction [Bolla et al., 2004;
Franklin et al., 2002; Goldstein and Volkow, 2002]. As
stated before, previous studies have also indicated a role
of the dopaminergic system in the AC-related disturbances
in emotion regulation and motivated behavior [Drevets,
1999; Ebert and Ebmeier, 1996; Volkow et al., 2002; Wu
et al., 1999]. Therefore, we suggest that the combined MP
challenge with functional imaging, as described in our
study, may be a useful tool to study the functional integ-
rity of the dopaminergic system in psychiatric disorders.
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