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Abstract

METLIN originated as a database to characterize known metabolites and has since expanded into 

a technology platform for the identification of known and unknown metabolites and other 

chemical entities. Through this effort it has become a comprehensive resource containing over 1 

million molecules including lipids, amino acids, carbohydrates, toxins, small peptides, and natural 

products, among other classes. METLIN’s high-resolution tandem mass spectrometry (MS/MS) 

database, which plays a key role in the identification process, has data generated from both 

reference standards and their labeled stable isotope analogues, facilitated by METLIN-guided 

analysis of isotope-labeled microorganisms. The MS/MS data, coupled with the fragment 

similarity search function, expand the tool’s capabilities into the identification of unknowns. 
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Fragment similarity search is performed independent of the precursor mass, relying solely on the 

fragment ions to identify similar structures within the database. Stable isotope data also facilitate 

characterization by coupling the similarity search output with the isotopic m/z shifts. Examples of 

both are demonstrated here with the characterization of four previously unknown metabolites. 

METLIN also now features in silico MS/MS data, which has been made possible through the 

creation of algorithms trained on METLIN’s MS/MS data from both standards and their isotope 

analogues. With these informatic and experimental data features, METLIN is being designed to 

address the characterization of known and unknown molecules.

Graphical abstract

The METLIN tandem mass spectrometry (MS/MS) database was created in 2003 and made 

publicly available in 20051 to help identify metabolites; at that time, no such database 

existed for identifying metabolites or any other chemical entities. METLIN, a freely 

accessible cloud-based technology platform and metabolite database, has since grown from a 

small collection of MS/MS spectra on 100 metabolites in its first iteration1 to more than 10 

000 metabolites in 2012,2 with an additional 12 000 metabolites and compounds having 

been analyzed in the last 5 years. METLIN data are broadly useful across multiple tandem 

mass spectrometry instrument types, with the data collected in both positive and negative 

ionization modes at multiple collision energies, providing high-resolution spectra, 

systematically acquired and manually curated directly from standards and their stable 

isotope analogues. These data complement the data from other databases, which have been 

collected for electron impact (EI) or nuclear magnetic resonance (NMR) instrumentation.3–5 

Recently, to improve the coverage of metabolites and aid with its annotation, in silico 

MS/MS spectra have now been generated on METLIN’s additional molecules (that currently 

have no experimental data). These data are based on advanced machine learning algorithms,
6–8 the growing METLIN database, and the unique fragmentation information provided by 

stable isotopes.

Since the introduction of METLIN, numerous other databases have followed, with over 20 

different databases currently available.5 Their impact has been profound, essentially 

bringing metabolomics from the fringes to what is now a mainstream technology, offering 

valuable insight into areas as diverse as therapeutic drug discovery, clinical diagnostics, 

pharmacology, food safety, sports medicine, toxicology, forensics, environmental analyses, 

and microbiology.9–11 For example, these databases serve to identify metabolites as 

indicators of a microorganism’s activity,11 disease onset,11–13 and disease progression14,15 

or as responsive elements to therapeutics,16,17 and they provide mechanistic insights into 
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biological systems, extending in some cases to the prioritization and identification of 

endogenous metabolites for the modulation of phenotype.18–20 The increasing ability to 

obtain and process complex data sets has been pivotal to these achievements, through the 

identification of metabolites and other chemicals represented by these dysregulated features. 

However, as addressed in this paper, the primary obstacle facing the field has now shifted 

from identifying molecules with known MS/MS spectra to identifying the unknowns that are 

not present in the databases or that are present yet do not have experimental MS/MS data. 

METLIN is being designed to meet this challenge.

EXPERIMENTAL SECTION

Metabolite Data Acquisition and Analysis

Pichia pastoris extracts corresponding to 2 × 109 unlabeled or 13C-labeled cells were 

generated by growing cells on natural and 13C-glucose, respectively, as previously reported.
21 Extracts were reconstituted with 1 mL of acetonitrile/H2O (1:1, v/v) and aliquots (8 μL) 

were injected into an Agilent 1200 series high-performance liquid chromatography (HPLC) 

system (Agilent Technologies, Santa Clara, CA) coupled to a Bruker Impact II quadrupole/

time-of-flight mass spectrometer (Q-TOF MS; Bruker, Billerica, MA). The mass 

spectrometer was set to auto MS/MS mode, selecting the 10 most intense precursor ions in 

the MS scan to fragment in each cycle and acquiring data over the m/z range 50–1000. Cycle 

time was set to 3 s. The electrospray source conditions were set as follows: end plate offset = 

500 V, dry gas temperature = 220 °C, drying gas = 6 L/min, nebulizer = 1.6 bar, capillary 

voltage = 3500 V. Samples were analyzed at four different collision energies: 0, 10, 20, and 

40 eV. Samples were run in reversed phase and hydrophilic interaction liquid 

chromatography (HILIC) in both positive and negative ion modes to cover the widest range 

of the metabolome, as previously described.22

Raw .d data files were converted to .mzXML format by use of ProteoWizard MS Converter 

version 3.0.7529.23 Peaks were first detected, integrated, and aligned by use of XCMS 

Online (https://xcmsonline.scripps.edu).11,24 Afterward, isotopically labeled samples were 

analyzed to identify isotope labeling patterns, by use of the X13CMS software package.25,26 

The output was composed of a table where putative molecules were sorted by isotopologues. 

The grouped putative isotopologues should have a mass shift compared to the unlabeled ion 

that represents an integer multiple of the mass defect introduced by the isotopic atom 

(1.0034 Da) within the error of the mass spectrometer. To consider a pair of unlabeled and 

labeled metabolites, the signal of the 12C-ion in the 13C-glucose-fed P. pastoris extract 

should not be detectable (or negligible compared to its 13C analogue), and conversely for the 
13C-molecule in the 12C-glucose-fed yeast extract. Once this refinement was accomplished, 

the MS/MS spectra of natural and isotope-labeled putative metabolites were manually 

compared by use of METLIN functions, as described in the Results and Discussion section.

METLIN Data Curation

METLIN database entries are curated by use of both automated scripts and manual 

inspection of the data. Briefly, a script reads the MS files determining charge state (positive 

or negative) and precursor m/z. These are linked with the METLIN entry, and a new entry 
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for MS/MS data is initialized in the database. Once this is confirmed, the script collects the 

mass and intensity values for each collision energy (i.e., 0, 10, 20, and 40 eV). A signal filter 

is then employed to identify and remove signal that is due to noise. The largest MS1 peak is 

chosen that is closest to the precursor mass; the resulting values are normalized and inserted 

into a database. Normalization is done by equating the maximum MS/MS peak to 100%. 

Finally, the resulting MS/MS spectrum is manually checked before committing it to the 

database to be viewed on the METLIN site.

RESULTS AND DISCUSSION

METLIN Search Functions

Simple and Advanced Searching—In addition to more than 1 million metabolites and 

other small molecules in the database, METLIN has incorporated tools to automate the 

identification process of known and unknown molecules by use of experimental MS/MS 

data (Figure 1). For example, once the m/z of a feature of interest is defined, the Simple 

Search menu allows users to perform an exact mass search and thus obtain putative 

molecules within a user-defined mass tolerance window. This search menu also offers the 

possibility to take into consideration different adducts of the molecule that could match the 

selected m/z (Figure 1A). The Advanced Search tool allows a more general search of 

metabolites based on different parameters, such as name, m/z range, chemical formula, 

common names, simplified molecular-input line-entry system (SMILES), Kyoto 

Encyclopedia of Genes and Genomes (KEGG), and METLIN identification number (MID), 

among others (Figure 1A).

The output of both search engines consists of a list of molecules with specific identification 

information. This information includes MID, exact mass, name, formula, CAS number, a 

link to its KEGG record, its structure, and the availability of experimental or in silico 

MS/MS spectra. Since experimental MS/MS data provide a higher level of identification 

confidence compared to in silico MS/MS data, the listing of metabolites has been configured 

to prioritize molecules with experimental MS/MS spectra first. By clicking on each 

molecule, users can access detailed information, including links of interest for identification, 

chemical properties, commercial availability, and biological activity. In the MS/MS spectra 

section, most fragment structures can be visualized by hovering the cursor over the fragment 

of interest. This information can be useful during the identification of unknown molecules, 

as will be explained in greater detail.

Finally, the Batch Search permits searching for multiple m/z values simultaneously, 

facilitating the identification of different adducts and water losses possibly from the same 

metabolite. Similarly, ions with a different molecular origin can be easily distinguished and 

linked to other putative candidates with this search feature (Figure 1A).

Autonomous Identification Tools—The MS/MS Spectrum Match Search automatically 

matches and scores experimental MS/MS spectra with METLIN MS/MS data to efficiently 

annotate compounds more rapidly, relying on a modified X-Rank similarity algorithm2,27 

(Figure 1B). In this tool, three different collision energies (10, 20, and 40 eV) can be 

selected to match against the database spectra, thereby allowing users to select the most 
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suitable conditions for their experimental settings and render better scores. Also, this tool 

has a feature to perform an analysis of each experimental MS spectrum with the METLIN 

spectrum at 0 eV, to take into account possible in-source fragmentation during the analysis. 

This is especially useful with molecules that are easily fragmented within the ionization 

source, producing characteristic in-source fragment ions, capable of aiding in the 

identification of those molecules by reducing the number of putative metabolites. 

Nevertheless, this tool expressly requires the experimental MS/MS spectrum of the putative 

compound to be in METLIN. Alternatively, since most of the metabolites can be accurately 

defined by a low number of substructures, complementary tools such as Fragment Similarity 

Search and Neutral Loss Search have been implemented into METLIN. These functions are 

best suited for the search of compounds or families of compounds with characteristic 

fragments and thus help to classify compounds within a chemical group of molecules and 

narrow the number of putative metabolites/identifications (Figure 1C). Examples of the use 

of these tools in the identification of several compounds can be found in Figures 2, 4, and 5.

Fragment Similarity Search for Unknowns—One of the major challenges in 

metabolomics is the limited availability of experimental MS/MS spectra in databases. 

METLIN alone has over 1 million molecules, including metabolites, drugs, xenobiotics, and 

toxicants, yet only a small percentage have experimental MS/MS data, and this does not 

include currently undiscovered metabolites and other chemical entities. To overcome this 

limitation, several algorithms have been developed to assign chemical substructures to 

unknown molecules on the basis of database queries. These efforts were originally applied to 

the interpretation of electron impact (EI) ionization mass spectrometry data through the 

development of algorithms such as STIRS and SISCOM.28,29 These original algorithms 

were further refined by including neutral losses, peak intensity weighing, and similarity of 

mass spectra.30,31 Since EI fundamentally differs from the ESI MS/MS fragment ion 

generation, extrapolating these algorithms to ESI MS/MS data was not immediately 

possible. The first effort to accomplish this by use of tandem mass spectrometric data was 

the Fragment Similarity Search algorithm, originally implemented into METLIN and XCMS 

to facilitate the autonomous identification of small molecules relying on a shared peak count 

method.32 The algorithm was developed to detect possible structural motifs in unknown 

metabolites, which may produce characteristic fragment ions and neutral losses to related 

reference compounds contained in METLIN, independent of their chemical formula and 

mass.

Algorithms for the structural characterization of unknowns, essentially based on in silico 

simulated data, have been applied to other biological molecules like peptides and proteins 

with significant success. However, extrapolation of these algorithms to metabolites and other 

small molecules still constitutes a major challenge, due to their chemical heterogeneity and 

the computational challenges in calculating energetically favorable losses. This complexity 

makes fragment similarity searching algorithms based on experimental MS/MS data a viable 

alternative for the identification of unknown metabolites, as we will demonstrate.

METLIN’s Fragment Similarity Search in combination with the growing database evolved 

to facilitate the identification of metabolites and other small molecules that have no library 

MS/MS data. This is accomplished through the search of common fragments across the 
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METLIN MS/MS library. To illustrate the power of this tool, two examples of unknown 

metabolite characterization from an extract of mice fecal matter are provided. In Figure 2A, 

the four main fragments of an unknown compound with a mass-to-charge ratio of 531.18 

were investigated by use of the Fragment Similarity Search tool. The search yielded 

similarities to more than 100 compounds; however, only one, the anticarcinogenic natural 

product xanthohumol, which has been observed in hops,33 shared all four fragments (Figure 

2A). The primary difference between the MS/MS spectral data of the known and unknown 

molecules was the precursor peak of the unknown metabolite. The m/z shift between the 

protonated species of xanthohumol with the precursor of the unknown metabolite represents 

a difference of 176.03 Da. This mass shift can be assigned to glucuronidation, a common 

metabolic pathway by which the organism makes molecules more water-soluble and thus 

prone to excretion. This reaction involves the condensation of glucuronic acid (194.04 Da) 

with xanthohumol (354.15 Da) with the corresponding loss of water (18.01 Da), yielding a 

molecule with a molecular mass of 530.18 Da (531.18 as its protonated species) (Figure 

2A). This putative identification was further confirmed via a bibliographic search.34

The Fragment Similarity Search feature can also be used for the identification of molecules 

even if only a few fragments of the unknown molecules match MS/MS data in the database. 

In Figure 2B, five fragments of an unknown molecule were searched with the Fragment 

Similarity Search tool. In this case, no candidates containing all fragments were found, and 

only two molecules showed three hits matching the input fragments. Among those 

molecules was α-tocopherol, the main component of vitamin E.35 When the fragmentation 

data of α-tocopherol are compared to the experimental data, a m/z shift of 2.01 Da is 

observed between both precursor ions and other low mass fragments (Figure 2B). This could 

be attributed to an extra double bond within the α-tocopherol structure, likely in the 

aliphatic chain, since the METLIN predicted structure for those nonmatching fragments 

contains that section of the molecule. Moreover, the three matching fragments include the 

chromanol structure, indicating that the configuration of that structure for the unknown 

molecule is likely to be the same double ring as α-tocopherol. To the best of our knowledge, 

only one α-tocopherol desaturation product has been reported, α-tocomonoenol, another 

component of vitamin E.35

In Figure 2, the utility of the Fragment Similarity Search tool was demonstrated for the 

identification of molecules whose MS/MS data are not present in the spectral databases and 

also for metabolites that are not listed in any database or have not been reported previously. 

Several efforts are currently being carried out to automate the use of this tool within 

METLIN, allowing the user to upload the MS/MS data and have a reduced number of 

putative candidates with similarities to the MS/MS spectra via a one-click procedure.

Uniformly 13C-Labeled Metabolites

METLIN and iso-METLIN Data To Facilitate Absolute Quantification—In recent 

years, uniformly 13C-labeled organisms have been generated by growing different 

organisms, such as bacteria, yeast, or grains, with 13C-labeled substrates to create 13C-

labeled endogenous metabolites.36,37 To take advantage of this trend, metabolite extracts 

from Escherichia coli or P. pastoris have been used as a source of 13C-labeled molecules as 
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internal standards in metabolomics36,38,39 and lipidomics studies21 (Figure 3), where 

labeling efficiencies above 99% have been achieved. These extracts show a high dynamic 

range for use in quantitative experiments, and more importantly, when added as internal 

standards, more than 100 labeled compounds are spiked into the samples simultaneously, 

allowing the absolute quantitation of many compounds in one experiment.21,38 Even though 

the launch of these isotope-labeled internal standards is a step forward to the simultaneous 

quantitation of multiple compounds in metabolomics, the generation of accurate MS/MS 

spectra of the 13C-labeled molecules is necessary for generating a quantitative multiple 

reaction monitoring (MRM) workflow (Figure 3).

In the last three years, the METLIN version for isotope-labeled compounds, isoMETLIN, 

has been populated with MS/MS spectra of several metabolite isotopologues of analytical 

standard quality.40 Although isoMETLIN has facilitated untargeted global isotope-tracer 

experiments,26 the limited number of commercially available stable isotope-labeled 

molecules makes this approach insufficient for the absolute quantitation of many 

compounds.5 To address this limitation, we have developed an approach to add metabolites 

from uniformly 13C-labeled microorganism extracts. To accomplish this, an untargeted 

analysis of P, pastoris cell extracts was used to generate MS/MS spectra of 13C-labeled 

metabolites for incorporation into isoMETLIN, which facilitates the absolute quantitation of 

hundreds of metabolites using the same internal standard mixture. It is worth noting that this 

approach for MS/MS data generation of isotopically labeled metabolites is guided by 

METLIN’s database functions and pre-existing data (Figure 4A). This creates a positive 

feedback loop within the database, which in turn facilitates the generation of additional data.

MS/MS Data from Isotope-Labeled Microorganisms—After RAW MS and MS/MS 

spectra are acquired, data curation (see Experimental Section) allows for the creation of a 

list of metabolites that include the unlabeled base metabolite and all possible 13C-labeled 

isotopologues25 (Figure 4A). With this approach, hundreds of putative isotopologues can be 

sorted in each analysis. The first step to identify the labeled metabolites is to search their 

corresponding unlabeled m/z by use of the METLIN Simple Search menu (Figure 4A). 

Depending upon whether a match is identified in the search, the next step is to compare the 

MS/MS data of the unlabeled metabolite with all candidates retrieved by the database by use 

of the autonomous MS/MS Spectrum Match Search tool in METLIN (Figure 4A). If a match 

is found, the final step compares the MS/MS spectra of both the unlabeled and the candidate 
13C-labeled molecule, followed by verification of the analogue fragments in the isotopically 

labeled MS/MS data (Figure 4A,B). Given that METLIN provides the chemical formula of 

the metabolites and a predicted structure for most of their fragments, this facilitates the 

confirmation that the MS/MS spectrum corresponding to the 13C analogue of the previously 

identified naturally occurring metabolite (Figure 4B). In summary, starting from the extracts 

of uniformly labeled microorganisms, the use of METLIN throughout the identification 

process can lead to the generation of MS/MS spectra of an unknown 13C-labeled molecule 

and its inclusion into isoMETLIN.

Interestingly, this approach is also useful for collecting MS/MS data for unlabeled 

metabolites that are recorded in METLIN but whose experimental MS/MS spectra have not 

been added to the database (Figure 4A). For example, the experimental MS/MS data of both 

Guijas et al. Page 7

Anal Chem. Author manuscript; available in PMC 2018 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the naturally occurring lysoPE(18:0) and its uniformly labeled isotopomer 13C-lysoPE(18:0) 

were identified for their incorporation into METLIN and isoMETLIN, respectively (Figure 

4C). To do so, the experimental MS/MS data of lysoPE(18:0) are compared against the 

MS/MS spectra of chemically related molecules included in the database [e.g., 

lysoPE(14:1(9Z)) or lysoPE(15:0), among others], the in silico prediction of MS/MS spectra 

(Figure 6B), and the m/z shift of each pair of analogous fragments. These complementary 

data suffice to unequivocally assign the experimental MS/MS spectrum to the candidate 

molecule, and subsequently, by the approach previously detailed, the related MS/MS 

spectrum is defined for the corresponding 13C-labeled isotopologue (Figure 4C). In this 

example, the precursor ion m/z shift is 23.07 Da, which corresponds to a molecule 

containing 23 carbon atoms. The neutral loss of 141.02 Da as the main fragment peak 

indicates the presence of a phosphoethanolamine polar head-group. This is further confirmed 

by the m/z fragment of 44.05, which is characteristic of phosphoethanolamine. In the 13C-

labeled isotopologue MS/MS data, both fragments are clearly observed; however, a mass 

shift of 2.01 Da is present, indicating the presence of two 13C in each of those fragments, 

matching with the atomic composition of the phosphoethanolamine group (C2H8NO4P). 

Finally, a mass difference of 21.07 Da between the fragments results from the 

phosphoethanolamine neutral loss, which corresponds to the 21 carbons of that fragment (23 

carbons from the intact metabolite minus 2 carbons from the phosphoethanolamine group) 

(Figure 4C). Other less prominent fragments further validate the identification and 

characterization of this lipid species by comparing their m/z shifts with the predicted 

structures of chemically related molecules. All in all, even when MS/MS spectra for putative 

metabolites are not available, we were able to generate the fragmentation spectra of those 

compounds, not only for isoMETLIN but also for METLIN (Figure 4C). It is worth noting 

that other METLIN informatic tools, such as Neutral Loss and Fragment Similarity Search, 

were used to identify the fragments described above, resulting in METLIN being capable of 

self-populating the database by generating more MS/MS spectra.

Isotope-Labeled Metabolites to Assist in the Identication of Unknowns—
Finally, with this approach, it is possible to facilitate the identification of an endogenous 

metabolite that is not present in METLIN, starting from its experimental MS/MS data 

(Figures 4A and 5). Here, the unlabeled molecule shows a neutral loss of 141.02 Da as the 

main fragment and another fragment of 44.05 Da. Again, its 13C-labeled analogue shows 

those fragments with a difference of two 13C atoms; hence, it is likely to contain a 

phosphoethanolamine group (Figure 5). In addition, the precursor ion shift corresponds to a 

molecule containing 30 carbons. Given that the glycerophosphoethanolamine group contains 

5 carbons, the rest of the molecule contains another 25 carbon atoms. Together with that 

information and high-resolution MS/MS data, the most likely molecule within an error lower 

than 10 ppm would be the oxidized phospholipid 1-hexadecanoyl-2-(9-oxononanoyl)-sn-

glycero-3-phosphoethanolamine (Figure 5). Its phosphatidylcholine analogue has been 

reported as a product of lung surfactant phospholipid oxidation in smokers,41 and some 

oxidized ethanolamine phospholipids have also been described as ozonolysis products in 

bronchoalveolar lavage.42 Although in this case the MS/MS data of the natural occurring 

metabolite and its isotopologue were not added to the databases due to the lack of 

complementary information to accurately define the position of the carbonyl within the fatty 
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acid chain, the use of isotope-labeled microorganisms, together with other METLIN tools 

available, provides a good estimation for the characterization of this unknown natural 

product synthesized by these microorganisms.

The overall use of 13C-labeled microorganisms is valuable for populating the METLIN 

MS/MS spectral library. With this approach, MS/MS data for uniformly labeled metabolites 

and unlabeled molecules with only in silico fragmentation spectra have been detected, 

identified, manually curated at four different collision energies, and incorporated into 

isoMETLIN and METLIN, respectively. Furthermore, mass shifts between the endogenous 

and labeled metabolites provide useful information about the chemical structure of 

molecules, which is of high interest in fields such as drug design and natural products 

discovery.

In Silico Data Generation—Experimental MS/MS spectra of more than 20 000 

molecules in METLIN, together with some of their isotopologues contained within 

isoMETLIN, were used for development of the in silico library (Figure 6). One of the 

strengths of using isotopic fragmentation data is the additional information provided by the 

number of labeled atoms in each fragment (typically 13C, 2H, or 15N) compared to the 

endogenous isotopologue. Our in silico algorithm was trained by use of METLIN 

experimental MS/MS spectra at three discrete collision energies (10, 20, or 40 eV). 

Accordingly, in silico fragmentation data were generated at collision energies of 10, 20, and 

40 eV.

For the computational prediction of MS/MS spectra, many methods have been proposed in 

the last five years, including CFM-ID,6,43 MetFrag,44 and MyCompoundID,45,46 among 

others. However, in the latest report of the Critical Assessment of Small Molecule 

Identification (CASMI) contest,47 held in 2016, CSI:FingerID7 and an input–output kernel 

regression (IOKR) machine learning approach ranked better than the other tested methods in 

terms of metabolite structure prediction and computational time efficiency.8,47 A detailed 

description of the IOKR model can be found in refs 48 and 49. The principle behind our 

approach is based on the assumption that the IOKR logic is reversible, allowing us to 

generalize its functionality in the opposite direction: to generate MS/MS data from known 

molecular structures. IOKR principle is to learn from the similarities among molecules and 

mass spectral data to identify molecules from MS/MS data, yielding an in silico model. 

Therefore, given the MS/MS data of an unknown compound, it can predict molecular 

identities by taking into account these similarities.8 In our approach, we reversed the logic 

and generalized it to predict in silico MS/MS data from known molecular structures 

contained in METLIN. Briefly, natural and isotope-labeled compounds are transferred to 

molecular fingerprints that represent the structure of the molecule encoded into a binary 

vector. These fingerprints are used as inputs into regression models that describe the 

relationship between the molecules and their spectra as described by fragmentation trees. 

This information is employed to train a model by use of the modified IOKR-based approach, 

finally predicting in silico MS/MS spectral data from known molecules (Figure 6A). Details 

of the in silico fragmentation model will be published elsewhere. One example of the 

performance of the in silico algorithm performance is provided for the lipid species 

lysoPE(18:0), whose experimental MS/MS spectrum was identified in Figure 4C. It is 
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observed that in silico-generated data predicted 6 out of 7 characteristic fragments of the 

molecule, although intensity correlation is still an aspect of the algorithm that requires 

improvement (Figure 6B).

CONCLUSION

In summary, the combination of MS/MS experimental data and informatic features within 

METLIN now make it possible to autonomously identify known molecules and, more 

importantly, to characterize unknowns. The ultimate goal of METLIN is to help overcome 

challenges in areas such as global metabolomics, isotope-tracer experiments, and 

metabolomics activity screening and to facilitate the use of metabolomics to guide systems 

biology data interpretation. Among its most used features is the Fragment Similarity Search 

for characterizing unknowns, the development of which takes advantage of the growing 

number of compounds with MS/MS data that have been recently incorporated. Equally 

important to the conventional database is the incorporation of data from stable isotopes, 

which are key to the development of in silico algorithms for MS/MS data prediction on the 

molecules without experimental data. Together with METLIN’s integration in the cloud-

based global metabolomics XCMS Online platform, METLIN is constantly evolving and 

expanding to facilitate the analysis of known molecules and to identify unknowns.
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Figure 1. 
METLIN search functions for metabolite identification. (A) Simple Search and Advanced 

Search allow the user to search small molecules against a database of 1 million compounds 

attending to different criteria and retrieve their chemical, spectral and other information of 

interest. Batch Search facilitates the search of many m/z of interest simultaneously, helping 

to identify different m/z values as distinct adducts or water losses of the same molecule. (B) 

With the MS/MS Spectrum Match Search, experimental and library MS/MS spectra can be 

searched, matched, and scored in an automatic way. (C) Fragment Similarity Search and 

Neutral Loss Search aid the identification of metabolites or chemical structures by searching 

m/z values of the fragments or neutral losses, respectively, regardless of the precursor mass.
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Figure 2. 
Fragment Similarity Search facilitates the identification of unknown metabolites where no 

MS/MS spectral data are available. Two examples are shown where an unknown metabolite 

is characterized by use of Fragment Similarity Search: (A) a glucuronide of xanthohumol 

and (B) a desaturation variation of α-tocopherol. (A) The fragments of an unknown 

metabolite were searched against METLIN and all of the four fragments were found to 

match with xanthohumol. The comparison between experimental and library MS/MS spectra 

implies high structural similarities. Furthermore, the 176.03 Da difference between the 

precursor of the experimental spectra and the protonated species of xanthohumol can be 

attributed to glucuronidation. This mass difference represents the protonated species of 

xanthohumol + glucuronic acid − H2O (condensation product). (B) Five selected fragments 

of an unknown metabolite matched three fragments of α-tocopherol; however, the mass 

difference for nonmatching fragments as well as the precursor is 2.01 Da. This could be 

attributed to an extra double bond within the structure of α-tocopherol, presumably on the 

long aliphatic chain.
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Figure 3. 
METLIN-guided use of 13C-labeled microorganism extracts as internal standards in mass 

spectrometry. Yeast are grown in the presence of 13C-glucose, yielding a labeling efficiency 

of 99% for their metabolites. After the extraction of the compounds of interest to use as 

internal standards, samples are spiked with those extracts to quantify many metabolites at 

the same time, using the MS/MS data provided by the spectral databases. The generation of 

MS/MS spectra to populate databases is a limiting step in this workflow.
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Figure 4. 
Isotope-labeled microorganisms as a source of MS/MS spectra to populate spectral 

repositories. (A) An untargeted metabolomics analysis of two extracts of 12C- and 13C-

labeled yeast was carried out to collect MS/MS spectra for METLIN and isoMETLIN. (B) If 

the putative metabolite MS/MS spectrum is recorded in METLIN, the fragmentation 

spectrum of its 13C-labeled analogue is easily identified for inclusion into isoMETLIN. (C) 

If the putative metabolite MS/MS spectrum is not displayed in METLIN, it is possible to 

obtain both 12C- and 13C-labeled spectra for their inclusion into METLIN and isoMETLIN, 

respectively, through the use of METLIN search functions, together with the in silico 

prediction and fragment predicted structure of structurally related molecules. Even if the 

parent m/z of the candidate molecule is not found in METLIN, it is likely that one will 

obtain structural information leading to its identification by use of METLIN tools. With this 

workflow, spectral databases are used to self-populate, by using their tools and current 

spectra to identify new MS/MS spectra.
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Figure 5. 
Use of isotope-labeled microorganisms and METLIN to determine the structure of unknown 

molecules. Starting from the unlabeled and 13C-labeled MS/MS spectra of an unknown 

metabolite, it is possible to obtain structural information with the use of METLIN tools. The 

m/z shift of 30.10 Da in the parent ions points out the presence of 30 carbons in this 

metabolite. The neutral loss of 141.02 Da in the unlabeled molecule, together with the 

neutral loss of 143.03 Da in the 13C-labeled molecule, indicates the presence of a 

phosphoethanolamine group (C2H8NO4P). Fragments of 44.05 and 46.06 Da represents the 

main fragments of the phosphoethanolamine group in unlabeled and labeled molecules, 

respectively. Given that the glycerophosphoethanolamine group is composed of 5 carbons, 

the rest of the molecule must have 25 carbons. The most likely biomolecule fitting those 

requirements and with a parent m/z instrument error within 10 ppm is 1-hexadecanoyl-2-(9-

oxononanoyl)-sn-glycero-3-phosphoethanolamine.
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Figure 6. 
In silico data generation. (A) Workflow for in silico data simulation. A generalization of the 

input–output kernel regression model, especially designed to predict fragments of known 

molecules, is used to generate in silico data. Both unlabeled and isotope-labeled compounds 

are used for model training, providing additional information through the number of isotope-

labeled atoms of each fragment. (B) Comparison between experimental MS/MS spectrum 

generated by lysoPE(18:0) with its in silico prediction in METLIN, at a collision energy of 
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10 eV. It is worth noting that 6 out of 7 main fragments of the experimental spectrum match 

with the in silico simulated data (highlighted in blue).
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