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Background: Previous studies compared the molecular similarity of marketed drugs

and endogenous human metabolites (endogenites), using a series of fingerprint-type

encodings, variously ranked and clustered using the Tanimoto (Jaccard) similarity

coefficient (TS). Because this gives equal weight to all parts of the encoding (thence

to different substructures in the molecule) it may not be optimal, since in many cases not

all parts of the molecule will bind to their macromolecular targets. Unsupervised methods

cannot alone uncover this. We here explore the kinds of differences that may be observed

when the TS is replaced—in a manner more equivalent to semi-supervised learning—by

variants of the asymmetric Tversky (TV) similarity, that includes α and β parameters.

Results: Dramatic differences are observed in (i) the drug-endogenite similarity

heatmaps, (ii) the cumulative “greatest similarity” curves, and (iii) the fraction of drugs

with a Tversky similarity to a metabolite exceeding a given value when the Tversky α and

β parameters are varied from their Tanimoto values. The same is true when the sum of

the α and β parameters is varied. A clear trend toward increased endogenite-likeness of

marketed drugs is observed when α or β adopt values nearer the extremes of their range,

and when their sum is smaller. The kinds of molecules exhibiting the greatest similarity

to two interrogating drug molecules (chlorpromazine and clozapine) also vary in both

nature and the values of their similarity as α and β are varied. The same is true for the

converse, when drugs are interrogated with an endogenite. The fraction of drugs with

a Tversky similarity to a molecule in a library exceeding a given value depends on the

contents of that library, and α and β may be “tuned” accordingly, in a semi-supervised

manner. At some values of α and β drug discovery library candidates or natural products

can “look” much more like (i.e., have a numerical similarity much closer to) drugs than

do even endogenites.
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Conclusions: Overall, the Tversky similarity metrics provide a more useful range of

examples of molecular similarity than does the simpler Tanimoto similarity, and help to

draw attention to molecular similarities that would not be recognized if Tanimoto alone

were used. Hence, the Tversky similarity metrics are likely to be of significant value in

many general problems in cheminformatics.
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INTRODUCTION

It is widely recognized that drugs exploit or “hitchhike on”
protein transporters in order to be taken up into cells (e.g.,
Ecker and Chiba, 2009; Giacomini et al., 2010; Fromm and
Kim, 2011; Giacomini and Huang, 2013; Ishikawa et al., 2013;
Sugiyama and Steffansen, 2013; Ecker, 2014; You and Morris,
2014). However, it is not at all easy to predict which transporters
are used simply by looking at the chemical structures of the
drugs. As part of a series of studies of the transporter-mediated
uptake of pharmaceutical drugs into biological cells (e.g., Dobson
and Kell, 2008; Dobson P. et al., 2009; Kell and Dobson, 2009;
Kell et al., 2011, 2013, 2015; Lanthaler et al., 2011; Kell, 2013,
2015a,b, 2016a,b; Kell and Goodacre, 2014; Mendes et al., 2015;
Kell and Oliver, 2014; O’Hagan and Kell, 2015a), and driven by
the availability of principled metabolic network reconstructions
(Herrgård et al., 2008; Swainston et al., 2013; Thiele et al.,
2013; Sahoo et al., 2014; Nigam, 2015; Palsson, 2015) (in
which approximately one third of the enzymes are transporters),
we have been developing the consequent idea that drugs do
indeed share structural similarities with endogenous metabolites
(“endogenites”; Dobson P. D. et al., 2009; O’Hagan and Kell,
2015c; O’Hagan et al., 2015). The implication would be that
the natural (endogenite) substrates are those with which the
drugs share the more significant molecular similarities. These
latter studies, comparing drug-endogenite structures were purely
“unsupervised,” and thus based on clustering-type comparisons.
This was because (i) we wished to avoid any dangers of
overtraining using a supervised method, and (ii) in relatively few
cases do we in fact know the natural (endogeneous) substrates of
those “SLC” (SoLute Carrier) transporters (Hediger et al., 2013;
César-Razquin et al., 2015) that can be shown to transport drug
molecules. A recent example of this latter is SLC35F2, that is
responsible for rather more than 99% of the transport of the
anti-cancer drug candidate YM155 (Winter et al., 2014), but
whose endogenous substrate is unknown. In a related vein, it
has been argued (with evidence) that the “natural” substrate
of the OCTN1/SLC22A4 transporter (Koepsell, 2013) is not (as
was widely believed) carnitine but instead the dietary and/or
microbial product ergothioneine (Gründemann et al., 2005;
Gründemann, 2012).

In some cases the structural similarities between drugs

and endogenites are sufficiently close that it is clear which

transporters are the most likely candidates, but this is not always
the case. Although empirical (experimental) methods are coming
forward that can help us find the relevant transporters more
or less systematically (e.g., Lanthaler et al., 2011; Winter et al.,

2014; César-Razquin et al., 2015), mostly we lack the means
to generate good hypotheses for which transporters transport
which drugs. The basic problem is that the purely unsupervised
structural comparisons using Tanimoto similarities are based
on the whole molecule, and substructures that are irrelevant
(or not directly bound to the transporter protein when being
transported) serve to act as skillful decoys. Specifically, and rather
obviously, in the cases of proteins binding small molecules,
any part of the small molecule that does not actually bind
to the protein is unlikely to contribute much to its biological
activity.

Supervised methods—that in cheminformatics amount to
Quantitative Structure-Activity Relationships (QSARs; Sedykh
et al., 2013; Cherkasov et al., 2014; Ruusmann et al., 2014)—
are much more powerful than are unsupervised methods, but
can hardly be applied when we do not know the relevant
substrates nor (thus) have any assay data. However, besides
strictly unsupervised and supervised learning, there is a third
class of computational analysis, known as semi-supervised
learning (e.g., Demiriz et al., 1999; Handl and Knowles, 2006;
Zhu and Goldberg, 2009; Balcan and Blum, 2010; Chapelle
et al., 2010; Kingma et al., 2014), in which one uses a surrogate
objective function for unlabeled data where they are available,
even when one does not know the true class membership
(here, for instance substrate or inhibitor activity) that one is
actually seeking in order to improve one’s understanding of
a system. Here, we recognize that the “surrogate” objective
function may simply be a greater (or different) similarity
coefficient when something is varied. Although not necessarily
new in this context (Broomhead and Lowe, 1988; Moody
and Darken, 1989), these “mixed” strategies have recently
come to the fore in cases (e.g., Hinton and Salakhutdinov,
2006; Hinton et al., 2006; Hinton, 2007) where one uses an
unsupervised method as (a preparatory) part of the training
of a supervised system, in particular a deep neural learning
system (Bengio, 2009; Erhan et al., 2010; Lecun et al.,
2015).

A similar question relates to the choice of which kinds
of molecules one might use in an experimental QSAR study
given an initial hit or lead, and one answer must include
molecules that bear at least some structural similarities to the
initial hit/lead. Again, just basing the choice on an overall
similarity is likely to mean that some molecules that contain
a similar scaffold may appear to have a TS that is quite
different from that of the initial hit and thus are not chosen.
We clearly need “better” and more general methods for
assessing “similarity,” where we recognize that the concept of
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FIGURE 1 | Tanimoto similarities between chlorpromazine and three other molecules (using the MACCS166 encoding).

“better” implies an objective function (and we give an example
below).

As mentioned, the inevitable flaw in purely unsupervised
methods is that they (can) have no knowledge of which parts
of an input (e.g., substructures of a molecular structure) are
“important” to (or correlate with) an output (process) of interest
and which parts are not, because that is not the question
being asked (Broadhurst and Kell, 2006; Hastie et al., 2009).
The equivalent comparison in linear multivariate statistics is
between principal components analysis (unsupervised) and
partial least squares analysis (supervised; Wold et al., 2001).
For the former, various kinds of normalization can be used
to upweight or downweight particular features (e.g., Hotelling,
1933; Neal et al., 1994). This issue is particularly acute in standard
cheminformatics, where the Tanimoto (Jaccard) coefficient is
commonly used as an index of molecular similarity following
fingerprints encoding, and where the numerical similarity
returned is dominated by the number of bits set to 1 in
the output comparator string (and hence is also a reflection
of molecular size; Flower, 1998; Willett et al., 1998; Dixon
and Koehler, 1999; Salim et al., 2003; Willett, 2006; Wang
et al., 2007; Wang and Bajorath, 2008; Senger, 2009; O’Hagan
and Kell, 2015c). In the case of drug-endogenite similarity
measurements, this can often tend to favor particular endogenites
that happen to share many chemical groupings with the drugs
of interest; CoA derivatives fall (and fell O’Hagan et al.,
2015) into this category, at least for certain cheminformatics

encodings. We note, as pointed out by a referee, that the
MACSS encoding was originally devised for cataloging chemicals;
this said, it has been widely used for providing a computer-
readable encoding for both similarity searches and even
QSARs.

We can illustrate the basic principle (using the data available
in the Supplementary Materials to (O’Hagan et al., 2015), and the
kind of comparison illustrated for propranolol vs. endogenites
in Figure 3 of that paper) by three of the structures in Figure 1.
Thus, using the MACCS166 encoding (Durant et al., 2002), and
chlorpromazine as the interrogatory drug, the top endogenite
returned is thiamine. However, visual inspection of the structure
of riboflavin (vitamin B2), for instance, suggests that its tricyclic
core is actually rather more similar to that of chlorpromazine
(as has indeed occasionally been noted functionally Gabay
and Harris, 1965; Pinto et al., 1981; Pelliccione et al., 1983;
Tomei et al., 2001; Iwana et al., 2008; Caldinelli et al., 2010;
Iwasa et al., 2011), but the Tanimoto similarity is both lower
and potentially depressed by the ribitol sidechain. Nonetheless,
removing the ribitol sidechain (to give lumichrome) actually
lowers the Tanimoto similarity to chlorpromazine, consistent
with the comments above regardingmolecular size and Tanimoto
similarity. In other words, (i) visual appearance can be a poor
guide to calculated chemical similarity, (ii) one would here desire
a method or methods that can pick up on a large change in a
(small) part of a molecule that it otherwise still recognizes as
being similar, and (iii) as pointed out by a referee the similarity
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FIGURE 2 | Eleven heatmaps showing color-encoded drug-endogenite Tversky similarities for Tversky α + β = 1. The figure is intended to give an easy

overview, with similarities ranging from 0 in dark blue to 1 in buff orange as per the color map inserts. The key for the varying values of α is given in the lower

right-hand corner of the figure.

coefficient necessarily depends on the encoding chosen (for
reasons of space we use solely the MACCS166 encoding here).

Molecular similarity necessarily depends on context (Bender
and Glen, 2004), and as we detailed earlier could differ quite
widely for the same pairs of molecules as the encoding was
varied. Given that our fundamental question (O’Hagan and Kell,
2015c; O’Hagan et al., 2015) is “which is the endogenite that is
closest in molecular structure, in some sense, to a given drug
molecule X?,” it is clear that what is needed is some kind of an
automated analysis of this type. This would exploit information
on selected parts of the molecule that might, when assessed
“correctly,” be found to be more endogenite-like than when
the assessment is made using the entire molecules. Thus, in
general terms, it could look for substructures of drugs that
increase the (Tanimoto or other) similarity of at least some
metabolites relative to that based on their overall structure. These
would thereby generate hypotheses that return those endogenous
metabolites that are more likely (than the “overall most similar

molecules” returned) to represent good suggestions for particular
purposes, even if, during the computational analyses, we do
not have measures of (i.e., the values for) those purposes.
Holliday et al. (2002) provide a list of 22 similarity measures
that have been used in cheminformatics, although they do
not include the Tversky similarities on which we concentrate
below.

The Tanimoto (Jaccard) similarity of a set of (typically binary)
attributes is a true metric, defined as their intersection divided by
their union, and is given (for simple bitstrings of the same length)
as:

M11

M10 +M01 +M11
(1)

whereM11 is the number of positions in which both bits are set to
1 while the sum of M10 plus M01 together represent the number
of positions in the reciprocal cases in which they are different.
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FIGURE 3 | Cumulative plot of drug-endogenite likenesses using varying values of the Tversky similarity coefficient α with the constraint α + β = 1. For

each curve, the maximum Tversky similarity to any metabolite for each drug is plotted in rank order, starting from the right. It is obvious that, especially for values of α

closest to 0 or 1, there is an endogenite that is really very similar to the interrogating drug, and much more similar than those found (O’Hagan et al., 2015) when the

metric is the Tanimoto similarity.

Equivalently, if the number of bits set to 1 in A but to 0 in
B is a, the number of those in B set to 1 but not in A is b, and
those both set to 1 is c, the Tanimoto similarity TS between two
bitstrings A and B is given by:

TS(A,B) =
c

a+ b+ c
(2)

Simple inspection indicates that the Tanimoto similarity ranges
from 0 (complete lack of similarity) to 1 (identity). However,
a more general method of similarity assessment is that due to
Tversky (1977).

The Tversky similarity coefficient (Tversky, 1977; Senger,
2009; Geitmann et al., 2011; Gan et al., 2014; or, more
accurately, sets of similarity coefficients) represent, in a sense,
a more discriminating and asymmetric variant of the Tanimoto
similarity in which we might not wish to make the comparison
over the whole molecule. This is done by introducing additional
parameters α and β. The Tversky similarity coefficient Tv(A,B) is
then defined as:

Tv(A,B) = c/(αa+ βb+ c) (3)

where again a and b are the number of bits that are set to be
“on” (1 bits) only in molecular fingerprints A or B, respectively,
and c is the number of on bits shared by both A and B. For

these purposes, A is an interrogatory molecule while B is the
molecule being interrogated as to its similarity. It is common,
but not necessary, to vary α and β such that α + β = 1. The
smaller the value of α, the larger the contribution of B as a
substructure of A (and hence to its similarity with A). The larger
the value of α, the larger the contribution of B as a superstructure
of A (equivalently A as a substructure of B). For α = β = 1 the
coefficient is numerically equivalent to the Tanimoto similarity,
while the coefficient when α (= β) = 0.5 is known as the
Dice coefficient. Clearly, then, and as a simple extension of our
previous Tanimoto-based analyses (O’Hagan and Kell, 2015c;
O’Hagan et al., 2015), it is likely to be worth studying the effects
of substituting the Tanimoto coefficient by various values of the
Tversky coefficient to understand which kinds of drug molecules
may begin to appear more similar to endogenites when α 6= 1.
This is the purpose of the present paper.

We note that there have been comparatively few systematic

studies of this general topic, and none at all comparing marketed

drugs and endogenites. An extension of this is also precisely the

motivation (Riniker and Landrum, 2013) behind the “fraggle”

algorithm, for which we cannot find a published reference, but
which is explained at https://github.com/rdkit/UGM_2013/blob/
master/Presentations/Hussain.Fraggle.pdf. Here, our desire for
“good suggestions” hinges on what are, in fact, the endogenous
substrates of relevant transporters. It turns out that one can use
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FIGURE 4 | Top 3 ranked hits for the closest endogenites to chlorpromazine at different values of the Tversky α for both α + β = 1 and α + β = 2. Two

example points are given for α = 0, 0.2, 0.4, 0.6 0.8, and 1.0; the smaller circle is for α + β = 1. It is clear (as expected) that the top-ranked hits become more

complex as α increases.

this general strategy to improve the similarity to at least one
endogenite for a great many marketed drugs. This obviously
might have a substantial and useful effect on the endogeneous
metabolites (or other molecules) one might seek to test for their
role as substrates (or indeed inhibitors) of the drug transporter
activity of specific proteins.

MATERIALS AND METHODS

The list of endogenites derive from Recon2 (Thiele et al.,
2013) and the full list of marketed drugs taken from
DrugBank (Law et al., 2014) are those that were given
previously (O’Hagan et al., 2015) and are all available
in the Supplementary Materials to O’Hagan et al. (2015).
In a similar vein, as before (O’Hagan and Kell, 2015b,c;
O’Hagan et al., 2015), we used the KNIME software (see
http://knime.org/ and e.g., Berthold et al., 2008; Mazanetz
et al., 2012; Beisken et al., 2013) to create workflows for
our analyses. In particular, substantial use was made of the
RDKit nodes (see http://rdkit.org/ and e.g., Landrum et al.,
2011; Landrum and Stiefl, 2012; Riniker and Landrum, 2013;
Riniker et al., 2013, 2014; O’Hagan and Kell, 2015b), noting the
very useful “fraggle” (http://www.rdkit.org/Python_Docs/rdkit.
Chem.Fraggle-module.html). The Tv similarity calculations were

obtained using a node from the Indigo library (see Saubern et al.,
2011).

RESULTS

Figure 2 summarizes visually, via a series of 11 heatmaps, the
effects of varying the Tversky α parameter in a comparison of
drugs (vertical axes) and endogenites (horizontal axes), using the
MACCS166 encoding (Durant et al., 2002), under conditions in
which α + β = 1. Obviously there is a very substantial change in
the apparent overall similarities of drugs and endogenites, with
a strong tendency for greater overall similarities when alpha is
closest to zero or 1, and with the similarities in general being
considerably greater than the Tanimoto similarities described
previously for the MACCS encoding (O’Hagan and Kell, 2015c;
O’Hagan et al., 2015; which is the only one we use here). Figure 3
shows the cumulative effect of varying α using the data in
Figure 2, which makes even more clear the fact that similarities
can be much greater than those observed when Tanimoto is
used. Also marked is the fraction of drugs whose largest Tversky
similarity to an endogenite exceeds 0.8 (these will appear, with
other data, in a secondary plot in Figure 10), where it is obvious
that again this is a very strong function of α. There is also a
clear tendency for the endogenites that are chosen simply to be
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FIGURE 5 | Eleven heatmaps showing color-encoded drug-endogenite Tversky similarities for Tversky α + β = 2. The figure is intended to give an easy

overview, with similarities ranging from 0 in dark blue to 1 in buff orange as per the color map inserts. The key for the varying values of α is given in the lower

right-hand corner of the figure. The basic experiment is otherwise exactly the same as that in Figure 2.

more complex as α is increased, with (as implied above) CoA
derivatives featuring much more than in the cases when α is
lower. To this end, Figure 4 shows the similarities of the top
3 metabolites to chlorpromazine at different values of α, while
Figure 5 provides similar data to those of Figure 2 for a number
of cases of α for conditions in which α + β = 2 (as occurs
for the Tanimoto similarity where α = β = 1), and with the
cumulative plots equivalent to those for α + β = 1, shown now
for α + β = 2, in Figure 6. As for the case in which α + β

= 1, the trend is similar, with overall similarities being greatest
when α is nearer its extreme values. However, the similarity
values are generally much lower than when α + β = 1 (see
the much greater extent of blue in the heatmaps in Figure 5,
and the ordinate values in Figure 6); indeed it is seen that the
Tanimoto coefficient (α = β = 1, α + β = 2), with 90% of drugs
showing a TS> 0.5 as before (O’Hagan and Kell, 2015c; O’Hagan
et al., 2015), is a poor choice if one is seeking to maximize the
apparent similarity between two molecules. Similarly, the nature

of the molecules whose similarity to a different interrogatory
molecule is greatest also changes significantly with α. This is again
illustrated, now for clozapine, in Figure 7. The data for the “top
20” similarities for chlorpromazine and for clozapine are given as
Tables S1, S2.

To illustrate that this improved variation in apparent
molecular similarity works “both ways,” we use an endogenite,
riboflavin, as the interrogating molecule, and assess its similarity
to marketed drugs. Figures 8, 9 show the top hits for α = 0.1,
β = 0.9, and α = 0.5, β = 0.5, respectively. Obviously, again,
not only the typical magnitudes of the Tversky similarity change
significantly but so does the rank order of molecules.

As shown before (O’Hagan and Kell, 2015c; O’Hagan et al.,
2015), the shape of these cumulative plots (Figures 3, 6) of the
similarities of marketed drugs to other molecules also depends on
the nature of those other molecules. Thus, the overall similarities
to marketed drugs were in the order endogenites > natural
product library > synthetic chemical library. The question then
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FIGURE 6 | Cumulative plot of drug-endogenite likenesses using varying values of the Tversky similarity coefficient for α + β = 2. For each curve, the

maximum Tversky similarity to any metabolite for each drug is plotted in rank order, starting from the right. It is obvious that, especially for values of α closest to 0 or 2,

there is an endogenite that is really very similar to the interrogating drug, and more similar than those found (O’Hagan et al., 2015) when the metric is the Tanimoto

similarity. However, the similarities are always greater when α + β = 1 (Figure 2).

arises, and this allows a semi-supervised analysis, as to whether
there are values of α and β that minimize or maximize these
differences. Figure 10 provides a secondary plot of the data
shown in Figures 3, 6 for the fraction of drugs exceeding a
(somewhat arbitrary) Tversky similarity of 0.8 as a function of
α for both α + β = 1 (small symbols) and α + β = 2 (larger
symbols). It is clear that both the magnitude and the apparent
ranking of classes change as a function of the type of library.
As before, when α = β = 1 (i.e., Tanimoto similarity), Recon2
metabolites are more like drugs than are natural products and
ZINC library members. Figure 10 also shows the same secondary
plot for 2400 molecules from StreptomeDB (Lucas et al., 2013; as
representative of natural products) and from a subset of 10,000
molecules taken from the ZINC database (Irwin and Shoichet,
2005; Irwin, 2008; Irwin et al., 2012; Sterling and Irwin, 2015).
Data for α = β = 1 (Tanimoto similarity) are essentially as
previously published (O’Hagan et al., 2015; note that we take
random subsets). However, extraordinarily striking differences
are seen in the percentage of drugs exceeding a Tversky similarity
of 0.8 to the different classes as α and β are varied. Thus, if
one wishes to favor the druglikeness of natural products over
molecules in ZINC then α + β = 2 is to be preferred, whereas
α + β = 1 favors ZINC. We note (as before, O’Hagan et al.,
2015) that the molecular weight distributions are not the same
for the three classes, with those for ZINC being lowest, and

that this could potentially be an issue in that TS favors larger
molecules (see above). It is obvious that the varying ranking
order of the classes at different values of α and β means that
this is not a dominant issue. However, some differences were
obtained when we sampled randomly from the classes in a
manner that normalized the samples to have the same MW
distribution, albeit that this also “clips” those endogenites with
high molecular weights (not shown), and these are shown in
Figure 11. We also ran the converse query, where the various
classes of non-drugs are used to interrogate the list of marketed
drugs for apparently similarity, with broadly converse findings
(Figures 12, 13).

DISCUSSION

The general notion of the “similarity” between two or more
objects, or their “closeness,” is a complex one (e.g., Johnson and
Maggiora, 1990; Rouvray, 1992; Everitt, 1993; Bunke, 1997; Handl
et al., 2005; Handl and Knowles, 2007), and this is no less true
of molecular similarity (e.g., Hall et al., 1995; Willett et al., 1998;
Gasteiger, 2003; Bender and Glen, 2004; Bender et al., 2006;
Maldonado et al., 2006; Eckert and Bajorath, 2007; Gallegos-
Saliner et al., 2008; Marín et al., 2008; Baldi and Nasr, 2010;
Maggiora and Shanmugasundaram, 2011; Maggiora et al., 2014;
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FIGURE 7 | As Figure 4, save the interrogating molecule is clozapine.

Medina-Franco and Maggiora, 2014). Here, we confine ourselves
to systems in which all the features used are transformed to
simple bitstrings that may then be compared. Classical numerical
(including chemo) taxonomy (Sneath and Sokal, 1973) gave equal
weightings to each binary character, and this is clearly the most
unbiased means by which one can make assessments of overall
similarity. By contrast, a different tradition (e.g., Everitt, 1993;
Petrone et al., 2012) asserts that any measurement of a similarity
or clustering should be judged solely on its utility, in other words
there are usually benefits to the use of a what in statistics is called
a “biased estimator” (Hastie et al., 2009).

Our previous work comparing endogenites and successful
(marketed) drugs showed that they did indeed share
similarities, and more so than with the kinds of non-
natural molecules common in drug discovery libraries
(Dobson P. D. et al., 2009; O’Hagan and Kell, 2015c;
O’Hagan et al., 2015). It was also noted that the nature
and extent of these similarities could vary significantly with
the type of (2D) molecular encoding used. However, in all
of that work, the actual bitstring comparisons were based
on the use of the Jaccard/Tanimoto similarity coefficient,
as is indeed most common in cheminformatics (Willett,
2014). As a single metric, this admits only an unsupervised
comparison.

However, the Tanimoto similarity is actually but one member
of a larger family of similarity coefficients introduced by Tversky
(1977), and it was of interest to see whether the use of a Tversky
similarity coefficient Tv(A,B) might provide further information
or utility. The Tversky similarity coefficient is indeed occasionally
used in cheminformatics (Willett et al., 1998; Chen et al., 2005;
Swamidass and Baldi, 2007; Ebalunode et al., 2008; Nasr et al.,
2009; Rupp et al., 2009; Senger, 2009; Nicholls et al., 2010;
Backman et al., 2011; Geitmann et al., 2011; Berenger et al.,
2014; Gan et al., 2014; and also Wang et al., 2007; Wang
and Bajorath, 2008), though that used in those papers seems
to be based on a different definition from ours, but does not
seem to enjoy widespread cheminformatics use. The attraction
of Tversky similarities is that they effectively give different
weightings to different molecular features, and some of these are
likely to be more, and some less, important for understanding
the bioactivity or other property of interest. Here we used it
in a large-scale comparison of the structures of endogenous
human metabolites and marketed drugs. It turned out that
variants of the Tversky similarity do indeed provide a much
richer harvest of “similar” molecules than do those provided
(O’Hagan and Kell, 2015c; O’Hagan et al., 2015) by the standard
Tanimoto similarity. The similarities differ both in magnitude
and in rank order as α and β and their sum are varied, and
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FIGURE 8 | Tversky similarity (α = 0.1, β = 0.9) of riboflavin to marketed drugs. Names are given for those with values of 0.85 or greater.

thus provide a much broader range of candidate molecules
to consider for experimental studies of interest. Being able to
incorporate the similarity as part of a surrogate objective function
thus allows the use of what amounts to a semi-supervised
strategy.

We and others have written before about the potential utility
of understanding the “likeness” of individual molecules to those
considered representative of particular classes, such as drug-
likeness (e.g., Karakoc et al., 2006; Paolini et al., 2006; Bickerton
et al., 2012), natural-product-likeness (Ertl et al., 2008; Jayaseelan
et al., 2012), or indeed metabolite-likeness (e.g., Cherkasov, 2006;
Gupta and Aires-De-Sousa, 2007; Dobson P. D. et al., 2009;
Peironcely et al., 2011; Walters, 2012; O’Hagan and Kell, 2015c;
O’Hagan et al., 2015). Clearly this depends on the nature of the
encoding used, but, as we see here, it can also depend markedly
on the metric of similarity, that can be varied via the Tversky α

and β parameters.
Previously, we found that the shapes of these curves of

cumulative similarity differed markedly for different classes of
compounds, e.g., when the comparison was made between
marketed drugs and natural products or marketed drugs and
subsets from drug discovery libraries rather than between
drugs and Recon2 (O’Hagan and Kell, 2015c; O’Hagan et al.,
2015). It was thus of considerable interest to see how this
changed when we used Tversky instead of Taniomoto similarities.
Most interestingly, it was not at all the case that the values

of α and β favoring drug-likeness were always the greatest
for endogenites (as they were for the Tanimoto similarity);
particular values could make natural products libraries and
ZINC compounds overtake them (Figures 10, 11). Thus it is
possible to “tune” the Tversky parameters to favor the kinds
of molecules that are most similar to marketed drugs. In a
similar vein, the converse can be observed when we run the
system “backwards,” interrogating the list of drugs serially with
compounds in the three classes (Figures 12–14). Overall, for
individual comparisons, the Tversky similarities could easily vary
by as much as 0.3 over the ranges of α and β over the range
examined here.

Much as our earlier studies (Dobson P. D. et al., 2009;
O’Hagan and Kell, 2015c; O’Hagan et al., 2015) had indicated,
the more things one varies in even quite an elementary molecular
comparison, and even using standard methods, the greater
the range of molecular similarities that can become apparent.
The present work extends this, by including variants of the
comparison metric itself, spreading the Tanimoto similarity to
the family of Tversky similarities. The much increased richness
of molecular similarity space thereby uncovered, even for
just a few interrogations, implies that the Tversky similarities
will be of much more use in cheminformatics than their
comparatively sparse use to date might imply. We are not
yet in a position to recommend specific values of the Tversky
parameters; rather we recognize that they simply increase

Frontiers in Pharmacology | www.frontiersin.org 10 August 2016 | Volume 7 | Article 266

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


O’Hagan and Kell Tversky Similarity of Drugs and Endogenites

FIGURE 9 | Tversky similarity (α = 0.5, β = 0.5) of riboflavin to marketed drugs. Names are given for those with values of 0.85 or greater.

FIGURE 10 | Fraction of marketed drugs with a Tversky similarity >0.8 to at least one molecule in the stated collections. The comparison was against

Recon2 (1112 molecules), streptome DB (Lucas et al., 2013) (2400 molecules) and a random subset of 10,000 molecules drawn from the ZINC (Irwin and Shoichet,

2005) database. Colors in this and the following three figures are labeled by the points for α = 2.
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FIGURE 11 | As Figure 10, but data are subsampled to retain the same MW distrubtion for each class (which is effectively that of ZINC).

FIGURE 12 | Fraction of molecules with a Tversky similarity >0.8 to at least one marketed drug in the stated collections. The comparison was against

Recon2 (1112 molecules), streptome DB (Lucas et al., 2013) (2400 molecules) and a random subset of 10,000 molecules drawn from the ZINC (Irwin and Shoichet,

2005) database.

the richness of the molecular space one should take into
account when evaluating similarity. As more data emerge it
is entirely possible that preferred values of α and β will

emerge with them. An obvious extension is to compare the
utility of Tversky α and β when different molecular encodings
are used.
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FIGURE 13 | As Figure 12, but data are subsampled to retain the same MW distrubtion for each class (which is effectively that of ZINC).

FIGURE 14 | Variance of Tversky similarities for the molecules that were depicted in Figure 1, as a function of α and β. Size proportional to α. Squares α +

β = 1; circles α + β = 2.
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