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ABSTRACT

Summary: MetPA (Metabolomics Pathway Analysis) is a user-
friendly, web-based tool dedicated to the analysis and visualization
of metabolomic data within the biological context of metabolic
pathways. MetPA combines several advanced pathway enrichment
analysis procedures along with the analysis of pathway topological
characteristics to help identify the most relevant metabolic
pathways involved in a given metabolomic study. The results are
presented in a Google-map style network visualization system
that supports intuitive and interactive data exploration through
point-and-click, dragging and lossless zooming. Additional features
include a comprehensive compound library for metabolite name
conversion, automatic generation of analysis report, as well as the
implementation of various univariate statistical procedures that can
be accessed when users click on any metabolite node on a pathway
map. MetPA currently enables analysis and visualization of 874
metabolic pathways, covering 11 common model organisms.
Availability: Freely available at http://metpa.metabolomics.ca
Contact: david.wishart@ualberta.ca
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1 INTRODUCTION
Over the past decade, pathway analysis has emerged as an invaluable
aid to understanding the data generated from various ‘omics’
technologies. As a result, a number of robust software tools
have been developed to support pathway analysis for genomics
and proteomics studies. These tools combine powerful statistical
analysis with visualization capacities to help researchers identify
significant pathways involved in the conditions under study. The
first pathway analysis tools were typically designed to take a list of
differentially expressed genes (or gene products) and compare the
number of differentially expressed genes detected in each pathway
of interest with the number of genes expected to be found in
the given pathway just by chance—a procedure known as over
representation analysis (Draghici et al., 2003; Khatri et al., 2002).
Second-generation pathway analysis tools typically use normalized
gene expression data to calculate the expression of biological
pathways in association with phenotypes—a procedure generally
known as gene set enrichment analysis (GSEA) (Goeman et al.,
2004; Hummel et al., 2008; Subramanian et al., 2005). More recent
tools consider both the significance of gene expression changes
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and their topological characteristics in order to better evaluate their
impact on the pathways of interest (Draghici et al., 2007; Glaab
et al., 2010; Tarca et al., 2009). To date, essentially all pathway
analysis tools have been designed and developed for the analysis of
genomic or proteomic data, but not metabolomic data. Here, we wish
to introduce MetPA (Metabolomics Pathway Analysis), a dedicated
pathway analysis and visualization tool to facilitate the use of these
relatively new and powerful methods in metabolomic studies.

2 METHODS

2.1 Pathway analysis
Pathway analyses in MetPA are conducted through three routes. Pathway
enrichment analysis supports both over-representation analysis as well
as GSEA-based approaches. The available algorithms include Fishers’
exact test, the hypergeometric test, global test (Goeman et al., 2004) and
GlobalAncova (Hummel et al., 2008). MetPA’s pathway topological analysis
is based on the centrality measures of a metabolite in a given metabolic
network. Centrality is a local quantitative measure of the position of a node
relative to the other nodes, and is often used to estimate a node’s relative
importance or role in network organization (Aittokallio and Schwikowski,
2006). Since metabolic networks are directed graphs, MetPA uses relative
betweenness centrality and out degree centrality measures to calculate
compound importance. The pathway impact is calculated as the sum of the
importance measures of the matched metabolites normalized by the sum of
the importance measures of all metabolites in each pathway. Finally, MetPA
provides a number of univariate analyses performed at the compound level
to provide a more detailed view of the distribution of individual metabolite
concentrations with regard to phenotypes. They include the t-test, one-way
analysis of variance (ANOVA), and linear regression.

2.2 Pathway library construction and visualization
The pathway data used in MetPA were downloaded as KGML files from the
KEGG database (Kanehisa et al., 2008). Chemical compounds and pathway
topology information were parsed into graph models using the KEGGgraph
package (Zhang and Wiemann., 2009). The current library contains 874
metabolic pathways from 11 model organisms including humans, mouse,
Drosophila, Arabidopsis, Escherichia coli, etc.

Metabolic pathways are presented as a network of chemical compounds
with metabolites as nodes and reactions as edges. The graph generation and
manipulation were implemented using Graphviz (http://www.graphviz.org)
and ImageMagick (http://www.imagemagick.org). This visualization system
supports lossless zooming, dragging and linking operations based on Ajax
(Asynchronous JavaScript with XML) technology (Berger et al., 2007).
All relevant information can be obtained by clicking on the corresponding
graphical elements.
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Fig. 1. Screenshot illustration of MetPA’s data visualization features—(A) metabolome view, (B) pathway view and (C) compound view.

2.3 Implementation of web application
MetPA’s web interface was implemented using the JSF or Java
Server Faces (http://java.sun.com/javaee/javaserverfaces) framework. The
pathway analysis algorithms were implemented in the R (version 2.10.0)
programming language (http://www.r-project.org/). The communication
between R and Java was established through the Rserve TCP/IP server
(http://www.rforge.net/Rserve/). The web application is hosted on GlassFish
(version 3) using a Linux operating system (Fedora Core 12). The server
is equipped with two Intel Core 2 Quad processors (3.0 GHz each) and
8 GB of physical memory. The web application is platform independent
and has been successfully tested on Mozilla Firefox 3.0+, Safari 4.0+,
Google-Chrome 5.0+, Opera 10.0+ and Internet Explorer 8.0.

3 EXAMPLE ANALYSIS
MetPA accepts either a list of significant compound names,
or a compound concentration table with binary, multi-group or
continuous phenotype labels. In the latter case, it is advisable to
first normalize the concentration data, i.e. using MetaboAnalyst
(Xia et al., 2009). As an example, we present the analysis on
urinary metabolite concentration data (log-normalized) from cancer
patients experiencing either muscle gain (Y) or muscle loss (N)
monitored over a three-month period. The purpose is to investigate
if certain metabolic pathways are significantly different between the
two groups of patients. The first step is to convert the compound
names of the uploaded data to the compound names used in the
pathway library. MetPA uses compound names, synonyms and
database IDs data from the HMDB (Wishart et al., 2009) to
perform compound name mapping. The next step is to specify
the parameters for the pathway analysis—i.e. the pathway library,
the algorithm for pathway enrichment analysis, as well as the
algorithm for topological analysis. In this case, we select the ‘Homo
sapiens’ library and use the default ‘Global Test’ and ‘Relative

Betweenness Centrality’ for pathway enrichment analysis and
pathway topological analysis, respectively. The result is presented
in two parts—the graphical output (shown in Fig. 1) and a table
containing all the analysis results. Users can intuitively explore
the results by pointing and clicking on various hyperlinked nodes.
For example, let us look at the ‘Glycine, serine and threonine
metabolism’ pathway, which is the top pathway from the pathway
topological analysis and is also significant in the pathway enrichment
analysis (4.65E-5 after adjustment of multiple testing). Clicking
the circle on the ‘metabolome view’ (Fig. 1A) on the left panel
launches the corresponding ‘pathway view’ (Fig. 1B) on the right.
It is interesting to see that many of these significantly changed
amino acids are in key positions for this pathway. Further checking
(by clicking on each metabolite node) indicates that all the nine
matched amino acids show higher concentration values in the muscle
loss group, with Creatine being the most significant (Fig. 1C). It
is interesting to see that the most significant pathway identified
from the enrichment analysis is ‘Galactose metabolism’ (highlighted
as the dark red circle on the top left corner of the ‘metabolome
view’). Further checking indicates only three downstream peripheral
compounds are involved, with ‘Myoinositol’ being most significant.
It is less likely that this pathway is strongly associated with muscle
change. The results from this analysis are currently under discussion
with experts in the field.

4 CONCLUSIONS
The growing interest in metabolomics and systems biology has
increased the need for computational and visual tools for pathway
analysis. MetPA is a full-featured, easy-to-use pathway analysis
and visualization environment that combines advanced statistical
enrichment analysis with pathway topological characteristics to help
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researchers identify the most relevant pathways involved in the
conditions under study.
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