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1 Introduction

A mapping F : X → Y between metric spaces X and Y is called a C-bilipschitz embedding
if there exists r > 0 such that ∀u, v ∈ X rdX(u, v) ≤ dY (F (u), F (v)) ≤ rCdX(u, v). A
sequence {fn} of mappings fn : Un → Zn between metric spaces is a sequence of uniformly
bilipschitz embeddings if there is C <∞ such that all of the embeddings are C-bilipschitz.

Many important classes of Banach spaces have been characterized in terms of uniformly
bilipschitz embeddings of finite metric spaces. Bourgain [2] proved that a Banach space
X is nonsuperreflexive if and only if there exist uniformly bilipschitz embeddings of finite
binary trees {Tn}∞n=1 of all depths into X. Similar characterization of spaces with no
type > 1 was obtained by Bourgain, Milman, and Wolfson [3]: a Banach space X has no
type > 1 if and only if there exist uniformly bilipschitz embeddings of Hamming cubes
{Hn}∞n=1 into X (see [16] for a simpler proof). Johnson and Schechtman [10] found a
similar characterization of nonsuperreflexive spaces in terms of diamond graphs [8] and
Laakso graphs [11]. Banach spaces without cotype were characterized by Mendel and Naor
[15] in terms of lattice graphs Lm,n whose vertex sets are {0, 1, . . . ,m}n, two vertices are
joined by an edge if and only if their `∞-distance is equal to 1.

Characterizations in terms of bilipschitz embeddability of certain metric spaces are
called metric characterizations. Observe that binary trees and Laakso graphs are graphs
with uniformly bounded degrees. Degrees of Hamming cubes and the lattice graphs are
unbounded. During the seminar “Nonlinear geometry of Banach spaces” (Workshop in
Analysis and Probability at Texas A & M University, 2009) Johnson posed the following
problem: Find metric characterizations of spaces with no type p > 1 and with no cotype
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in terms of graphs with uniformly bounded degrees. The first part of this paper is devoted
to a solution of this problem.

In the second part of the paper we prove results related to another problem posed by
Johnson during the mentioned seminar: Find metric characterizations of reflexivity and
the Radon-Nikodým property (RNP). We prove that Banach spaces containing bilipschitz
images of the infinite diamond do not have the RNP, but the converse is not true. We find
a new proof of the Cheeger-Kleiner [6] result that Banach spaces containing bilipschitz
images of the Laakso space do not have the RNP.

The author would like to thank Florent Baudier, William B. Johnson, Mikhail M. Po-
pov, Beata Randrianantoanina, and Gideon Schechtman for their interest to this work
and for useful related discussions.

2 Type and cotype in terms of graphs with uniformly bounded
degrees

Theorem 2.1. There exist metric characterizations of the classes of spaces with no type
> 1 and with no cotype in terms of graphs with maximum degree 3.

We start with the characterization of cotype. This case is easier, because the well-
known results ([13, Proposition 15.6.1] and [14]) imply that any family of finite metric
spaces is uniformly bilipschitz embeddable into any Banach space with no cotype. There-
fore to prove the cotype part of the theorem we need to show only that the graphs Lm,n

are uniformly bilipschitz embeddable into a family of graphs with uniformly bounded
degrees. Thus it suffices to prove the following lemma.

Lemma 2.2. Let (V (G), dG) be the vertex set of a graph G with its graph distance, and let
ε > 0. Then there exist a graph M with maximum degree ≤ 3, ` ∈ N, and an embedding
F : V (G)→ V (M) such that

`dG(u, v) ≤ dM(F (u), F (v)) ≤ (1 + ε)`dG(u, v) ∀u, v ∈ V (G),

where dM is the graph distance of M .

Proof. Let ∆G be the maximum degree of G and let r ∈ N be such that 3 · 2r−1 ≥ ∆G.
Let ` ∈ N be such that `+2r

`
< 1 + ε. We define the graph M in the following way. For

each vertex v of G the graph M contains a 3-regular tree of depth r rooted at a vertex
which we denote m(v). For each edge uv of G we pick a leaf of the tree rooted at m(v)
and a leaf of the tree rooted at m(u) and join them by a path of length `. Leaves picked
for different edges are different (this is possible because 3 · 2r−1 ≥ ∆G), and there is no
further interaction between the constructed trees and paths. It is easy to see that the
maximum degree of M is 3.

We map V (G) into V (M) by mapping each v to the corresponding m(v). It remains
to show that

`dG(u, v) ≤ dM(m(u),m(v)) ≤ (`+ 2r)dG(u, v) (1)
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The right-hand side inequality follows from the observation that if u and v are adjacent
in G, then dM(m(u),m(v)) ≤ ` + 2r, the path of length ` + 2r can be constructed as
the union of path in M corresponding to uv, and paths from m(u) and m(v) to the
corresponding leaves.

To prove the left-hand side of (1) we consider a path joining m(u) and m(v). Let
m(u1), . . . ,m(uk) be the set of roots of those trees which are visited by the path, listed
in the order of visits. The description of M implies that u, u1, . . . , uk, v is a uv-walk in
G, hence its length is ≥ dG(u, v). In order to get from one tree to another we need to
traverse ` edges. Hence any path joining m(u) and m(v) has length ≥ `dG(u, v). This
completes the proof of the lemma and the cotype part of the theorem.

Proof of the type part of Theorem 2.1. By [14, Theorem 2.3], each space with no type > 1
contains subspaces whose Banach-Mazur distances to `d1 (d ∈ N) are arbitrarily close to
1. Therefore it suffices to check that each of the graphs obtained in a similar way from
Hamming cubes admits a uniformly bilipschitz embedding into `d1 for sufficiently large
d. We denote by {Sn}∞n=1 graphs obtained from {Hn}∞n=1 using the procedure described
in the proof of Lemma 2.2. We describe an embedding of the vertex set of Sn into `k1.
The images of vertices of Sn under this embedding are integer points of `k1, edges of Sn

correspond to line segments of length 1 parallel to unit vectors of `k1. Having such a
representation of Sn, it remains to show that the identity mappings of vertex sets of Sn

endowed with their graph distances and their `1-distances are uniformly bilipschitz.

The graph Hn is n-regular, so we let r ∈ N be such that n ≤ 3 · 2r−1 and consider a
rooted 3-regular tree of depth r. This tree can be isometrically embedded into `m1 , where
m = 3 + 3 · 2 + · · · + 3 · 2r−1. The embedding is the following: observing that m is the
number of edges in the tree, we find a bijection between unit vectors in `m1 and edges of
the tree. Now we map the root of the tree to 0 ∈ `m1 ; if v is different from the root, we
map v to the sum of unit vectors corresponding to the path from v to the root. We denote
by Tr the image of the tree in `m1 .

We consider the natural isometric embedding of Hn into `n1 , with images of the vertices
being all possible 0, 1-sequences. We pick ` in the same way as in Lemma 2.2. We
specify the position of the rooted tree corresponding to the vertex v = {θi}ni=1 of Hn in
`k1 = `m1 ⊕1 `

n
1 as Tr + ` · {θi}, where we mean that Tr ⊂ `m1 and ` · {θi} is a multiple of v

considered as a vector in `n1 .

We introduce and embed the paths of length ` (from the construction of Lemma 2.2)
in the following way: Since n is ≤ the number of leaves in Tr, there is a bijection between
the unit vectors of `n1 and some subset of leaves of Tr. On the other hand, each edge of
Hn is parallel to one of the unit vectors. We add `-paths in the following way. The path
corresponding to the edge between v and v + et (et is a unit vector of `n1 ) is the straight
line path of length ` joining the leaves of Tr + `v and Tr + `(v + et); in each of the trees
the leaf is chosen in such a way that its `m1 component is the leaf corresponding to et.

It is clear that the graph Sn obtained in this way fits the description of M in the proof
of Lemma 2.2. Therefore the natural embedding of Hn into Sn is (1 + ε)-bilipschitz if
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both graphs are endowed with their graph distances. It remains to estimate the bilipschitz
constants of natural embeddings of Sn into `k1.

Observe that the graph distance between two vertices of Sn cannot be less than the
distance between their images in `n1⊕1`

m
1 , because each edge corresponds to a line segment

of length 1. It remains to show that the graph distance between two vertices of Sn cannot
be much larger than the `1-distance. Let x, y be two vertices of Sn, we need to estimate
dSn(x, y) from above in terms of ||x− y||1.

For each set of vertices of the form Tr + `v we consider its union with the set of all
vertices of `-paths going out of this set. It is easy to see that if both x and y belong to
one of such sets, then dSn(x, y) ≤ ||x− y||1.

For x ∈ V (Sn) denote the projection of x to `n1 by π(x), and the i-th coordinate of this
projection by π(x)i. If the situation described in the previous paragraph does not occur
then there exists i ∈ {1, . . . , n} such that |π(x)i − π(y)i| = `. Let k ≤ n be the number
of coordinates for which this equality holds.

We have ||x − y||1 ≥ ||π(x) − π(y)||1 ≥ k`. To estimate dSn(x, y) from above we
construct the following xy-path in Sn. If one of the numbers π(x)i is strictly between 0
and ` we start by moving from x in the direction of π(y)i (which in this case should be 0
or `) till we reach a set of the form Tr + `wx for some vertex wx of Hn.

We do similar thing at the other end of the path (near y): If one of the numbers π(y)i
is strictly between 0 and ` we end the path by moving from y in the direction of π(x)i
(which in this case should be 0 or `) till we reach a set of the form Tr + `wy.

We find a shortest path between wx and wy in Hn. It is easy to see that it has length
k. Now we continue construction of the xy-path in Sn. This path will contain all paths
of length ` corresponding to the edges of the wxwy-path in Hn. Between these paths we
add the pieces of the corresponding trees of the from Tr + `u, needed to make a path. As
a result we get an xy-path of length < 2` + k` + 2(k + 1)r. If 4r ≤ ` (we can definitely
assume this), we have 2` + k` + 2(k + 1)r ≤ 4k`. In such a case dSn(x, y) ≤ 4||x − y||1.
This completes the proof of the type part of the theorem.

Corollary 2.3. There exists a family {Kn} of constant degree expanders, such that a
Banach space X for which there exist uniformly bilipschitz embeddings of {Kn} into X,
has no cotype.

Proof. Let {Mn} be graphs of maximum degree 3 from the metric characterization of
Banach spaces with no cotype. It suffices to show that there exists a family {Kn} of
constant degree expanders containing subsets isometric to {Mn}. Consider any family
{Gk} of constant d-regular expanders with the growing number of vertices. Let Dn be
the diameter of Mn and mn be its number of vertices. It is clear that we may assume
without loss of generality that Gn contains a Dn-separated set of cardinality mn. We fix a
bijection between this set and V (Mn). We add to Gn edges between vertices corresponding
to adjacent vertices of Mn. Since Dn is the diameter of Mn, the obtained graph contains
an isometric copy of Mn. The maximum degree of the obtained graph is ≤ d + 3. Its
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expanding properties are not worse than those of Gn. Adding as many self-loops to it as
is needed we get a (d + 3)-regular graph Kn. It is clear that {Kn} is a desired family of
(d+ 3)-regular expanders.

3 Diamonds and Laakso graphs

The diamond graph of level 0 is denoted D0. It has two vertices joined by an edge of
length 1. Di is obtained from Di−1 as follows. Given an edge uv ∈ E(Di−1), it is replaced
by a quadrilateral u, a, v, b with edge lengths 2−i. We endow Dn with their shortest path
metrics. We consider the vertex of Dn as a subset of the vertex set of Dn+1, it is easy
to check that this defines an isometric embedding. We introduce Dω as the union of the
vertex sets of {Dn}∞n=0. For u, v ∈ Dω we introduce dDω(u, v) as dDn(u, v) where n ∈ N
is any integer for which u, v ∈ V (Dn). Since the natural embeddings Dn → Dn+1 are
isometric, it is easy to see that dDn(u, v) does not depend on the choice of n for which
u, v ∈ V (Dn).

Definition 3.1 ([9] or [5, p. 34]). Let δ > 0. A sequence {xi}∞i=1 is called a δ-tree if
xi = 1

2
(x2i + x2i+1) and ||x2i − xi|| = ||x2i+1 − xi|| ≥ δ.

Theorem 3.2. If Dω is bilipschitz embeddable into a Banach space X, then X contains
a bounded δ-tree for some δ > 0.

It is well-known that Banach spaces with the RNP do not contain bounded δ-trees (see
[5, p. 31]). On the other hand there exist Banach spaces without the RNP which do not
contain bounded δ-trees, see [4, p. 54]. So Theorem 3.2 implies:

Corollary 3.3. If Dω is bilipschitz embeddable into a Banach space X, then X does not
have the Radon-Nikodým property. The converse is not true.

Proof of Theorem 3.2. Let f : Dω → X be a bilipschitz embedding. Without loss of
generality we assume that

δdDω(x, y) ≤ ||f(x)− f(y)|| ≤ dDω(x, y) (2)

for some δ > 0.

Let us show that this implies that the unit ball of X contains a δ-tree. The first element
of the tree will be x1 = f(u0)− f(v0), where {u0, v0} = V (D0).

Now we consider the quadrilateral u0, a, v0, b. Inequality (2) implies ||f(a)−f(b)|| ≥ δ.
Consider two pairs of vectors (corresponding to two different paths from u to v in D1):

Pair 1: f(v0)− f(a), f(a)− f(u0). Pair 2: f(v0)− f(b), f(b)− f(u0).

The inequality ||f(a)− f(b)|| ≥ δ implies that at least one of the following is true

||(f(v0)− f(a))− (f(a)− f(u0))|| ≥ δ or ||(f(v0)− f(b))− (f(b)− f(u0))|| ≥ δ.
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Suppose that the first inequality holds. We let

x2 = 2(f(v0)− f(a)) and x3 = 2(f(a)− f(u0)).

It is clear that both conditions of Definition 3.1 are satisfied. Also, the condition (2)
implies that ||x2||, ||x3|| ≤ 1.

We continue construction of the δ-tree in the unit ball of X in a similar manner. For
example, to construct x4 and x5 we consider the corresponding quadrilateral a, a1, v0, b1
in D2. The inequality ||f(a1)− f(b1)|| ≥ δ/2 implies that at least one of the following is
true

||(f(v0)− f(a1))− (f(a1)− f(a))|| ≥ δ/2 or ||(f(v0)− f(b1))− (f(b1)− f(a))|| ≥ δ/2.

Suppose that the second inequality holds. We let

x4 = 4(f(v0)− f(b1)) and x5 = 4(f(b1)− f(a)).

It is clear that both conditions of Definition 3.1 are satisfied. Also (2) implies that
||x4||, ||x5|| ≤ 1. Proceeding in an obvious way we get a δ-tree in the unit ball of X.

3.1 Finite version and the Johnson-Schechtman characterization of super-
reflexivity

Definition 3.4 ([9]). A Banach space X has the finite tree property if there exist δ > 0
such that for each k ∈ N the unit ball ofX contains a finite sequence {xi : i = 1, . . . , 2k−1}
such that xi = 1

2
(x2i+x2i+1) and ||x2i−xi|| = ||x2i+1−xi|| ≥ δ for each i = 1, . . . , 2k−1−1.

It is clear that the proof of Theorem 3.2 implies its finite version:

Corollary 3.5. If there exist uniformly bilipschitz embeddings of {Dn}∞n=1 into a Banach
space X, then X has the finite tree property.

Combining Corollary 3.5 with the well-known fact (see [9] and [7]) that the finite tree
property is equivalent to nonsuperreflexivity, we get the second part of the result in [10,
p. 181]: uniform bilipschitz embeddability of {Dn}∞n=1 into X implies the nonsuperreflex-
ivity of X.

3.2 Laakso space

Our version of the Laakso space (originally constructed in [11]) is similar to the version
from [12, p. 290]. However, our version is a countable set (dense in the version of the
space from [12]). The Laakso graph of level 0 is denoted L0. It consists of two vertices
joined by an edge of length 1. The Laakso graph Li is obtained from Li−1 as follows. Each
edge uv ∈ E(Li−1) of length 4−i+1 is replaced by a graph with 6 vertices u, t1, t2, o1, o2, v
where o1, t1, o2, t2 form a quadrilateral, and there are only two more edges ut1 and vt2,
with all edge lengths 4−i. We endow Ln with their shortest path metrics. We consider the
vertex of Ln as a subset of the vertex set of Ln+1, it is easy to check that this defines an
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isometric embedding. We introduce the Laakso space Lω as the union of the vertex sets
of {Ln}∞n=0. For u, v ∈ Lω we introduce dLω(u, v) as dLn(u, v) where n ∈ N is any integer
for which u, v ∈ V (Ln). Since the natural embeddings Ln → Ln+1 are isometric, it is easy
to see that dLn(u, v) does not depend on the choice of n for which u, v ∈ V (Ln).

Our next purpose is to give a new proof of the following result of Cheeger and Kleiner
[6, Corollary 1.7]:

Theorem 3.6. If Lω is bilipschitz embeddable into a Banach space X, then X does not
have the Radon-Nikodým property.

Proof. We do not know whether bilipschitz embeddability of Lω into X implies the ex-
istence of a bounded δ-tree in X. To prove Theorem 3.6 we introduce the following
definition.

Definition 3.7. Let δ > 0. A sequence {xi}∞i=1 is called a δ-semitree if xi = 1
4
(x4i−2 +

x4i−1 + x4i + x4i+1) and ||(x4i−2 + x4i−1)− (x4i + x4i+1)|| ≥ δ.

Our proof has two steps. First we show that bilipschitz embeddability of Lω into X
implies that X contains a bounded δ-semitree. The second step is to show that existence
of a bounded δ-semitree in X implies that X does not have the RNP (this is almost
standard, based on martingales).

Let f : Lω → X be a bilipschitz embedding. Without loss of generality we assume
that

δdLω(x, y) ≤ ||f(x)− f(y)|| ≤ dLω(x, y) (3)

for some δ > 0.

We need to construct a δ-semitree in the unit ball of X. The first element of the
semitree is x1 = f(u0)− f(v0), where {u0, v0} = V (L0).

Now we consider the 4-tuple u0, o1, v0, o2. Observe that (3) together with dLω(o1, o2) ≥
1/2 implies that ||o1 − o2|| ≥ δ/2. Consider two pairs of vectors:

Pair 1: f(v0)− f(o1), f(o1)− f(u0). Pair 2: f(v0)− f(o2), f(o2)− f(u0).

The inequality ||f(o1)− f(o2)|| ≥ δ/2 implies that at least one of the following is true

||(f(v0)− f(o1))− (f(o1)− f(u0))|| ≥ δ/2 or ||(f(v0)− f(o2))− (f(o2)− f(u0))|| ≥ δ/2.

Suppose that the first inequality holds. We let

x2 = 4(f(v0)− f(t2)), x3 = 4(f(t2)− f(o1)), x4 = 4(f(o1)− f(t1)), x5 = 4(f(t1)− f(u0)).

It is easy to check that both conditions of Definition 3.7 are satisfied, we even get

||(x2 + x3)− (x4 + x5)|| = 4||(f(v0)− f(o1))− (f(o1)− f(u0))|| ≥ 2δ.

Also, (3) applied to dLω(u0, t1) = dLω(t1, o1) = dLω(o1, t2) = dLω(t2, v0) = 1/4 implies that
||x2||, ||x3||, ||x4||, ||x5|| ≤ 1.
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We continue our construction of the δ-semitree in the unit ball of X in a similar manner.
For example, to construct x6, x7, x8, and x9, we consider the 6-tuple corresponding to
the edge t2v0 of L1 and repeat the same procedure as above for u0v0. Proceeding in an
obvious way we get a δ-semitree in the unit ball of X.

To show that presence of a bounded δ-semitree implies absence of the RNP we use
the same argument as for ε-bushes in [1, p. 111]. We construct an X-valued martingale
{fn}∞n=0 on [0, 1]. We let f0 = x1. The function f2 is defined on four quarters of [0, 1]
by x2, x3, x4, x5, respectively. To define the function f3 we divide [0, 1] into 16 equal
subintervals, and define f3 as x6, . . . , x21, on the respective subintervals, etc.

It is clear that we get a sequence of uniformly bounded functions. The first condition
in the definition of a δ-semitree implies that this sequence is a martingale. The second
condition implies that it is not convergent almost everywhere because it shows that on
each interval of the form

[
k
4n
, k+1

4n

]
the average value of ||fn − fn+1|| over the first half of

the interval is ≥ δ/4, this implies that ||fn(t) − fn+1(t)|| ≥ δ/4 on a subset in [0, 1] of
measure ≥ 1

2
. It remains to apply [1, Theorem 5.8].
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