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Abstract Let S be the boundary of a convex polytope of dimension d + 1, or more
generally let S be a convex polyhedral pseudomanifold. We prove that S has a poly-
hedral nonoverlapping unfolding into R

d , so the metric space S is obtained from a
closed (usually nonconvex) polyhedral ball in R

d by identifying pairs of boundary
faces isometrically. Our existence proof exploits geodesic flow away from a source
point v ∈ S, which is the exponential map to S from the tangent space at v. We char-
acterize the cut locus (the closure of the set of points in S with more than one shortest
path to v) as a polyhedral complex in terms of Voronoi diagrams on facets. Ana-
lyzing infinitesimal expansion of the wavefront consisting of points at constant dis-
tance from v on S produces an algorithmic method for constructing Voronoi diagrams
in each facet, and hence the unfolding of S. The algorithm, for which we provide
pseudocode, solves the discrete geodesic problem. Its main construction generalizes
the source unfolding for boundaries of three-polytopes into R

2. We present conjec-
tures concerning the number of shortest paths on the boundaries of convex polyhedra,
and concerning continuous unfolding of convex polyhedra. We also comment on the
intrinsic nonpolynomial complexity of nonconvex manifolds.
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Introduction

The past several decades have seen intense development in the combinatorics and
geometry of convex polytopes [39]. Besides their intrinsic interest, the advances have
been driven by applications to areas ranging as widely as combinatorial optimiza-
tion, commutative algebra, symplectic geometry, theoretical physics, representation
theory, statistics, and enumerative combinatorics. As a result, there is currently avail-
able a wealth of insight into (for example) algebraic invariants of the face posets of
polytopes; arithmetic information connected to sets of lattice points inside polytopes;
and geometric constructions associated with linear functionals, such as Morse-like
decompositions and methods for locating extrema.

On the topological side, there are metric theories for polyhedral spaces, primarily
motivated by differential geometry. In addition, there is a vast literature on general
convexity. Nonetheless, there seems to be lacking a study of the interaction between
the combinatorics of the boundaries of convex polytopes and their metric geometry in
arbitrary dimension. This remains the case despite relations to a number of classical
algorithmic problems in discrete and computational geometry.

The realization here is that convexity and polyhedrality together impose rich com-
binatorial structures on the collection of shortest paths in a metrized sphere. We ini-
tiate a systematic investigation of this metric combinatorics of convex polyhedra by
proving the existence of polyhedral nonoverlapping unfoldings and analyzing the
structure of the cut locus. The algorithmic aspect, which we include together with its
complexity analysis, was for us a motivating feature of these results. That being said,
we also show that our general methods are robust enough so that—with a few minor
modifications—they extend to the abstract spaces we call ‘convex polyhedral pseudo-
manifolds’, whose sectional curvatures along low-dimensional faces are all positive.
To conclude, we propose some directions for future research, including a series of
precise conjectures on the number of combinatorial types of shortest paths, and on
the geometry of unfolding boundaries of polyhedra.

Overview

Broadly speaking, the metric geometry of boundaries of three-dimensional polytopes
is quite well understood, due in large part to the work of Aleksandrov [3, 4] and his
school. For higher dimensions, however, less theory appears in the literature, partly
because Aleksandrov’s strongest methods do not extend to higher dimension. Al-
though there do exist general frameworks for dealing with metric geometry in spaces
general enough to include boundaries of convex polyhedra, such as [10], the special
nature of polyhedral spaces usually plays no role.

The existing theory that does appear for polyhedral spaces is motivated from the
perspective of Riemannian geometry, via metric geometry on simplicial complexes,
and seems mainly due to Stone; see [34], for example. In contrast, our original mo-
tivation comes from two classical problems in discrete and computational geome-
try: the “discrete geodesic problem” [24] of finding shortest paths between points on
polyhedral surfaces, and the problem of constructing nonoverlapping unfoldings of
convex polytopes [28]. Both problems are well understood for the two-dimensional
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boundaries of 3-polytopes, but have not been attempted in higher dimensions. We
resolve them here in arbitrary dimension by a unified construction generalizing the
“source unfolding” of three-dimensional convex polyhedra [33, 37].

Previous methods for source unfoldings have been specific to low dimension, rely-
ing for example on the fact that arcs of circles in the plane intersect polygons in finite
sets of points. We instead use techniques based on differential geometry to obtain
general results concerning cut loci on boundaries of polytopes in arbitrary dimen-
sion, namely Theorem 2.9 and Corollary 2.11, thereby producing polyhedral foldouts
in Theorem 3.5. In more precise terms, our two main goals in this paper are to:

1. describe how the set of points on the boundary S of a convex polyhedron at given
radius from a fixed source point changes as the radius increases continuously;

2. use this description of “wavefront expansion” to construct a polyhedral nonover-
lapping unfolding of the d-dimensional polyhedral complex S into R

d .

By “describe” and “construct” we mean to achieve these goals not just abstractly and
combinatorially, but effectively, in a manner amenable to algorithmic computation.
References such as [1, 5, 13, 20, 26, 27, 32], and [33], which have their roots and
applications in computational geometry, carry this out in the d = 2 case of boundaries
of 3-polytopes (and for the first goal, on any polyhedral surface of dimension d = 2).
Here, in arbitrary dimension d , our Theorem 5.2 says precisely how past wavefront
evolution determines the location in time and space of its next qualitative change.
The combinatorial nature of Theorem 5.2 leads immediately to Algorithm 6.1 for
effectively unfolding boundaries of polyhedra.

The results and proofs in Sections 1–6 for boundaries of convex polyhedra almost
all hold verbatim in the more abstract setting of what we call d-dimensional convex
polyhedral pseudomanifolds. The study of such spaces is suggested both by Stone’s
point of view in [34] and by the more general methods in [10]. Our Corollary 7.12
says that all convex polyhedral pseudomanifolds can be represented as quotients of
Euclidean (usually nonconvex) polyhedral balls by identifying pairs of boundary
components isometrically. The reader interested solely in this level of generality is
urged to begin with Section 7, which gives a guide to Sections 1–6 from that per-
spective, and provides the slight requisite modifications where necessary. Hence the
reader can avoid checking the proofs in the earlier sections twice.

The results in Section 7 on convex polyhedral pseudomanifolds are in many senses
sharp, in that considering more general spaces would falsify certain conclusions. We
substantiate this claim in Section 8, where we also discuss extensions of our meth-
ods that are nonetheless possible. For example, we present an algorithm to construct
geodesic Voronoi diagrams on boundaries of convex polyhedra in Section 8.9.

The methods of this paper suggest a number of fundamental open questions about
the metric combinatorics of convex polyhedra in arbitrary dimension, and we present
these in Section 9. Most of them concern the notion of vistal tree in Definition 9.1,
which encodes all of the combinatorial types of shortest paths (or equivalently, all
bifurcations of the wavefront) emanating from a source point. The first two questions,
Conjectures 9.2 and 9.4, concern the complexity of our unfolding algorithm and the
behavior of geodesics in boundaries of polyhedra. Along these lines, we remark also
on the complexity of nonconvex polyhedral manifolds, in Proposition 9.8. Our third
question is about the canonical subdivision of the boundary of any convex polyhedron



342 Discrete Comput Geom (2008) 39: 339–388

determined by the sets of source points having isomorphic vistal trees (Definition 9.5
and Conjecture 9.6); it asks whether this vistal subdivision is polyhedral, and how
many faces it has. Our final question asks how to realize unfoldings of polyhedral
boundaries by embedded homotopies (Conjecture 9.12).

As a guide for the reader navigating this paper, the list of sections is as follows:

0. Methods.
1. Geodesics in Polyhedral Boundaries.
2. Cut Loci.
3. Polyhedral Nonoverlapping Unfolding.
4. The Source Poset.
5. Constructing Source Images.
6. Algorithm for Source Unfolding.
7. Convex Polyhedral Pseudomanifolds.
8. Limitations, Generalizations, and History.
9. Open Problems and Complexity Issues.

0 Methods

This section contains an extended overview of the paper, including background and
somewhat informal descriptions of the geometric concepts involved.

Unfolding Polyhedra

While unfolding convex polytopes is easy [3], constructing a nonoverlapping unfold-
ing is in fact a difficult task with a long history going back to Dürer in 1528 [31].
When cuts are restricted to ridges (faces of dimension d − 1 in a polyhedron of
dimension d + 1), the existence of such unfoldings is open even for polytopes
in R

3 [28, 31]. It is known that nonconvex polyhedral surfaces need not admit such
nonoverlapping unfoldings [7, 36].

In this paper we consider unfoldings of a more general nature: cuts are allowed to
slice the interiors of facets. Nonoverlapping such unfoldings are known, but only for
three-dimensional polytopes [1, 5, 13, 33]. In fact, two different (although strongly
related) unfoldings appear in these and other references in the literature: the Alek-
sandrov unfolding (also known as the star unfolding) [3, 5], and the source unfolding
[33, 37]. Unfortunately, the construction of Aleksandrov unfoldings fails in principle
in higher dimension (Section 8.4). As we mentioned earlier, we generalize the source
unfolding construction to prove that the boundary S of any convex polyhedron of di-
mension d + 1, and more abstractly any convex polyhedral pseudomanifold S, has a
nonoverlapping polyhedral unfolding U in R

d . The second of the two foldouts of the
cube in Fig. 1 is a d = 2 example of a source unfolding. For clarity, we present the
discussion below in the context of boundaries of polyhedra.

Cut Loci

The idea of the source unfolding in arbitrary dimension d is unchanged from the case
d = 2 of convex polyhedral surfaces. Pick a source point v interior to some facet
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Fig. 1 An edge-unfolding and a source unfolding of a cube into R
2.

(d-dimensional face) of S, so the tangent space Tv is well-defined. Then, treating S

like a Riemannian manifold, define the exponential map from Tv to S by flowing
along geodesics emanating from v. Our main unfolding result, Theorem 3.5, says
that exponentiation takes a certain open polyhedral ball Uv ⊂ Tv isometrically to a
dense open subset of S consisting of points possessing a unique shortest path (length-
minimizing geodesic) to v. The image of the closure Uv of the open ball Uv is all of S.
The boundary Uv\Uv maps onto the cut locus Kv , which by definition is the closure
of the set of points in S with more than one shortest path to the source point v. These
properties characterize Uv .

In Riemannian geometry, when the manifold and the metric are both smooth, de-
scribing the cut locus for a source point is already an important and interesting prob-
lem (see [21] for an excellent introduction and numerous references), although of
course the exponential map can only be an isometry, even locally, if the metric is
flat. Extending the notion of cut locus from Riemannian geometry to the polyhedral
context is just as easy as extending it to arbitrary metric spaces. However, showing
that the open ball Uv is a polyhedral foldout requires strong conditions on the com-
plement of the cut locus, such as metric flatness and polyhedrality. We prove these
results in Sections 1 and 2 using methods based on the foundations of polyhedral
geometry, and on Voronoi diagrams, culminating in Theorem 2.9 and Corollary 2.11.
These conclusions depend crucially on convexity and do not hold in the nonconvex
case.

Geometry of Wavefront Expansion

Our existence proof for polyhedral nonoverlapping source foldouts, even given their
Voronoi characterization in Theorem 2.9, does not by itself provide a satisfactory
combinatorial picture of the dynamics of wavefront expansion on polyhedra. For
this, we must gain control over how the exponential map behaves as it interacts with
warped points in S, namely those of nontrivial curvature,1 or equivalently points on
faces of dimension d − 2 or less.

Imagine the picture kinetically: the source point v emits a signal, whose wave-
front proceeds as a (d − 1)-sphere of increasing radius—at least until the sphere

1In differential geometry, when polyhedra are expressed as limits of (sequences of) smooth Riemannian
manifolds, all of the curvature is forced into decreasing neighborhoods of the (d − 2)-skeleton. Conse-
quently, the curvature actually tends to infinity near faces of dimension d − 2 or less, even though in a
polyhedral sense the curvature is finite.
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hits the boundary of the facet containing v. At that stage, the wavefront folds over
a ridge, or face of dimension d − 1. Metrically, nothing has happened: points inte-
rior to ridges look to the wavefront just as flat as points interior to facets. However,
later, as the wavefront encounters faces of lower dimension, it is forced to bifurcate
around warped points and interfere with itself, as signals emitted originally in differ-
ent directions from v curl around the nontrivial curvature and converge toward the
cut locus.

The question becomes: What discrete structure governs evolution of the wavefront
on polyhedra? The most obvious first step is to define a finite collection of “events,”
representing the points in time and space where the wavefront changes in some non-
trivial way. If this is done properly, then it remains only to order the events according
to the times at which they occur. However, in reality, the definition of an event is
rather simple, while the geometry dictating time order of events is more complex.

Starting from scratch, one might be tempted (and we were) to mark an event every
time the wavefront encounters a new warped face. Indeed, this works in dimension
d = 2 [26]: since the wavefront is a curve, its intersection with the set of edges is a
finite set, and it is easy to detect when one of these points hits a vertex of S before
another. However, because the geometry is substantially more complicated in higher
dimensions, in the end we found it more natural to say an event has occurred every
time the wavefront encounters a new facet through the relative interior of a ridge
(see Definitions 2.3 and 4.14). This may seem counterintuitive, since the wavefront
only interacts with and curls around faces of smaller dimension. However, wavefront
collisions with warped points lead to intersections with ridge interiors infinitesimally
afterward. In other words, the closest point (event point) on a facet to the source
point v need not lie interior to a ridge, but can just as easily be warped.

Again think kinetically: once the wavefront has hit a new face (of small dimen-
sion, say), it begins to creep up each of the ridges containing that face. Although in
a macroscopic sense the wavefront hits all of these ridges simultaneously, it creeps
up their interiors at varying rates. Therefore the wavefront hits some of these ridges
before others in an infinitesimal sense. The moral is that if one wants to detect curl-
ing of the wavefront around warped faces, it is simpler to detect the wake of this
interaction infinitesimally on the interiors of neighboring ridges. Sufficiently refined
tangent data along ridges then discretizes the finite set of events, thereby producing
the desired “metric combinatorics” of wavefront expansion.

Source Poset

Making the above moral precise occupies Section 4. To single out a ridge whose
interior is engulfed by the wavefront at a maximal rate (thereby making it closer to
the source point) essentially is to find a ridge whose angle with the corresponding
signal ray emitted from the source is minimal. When d = 2, this means that we do
not simply observe two signals hitting vertices simultaneously, but we notice also the
angles at which they hit the edges containing those vertices. The edge forming the
smallest angle with its signal ray is the earlier event, infinitesimally beating out other
potential events. (That each angle must be measured inside some ambient facet is just
one of the subtleties that we gloss over for now.)
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To distinguish events in time macroscopically, only radii (distances from the
source) are required. When d = 2, as we have just seen, a first derivative is
enough to distinguish events infinitesimally. Generally, in dimension d ≥ 2, one
needs derivatives of order less than d or, more precisely, a directional derivative
successively along each of d − 1 orthogonal directions inside a ridge. In Section 4
these derivatives are encoded not in single angles, but in angle sequences (Defini-
tion 4.2), which provide quantitative information about the goniometry of intersec-
tions between signal rays and the faces of varying dimension they encounter. More
qualitative—and much more refined—data is carried by minimal jet frames (Def-
inition 4.1), which record not just the sizes of the angles, but their directions as
well.

The totality of the (finite amount of) radius and angle sequence data induces a
partial order on events. The resulting source poset (Definition 4.14), which owes
its existence to the finiteness result in Theorem 4.11, describes precisely which
events occur before others—both macroscopically and infinitesimally. Since wave-
front bifurcation is a local phenomenon at an event point, incomparable events can
occur simultaneously, or can be viewed as occurring in any desired order. Thus as
time progresses, wavefront expansion builds the source poset by adding one event
at a time.

The Algorithm

It is one thing to order the set of events after having been given all of them, but it is
quite another to predict the “next” event having been given only past events. That the
appropriate event to add can be detected locally, and without knowing future events,
is the content of Theorem 5.2. Its importance is augmented by it being the essen-
tial tool in making our algorithm for constructing the source poset, and hence also
the source unfolding (Algorithm 6.1) Surprisingly, our geometric analysis of infin-
itesimal wavefront expansion in Sections 4 and 5 allows us to remove all calculus
from Theorem 5.2 and hence Algorithm 6.1: detecting the next event requires only
standard tools from linear algebra.

As we mentioned earlier, our original motivation for this paper was its algorith-
mic applications. Using the theoretical definitions and results in earlier sections,
we present pseudocode for our procedure constructing source unfoldings in Algo-
rithm 6.1. That our algorithm provides an efficient method to compute source unfold-
ings is formalized in Theorem 6.5.

There are several arguments in favor of presenting pseudocode. First, it under-
scores the explicit effective nature of our combinatorial description of the source
poset in Theorem 5.2. Second, it emphasizes the simplicity of the algorithm that
results from the apparently complicated analysis in Sections 1–5; in particular, the
reader interested only in the computational aspects of this paper can start with Sec-
tion 6 and proceed backwards to read only those earlier parts of the paper addressed
in the algorithm. Finally, the pseudocode makes Algorithm 6.1 amenable to actual
implementation, which would be of interest but lies outside the scope of this work.2

2We refer the reader to a recent efficient implementation [35] of the classical d = 2 algorithm in [26].
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A Note on the Exposition

Proofs of statements that may seem obvious based on intuition drawn from polyhedral
surfaces, or even solids of dimension 3, demand surprising precision in the general
case. Occasionally, the required adjustments in definitions and lemmas, and even in
statements of theorems, were borne out only after considering configurations in di-
mension 5 or more. The definition of source image is an example, about which we
remark in Section 8, in the course of analyzing where various hypotheses (convexity,
pseudomanifold, and so on) become essential. Fortunately, once the appropriate no-
tions have been properly identified, the definitions become transparent, and the proofs
remain intuitive in low dimension.

1 Geodesics in Polyhedral Boundaries

In this paper a convex polyhedron F of dimension d is a finite intersection of closed
half-spaces in some Euclidean space R

d , such that F that does not lie in a proper
affine subspace of R

d . The polyhedron F need not be bounded, and comes with
an induced Euclidean metric. Gluing a finite collection of convex polyhedra by given
isometries on pairs of codimension 1 faces yields a (finite) polyhedral cell complex S.
More precisely, S is a regular cell complex endowed with a metric that is piecewise
Euclidean, in which every face (closed cell) is isometric to a convex polyhedron.

The case of primary interest is when the polyhedral cell complex S equals the
boundary ∂P of a convex polyhedron P of dimension d + 1 in R

d+1.

Convention 1.1 We assume that S = ∂P is a polyhedral boundary in all theorems,
proofs, and algorithms from here through Section 6.

We do not require P to be bounded, though the reader interested in polytopes will
lose very little of the flavor by restricting to that case. Moreover, with the exception of
Lemma 1.3, Proposition 2.10, Corollary 2.11, and Theorem 3.5, the statements of all
results from here through Section 6 are worded to hold verbatim for the more abstract
class of convex polyhedral pseudomanifolds, as we shall see in Section 7.

Denote by μ the metric on S, so μ(a, b) denotes the distance between points
a, b ∈ S. A path γ ⊂ S with endpoints a and b is a shortest path if its length equals
μ(a, b). Since we assume S has finitely many facets (maximal faces), such length-
minimizing paths exist, and are piecewise linear. A path η ⊂ S is a geodesic if η is
locally a shortest path; i.e., for every z ∈ η that is not an endpoint of η, there exist
points a, b ∈ η\{z} such that z ∈ γ ⊂ η for some shortest path γ connecting a to b.

Henceforth, as S has dimension d , a face of dimension d − 1 will be called a ridge.
For convenience, we say that a point x is warped if x lies in the union Sd−2 of all
faces in S of dimension at most d − 2, and call x flat otherwise. Every flat point has
a neighborhood isometric to an open subset of R

d .

Proposition 1.2 If γ is a shortest path in S between its endpoints, then γ has no
warped points in its relative interior.
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Proof For any point w lying in the relative interior of γ , the intersection of γ with
some neighborhood of w consists of two line segments η and η′ that are each straight
with one endpoint at w, when viewed as paths in R

d+1. This is a consequence of
local length-minimization and the fact that each facet of P is isometric to a polytope
in R

d . Moreover, if w happens to lie on a ridge while η intersects the relative interior
of some facet containing w, then local length-minimization implies that η′ is not
contained in the facet containing η. Lemma 1.3 shows that w does not lie in Sd−2, so
the point w is not warped. �

Lemma 1.3 Let η,η′ ⊂ S be two paths that (i) are straight in R
d+1, (ii) share a

common warped endpoint w ∈ Sd−2, and (iii) do not both lie in a single facet. There
exists a neighborhood O of w in S such that for every a ∈ η ∩O and b ∈ η′ ∩O, the
path ηab from a to w to b along η and η′ is not a shortest path in S between a and b.

Proof Translate P so that w equals the origin 0 ∈ R
d+1, and let Q be the unique

minimal face of P that contains w. Since η and η′ do not lie in a single facet, the 2-
plane E spanned by η and η′ meets Q at exactly one point, namely 0. Since dim(Q) ≤
d −2, the span of Q and E has dimension at most d . Choose a line L whose direction
is linearly independent from the span of Q and E. Then the 3-plane H = L + E

intersects Q only at 0. Replacing P by P ∩ H , we can assume that dim(P ) = 3, so
that d = 2; note that 0 is a vertex of H ∩ P by construction.

Although the case d = 2 was proved in Theorem 4.3.5 of [3] (see also Lemma 4.1
of [33]), we provide a simple argument here, for completeness. Let O ⊂ S be the
neighborhood of w consisting of all points at some fixed small distance from the
vertex w. Then O can be laid flat on the plane R

2 by slicing along η. One of the
two points in this unfolding that glue to a ∈ O connects by a straight segment in the
unfolding to the unique point corresponding to b. This straight segment shortcuts ηab

after gluing back to S. �

An illustration of Lemma 1.3 and its proof is given in Fig. 2.

Corollary 1.4 Let η be a bounded geodesic in S starting at a point z not on any
ridge. Then η intersects each ridge in a discrete set, so η traverses (in order) the
interiors of a well-defined sequence Lη of facets (the facet sequence of η).

Proof Since η is locally length minimizing, Proposition 1.2 implies that every inter-
section of η with a ridge takes place at a flat point. Such points have neighborhoods
isometric to open subsets of R

d , and these intersect η in paths isometric to straight
segments. It follows that η intersects every ridge transversely. �

For each facet F of S = ∂P , let TF be the affine span of F in R
d+1.

Definition 1.5 Suppose two facets F and F ′ share a ridge R = F ∩ F ′. The folding
map �F,F ′ : TF → TF ′ is the isometry that identifies the copy of R in TF with the one
in TF ′ in such a way that the image of F does not intersect the interior of F ′.
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Fig. 2 Neighborhood of a vertex and its foldout after slicing along the segment η. The points a and b are
connected by a shortest path.

In other words, the folding map �F,F ′ is the rotation of TF with (d − 1)-
dimensional axis R = F ∩ F ′ so that F becomes coplanar with F ′ and lies on the
other side of R from F ′. It can be convenient to view �F,F ′ as rotating all of R

d+1

instead of only rotating TF onto TF ′ . Informally, we say �F,F ′ folds TF along R to
lie in the same affine hyperplane as F ′.

Definition 1.6 Given an ordered list L = (F1,F2, . . . ,F�) of facets such that Fi

shares a (unique) ridge with Fi+1 whenever 1 ≤ i < �, we write

�−1
L = �−1

F1,F2
◦ �−1

F2,F3
◦ · · · ◦ �−1

F�−1,F�

for the unfolding of TF�
onto TF1 , noting that indeed �−1

L (TF�
) = TF1 . Setting Li =

(F1, . . . ,Fi), the sequential unfolding of a subset � ⊆ F1 ∪ · · · ∪ F� along L is the
set

(� ∩ F1) ∪ �−1
L2

(� ∩ F2) ∪ · · · ∪ �−1
L�

(� ∩ F�) ⊂ TF1 .

By Corollary 1.4, we can sequentially unfold any geodesic. Next, we use this
unfolding to show uniqueness of shortest paths traversing given facet sequences.

Lemma 1.7 Let v and w be flat points in S. Given a sequence L of facets, there can
be at most one shortest path γ connecting v to w such that γ traverses Lγ = L.

Proof Let γ be a shortest path from v to w traversing L. Inside the union of facets
appearing in L, the relative interior of γ has a neighborhood isometric to an open
subset of R

d by Proposition 1.2 and the fact that the set of warped points is closed.
Sequential unfolding of γ into TF for the first facet F in L thus yields a straight
segment in TF . This identifies γ uniquely as the path in S whose sequential folding
along L is the straight segment in TF connecting v to �−1

L (w) ∈ TF . �
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Fig. 3 An unfolding of a 1 × 1 × 3 box.

In the proof of Lemma 1.7, we do not claim that the union of facets in the list L un-
folds sequentially without overlapping, even though some shortest path γ traverses L.
However, some neighborhood of γ in this union of facets unfolds without overlap-
ping.

Example 1.8 Consider the unfolding of a 1 × 1 × 3 rectangular box as in Fig. 3.
Denote by Fbot,Ftop,Ffront,Fback,Fleft,Fright the bottom, top, front, back, left, and
right facets, respectively. Denote by Li the list of facets along which the points in the
region marked by i have been sequentially unfolded to create the foldout U ⊂ TFbot

in Fig. 3. Then:

L1 = (Fbot), L2 = (Fbot,Fback), L3 = (Fbot,Ffront),

L4 = (Fbot,Fback,Ftop), L5 = (Fbot,Ffront,Ftop), L6 = (Fbot,Fback,Fleft),

L7 = (Fbot,Ffront,Fleft), L8 = (Fbot,Fback,Fright), L9 = (Fbot,Ffront,Fright).

2 Cut Loci

Most of this paper concerns the set of shortest paths with one endpoint fixed.

Definition 2.1 Fix a source point v ∈ S lying interior to some facet. A point x ∈ S

is a cut point3 if x has more than one shortest path to v. Denote the set of cut points
by Kv , and call its closure the cut locus Kv ⊂ S.

Here is a consequence of Proposition 1.2.

Corollary 2.2 No shortest path in S to the source point v has a cut point in its relative
interior.

Proof Suppose c is a cut point in the relative interior of a shortest path from v to w.
Replacing the path from v to c with another shortest path from v to c yields a new
shortest path from v to w. These two paths to w meet at the flat point c ∈ S by

3Our usage of the term “cut locus” is standard in differential geometry, just as our usage of “ridge” is stan-
dard in polyhedral geometry. However, these usages do not agree with terminology in computer science,
such as in [33] and [5]: their “ridge points” are what we call “cut points.” Furthermore, “cut points” in [5]
are what we would call “points on shortest paths to warped points” (when d = 2).
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Fig. 4 An intersection that is Y-shaped cannot locally minimize length in R
d (segment γ is a shortcut).

Proposition 1.2. The resulting Y-shaped intersection at c can be improved upon in a
neighborhood of c isometric to an open set in R

d (Fig. 4), a contradiction. �

Our study of polyhedrality of cut loci will use Voronoi diagrams applied to sets of
points from the forthcoming definition, around which the rest of the paper revolves.

Definition 2.3 Suppose that the source point v connects by a shortest path γ to a
point x that lies on a facet F or on one of its ridges R ⊂ F , but not on any face of S of
dimension d −2 or less. If the sequential unfolding of γ into TF is the segment [ν, x],
then ν ∈ TF is called a source image for F . Let srcF be the set of source images for F .

Lemma 2.4 The set srcF of source images for any facet F of S is finite.

Proof The shortest path in R
d+1 between any pair of distinct points x and y in a

facet F is the straight segment [x, y]. Since this segment is actually contained in S,
any shortest path γ in S must contain [x, y] whenever it contains both x and y. Taking
x and y to be the first and last points of intersection between γ and the facet F , we
find that F can appear at most once in the facet sequence of a shortest path starting
at the source point v. Hence there are only finitely many possible facet sequences of
shortest paths in S. Now apply Lemma 1.7. �

Example 2.5 Consider a unit cube with a source point in its bottom face, as in Fig. 5.
Then the top face has 12 source images, shown in Fig. 5. The four stars “	” are
sequential unfoldings of the source point (along three ridges each) that are not source
images: each point in the top face is closer to some source image than to any of these
stars.

Making Lemma 2.4 quantitative is one of our main open problems; see Section 9.
The next result on the way to Theorem 2.9 generalizes Lemma 3.1 of [27] to

arbitrary dimension. Its proof is complicated somewhat by the fact (overlooked in the
proof of Lemma 3.1 of [27]4) that straight segments can lie inside the cut locus, and
our lack of a priori knowledge that the cut locus is polyhedral.

4Much of [27], but not Lemma 3.1 there, was later incorporated and published in [26].



Discrete Comput Geom (2008) 39: 339–388 351

Fig. 5 Source point v on the “bottom” face, 12 source images for the “top” face of a cube and 4 “false”
source images (view from the top).

Fig. 6 Generalized Mount’s lemma (fails for the shaded region).

Proposition 2.6 (Generalized Mount’s lemma) Let F be a facet of S, and suppose
that ν ∈ srcF is a source image. If w ∈ F , then the straight segment [ν,w] ⊂ TF has
length at least μ(v,w).

Example 2.7 In Fig. 6 the left figure is a typical illustration of Proposition 2.6 in
dimension d = 2: any segment from a source image to w ∈ F is weakly longer than
the one contained in the region with w, and that one sequentially folds to a path in S

of length μ(v,w). In contrast, the right figure will never occur: any point w interior to
the shaded region is closest to the source image ν, but the straight segment connecting
w to ν has not been sequentially unfolded along the correct facet sequence.

Proof of Proposition 2.6 Since the two functions F → R mapping w to μ(v,w) and
to the length of [ν,w] are continuous, we can restrict our attention to those points w

lying in any dense subset of F . In particular, the cut locus has dense complement
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in F (Corollary 2.2) as does the boundary of F , so we assume throughout that w lies
in neither the cut locus nor the boundary of F .

Having fixed ν ∈ srcF , choose a point x ∈ F as in Definition 2.3, so v connects
to x by a shortest path γ that sequentially unfolds to yield the segment [ν, x] in TF .
The set srcF ([x,w]) of source images sequentially unfolded from shortest paths that
end inside the segment [x,w] is finite by Lemma 2.4. Hence we may furthermore
assume that w does not lie on any hyperplane H that is equidistant from ν and a
source image ν′ ∈ srcF ([x,w]). In other words, we assume w does not lie inside the
hyperplane perpendicularly bisecting any segment [ν, ν′].

Claim 2.8 With these hypotheses, if ν ∈ srcF but no shortest path unfolds sequen-
tially to the segment [ν,w], then w is closer to some point ν′ ∈ srcF ([x,w]) than to ν.

Assuming this claim for the moment, we may replace ν with ν′ and x with an-
other point x′ on [x,w]. Repeating this process and again using that the set of source
images sequentially unfolded from shortest paths ending in [x,w] is finite, we even-
tually find that the unique source image ω ∈ srcF ([x,w]) closest to w is closer to w

than ν is. Since [ω,w] has length μ(ω,w), it suffices to prove Claim 2.8.
Consider the straight segment [x,w], which is contained in F by convexity. Let Y

be the set of points y ∈ [x,w] having a shortest path γy from v that sequentially
unfolds to a segment in TF with endpoint ν. Then Y is closed because any limit
of shortest paths from v traversing a fixed facet sequence L is a shortest path that
sequentially unfolds along L to a straight segment from the corresponding source
image. Thus, going from x to w, there is a last point x′ ∈ Y . This point x′ is by
assumption not equal to w, so x′ must be a cut point (possibly x = x′).

There is a facet sequence L and a neighborhood O of x′ in [x′,w] such that every
point in O connects to v by a shortest path traversing L, and such that unfolding the
source along L yields a source image ν′ �= ν in TF . This point ν′ connects to x′ by
a segment of length μ(v, x′), so the hyperplane H perpendicularly bisecting [ν, ν′]
intersects [x,w] at x′. By hypothesis w �∈ H , and it remains to show that w lies on
the side of H closer to ν′.

The shortest path from v to x′ has a neighborhood in S disjoint from the set
of warped points and hence isometric to an open subset of R

d by Proposition 1.2,
because x′ is itself not a warped point (we assumed x lies interior to F or to a
ridge R ⊂ F ). After shrinking O if necessary, we can therefore ensure that each seg-
ment [ν, y] for y ∈ O is the sequential unfolding of a geodesic ηy in S. The geodesic
ηy for y ∈ O\x′ cannot be a shortest path by definition of x′, so [ν, y] has length
strictly greater than μ(v, y). We conclude that O\x′, and hence also w, lies strictly
closer to ν′ than to ν. This finishes the proof of Claim 2.8 and with it Proposition 2.6.

Before stating the first main result of the paper, we recall the standard notion of
Voronoi diagram V(ϒ) for a closed discrete set ϒ = {ν, ν′, . . .} of points in R

d . This
is the subdivision of R

d whose closed cells are the sets

V (ϒ,ν) = {
ζ ∈ R

d
∣∣ every point ν′ ∈ ϒ satisfies |ζ − ν| ≤ |ζ − ν′|}.

Thus ζ lies in the interior of V (ϒ,ν) if ζ is closer to ν than to any other point in ϒ .
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Fig. 7 Cut locus of the “top” face of the cube.

Theorem 2.9 Fix a facet F of S, and let Vd−1 ⊆ TF be the union of the closed cells
of dimension d − 1 in the Voronoi diagram V(srcF) for the set of source images in TF .
If F ◦ is the relative interior of F , then the set F ◦ ∩ Kv of cut points in F ◦ coincides
with the intersection F ◦ ∩ Vd−1. Moreover, if R◦ is the relative interior of a ridge
R ⊂ F , then the set R◦ ∩ Kv of cut points in R◦ coincides with R◦ ∩ Vd−1.

Proof Every shortest path from the source v to a point w in F ◦ or R◦ unfolds to
a straight segment in TF of length μ(v,w) ending at a source image for F . Propo-
sition 2.6 therefore says that w lies in the Voronoi cell V (ϒ,ν) if and only if the
segment [ν,w] has length exactly μ(v,w). In particular, v has at least two shortest
paths to w if and only if w lies in two such Voronoi cells—that is, w ∈ Vd−1. �

To illustrate Theorem 2.9 consider Example 2.5. The Voronoi diagram of source
images gives the cut locus in the top face of the cube (see Fig. 7).

Theorem 2.9 characterizes the intersection of the cut locus with faces of dimension
d or d − 1 in S. For faces of smaller dimension, we can make a blanket statement.

Proposition 2.10 Every warped point lies in the cut locus Kv ; that is, Sd−2 ⊆ Kv .

Proof It is enough to show that every point w in the relative interior of a warped
face of dimension d − 2 is either a cut point or a limit of cut points, because the cut
locus Kv is closed by definition. Let γ be a shortest path from w to v.

First assume that every neighborhood of w contains a point having no shortest
path to v that is a deformation of γ . Suppose that (yi)i∈N is a sequence of such points
approaching w, with shortest paths (γi)i∈N connecting the points yi to v. Since there
are only finitely many facets containing w and finitely many source images for each
facet, we may assume (by choosing a subsequence if necessary) that for all i, the
sequential unfolding of γi connects to the same source image for the same facet. The
paths (γi)i∈N then converge to a shortest path γ ′ �= γ to w from v, so w ∈ Kv .

Now assume that every point in some neighborhood of w has a shortest path to v

that is a deformation of γ . Every point on γ other than w itself is flat in S by Propo-
sition 1.2. Therefore some neighborhood of γ in S is isometric to an open subset of a
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product R
d−2 × C, where C is a two-dimensional surface that is flat everywhere ex-

cept at one point c ∈ C (so C is the boundary of a right circular cone with apex c). The
set of points in R

d−2 × C having multiple geodesics to the image of v in R
d−2 × C

is a relatively open half-space of dimension d − 1 whose boundary is R
d−2 × {c}.

Some sequence in this open half-space converges to the image of w. �

Theorem 2.9 and Proposition 2.10 imply the following description of cut loci.
For terminology, a subset K of a polyhedral cell complex is called polyhedral if its
intersection with every facet is a union of convex polyhedra. Note that K need not
be a polyhedral cell complex (as defined before Convention 1.1) because it might not
come with a cell decomposition. Nonetheless, K can be made into a polyhedral cell
complex by suitably subdividing. We call K pure of dimension k if it is the closure
of a set whose dimension locally near every point is k.

Corollary 2.11 If v is a source point in S, then

1 the cut locus Kv is polyhedral and pure of dimension d − 1, and
2 the cut locus Kv is the union Kv ∪ Sd−2 of the cut points and warped points.

Proof Part 2 is a consequence of Theorem 2.9 and Proposition 2.10, the latter taking
care of Sd−2, and the former showing that points in the cut locus but outside of Sd−2
are in fact cut points. Since Voronoi diagrams in Euclidean spaces are polyhedral,
Theorem 2.9 also implies the polyhedrality in part 1. For the purity, note that if P is
any cut point, then the cut set divides a small neighborhood of P into finitely many
regions (the regions being determined by the combinatorial types of shortest paths
ending therein), with P lying in the closures of at least two of these regions. �

3 Polyhedral Nonoverlapping Unfolding

In this section we again abide by Convention 1.1, so S is the boundary of convex
polyhedron P of dimension d + 1 in R

d+1.

Definition 3.1 A polyhedral subset K ⊂ S of dimension d − 1 is a cut set if K

contains the union Sd−2 of all closed faces of dimension d − 2, and S\K is open and
contractible. A polyhedral unfolding of S into R

d is a choice of cut set K and a map
S\K → R

d that is an isometry locally on S\K . A nonoverlapping foldout of S is a
surjective piecewise linear map ϕ: U → S such that

1. U is the closure of its interior U , which is an open topological ball in R
d , and

2. the restriction of ϕ to U is an isometry onto its image.

Note that K is not required to be a polyhedral subcomplex of S, but only a subset
that happens to be a union of polyhedra; thus K can “slice through interiors of facets.”
The open ball U in item 1 of the definition is usually nonconvex. The polyhedron P

is a polytope if and only if U is a closed ball—that is, bounded.
When the domain U of a nonoverlapping unfolding happens to be polyhedral,

so its boundary U\U is also polyhedral, the image K = ϕ(U\U) is automatically a
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cut set in S. Indeed, piecewise linearity of ϕ implies that K is polyhedral of dimen-
sion d − 1; while the isometry implies that K contains Sd−2, and that the open ball
U ∼= S\K is contractible. Therefore:

Lemma 3.2 If U is polyhedral, then a nonoverlapping foldout ϕ: U → S yields an
ordinary polyhedral unfolding by taking the inverse of the restriction of ϕ to U .

This renders unambiguous the term polyhedral nonoverlapping unfolding.
The points in S outside of the (d − 2)-skeleton Sd−2 constitute a noncompact

flat Riemannian manifold S◦. When a point w lies relative interior to a facet F , the
tangent space Tw is identified with the tangent hyperplane TF of F , but when w lies
on a ridge, there is no canonical model for Tw .

Most tangent vectors ζ ∈ Tw can be exponentiated to get a point exp(ζ ) ∈ S◦ by
the usual exponential map from the tangent space Tw to the Riemannian manifold S◦.
(One can show that the set of tangent vectors that cannot be exponentiated has mea-
sure zero in Tw; we shall not use this fact.) In the present case we have a partial
compactification S of S◦, which allows us to extend this exponential map slightly.

Definition 3.3 Fix a point w ∈ S◦ = S\Sd−2. A tangent vector ζ ∈ Tw can be expo-
nentiated if the usual exponential of tζ exists in S◦ for all real numbers t satisfying
0 ≤ t < 1. In this case, set exp(ζ ) = limt→1 exp(tζ ).

The exponential map fζ : t → exp(tζ ) takes the interval [0,1] to a geodesic η ⊂ S,
and should be thought of as “geodesic flow” away from w with tangent ζ .

Henceforth fix a source point v ∈ S not lying on any face of dimension less than d .

Definition 3.4 The source interior Uv consists of the tangent vectors ζ ∈ Tv at the
source point v that can be exponentiated, and such that the exponentials exp(tζ ) for
0 ≤ t ≤ 1 do not lie in the cut locus Kv . The closure of Uv is the source foldout Uv .

Our next main result justifies the terminology for Uv and its closure Uv .

Theorem 3.5 Fix a source point v in S. The exponential map exp: Uv → S from
the source foldout to S is a polyhedral nonoverlapping foldout, and the boundary
Uv\Uv maps onto the cut locus Kv . Hence Kv is a cut set inducing a polyhedral
nonoverlapping unfolding S\Kv → Uv to the source interior.

Proof It suffices to show the following, in view of parts 1 and 2 from Corollary 2.11:

3. The metric space S\Kv is homeomorphic to an open ball.
4. The exponential map exp: Uv → S is piecewise linear and surjective.
5. The exponential map exp: Uv → S\Kv is an isometry.

Every shortest path is the exponential image of some ray in Uv by Proposition 1.2,
and the set of vectors ζ ∈ Uv mapping to S\Kv is star-shaped by part 2 along with
Proposition 1.2 and Corollary 2.2. This implies part 3 and surjectivity in part 4. The
space S◦ = S\Sd−2 is isometric to a flat Riemannian manifold. Hence the exponential
map is a local isometry on any open set of tangent vectors where it is defined. The
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Fig. 8 Cut locus Kv and source foldout Uv of the cube.

Fig. 9 Shaded region lies outside of exp(Tv).

definition of Uv implies that exp is injective on the interior Uv , so the surjectivity
in part 4 shows that exp: Uv → S\Kv is an isomorphism of Riemannian manifolds,
proving part 5. Every isometry between two open subsets of affine spaces is linear,
so the piecewise linearity in part 4 is a consequence of part 5. �

Example 3.6 Consider a cube P and a source point v located off-center on the bottom
face of P , as in Example 2.5 and Fig. 7. The cut locus Kv and the corresponding
source foldout Uv are shown in Fig. 8. See Fig. 1 for the case when v is in the center
of the bottom face.

Remark 3.7 Surjectivity of the exponential map does not follow from S◦ being a Rie-
mannian manifold: convexity plays a crucial role (see Fig. 9 for the case of a noncon-
vex surface). In fact, surjectivity of exp on a polyhedral manifold is equivalent—in
any dimension—to the manifold having positive curvature [34, Lemma 5.1]. The-
orem 3.5 extends to the class of convex polyhedral pseudomanifolds, but not quite
verbatim; see Theorem 7.11 for the few requisite modifications.

4 The Source Poset

In this section we define the source poset (Definition 4.14), and in the next we show
how to build it step by step (Theorem 5.2). The reader should consider Definition 4.14
as the main result in this section, although it is the existence and finiteness properties
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for minimal jet frames5 in Theorem 4.11 that endow the source poset with its power
to make continuous wavefront expansion combinatorially tractable.

Definition 4.1 Fix a polyhedron V in R
d . Given a list ζ̄ = (ζ1, . . . , ζr ) of mutually

orthogonal unit vectors in R
d , define for ε ∈ R the unit vector

Jζ̄ (ε) = εζ1 + · · · + εrζr√
ε2 + ε4 + · · · + ε2r

.

If x ∈ V and x + εJζ̄ (ε) lies in V for all small ε > 0, then the vector-valued func-

tion Jζ̄ is a unit jet of order r at x in V , and ζ̄ is a partial jet frame at x along V .

If, in addition, x + εJζ̄ (ε) lies relative interior to V for all small ε > 0, then ζ̄ is a jet
frame.

The definition will be used later in the case where the convex polyhedron V is a
closed Voronoi cell R ∩ V (srcF ,ω) for some ridge R of a facet F , and ω ∈ srcF is
a source image. Think of the point x ∈ V as the closest point in V to ω. It will be
important later (but for now may help in understanding the next definition) to note
that the relative interior of a polyhedron V = R ∩ V (srcF ,ω) is contained in the
relative interior of the ridge R by Definition 2.3 and Theorem 2.9.

We do not assume the polyhedron V has dimension d . However, the order r of a
unit jet in V , or equivalently the order of a jet frame along V , is bounded above by
the dimension of V . In particular, we allow dim(V ) = 0, in which case the only jet
frame is empty—that is, a list ∅ of length zero—and J∅ ≡ 0.

The lexicographic order on real vectors ā and b̄ of varying lengths is defined by

(a1, . . . , ar ) < (b1, . . . , bs)

if the first nonzero coordinate of ā − b̄ is negative, where by convention we set ai = 0
for i ≥ r + 1 and bj = 0 for j ≥ s + 1.

Definition 4.2 Fix a convex polyhedron V in R
d , a point x ∈ V , and an outer support

vector ν ∈ R
d for V at x, meaning that ν ·y ≤ ν ·x for all points y ∈ V . A jet frame ζ̄

at x along V is minimal if the angle sequence −(ν · ζ1, . . . , ν · ζr ) is lexicographically
smaller than −(ν · ζ ′

1, . . . , ν · ζ ′
r ′) for any jet frame ζ̄ ′ at x along V .

Again think of V = R∩V (srcF ,ω), with ν = ω−x being the outer support vector.
In general, that ν is an outer support vector at x means equivalently that x is

the closest point in V to x + ν. Minimal jet frames ζ̄ can also be described more
geometrically: the angle formed by ν and ζ1 must be as small as possible, and then
the angle formed by ν and ζ2 must be as small as possible given the angle formed
by ν and ζ1, and so on. It is worth bearing in mind that because ν is an outer support
vector, the angle formed by ν and ζ1 is at least π/2 (that is, obtuse or right).

5The notion of jet frame is new; it is motivated by constructions from differential and algebraic geometry,
where a jet is to a higher-order derivative as a tangent vector is to a first derivative. Our goal is to measure
infinitesimal expansion of the wavefront in the directions recorded by jet frames.
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Fig. 10 Dot product vs. length.

Lemma 4.3 If ζ and ζ ′ are vectors of equal length in R
d , and ν ∈ R

d is a vector
satisfying ν · ζ ≤ 0 and ν · ζ ′ ≤ 0, then |ν − ζ | < |ν − ζ ′| if and only if ν · ζ > ν · ζ ′.

Proof Draw ν pointing away from the center of the circle containing ζ and ζ ′, with
these vectors on the other side of the diameter perpendicular to ν. Then use the law of
cosines: the radii ζ and ζ ′ have equal length, and ν has fixed length; only the distances
from ν to ζ and ζ ′ change with the angles of ζ and ζ ′ with ν (see Fig. 10). �

Minimal jet frames admit a useful metric characterization as follows.

Proposition 4.4 Fix two polyhedra V and V ′ with outer support vectors ν and ν′,
of equal length, at points x ∈ V and x′ ∈ V ′, respectively. Let ζ̄ and ζ̄ ′ be partial
jet frames at x along V and x′ along V ′, respectively. The angle sequence −ν · ζ̄ is
smaller than −ν′ · ζ̄ ′ in lexicographic order if and only if there exists ε0 > 0 such that
x + ν is closer to x + εJζ̄ (ε) than x + ν′ is to x′ + εJζ̄ ′(ε) for all positive ε < ε0.

Proof Since the dot product of ν with each vector Jζ̄ (ε) or Jζ̄ ′(ε) is negative, and
these are unit vectors, it is enough by Lemma 4.3 to show that minimality is equiva-
lent to

ν · Jζ̄ (ε) ≥ ν · Jζ̄ ′(ε) for all nonnegative values of ε < ε0.

If the first nonzero entry of ν · ζ̄ − ν · ζ̄ ′ is c = ν · (ζi − ζ ′
i ), then for nonnegative

values of ε approaching zero, the difference ν · Jζ̄ (ε) − ν · Jζ̄ ′(ε) equals cεi−1 times
a positive function approaching one. The desired result follows easily. �

Corollary 4.5 Fix an outer support vector ν at a point x in a polyhedron V . A jet
frame ζ̄ at x along V is minimal if and only if, for every jet frame ζ̄ ′ at x along V ,
x + ν is weakly closer to x + εJζ̄ (ε) than to x + εJζ̄ ′(ε) for all small nonnegative ε.

It is not immediately clear from the definition that minimal jet frames always
exist: a priori there could be a continuum of choices for ζ1, and then a continuum of
choices for ζ2 in such a way that no minimum is attained. Although such continua of
choices can indeed occur, we shall see by constructing minimal jet frames explicitly
in Theorem 4.11 that a minimum is always attained.

First we need to know more about how (partial) jet frames at x reflect the local
geometry of V near x. The tangent cone to a polyhedron V ⊆ R

d at x ∈ V is the cone

TxV = R≥0{ζ ∈ R
d | x + ζ ∈ V }

generated by vectors that land inside V when added to x.
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Definition 4.6 Fix a partial jet frame ζ̄ at x along a polyhedron V in R
d . Let ζ̄⊥ be

the linear subspace of R
d orthogonal to the vectors in ζ̄ , and fix a sufficiently small

positive real number ε. Then define the iterated tangent cone

T ζ̄
x V = Tξ

((
ξ + ζ̄⊥) ∩ TxV

)

as the tangent cone at ξ = Jζ̄ (ε) to the intersection of TxV with the affine

space ξ + ζ̄⊥.

Just as the partial jet frames of order 1 generate the tangent cone TxV , we have
the following characterization of iterated tangent cones. We omit the easy proof.

Lemma 4.7 The iterated tangent cone T
ζ̄

x V is generated by all unit vectors
ζr+1 in R

d extending the partial jet frame ζ̄ = (ζ1, . . . , ζr ) to a partial jet frame
(ζ1, . . . , ζr , ζr+1) of order r + 1. In particular, iterated tangent cones do not depend
on the small ε > 0.

Now we set out to construct minimal jet frames inductively.

Lemma 4.8 Fix a polyhedron V and an outer support vector ν at x ∈ V . If ζ ∈ TxV

is a unit vector with ν · ζ maximal, then ν is an outer support vector at 0 ∈ T
ζ

x V .

Proof If ζ ′ ∈ T
ζ

x V is a unit vector satisfying ν · ζ ′ > 0, then ξ = (ζ + εζ ′)/
√

1 + ε2

for small ε > 0 is a unit vector in TxV satisfying ν · ξ > ν · ζ , contradicting maximal-
ity. �

In “generic” cases the functional ζ �→ ν · ζ for an outer support vector ν on a cone
will take on the maximum value zero uniquely at the origin. In this case, as we now
show, there can be only finitely many unit vectors ζ in the cone having ν · ζ maximal,
and these lie along the rays, meaning one-dimensional faces of the cone. Note that
genericity forces the cone to be sharp, meaning that it contains no linear subspaces.

Proposition 4.9 Let ν be an outer support vector for a sharp polyhedral cone C, and
assume ν is maximized uniquely at the origin 0. The minimum angle between ν and
a unit vector ζ ∈ C occurs when ζ lies on a ray of C.

Proof Let Z be the set of unit vectors in C. Suppose that L is a two-dimensional
subspace inside the span of C, and let ν̄ be the orthogonal projection of ν onto L.
View ν and ν̄ as functionals on L via ζ �→ ν · ζ , and observe that ν · ζ = ν̄ · ζ for all
ζ ∈ L. The circular arc Z ∩ L lies inside the unit circle in L, and ν̄ takes nonpositive
values on Z ∩ L because ν is an outer support vector. Elementary geometry shows
that ν̄ is therefore maximized on Z ∩ L only at one or both of the endpoints of the
arc Z ∩ L. This argument proves that ν cannot be maximized on Z at a point ζ ∈
Z unless ζ lies in the boundary of Z. The result now follows by induction on the
dimension of the cone C. �
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In “nongeneric” cases, including when the polyhedral cone C has nonzero lineal-
ity, which is by definition the largest vector space contained in C, the functional ν

is maximized along a face of positive dimension. In this case there is always a con-
tinuum of choices for unit vectors ζ ∈ C having ν · ζ = 0. However, the sequences
of iterated tangent cones to appear in Theorem 4.11 will not in any noticeable way
depend on the continuum of choices, because of the next result.

Lemma 4.10 Fix a polyhedron V , a point x ∈ V , and a face F of V containing x.

The iterated tangent cone T
ζ̄

x V is independent of the jet frame ζ̄ for F at x.

Proof Translate V so x + εJζ̄ (ε) lies at the origin 0 ∈ R
d . Then F spans a dimension

dim(F ) linear subspace 〈F 〉 ⊆ R
d , and the iterated tangent cone is T

ζ̄
x V = 〈F 〉⊥ ∩

T0V . Now use the fact that T0V = TξV for all vectors ξ relative interior to F . �

The main theorem in this section says that given an outer support vector ν, there
is a finite procedure using elementary linear algebra for producing a single jet frame
that is, in a precise sense, tilted as much toward ν as possible.

Theorem 4.11 Fix a polyhedron V and an outer support vector ν at x ∈ V . In-
ductively construct a finite set of jet frames for V at x by iterating the following
procedure. For each of the finitely many partial jet frames ζ̄ already constructed:

• If ν is orthogonal to a nonzero vector in T
ζ̄

x V , then add any such vector to ζ̄ .

• If ν · ζ < 0 for all nonzero vectors ζ in T
ζ̄

x V , then create one new partial jet

frame for each of the (finitely many) rays of T
ζ̄

x V minimizing the angle with ν, by
appending to ζ̄ the unit vector along that ray.

At least one of the finitely many jet frames constructed in this way is minimal.

Proof The sequences of vectors constructed by the iterated procedure are jet frames
by Lemma 4.8. Given an arbitrary jet frame ξ̄ for V at x, it is enough to show that
the angle sequence of ξ̄ satisfies ν · ζ̄ ≥ ν · ξ̄ in lexicographic order for some con-
structed jet frame ζ̄ . Indeed, then a jet frame whose angle sequence is lexicograph-
ically minimal among the constructed ones is minimal. Suppose that the first i − 1
entries (ξ1, . . . , ξi−1) agree with a constructed jet frame, but that (ξ1, . . . , ξi) do not.

If ν · ξi < 0 then ν · ξi is less than ν · ζi for some constructed jet frame ζ̄ agreeing
with ξ̄ through the (i − 1)st entry, by Proposition 4.9.

If, on the other hand, ν · ξi = 0, then pick the index j maximal among those
satisfying ξj �= 0 and also ν · ξi = · · · = ν · ξj = 0. If there is a constructed jet frame ζ̄

that agrees with ξ̄ through the j th entry, but has ν · ξj+1 < ν · ζj+1 = 0, then we are
done already. Therefore we can assume that the constructed jet frame ζ̄ agrees with ξ̄

through index (i − 1), that ζ̄ has ν ·ζi = · · · = ν ·ζj = 0, and that either ν ·ζj+1 < 0 or
else ζ̄ has order j . Replacing the vectors ξi, . . . , ξj in ξ̄ with ζi, . . . , ζj yields a new

jet frame ξ̄ ′, by Lemma 4.10 applied to the face F of the iterated tangent cone T
ζ̄ ′

x V

orthogonal to ν, where ζ̄ ′ = (ζ1, . . . , ζi−1). Downward induction on the number of
entries of ξ̄ ′ shared with a constructed jet frame completes the proof. �
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Fig. 11 Illustrations for Definition 4.12.

Our goal is to apply jets to define a poset structure on the set of source images.
First, we need some terminology and preliminary concepts. The next definition is
made in slightly more generality than required for dealing only with complete sets of
source images because we shall need it for Theorem 5.2.

Resume the notation from previous sections regarding the polyhedral complex S.
Recall that TF

∼= R
d is the tangent hyperplane to the facet F . Removing from TF

the affine span TR of any ridge R ⊂ F leaves two connected components (open half-
spaces). Thus it makes sense to say that a point ν ∈ TF \TR lies either on the same
side or on the opposite side of R as does F .

Definition 4.12 Fix a facet F , a ridge R ⊂ F , and a finite set ϒ ⊂ TF .

1. A point ω ∈ ϒ can see F through R in V(ϒ) if ω lies on the opposite side of R

as F does, and the closed Voronoi cell V (ϒ,ω) contains a point interior to R.
2. A point ω ∈ ϒ can see R through F in V(ϒ) if ω lies on the same side of R as

F does, and the closed Voronoi cell V (ϒ,ω) contains a point interior to R.
3. In either of the above two cases, the ridge R lies at radius r = r(R,ω) from ω if

r equals the smallest distance in TF from ω to a point of R ∩ V (ϒ,ω).
4. The unique closest point ρ(R,ω) to ω in R ∩ V (ϒ,ω) has distance r from ω.
5. The outer support vector of the pair (R,ω) is ω − ρ(R,ω).
6. The angle sequence ∠(R,ω) is the angle sequence −(ω − ρ(R,ω)) · ζ̄ for any

minimal jet frame ζ̄ at ρ(R,ω) along R ∩ V (ϒ,ω).

Example 4.13 Figure 11 depicts examples of the notions from Definition 4.12. The
solid pentagon is the face F , while the set ϒ contains four points. The point ω can see
F through the ridge R, and can see the ridges R′ as well as R′′ through F . The three
closest points for these are indicated, as is the outer support vector for (R,ω). The
point ω′ can see the ridge R′ through F , but ω′ cannot see R′′ through F , because ω

is closer to every point of R′′.

In our applications the finite set ϒ will always be a subset of source images
in srcF , often a proper subset. Now we are ready for the main definition of this
section. It may help to recall that each source image ν ∈ srcF can see F through a
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unique ridge R by Theorem 2.9, when R
d = TF and the finite set ϒ in Definition 4.12

equals srcF .

Definition 4.14 Fix a source point v in S. An event is a pair (ν,F ) with ν ∈ srcF a
source image for the facet F . The event (ν,F ) has

1. radius r(ν,F ) equal to the radius r(R, ν) from ν to the ridge R through which ν

can see F in the Voronoi subdivision V(srcF) of TF ;
2. event point ρ(ν,F ) equal to the closest point ρ(R,ν) in R ∩ V (srcF , ν) to ν; and
3. angle sequence ∠(ν,F ) equal to the angle sequence ∠(R, ν).

(The trivial event (v, facet(v)) has radius 0, event point v, and empty angle sequence.)
The source poset src(v, S) is the set of events, partially ordered with (ν,F ) ≺ (ν′,F ′)
if

• r(ν,F ) < r(ν′,F ′), or if
• r(ν,F ) = r(ν′,F ′) and ∠(ν,F ) is lexicographically smaller than ∠(ν′,F ′).

Remark 4.15 Corollary 4.5 says that breaking ties by lexicographically comparing
angle sequences at event points is the same as breaking ties by comparing distances
from each source image with a minimal jet at its event point. This is the precise sense
in which the source poset orders events by comparing infinitesimal expansion of the
wavefront along the interiors of ridges containing event points.

5 Constructing Source Images

Aside from its abstract dynamical interpretation, the importance of the source poset
here stems from its ability to be computed algorithmically, as we shall see here and in
Section 6. Source images are built one by one, using only previously built source im-
ages as stepping stones. These stepping stones form an order ideal in src(v, S), mean-
ing a subset I ⊂ src(v, S) closed under going down: E ∈ I and E′ ≺ E ⇒ E′ ∈ I .

To make a precise statement in the main result, Theorem 5.2, we need one more
dose of terminology, describing constructions in S determined by a choice of or-
der ideal.

Definition 5.1 Fix an order ideal I in the source poset src(v, S). For each facet F ,
let ϒF ⊂ TF be the set of source images ω ∈ srcF with (ω,F ) ∈ I . The set EI of
potential events consists of triples (ω,F,R′) such that

• ω can see the ridge R′ through F in the Voronoi diagram V(ϒF ), but
• a second facet F ′ contains R′, and the unfolding ω′ = �F,F ′(ω) of ω onto the

tangent space TF ′ results in a pair (ω′,F ′) that does not lie in I .

If (ω′,F ′) is an event in src(v, S)\I , then we say it is obtained by processing
(ω,F,R′). A potential event E ∈ EI is minimal if it has minimal radius r among po-
tential events, and lexicographically minimal angle sequence among potential events
with radius r .
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Tracing back through notation, if E = (ν,F,R′) is a minimal potential event, then
the minimal radius is r = r(R′, ν), and the minimal angle sequence is ∠(R′, ν).

Theorem 5.2 Given a nonempty order ideal I in the source poset src(v, S), pick a
minimal potential event (ν,F,R′) in EI . If ν′ = �F,F ′(ν) is the unfolding of ν to the
other facet F ′ containing R′, then I ′ = I ∪ {(ν′,F ′)} is an order ideal in src(v, S).

The statement has two parts, really: first, ν′ ∈ TF ′ is indeed a source image; and
second, I ′ is an order ideal in the poset src(v, S). To prove the theorem we need a
number of preliminaries. We state results requiring an order ideal inside the source
poset src(v, S) using language that assumes an order ideal I has been fixed.

Recall from Section 1 the notion of facet sequence Lγ for a shortest path γ . If, on
the way to a facet F ′, a shortest path γ from the source point v traverses a facet F ,
then the corresponding source images in F and F ′ have a special relationship. Pre-
cisely:

Definition 5.3 Let (ν,F ) ≺ (ν′,F ′) be events in the source poset. Suppose some
shortest path γ has facet sequence Lγ = (F1, . . . ,F�′) with a consecutive subse-
quence

L= (F�, . . . ,F�′) in which F = F� and F ′ = F�′ .

If ν′ = �L(ν) = �Lγ
(v) is the sequential unfolding of the source along γ , and

also the sequential unfolding of ν ∈ TF into TF ′ , then (ν,F ) geodesically precedes
(ν′,F ′). We also say that the shortest path γ described above is geodesically preceded
by (ν,F ).

Since the Voronoi cells in Theorem 2.9 come up so often, it will be convenient to
have easy terminology and notation for them.

Definition 5.4 Given a source image ω ∈ srcF , the cut cell of ω is Vω = V (srcF ,ω).

Roughly speaking, our next result says that angle sequences increase at successive
events along shortest paths, when the event point is pinned at a fixed point x.

Proposition 5.5 If (ν,F ) geodesically precedes (ν′,F ′) then (ν,F ) ≺ (ν′,F ′).

Proof Because of the way partial order on src(v, S) is defined, we may as well as-
sume that F and F ′ share a ridge R′, and that ν′ = �F,F ′(ν) is obtained by folding
along this ridge. In addition, we may as well assume that both event points ρ(ν,F )

and ρ(ν′,F ′) equal the same point x ∈ S, since otherwise r(ν,F ) < r(ν′,F ′). Trans-
late to assume this point x equals the origin 0, to simplify notation. Let R be the ridge
through which ν can see F , and set V = R ∩ Vν and V ′ = R′ ∩ Vν′ ; these are the cut
cells through which the source images ν and ν′ see their corresponding facets.

The angle geometry of ν′ relative to V ′ in TF ′ is exactly the same as the geometry
of ν relative to V ′ in TF , because ν′ is obtained by rotation around an axis in R

d+1

containing V ′. In other words, ν − ν′ is orthogonal to V ′. Therefore we need only
compare the angles with ν of jets along V and V ′. All jet frames will be at x.



364 Discrete Comput Geom (2008) 39: 339–388

Fig. 12 Geodesic precedence implies a smaller angle sequence.

Suppose the finite sequence (ξ1, ξ2, . . .) is a jet frame along V ′. Noting that V

and V ′ have disjoint interiors, choose the index r so that ξ̄ = (ξ1, . . . , ξr−1) is a
partial jet frame along V , but ξ̄ ′ = (ξ1, . . . , ξr ) is not. It is enough to demonstrate
that some partial jet frame (ξ1, . . . , ξr−1, ζr ) along V has a lexicographically smaller
angle sequence than ξ̄ ′. Equivalently, it is enough to produce a unit vector ζr in the

iterated tangent cone T
ξ̄

x V satisfying ν · ζr > ν · ξr .
Since R′ ∩ Vν′ = R′ ∩ Vν by Theorem 2.9, every line segment from ν to a point

in V ′ passes through V . Therefore, since we have translated to make x = 0, every seg-
ment connecting ν to TxV

′ passes through TxV . This observation will become crucial
below; for now, note the resulting inequality dim(V ) ≥ dim(V ′), which implies that

the iterated tangent cone T
ξ̄

x V contains nonzero vectors. All such vectors by def-
inition lie in the subspace ξ̄⊥ orthogonal to the space 〈ξ̄ 〉 with basis ξ1, . . . , ξr−1.
The same holds for ξr , so we may replace ν with a vector ω ∈ ξ̄⊥ by adding a
vector in 〈ξ̄ 〉, since then

ω · ζ = ν · ζ for all vectors ζ ∈ ξ̄⊥.

Fix a small positive real number ε. The line segment [ν, Jξ̄ ′(ε)] intersects TxV

at a point near Jξ̄ (ε). The image segment in ξ̄⊥ by orthogonal projection modulo

〈ξ̄ 〉 is [ω,λξr ], for λ = εr/
√

ε2 + · · · + ε2r . This image segment passes through the

cone T
ξ̄

x V at some point ζ on its way from ω to λξr . Elementary geometry of the
triangle with vertices 0, ω, and λξr (see Fig. 12) shows that the angle between ω

and ζ is smaller than the angle between ω and λξr . Taking ζr = ζ/|ζ | completes the
proof. �

After choosing a minimal potential event E, we must make sure that when all is
said and done, none of the other potential events end up below E in the source poset.

Lemma 5.6 Suppose (ω,F,R′) ∈ EI is a potential event with angle sequence ∠
and radius r . Let F ′ be the other facet containing R′ and let ω′ = �F,F ′(ω) be the
unfolding of ω ∈ TF onto TF ′ . If (ω′,F ′) is an actual event, then it either has radius
strictly bigger than r , or else its angle sequence ∠(ω′,F ′) is lexicographically larger
than ∠.

Proof Assume that (ω′,F ′) is an event. Quite simply, the result is a consequence of
the fact that the cut cell R′ ∩Vω′ = R′ ∩Vω must be contained inside R′ ∩V (ϒF ,ω),
which follows because ϒF ⊆ srcF . �
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In comparing a newly processed event (in source poset order) to other as yet un-
processed events, we need to know approximately how those other events will even-
tually arise. This requires the forthcoming lemma, in which a flat triangle inside S is
any subset of S isometric to a triangle in the Euclidean plane R

2.

Lemma 5.7 Fix a point x ∈ S. There is an open neighborhood Ox of x in S such
that, given y ∈ Ox and a shortest path γ from the source point v to y, some shortest
path γ ′ from v to x has the following property: the loop formed by traversing γ ′ and
then the segment [x, y] and finally the reverse of γ bounds a flat triangle in S.

Proof Choose Ox so small that the only closed faces of the cut locus Kv intersect-
ing Ox are those containing x. Every cut cell containing y ∈ Ox also contains x by
construction. Convexity of cut cells (Theorem 2.9) implies that the segment [x, y]
lies inside every cut cell containing y (there may be more than one if y is itself a cut
point). The source image obtained by sequentially unfolding γ therefore connects to
every point of [x, y] by a straight segment that sequentially folds to a shortest path.
The union of these shortest paths is the flat triangle in question. �

Conveniently, all of the shortest paths to x already yield events in I:

Lemma 5.8 Suppose some minimal potential event E ∈ EI has closest point x. Let G

be the last facet whose interior is traversed by a shortest path γ from the source point
to x. If ω ∈ srcG is the source image sequentially unfolded along γ , then (ω,G) ∈ I .

Proof As γ enters G, it crosses the relative interior of some ridge of G at a point w.
The event point ρ(ω,G) can be no farther than w from ω. On the other hand,
μ(v,w) < μ(v, x), because γ traverses the interior of G. Therefore (ω,G) has radius
less than r(E) = μ(v, x). �

Proof of Theorem 5.2 Suppose the minimal potential event (ν,F,R′) has closest
point x = ρ(R′, ν) to R′ ∩ V (ϒF , ν), of radius r , and a minimal jet frame ζ̄ at x with
angle sequence ∠.

Let γ be a shortest path from the source that ends at a point in the neighbor-
hood Ox from Lemma 5.7. By that lemma and Lemma 5.8, γ unfolds to produce
a source image whose event either lies in I , or is obtained by processing a poten-
tial event in EI , or is geodesically preceded by such a processed event. Applying
Lemma 5.8 and then Proposition 5.5, we find that all events with event point x that
are not in I have angle sequences lexicographically larger than ∠.

For positive ε, set y(ε) = x + εJζ̄ (ε). When ε is small enough, y(ε) lies interior
to R′, and close to x, in the neighborhood Ox from Lemma 5.7. By the previous
paragraph, every source image containing y in its cut cell is either in I or has an
angle sequence lexicographically larger than ∠.

Let us now compare, for all small positive ε, the distance to y(ε) from ν with the
distance to y(ε) from any source image in srcF or srcF ′ . Clearly the distance from a
source image ω is minimized when y(ε) lies in the cut cell Vω. Moreover, we may
restrict our attention to those source images ω whose cut cells Vω contain y(ε) for all
sufficiently small positive ε. Definition 4.1 says that ζ̄ is a jet frame at x along Vω.
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Therefore, by Proposition 4.4, we conclude using the last sentence of the previous
paragraph that y(ε) is weakly closer to ν than to ω for all small positive ε. This
argument shows that ν′ is a source image, so (ν′,F ′) is an event. Moreover, it shows:

Claim 5.9 Any minimal jet frame ζ̄ at the event point x = ρ(R′, ν) along the poly-
hedron R′ ∩ V (ϒF , ν) is a minimal jet frame at x along R′ ∩ Vν′ .

Every event in src(v, S)\I is either obtained by processing a potential event in EI ,
or is geodesically preceded by such a processed potential event. Using Claim 5.9, we
conclude by Lemma 5.6 and Proposition 5.5 that I ′ is an order ideal.

6 Algorithm for Source Unfolding

The primary application of the analysis up to this point is an algorithmic construction
of nonoverlapping unfoldings of convex polyhedra, which we present in pseudocode
followed by bounds on its running time. In particular, we show that the algorithm is
polynomial in the number of source images, when the dimension d is fixed. (Later we
state Conjecture 9.2, which posits that the number of source images is polynomial in
the number of facets.) Other applications, some of which are further discussed in Sec-
tion 8, include the discrete geodesic problem (Corollary 6.6) and geodesic Voronoi
diagrams (Algorithm 8.1 in Section 8.9).

Roughly, Algorithm 6.1 consists of a single loop that with every iteration con-
structs one new event. Each event is a pair consisting of a facet and a point that we
have called a source image in the affine span of that facet. The loop is repeated ex-
haustively until all of the events are computed, so the affine span of every facet has
its full complement of source images. The Voronoi diagram for the set of source im-
ages in each affine span induces a subdivision of the corresponding facet. For each
maximal cell in this subdivision, the algorithm computes a Euclidean motion (com-
position of rotation and parallel translation) that moves it into the affine span of the
facet containing the source point. The union of these moved images of Voronoi cells
is the output foldout Uv in the tangent space Tv to the source point v.

At each iteration of the loop, the algorithm must choose from a number of potential
events that it could process into an actual event. Each potential event E consists of an
already-computed event (ν,F ) plus a ridge R in the facet F . Processing the event E

applies a rotation to move the source image ν into the affine span of the other facet
containing R. The potential event that gets chosen must lie as close to the source point
as possible; this distance is the radius r = r(R, ν) at the beginning of the loop. The
loop then calls Routine 6.2 to choose which event to process; although this routine is
quite simple in structure, it is the part of the algorithm that most directly encounters
the subtlety of working in higher dimensions. The end of the loop consists of updating
the sets of source images and potential events; the latter requires Routine 6.3, which
we have isolated because it is the only time-consuming part of the algorithm, due to
its Voronoi computation.

We emphasize that once a source point ν is computed, it is never removed. This
claim is part of Theorem 5.2, in which the correctness of Algorithm 6.1—and indeed
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the procedure of the algorithm itself—is more or less already implicit, as we shall see
in the proof of Theorem 6.4.

We assume that the convex polyhedron P is presented in the input of the algorithm
as an intersection of closed half-spaces. Within the algorithm, we omit the descrip-
tions of standard geometric and linear algebraic operations, for which we refer to
[18] and [30]. These operations include the determination of lower-dimensional faces
(such as ridges) given the facets of P , and the computation of Voronoi diagrams.

Some additional notation will simplify our presentation of the algorithm. Denote
by F and R the sets of facets and ridges of P , respectively. If a ridge R ∈R lies in a
facet F ∈F , denote by φ(F,R) the other facet containing R, so F ∩ φ(F,R) = R.
Finally, for each facet F ∈ F , denote by ÊF the set of all triples (ν,F,R) such that
source point ν ∈ ϒF lies in the affine span TF of F , and R ∈ R is a ridge con-
tained in F .

Algorithm 6.1 (Computing Source Unfolding)
INPUT convex polyhedron P ⊂ R

d+1 of dimension d + 1
point v lying in the relative interior of a facet F of P

OUTPUT source foldout of the boundary S = ∂P into Tv
∼= R

d (see Section 3)
DEFINE for each F ∈ F : a finite set ϒF ⊂ TF of points

for each pair (ν,F ) satisfying ν ∈ ϒF : an ordered list Lν,F of facets
for each F ∈ F : a set EF ⊂ ÊF of potential events
E = ⋃

F∈F EF , the set of all potential events
INITIALIZE for F ∈F : if v �∈ F , then ϒF := ∅ and EF = ∅;

otherwise ϒF := {v}, Lv,F := (F ), EF := {(v,F,R) | R ∈ R and R ⊂
F }

COMPUTE �F,F ′ for all F,F ′ ∈ F such that F ∩ F ′ ∈ R is a ridge (see Defini-
tion 1.5)

WHILE E �= ∅

DO r := min{r(R, ν) | (ν,F,R) ∈ E} (see Definition 4.12)
CHOOSE A POTENTIAL EVENT E = (ν,F,R) ∈ E TO PROCESS

set F ′ := φ(F,R), ν′ := �F,F ′(ν), Lν′,F ′ := (Lν,F F ′)
update ϒF ′ ← ϒF ′ ∪ {ν′}

EF ′ ← {(ω,F ′,R′) ∈ ÊF ′ such that ω ∈ ϒF ′ , and
POINT ω ∈ ϒF ′ CAN SEE R′ THROUGH F ′, and
ω′ /∈ ϒG, where G = φ(F ′,R′), ω′ = �F ′,G(ω)}

EF ← EF \{E}, E ← ⋃
G∈F EG

END WHILE-DO

COMPUTE for all facets F ∈ F and points ν ∈ ϒF :
�L for L= Lν,F (see Definition 1.6), and then

Uv(ν,F ) := �−1
L (F ∩ V (ϒF , ν)) ⊂ Tv (see Theorem 2.9)

RETURN the foldout Uv = ⋃
(ν,F ) Uv(ν,F ), the union being over all F ∈ F and

ν ∈ ϒF

Routine 6.2 (Choose a Potential Event to Process)
INPUT the set E = ⋃

F∈F EF of potential events, and the radius r > 0
OUTPUT an event E ∈ E (see Definition 5.1)
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COMPUTE the closest potential events E◦ := {(ω,F,R) ∈ E | r(ω,F ) = r}
angle sequence ∠(R,ω) for all (ω,F,R) ∈ E◦ (see Definition 4.12)

FIND a potential event E = (ω,F,R) ∈ E◦ with lexicographically
minimal angle sequence ∠(R,ω) (see Section 4)

RETURN the event E = (ω,F,R)

Routine 6.3 (Point ω ∈ ϒ Can See R Through F )
INPUT facet F ∈ F , ridge R ∈R, finite set of points ϒ ⊂ TF , and ω ∈ ϒ

OUTPUT boolean variable � ∈ {True,False} (see Definition 4.12)
COMPUTE Voronoi diagram V(ϒ) (see Section 2)

IF Voronoi cell V (ϒ,ω) ⊂ V(ϒ) contains a point interior to R

and ω lies on the same side of R as F does in TF

then � := True;
otherwise � := False

RETURN the variable �

In the pseudocode we have used the two different symbols “←” and “:=” to dis-
tinguish between those variables that are being updated and those that are being com-
pletely redefined at each iteration of the WHILE-DO loop. We hope this clarifies the
structure of Algorithm 6.1.

Theorem 6.4 For every convex polyhedron P ⊂ R
d+1 with boundary S = ∂P , and

any source point v in a facet of S, Algorithm 6.1 computes the source foldout Uv ⊆ Tv .

Proof First, we claim by induction that after each iteration of the WHILE-DO loop, the
set {(ν,F ) | F ∈ F and ν ∈ ϒF } is an order ideal in the source poset src(v, S) from
Definition 4.14. The claim is clear at the beginning of the algorithm. By construction,
Routine 6.2 picks a minimal potential event E to process. The loop then adds an
event by processing E, with the aid of Routine 6.3. Theorem 5.2 implies that what
results after processing E is still an order ideal of events, proving our claim. Since
the poset src(v, S) is finite by Lemma 2.4, the algorithm halts after a finite number of
loop iterations. Finally, by Theorem 2.9 the Voronoi cells in each facet coincide with
the polyhedral subdivision of each facet by the cut locus Kv , so Theorem 3.5 shows
that the foldout in the output is the desired (nonoverlapping) source foldout Uv . �

For purposes of complexity, we assume throughout this paper that the dimension d

is fixed. Thus, if the convex polyhedron P ⊂ R
d+1 of dimension d has n facets, so

P is presented as an intersection of n closed half-spaces, we can compute all of the
vertices and ridges of P in polynomial time [18, 39]. For simplicity, we assume these
are precomputed and appended to the input.

The timing of Algorithm 6.1 crucially depends on the number of source im-
ages. Let

srcv := max
F∈F

|srcF

∣∣

be the largest number of source images in a tangent plane TF for a facet F . (This
number can change if the source point v is moved. For example, srcv = 4 if v is in
the center of a face, while srcv = 12 if v is off-center as in Figs. 7 and 8.) Note that
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computing Voronoi diagrams for N points in R
d can be done in NO(d) time [18,

p. 381]. See [6, 12], and [17] for details and further references on Voronoi diagrams,
and [18] and [30] for other geometric and linear algebraic computations we use.

Theorem 6.5 When the dimension d is fixed, the cost of Algorithm 6.1 is polynomial
in the number n of facets and the maximal number srcv of source images for a facet.

Proof From the analysis in the proof of Theorem 6.4, the number of loop iterations
is at most |src(v, S)| ≤ |F | srcv ≤ n srcv . Within the main body of the algorithm,
only standard geometric and linear algebraic operations are used, and these are all
polynomial in n. Similarly, Routine 6.2 uses only linear algebraic operations for every
potential event E ∈ E . Note that the cardinality of the set of potential events E during
any iteration of the loop is bounded by |src(v, S)| · |F |2 ≤ (n srcv) · n2 = n3 srcv .

Routine 6.3 constructs Voronoi diagrams V(ϒ) for finite sets ϒ ⊂ R
d . This

computation requires |ϒ |O(d) ≤ ( srcv)
O(d) time, which is polynomial for our fixed

dimension d . Therefore the total cost of the algorithm is also polynomial in n

and srcv . �

Corollary 6.6 Let v and w be two points on the boundary S of the convex (d +
1)-dimensional polyhedron P ⊂ R

d+1, and suppose that v lies interior to a facet.
Then the geodesic distance μ(v,w) on S can be computed in time polynomial in n

and srcv .

The restriction that v lie interior to a facet is unnecessary, and in fact Algorithm 6.1
can be made to work for arbitrary points v; see Sections 8.8 and 8.9.

Proof Use Algorithm 6.1 to compute the foldout map ϕ: Uv → S. Find w′ ∈ Tv

mapping to w = ϕ(w′) ∈ S, and compute the distance |v − w′|. By the isometry of
the exponential map in Theorem 3.5, we conclude that μ(v,w) = |v − w′|. �

Remark 6.7 The complexity of Algorithm 6.1 is exponential in d if the dimen-
sion is allowed to grow. For example, the number of vertices of P can be as large
as n�(d) [39]. Similarly, the number of cells in Voronoi diagrams of N points in R

d

can be as large as N�(d) [6, 17].
On the other hand, for fixed dimension d Algorithm 6.1 cannot be substantially im-

proved, because the input and the output have costs bounded from below by (a poly-
nomial in) n and srcv , respectively. This is immediate for the input since P is defined
by n hyperplanes. For the output, we claim that the foldout Uv in the output of Al-
gorithm 6.1 cannot be presented at a smaller cost because it is a (usually nonconvex)
polyhedron that has at least srcv boundary ridges, meaning faces of dimension d − 1
in the boundary of Uv . To see why, let F be a facet with srcv source images, and for
each ν ∈ srcF consider a shortest path γν whose sequential unfolding into TF has end-
point ν. If instead we sequentially unfold the paths γν into Tv , we get |srcF | = srcv

segments emanating from v. Extend each of these segments to an infinite ray. Some
of these infinite rays might pierce the boundary of Uv through faces of dimension
less than d − 1, but adjusting their directions slightly ensures that each ray pierces
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the boundary of Uv through a boundary ridge. These ridges are all distinct because
their corresponding rays traverse different facet sequences.

Of course, the efficiency of Algorithm 6.1 does not necessarily imply that it yields
an optimal solution to the discrete geodesic problem—or the unfolding problem, for
that matter. (The problem of computing any nonoverlapping unfolding, not necessar-
ily the source unfolding, is of independent interest in computational geometry [28].)
However, although srcv is not known to be polynomial in n, we conjecture in Sec-
tion 9 that it is. See Section 8.10 for more history of the discrete geodesic problem.

Remark 6.8 Following traditions in computational geometry, we have not specified
our model of computation. In most computational geometry problems the model is
actually irrelevant, since the algorithms are oblivious to it. In our case, however, the
situation is more delicate, due to the fact that during each iteration of the loop we
make a number of arithmetic operations that increase the error. More importantly,
we make comparisons, which potentially require sharp precision.

Theorem 6.5 and its proof hold as stated for the complexity over R model [9],
where there are no errors, and where all arithmetic operations and comparisons have
unit cost. While it would be more natural to consider the (usual) complexity over Z2
model [9], arithmetic over R is unfortunately inherent in the problem: the cut locus,
the source unfolding, and geodesic distances can all be irrational.

7 Convex Polyhedral Pseudomanifolds

Recall the notion of polyhedral complex from Section 1. The results in Sections 1–6
hold with relatively little extra work for polyhedral complexes S that are substantially
more general than boundaries of polytopes. Since the generality is desirable from the
point of view of topology, we complete this extra work here.

Suppose that x is a point in a polyhedral complex S. Denote by

Sx(ε) = {
y ∈ S | μ(x, y) = ε

}

the geodesic sphere in S at radius ε from x. If 〈x〉 is the smallest face of S contain-
ing x, then for sufficiently small positive real numbers ε, the intersection 〈x〉 ∩ Sx(ε)

is an honest (Euclidean) sphere 〈x〉ε of radius ε around x. The set of points Nx in S

near x and equidistant from all points on 〈x〉ε is the normal space at x orthogonal
to 〈x〉 in every face containing x. The spherical link of x at radius ε is the set

Nx(ε) = {
y ∈ Nx | μ(x, y) = ε

}

of points in the normal space at distance ε from x. When ε is sufficiently small, the
intersection of Nx(ε) with any k-dimensional face containing x is a sector inside a
sphere of dimension k − 1 − dim〈x〉. The metric μ on S induces a subspace metric
on the spherical link Nx(ε). Always assume ε is sufficiently small when Nx(ε) is
written.

Definition 7.1 Let S be a connected finite polyhedral cell complex of dimension d

whose facets all have dimension d . Given a point x inside the union Sd−2 of all
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faces in S of dimension at most d − 2, we say that S is positively curved at x if the
spherical link Nx(ε) is connected and has diameter less than πε. The space S is a
convex6 polyhedral complex if S is positively curved at every point x ∈ Sd−2.

This definition of positive curvature is derived from the one appearing in [34]. It
includes as special cases all boundaries of convex polyhedra; this is essentially the
content of Proposition 1.2.

Spherical links give local information about geodesics, as noticed by Stone (but
see also Section 4.2.2 of [10]).

Lemma 7.2 [34, Lemma 2.2] Suppose S is a convex polyhedral complex. Then γ̃ is
a shortest path of length αε in the spherical link Nx(ε) of a point x ∈ S if and only
if the union of all segments connecting points of γ̃ to x is isometric (with distances
given by the metric on S) to a sector of angle α inside a disk in R

2 of radius ε.

Although Stone only uses simplicial complexes, we omit the straightforward gen-
eralization to polyhedral complexes. Stone’s lemma forces shortest paths to avoid
low-dimensional faces in the presence of positive curvature.

Proposition 7.3 Proposition 1.2 holds for convex polyhedral complexes S.

Proof Using notation from Lemma 7.2, suppose that α < π , and let γ be the segment
connecting the endpoints of γ̃ through the sector of angle α. Then γ misses x. �

The rest of Section 1 goes through without change for convex polyhedral com-
plexes after we fix, once and for all, a tangent hyperplane TF

∼= R
d for each facet F .

The choice of a tangent hyperplane is unique up to isometry. For convenience, we
identify F with an isometric copy in TF , so that (for instance) we may speak as if F

is contained inside TF . This makes Definition 1.5, in particular, work verbatim here.
The main difficulty to overcome in the remainder of Sections 1–6 is the finiteness

in Lemma 2.4. In the context of convex polyhedral complexes, this finiteness is fun-
damental. It comes down to the fact that shortest paths never wind arbitrarily many
times around a single face inside of a fixed small neighborhood of a point. The state-
ment of the upcoming Proposition 7.4 would be false if we allowed infinitely many
facets, though it could still be made to hold in that case if the sizes of the facets and
their dihedral angles were forced to be uniformly bounded away from zero.

Proposition 7.4 Fix a real number r ≥ 0 and a convex polyhedral complex S. There
is a fixed positive integer N = N(r,S) such that the facet sequence Lγ of each short-
est path γ of length r in S has size at most N .

6Using “convex” instead of “positively curved’ allows usage of the term “nonconvex polyhedral com-
plex” without ambiguity: “nonpositively curved” is already established in the context of CAT(0) spaces to
mean (for polyhedral manifolds, at least) that no point has positive sectional curvature in any direction. In
contrast, “nonconvex” means that some point has a negative sectional curvature.
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Proof Pick a real number ε > 0 small enough so that the following holds. First, the
sphere Sx(ε) of radius ε centered at each vertex x only intersects faces containing x.
Then, for every point x on an edge but outside the union of the radius ε balls around
vertices, the sphere Sx(ε/2) only intersects faces containing x. Iterating, for every
point x on a face of dimension i but outside the union of all the previously con-
structed neighborhoods of smaller-dimensional faces, the sphere Sx(ε/2i ) only inter-
sects faces containing x. The existence of such a number ε follows from the fact that
every facet of S is convex, and that S has finitely many facets (Definition 7.1).

It suffices to prove the lemma with r = ε/2d . Let y be the midpoint of γ . The
closed ball By(ε/2d+1) of radius ε/2d+1 centered at y intersects some collection of
faces, and among these there is a face of minimal dimension k. Fix a point xk lying in
the intersection of this face with the ball By(ε/2d+1). The ball Bxk

(ε/2k) contains γ

by the triangle inequality. However, Bxk
(ε/2k) might also contain a point xj on a

face of dimension j < k. If so, then choose j to be minimal. Iterating this procedure
(at most d times) eventually results in a point x on a face of dimension i such that
Bx(ε/2i ) contains γ and only intersects faces containing x.

The metric geometry of S inside the ball Bx(ε/2i ) is the same as in Bx′(ε/2i ) for
every point x′ on the smallest face containing x, as long as Bx′(ε/2i ) only intersects
faces containing x′. Since S has finitely many faces by Definition 7.1, we reduce to
proving the lemma for shortest paths γ after replacing S by the ball B = Bx(ε/2i ).
In fact, we uniformly bound the number of facets traversed by any shortest path in B .
For simplicity, inflate the metric by a constant factor so that B has radius 2. By a face
of B we mean the intersection of B with a face of S.

Note that B is isometric to a neighborhood of the apex on the boundary of a right
circular cone when the dimension is d = 2. In this case shortest paths in B can pass
at most once through each ray emanating from x. We conclude that the lemma holds
in full (not just for B) when d = 2. Using induction on d , we assume that the lemma
holds in full for convex polyhedral complexes of dimension at most d − 1.

First suppose that x is not a vertex of S, so the smallest face 〈x〉 containing x

has positive dimension. Then B is isometric to a neighborhood of x in the product
〈x〉 × Nx of the face 〈x〉 with the normal space Nx . Projecting γ onto Nx yields a
shortest path γ̄ whose facet sequence in the convex polyhedral complex Nx has the
same size as Lγ . Induction on d completes the proof in this case.

Now assume that x is a vertex of S. If one of the endpoints of γ is x itself, then γ

is contained in some face of B . Hence we may assume from now on that x does not
lie on γ . Consider the radial projection from B\{x} to the unit sphere Sx(1) centered
at x in B . If the image of γ is a point, then again γ lies in a single face; hence we may
assume that radial projection induces a bijection from γ to its image curve γ̃ . Since
the geometry of B is scale invariant, every path γ ′ in B\{x} mapping bijectively to γ̃

under radial projection has a well-defined facet sequence equal to Lγ .
Choose another small real number ε as in the first paragraph of the proof, but with

B in place of S. Assume in addition that ε < 1/2π . Subdivide γ̃ into at least 2d/ε

equal arcs, and use Lemma 7.2 to connect the endpoints of each arc by straight seg-
ments in (the cone over γ̃ in) B . Lemma 7.2 implies that γ̃ has length at most π ,
because γ is a shortest path. Therefore each of the at least 2d+1π chords of γ̃ has
length at most 2d . The argument in the second paragraph of the proof now produces
a new center x′ for each chord, and we are assured that x′ �= x because the ε-ball
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around x does not contain any of the chords. Hence the smallest face 〈x′〉 contain-
ing x′ has positive dimension, and we are done by induction on d as before. �

We shall see in Corollary 7.7 that Proposition 7.4 implies finiteness of the set of
source images. However, first we need to introduce the class of polyhedral complexes
for which the notion of source image—and hence the rest of Sections 1–6—makes
sense.

Definition 7.5 A convex polyhedral complex S of dimension d is a convex polyhe-
dral pseudomanifold if S satisfies two additional pseudomanifold conditions: (i) each
facet is a bounded polytope of dimension d , and (ii) each ridge lies in at most two
facets.

Remark 7.6 The “A.D. Aleksandrov spaces with curvature bounded below by 0”
of [10] include convex polyhedral pseudomanifolds; see Example 2.9(6) there.
Some of our results here, such as surjectivity of exponential maps and nonbranch-
ing of geodesics, are general—and essentially local—properties of spaces with
curvature bounded below by zero. However, our focus is on decidedly global
issues pertaining to the combinatorial and polyhedral nature of convex polyhe-
dral pseudomanifolds, rather than on a local analogy with Riemannian geome-
try. That being said, many of our results here can be extended to convex “poly-
hedral” pseudomanifolds with facets of constant positive curvature instead of
curvature zero. We leave this extension to the reader.

A flat point in an arbitrary convex polyhedral complex need not have a neighbor-
hood isometric to an open subset of R

d , because more than two facets could meet
there. In a convex polyhedral pseudomanifold, on the other hand, every flat point not
lying on the topological boundary has a neighborhood isometric to an open subset
of R

d . This condition is necessary for even the most basic of our results to hold,
including Corollary 2.2 (whose proof works verbatim for convex polyhedral pseudo-
manifolds), and the definition of source image (which would require modification
without it; see Section 8.3).

We would have preferred to avoid the boundedness condition on facets, but the
finiteness of the set of source images in Lemma 2.4 can fail without it; see Section 8.6.

Corollary 7.7 Lemma 2.4 holds for convex polyhedral pseudomanifolds S.

Proof Since every facet is bounded, the lengths of all shortest paths in S are uni-
formly bounded. Proposition 7.4 therefore implies that there are only finitely many
possible facet sequences among all shortest paths in S from the source. �

Corollary 7.7 yields the following consequences, with the same proofs.

Theorem 7.8 Proposition 2.6 on the generalization of Mount’s lemma and The-
orem 2.9 on Voronoi diagrams hold verbatim for convex polyhedral pseudomani-
folds S.
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The rest of Section 2 requires slight modification due to the fact that a convex
polyhedral pseudomanifold S can have a nonempty topological boundary ∂S.

Proposition 7.9 Fix a source point v in a convex polyhedral pseudomanifold S.
Every warped point lies either in the topological boundary of S or in the cut lo-
cus Kv .

Proof The same as Proposition 2.10, assuming w is not in the boundary of S. �

In view of Proposition 7.9, the statement of Corollary 2.11 fails for convex polyhe-
dral pseudomanifolds. Instead we get the following, with essentially the same proof.

Corollary 7.10 If v is a source point in a convex polyhedral pseudomanifold S, then

1. Kv ∪ ∂S is polyhedral and pure of dimension d − 1, and
2. Kv ∪ ∂S is the union Kv ∪ Sd−2 ∪ ∂S of the cut, warped, and boundary points.

The considerations in Section 3 go through with one small modification: the non-
compact flat Riemannian manifold S◦ is the complement in S of not just the (d − 2)-
skeleton Sd−2, but also the topological boundary ∂S of S. The notion of what it
means that a tangent vector at w ∈ S can be exponentiated (Definition 3.3) remains
unchanged, as long as w lies neither in Sd−2 nor the boundary of S. Similarly, the
notion of source interior (Definition 3.4) remains unchanged except that the exponen-
tials exp(tζ ) for 0 ≤ t ≤ 1 must lie in neither the cut locus Kv nor the boundary ∂S.

Theorem 7.11 Fix a source point v in the convex polyhedral pseudomanifold S. The
exponential map exp: Uv → S on the source foldout is a polyhedral nonoverlapping
foldout, and the boundary Uv\Uv maps onto Kv ∪ ∂S. Hence Kv ∪ ∂S is a cut set
inducing a polyhedral nonoverlapping unfolding S\(Kv ∪ ∂S) → Uv to the source
interior.

Proof Using Corollary 7.10 in place of Corollary 2.11, the proof is the same as that of
Theorem 3.5, except that every occurrence of S\Kv must be replaced by S\(Kv ∪∂S),
and the open subspace S◦ must be defined as S\(Sd−2 ∪ ∂S) instead of S\Sd−2. �

Corollary 7.12 Every convex polyhedral pseudomanifold of dimension d is, as a met-
ric space, obtained from a closed, star-shaped, polyhedral ball in R

d by identifying
pairs of isometric boundary components.

Section 4 concerns local geometry in the context of convex polyhedra, and there-
fore requires no modification for convex pseudomanifolds, given that all of the earlier
results in the paper hold in this more general context.

In Section 5 the only passage that does not seem to work verbatim for convex
polyhedral pseudomanifolds is the proof of Proposition 5.5. That proof is presented
using language as if F and F ′ were embedded in the same Euclidean space R

d+1,
as they are in the case S = ∂P . This embedding can be arranged in the general case
here by choosing identifications of TF and TF ′ as subspaces of R

d+1 in such a way
that the copies of F and F ′ intersect as they do in S.
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Finally, the algorithm in Section 6 works just as well for convex polyhedral
pseudomanifolds, as long as these spaces are presented in a manner that includes
the structure of each facet as a polytope and the adjacency relations among facets.
For example, folding maps along ridges shared by adjacent facets can be represented
as linear transformations after assigning a vector space basis to each tangent hyper-
plane.

For the record, let us summarize the previous three paragraphs.

Theorem 7.13 The results in Sections 4–6 hold verbatim for convex polyhedral
pseudomanifolds S in place of boundaries of convex polyhedra.

8 Limitations, Generalizations, and History

The main results in this paper are more or less sharp, in the sense that further exten-
sion would make certain aspects of them false. In this section we make this sharpness
precise, and also point out some alternative generalizations of our results that might
hold with requisite modifications. Along the way, we provide more history.

8.1 Polyhedral versus Riemannian

The study of geodesics on convex surfaces, where d = 2, goes back to ancient times
and has been revived by Newton and the Bernoulli brothers in modern times. The
study of explicit constructions of geodesics on two-dimensional polyhedral surfaces
was initiated in [23], and is perhaps much older.

The idea of studying the exponential map on polyhedral surfaces goes back to
Aleksandrov [3, Section 9.5], who introduced it locally when d = 2. He referred to
images of lines in the tangent space TF to a facet F as quasi-geodesic lines on the
surface, and proved some results on them specific to the dimension d = 2. Among
his other results was the d = 2 case of Proposition 1.2.

A detailed analysis of the cut locus of two-dimensional convex polyhedral surfaces
was presented in [37]. This paper, seemingly overlooked in the West, gives a complete
description of certain convex regions called “peels” in [5], which can be used to
construct source unfoldings. The approach in [37] is inherently two-dimensional and
nonalgorithmic.

The study of exponential maps on Riemannian manifolds is classical [21]. Wolter
[38] proved properties of cut loci in the Riemannian context that are quite similar to
our results describing the cut locus as the closure of the set of cut points. In fact, we
could deduce part 2 of our Corollary 2.11 from Lemma 2 of [38]—in the manifold
case, at least—using Proposition 1.2 (which has no analogue in Riemannian geom-
etry). The method would be to “smooth out” the warped locus to make a sequence
of complete Riemannian manifolds converging (as metric spaces) to the polyhedral
complex S, such that the complement of an ever decreasing neighborhood of the
warped locus in S is isometric to the corresponding subset in the approximating man-
ifold. Every shortest path to v in S is eventually contained in the bulk complement of
the smoothed neighborhood.
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Fig. 13 Points in the shaded region have exactly two shortest paths to v; all of these paths go through the
warped point w.

This method does not extend to the polyhedral case where S is allowed to be
nonconvex, because Proposition 1.2 fails: shortest paths (between flat points) can
pass through warped points (Fig. 13). Moreover, the polyhedrality in the first part of
Corollary 2.11 fails systematically when S is allowed to be nonconvex (see [26]).

8.2 Low-Dimensional Flat Faces

We assumed in Definition 7.1 that faces of dimension d − 2 or less in convex polyhe-
dral complexes must be nontrivially curved. Allowing convex polyhedral complexes
where low-dimensional faces can be flat would break the notion of a facet sequence in
Corollary 1.4, and would cause the set of warped points to differ from the union of all
closed faces of dimension d − 2, in general. The resulting definitions of folding map
and sequential unfolding would be cumbersome if not completely opaque. Nonethe-
less, the resulting definitions would be possible, because shortest paths would still
enter facets (and, in fact, all faces whose interiors are flat) at well-defined angles. The
notion of an exponential map would remain unchanged.

Definition 2.3 and Theorem 2.9 should hold verbatim for the modified notion of
convex polyhedral pseudomanifold in which low-dimensional flat faces are allowed,
because the generalized Mount Lemma (Proposition 2.6) should remain true. Note
that Mount’s lemma relies mainly on Proposition 1.2 and Corollary 2.2. The latter
might be more difficult to verify in the presence of low-dimensional flat faces, be-
cause it needs every flat point to have a neighborhood isometric to an open subset
of R

d . Thus one might have to assume S is a manifold, and not just a pseudomani-
fold.

Observe that Fig. 6 depends on not having low-dimensional flat faces: it uses the
fact that the vertex bordering the shaded region must lie in the cut locus.

8.3 Why the Pseudomanifold Conditions?

Theorem 2.9 fails for convex polyhedral complexes that are not pseudomanifolds,
even when there are no flat faces of small dimension. Indeed, with the notion of
cut point set forth in Definition 2.1, entire facets could consist of cut points. To see
why, suppose there is a cut point interior to a ridge lying on the boundary of three
or more facets, and note that the argument using Fig. 4 in the proof of Corollary 2.2
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Fig. 14 Aleksandrov unfolding of the cube (the source point v is on the front face, while the left and back
faces have no cuts).

fails. For a more concrete construction in dimension d = 2, find a convex polyhedral
pseudomanifold with a source point so that some edge in the cut locus connects two
vertices (for example, take a unit cube with a source point in the center of a facet;
see Fig. 1), and then attach a triangle along that edge of the cut locus. The attached
triangle (“dorsal fin”) consists of cut points.

The proof of Theorem 2.9 fails for nonpseudomanifolds S when we use the thin-
ness of the cut set in the proof of Proposition 2.6. The appropriate definition of cut
point x for convex polyhedral complexes more general than pseudomanifolds should
say that two shortest paths from x to the source leave x in different directions—that
is, they pierce the geodesic sphere Sx(ε) at different points. However, Corollary 2.2
would still fail for shortest paths entering the “dorsal fin” constructed above.

8.4 Aleksandrov Unfoldings

The dimension d = 2 foldouts called “star unfoldings” in [5, 13], and [1] were con-
ceived of by Aleksandrov in Section 6.1 of [3]. Thus we propose here to use the term
“Aleksandrov unfolding” instead of “star unfolding,” since in any case these fold-
outs need not be star-shaped polygons. We remark that a footnote in the same section
in [3] indicates that Aleksandrov did not realize the nonoverlapping property, which
was only established four decades later [5].

Aleksandrov unfoldings are defined for three-dimensional polytopes P similarly
to source unfoldings. The idea is again to fix a source point v, but then slice the
boundary S of P open along each shortest path connecting v in S to a vertex. An
example of the Aleksandrov unfolding of the cube is given in Fig. 14 (see also Fig. 5).
Note that when the source point is in the center of the face, the resulting Aleksandrov
unfolding agrees with the source unfolding in Fig. 1.

There is a formal connection between source and Aleksandrov unfoldings. Starting
from the source unfolding, cut the star-shaped polygon Uv into sectors—these are
“peels” as in Section 8.1—by slicing along the shortest paths to images of vertices.
Rearranging the peels so that the various copies of v lie on the exterior cycle yields a
nonoverlapping foldout [5] containing an isometric copy of the bulk of the cut locus.
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Fig. 15 Source and Aleksandrov unfoldings of the cube, where the corresponding peels in both unfoldings
are numbered from 1 to 8.

Fig. 16 Shortest paths to warped points making edges look disconnected.

This rearrangement is illustrated in Fig. 15, which continues Example 3.6 (see [1] for
further references).

No obvious higher-dimensional analogue of the Aleksandrov unfolding exists, be-
cause although the union of all shortest paths connecting the source point to warped
points is polyhedral, this complex is not a cut set as per Definition 3.1. Indeed, think-
ing in terms of source foldouts again, the union of all rays passing from the origin
through the images of warped points does not form the (d − 1)-skeleton of a fan of
polyhedral cones. Even when d = 3, edges of S closer to the source point can make
edges farther away look disconnected, as seen from the source point. An example
of how this phenomenon looks from v is illustrated in Fig. 16, where the picture is
meant to look like the roof of a building as seen from above.

Circumventing the above failure of Aleksandrov unfoldings in high dimension
would necessarily involve dealing with the fact that the set Sd−2 of warped points
generically intersects the cut locus Kv in a polyhedral set of dimension d − 3. This
“warped cut locus” usually contains points interior to maximal faces of Kv , making
it impossible for these interiors of maximal cut faces to have neighborhoods in S

isometric to open sets in R
d , even locally. Thus the picture in Fig. 15, where most

of the cut locus can lie intact in R
2, is impossible in dimension d ≥ 3. The only
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remedy would be to make further slices across the interiors of the maximal faces of
the cut locus Kv before attempting to lay it flat in R

d . Making these extra slices in a
canonical way, to generalize Aleksandrov unfoldings to arbitrary dimension, remains
an open problem.

8.5 Definition of Source Image

Some subtle geometry dictated our choice of definition of “source image” (Defi-
nition 2.3). With no extra information available, we might alternatively have tried
defining srcF as the (finite) set of endpoints of sequentially unfolded shortest paths

• ending at a point interior to F ; or
• ending anywhere on F , including at a warped point.

Both look reasonable enough; but the first fails to detect faces of dimension d − 1 in
the cut locus that lie entirely within ridges of S, while the second causes problems
with verifying the generalized Mount Lemma (Proposition 2.6) as well as Proposi-
tion 5.5 and Lemma 5.8. It is not that the generalized Mount Lemma would be false
with these “bonus” source images included, but the already delicate proof would fail.
In addition, having these extra source images would add unnecessary bulk to the
source poset.

8.6 Finiteness of Source Images

As we saw in Lemma 2.4 for boundaries of polyhedra, or Proposition 7.4 and Corol-
lary 7.7 for convex polyhedral pseudomanifolds, the number of source images is fi-
nite. The argument we gave in Lemma 2.4 relies on the embedding of S as a polyhe-
dral complex inside R

d+1 in such a way that each face is part of an affine subspace
(i.e. not bent or folded). This embedding can be substituted by the more general con-
dition that the polyhedral metric on each facet is induced by the metric on S (so pairs
of points on a single facet are the same distance apart in S as in the metric space con-
sisting of the isolated facet). With this extra hypothesis, we would get finiteness of the
set of source images even for convex polyhedral pseudomanifolds whose facets were
allowed to be unbounded. However, allowing unbounded facets in arbitrary convex
polyhedral pseudomanifolds can result in facets with infinitely many source images.

For example, consider an infinite strip in the plane, subdivided into three substrips
(one wide and two narrow, to make the picture clearer). Fix a distance � > 0, and
glue each point on one (infinite) boundary edge of the strip to the point � units away
from its closest neighbor on the opposite (infinite) edge of the strip. What results
is the cylinder S in Fig. 17. This cylinder would be a convex polyhedral manifold
if its facets were bounded. The source foldout Uv determined by a source point v

in the middle of the wide substrip is depicted beneath S, shrunken vertically by a
factor of about 2. The cut locus Kv , which is a straight line along the spine of S,
divides each substrip into infinitely many regions, so each substrip has infinitely
many source images.
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Fig. 17 A source foldout with infinitely many source images.

8.7 Generic Source Points

For generic choices of source point v, the source poset will be a chain—that is, a
total order on events. The reason is that moving v infinitesimally changes differently
the angles from different source images to ridges containing the same event point,
precisely because these source images are sequentially unfolded along shortest paths
leaving v in different directions. Note, however, that the distances from these various
source images to the same event point always remain equal.

8.8 Warped Source Points

We assumed that the source point v ∈ S lies in the relative interior of some facet;
however, nothing really changes when v lies in the relative interior of some ridge.
This can be seen by viewing the exponential map as living on the interior flat points
S◦ ⊆ S, as in Section 3.

Moreover, simple modifications can generalize the exponential map to the case
where v is warped. However, exponentiation on the complement of the cut locus
cannot produce a nonoverlapping foldout in R

d if v ∈ Sd−2, because the resulting cut
locus would not be a cut set. Indeed, the cut locus would fail to contain all of Sd−2, so
its complement could not possibly be isometric to an open subset of R

d . On the other
hand, exponentiation would instead produce a foldout of S onto the tangent cone to S

at v. The main point is that the source point still connects to a dense set of points in S

via shortest paths not passing through warped points, by Proposition 1.2.

8.9 Multiple Source Points

Let ϒ = {v1, . . . , vk} ⊂ S be a finite set of points on the boundary S = ∂P of a convex
polyhedron P . Define the geodesic Voronoi diagram VS(ϒ) to be the subdivision of S

whose closed cells are the sets

VS(ϒ,vi) = {
w ∈ S | μ(vi,w) ≤ μ(vj ,w) for all 1 ≤ j ≤ k

}
.

Just like the (usual) Voronoi diagrams, computing geodesic Voronoi diagrams is an
important problem in computational geometry, with both theoretical and practical
applications [2, 22, 29] (see [24] and [18] for additional references).
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Below we modify Algorithm 6.1 to compute the geodesic Voronoi diagrams in S

when multiple source points are input. The modified algorithm outputs subdivisions
of the facets of S that indicate which source point is closest. More importantly, it also
computes which combinatorial type of geodesic gives a shortest path. In the code
below, the WHILE-DO loop and the routines remain completely unchanged. The only
differences are in the initial and final stages of the pseudocode.

Algorithm 8.1 (Computing the Geodesic Voronoi Diagram)
INPUT convex polyhedron P ⊂ R

d+1 of dimension d + 1, and
flat points v1, . . . , vk in the boundary S = ∂P

OUTPUT geodesic Voronoi diagram VS(ϒ) in S

INITIALIZE ϒF := {vi | vi ∈ F }, Lvi ,F := (F ) for vi ∈ ϒF , and
EF := {(vi,F,R) ∈ ÊF | POINT vi ∈ ϒF CAN SEE R THROUGH F }
[ . . . ]

COMPUTE for each i: srci := {(ν,F ) | F ∈F , ν∈ϒF , and Lν,F begins with Fi}, and
for each i: the subset VS(ϒ,vi) := ⋃

(ν,F )∈srci
V (ϒF , ν) ∩ F of S

RETURN geodesic Voronoi diagram VS(ϒ) = (VS(ϒ,v1), . . . , VS(ϒ,vk))

That some of the source points v1, . . . , vk might lie in the same facet necessitates
the call to Routine 6.3 in the initialization of EF . As we did before Theorem 6.5,
define src to be the maximal number of source images for a single facet.

Theorem 8.2 Let P ⊂ R
d+1 be a convex polyhedron and let S = ∂P , with source

points v1, . . . , vk in S\Sd−2. For fixed dimension d , Algorithm 8.1 computes the
geodesic Voronoi diagram VS(ϒ) in time polynomial in k, the number n of facets,
and src.

The proof is a straightforward extension of the proof of Theorems 6.4 and 6.5; it
is omitted. Using observations in Section 8.8, it is possible to modify Algorithm 8.1
to work for a set of arbitrary (that is, possibly warped) source points.

8.10 The Discrete Geodesic Problem

One of our motivating applications for this paper was to the discrete geodesic prob-
lem of computing geodesic distances and the shortest paths between points v and w

in S. The reduction of this problem to computing source unfoldings is easy: construct
the source foldout Uv in the tangent cone at v, and compute the Euclidian distance
between the images.

We should mention here that for d = 2 essentially two methods are used in the lit-
erature to resolve the discrete geodesic problem: the construction of nonoverlapping
unfoldings as above (see [1, 13], and [33]), and the so-called “continuous Dijkstra”
method, generalizing Dijkstra’s classical algorithm [15] for finding shortest paths
in graphs. The second method originated in [26] and is applicable to nonconvex sur-
faces (see also [20] and [32], where the appendix to the latter paper contains a critique
of the former). Interestingly, this method constructs an explicit geodesic wavefront,
and then selects and performs “events” one at a time. However, the time-ordering of



382 Discrete Comput Geom (2008) 39: 339–388

events is based on the d = 2 fact that the wavefront intersects the union of ridges
(edges, in this case) in a finite set of points. Our approach is a combination of these
two algorithmic methods, which have previously been separated in the literature. We
refer the reader to [24] for more references and results on the complexity of discrete
geodesic problems. In general, computing geodesic distances on arbitrary polyhedral
complexes remains a challenging problem of both theoretical and practical interest.

9 Open Problems and Complexity Issues

The source poset succeeds at time-ordering the events during wavefront expansion,
but it fails to describe accurately how the wavefront bifurcates during expansion,
because every event of radius less than r occurs before the first event of radius r

in the source poset. On the other hand, the notion of “geodesic precedence” from
Definition 5.3 implies a combinatorial structure recording bifurcation exactly.

Definition 9.1 Given a source point v on a convex polyhedral pseudomanifold S,
the vistal tree T (v, S) is the set of events, partially ordered by geodesic precedence.

The definition of geodesic precedence immediately implies that T (v, S) is indeed
a rooted tree. It records the facet adjacency graph of the polyhedral decomposition of
the source foldout Uv into cut cells of dimension d . Equivalently, this data describes
the “vista” seen by an observer located at the source point—that is, how the visual
field of the observer is locally subdivided by pieces of warped faces. Proposition 5.5
says precisely that the identity map on the set of events induces a poset map from
the vistal tree to the source poset. In particular, when the source point is generic as in
Section 8.7, the source poset is a linear extension of the vistal tree.

There are numerous interesting questions to ask about the vistal tree, owing to its
geometric bearing on the nature of wavefront expansion on convex polyhedra. For
example, its size, which is controlled by the extent of branching at each node, is
important for reasons of computational complexity (Theorem 6.5).

Conjecture 9.2 The cardinality |src(v, S)| of the set of source images for a polyhe-
dral boundary S is polynomial in the number of facets when the dimension d is fixed.

Hence we conjecture that there is a fixed polynomial fd , independent of both S

and v, such that |src(v, S)| < fd(n) for all boundaries S = ∂P of convex polyhedra P

of dimension d + 1 with n facets, and all source points v ∈ S. Note that the cardinality
in question is at most factorial in the number of facets: |src(v, S)| < n · (n − 1)! = n!.
Indeed, each source image yields a facet sequence, and each of these has length at
most n, starts at with facet F containing v, and does not repeat any facet.

To demonstrate the strength of Conjecture 9.2, the following weaker (but perhaps
more natural) claim is an immediate consequence.

Conjecture 9.3 The number of shortest paths joining any pair of points in a polyhe-
dral boundary is polynomial in the number of facets when the dimension is fixed.
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Conjecture 9.3 says that only polynomially many cut cells can meet at a single
point, whereas Conjecture 9.2 says there are only polynomially many cut cells in to-
tal.

In contrast, we also believe a stronger statement than Conjecture 9.2 holds
for boundaries of convex polyhedra. Given a shortest path γ , both of whose
endpoints lie interior to facets, call the facet sequence Lγ traversed by γ , the
combinatorial type of γ (this is called the edge sequence in [27] for the d = 2 case).

Conjecture 9.4 The cardinality of the set of combinatorial types of shortest paths in
the boundary S of a convex polyhedron is polynomial in the number of facets of S,
when the dimension is fixed.

That is, we do not require one endpoint to be fixed at the source point. The state-
ment is stronger than Conjecture 9.2 because source images are in bijection with
combinatorial types of shortest paths in S with endpoint v. In all three of the previous
conjectures, the degree of the polynomial will increase with d , even perhaps linearly.
When d = 2 all three conjectures have been proved (see [1] and [13]).

The intuition for Conjecture 9.2 is that, as seen from the source point in a con-
vex polyhedral boundary S, the faces of dimension d − 2 more or less subdivide the
horizon into regions. (The horizon is simply the boundary of the source foldout Uv ,
as seen from v.) The phrase “more or less” must be made precise, of course; and our
inability to delete it altogether is a result of exactly the same phenomenon in Fig. 16
that breaks the notion of Aleksandrov unfoldings in higher dimension.

The reason we believe Conjecture 9.4 is that we believe Conjecture 9.2, and there
should not be too many combinatorial types of vistal trees. More precisely, moving
the source point a little bit should not alter the combinatorics of the vistal tree, and
there should not be more than polynomially many possible vistal trees. In fact, we
believe a stronger, more geometric statement. It requires a new notion.

Definition 9.5 Two source points are equivistal if their vistal trees are isomorphic,
and corresponding nodes represent the same facet sequences.

Again, the facet sequence corresponding to a node of the vistal tree is the list of
facets traversed by any shortest path whose sequential unfolding yields the corre-
sponding source image. Hence two source points are equivistal when their views of
the horizon look combinatorially the same.

Conjecture 9.6 The equivalence relation induced by equivistality constitutes a con-
vex polyhedral subdivision of the boundary S of any convex polyhedron. Moreover,
the number of open regions in this subdivision is polynomial in the number of facets
of S.

Independent from the conjecture’s validity, the vistal subdivision it speaks of—
whether convex polyhedral or not—is completely canonical: it relies only on the
metric structure of S. In addition, lower-dimensional strata of the vistal subdivision
should reflect combinatorial transitions between neighboring isomorphism classes of
vistal trees. Thus Conjecture 9.6 gets at the heart of a number of issues surrounding
the interaction of the metric and combinatorial structures of convex polyhedra.
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Remark 9.7 An important motivation behind the above ideas lies in the computation
of the geodesic diameter of the boundary of a convex polytope. This is a classical
problem in computational geometry, not unlike computing diameters of finite graphs
(for the d = 2 case see [5] and [1]). One possibility, for example, would be to compute
the vistal subdivision in Conjecture 9.6, and use this data to list the combinatorial
types of shortest paths. Each combinatorial type could then be checked to determine
how long its corresponding shortest paths can be. Conjectures 9.4 and 9.6 give hope
that the geodesic diameter problem can be solved in polynomial time.

We remark here that the polynomial complexity conjectures fail for nonconvex
polyhedral manifolds of dimension d ≥ 2. Note that this does not contradict the fact
that when d = 2 there exists a polynomial time algorithm to solve the discrete geo-
desic problem (see Section 8.10 above). Indeed, the number of source images gives
only a lower bound for our algorithm, while the problem is resolved by a different
kind of algorithm. On the other hand, we show below that for d ≥ 3 the discrete geo-
desic problem is NP-hard. The following result further underscores the difference
between the convex and nonconvex case.

Proposition 9.8 On (nonconvex) polyhedral manifolds, the number of distinct com-
binatorial types of shortest paths can be exponential in the number of facets. In ad-
dition, finding a shortest path on a (nonconvex) polyhedral manifold is NP-hard.

We present two proofs of the first part: one that is more explicit and works for
all d ≥ 2, and the other that is easy to modify to prove the second part. For the proof
of the second part we construct a three-dimensional polyhedral manifold, which is
essentially due to Canny and Reif [11]. See Remark 9.9 for comments on how to
doctor these manifolds to make them compact and without boundary.

Proof To obtain a polyhedral domain with exponentially many shortest paths be-
tween two points x and y, we consider a dimension d = 2 example. Simply take a
pyramid shape polyhedral surface as shown in Fig. 18 and observe that there exist 2k

shortest paths between top point v and bottom vertex w, where k is the number of
terraces in the pyramid. The omitted details are straightforward.

Now consider a dimension d = 3 example of a different type. Polyhedrally sub-
divide R

3 by taking the product of a line � = R with the subdivision of R
2 in

Fig. 19. Observe that there are only finitely many cells. Now add 4n hyperplanes
H0, . . . ,H4n−1 orthogonal to �, and equally spaced along �. This still leaves finitely
many convex cells. Between hyperplanes H4k and H4k+1, for all k = 0 · · ·n − 1, re-
move all cells except the prisms whose bases are the top and bottom triangles in
Fig. 19. Similarly, between hyperplanes H4k+2 and H4k+3, remove all cells except
the prisms whose bases are the left and right triangles in Fig. 19.

Now choose x and y to be points on �, with x being on one side of all the hyper-
planes, and y being on the other side. Any shortest path connecting x to y must pass
alternately through vertical and horizontal pairs of triangular prisms, and there is no
preference for which of the two prisms in each pair the shortest path chooses. Thus
the number of shortest paths is at least 4n, while the number of cells is linear in n.
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Fig. 18 Nonconvex polyhedral surface in R
3 and shortest paths between points v and w.

Fig. 19 Polyhedral subdivision of a planar slice in R
3.

For the second part, a construction in [11] presents a polyhedral domain B where
the shortest path solution is NP-hard. This domain B is obtained by removing a set
of parallel equilateral triangles from R

3. To produce a manifold one has to thicken
the triangles into nearly flat triangular prisms. We omit the details. �

Remark 9.9 The polyhedral manifold S in the above proof is noncompact and has
nonempty boundary; but with a little extra work, we could accomplish the same ef-
fect using a compact polyhedral manifold without boundary. The idea is to draw a
large cube C around S in R

3, and place copies Ctop and Cbot of C as the top and bot-
tom facets of a hollow hypercube inside R

4. The remaining six facets of the hollow
hypercube are to remain solid. The result is compact, but still has nonempty boundary
in Ctop and Cbot. This we fix by building tall three-dimensional prisms in R

4 on the
boundary faces, orthogonal to Ctop and Cbot, pointing away from the hypercube. Then
we can cap off the prisms with copies of the cells originally excised from C ⊂ R

3 to
get a nonconvex polyhedral 3-sphere in R

4.
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Remark 9.10 The reader should not be surprised by the fact that computing the geo-
desic distance is NP-hard for nonconvex manifolds. On the contrary, in most situa-
tions the problem of computing the shortest distance is intractable, and in general is
not in NP. We refer to [25] for further hardness results in the geometric context. In a
different, more traditional, context, finding the shortest distance in a Cayley graph be-
tween two elements in a permutation group (presented by a list of generators in SN ) is
known to be NP-hard even for abelian groups [16]. Furthermore, for directed Cayley
graphs the problem is PSPACE-complete [19].

Our final conjecture concerns the process of unfolding boundaries of convex poly-
hedra: if someone provides a polyhedral nonoverlapping foldout made of hinged
wood, is it always possible to glue its corresponding edges together? Because wood
is rigid, we need not only a nonoverlapping property on the foldout as it lies flat on
the ground, but also a nonintersecting property as we continuously fold it up to be
glued.

Viewing this process in reverse, can we continuously unfold the polyhedral bound-
ary so that all dihedral angles monotonically increase, until the whole polyhedral
boundary lies flat on a hyperplane? This idea was inspired by recent works [8, 14]
and was suggested by Connelly.7 While the monotone increase of the dihedral angles
may seem an unnecessary condition justified only by the aesthetics of the blooming,
it is in fact crucial in the references above.

As we have phrased things above, we asked for continuous unfolding of an arbi-
trary nonoverlapping foldout. However, in fact, we only want to ask that there exist
a foldout that can be continuously glued without self-intersection. Let us be more
precise.

Definition 9.11 Let S be the boundary of a convex polyhedron of dimension d + 1
in R

d+1. A continuous blooming of S is a choice of nonoverlapping foldout U → S,
and a homotopy {φt : U → R

d+1 | 0 ≤ t ≤ 1} such that

1. φ0 is the foldout map U → S;
2. φ1 is the identity map on U ;
3. φt is an isometry from the interior U of U to its image, and φt is linear on each

component of the complement of the cut set in each facet, for 0 < t < 1; and
4. the dihedral angles between corresponding facets of φt (U) increase as t increases.

An example of a continuous blooming is given in Fig. 20.

Fig. 20 An example of a continuous blooming of the surface of the cube.

7Private communication.
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Conjecture 9.12 Every convex polyhedral boundary has a continuous blooming.

Even though we ask only for existence, we believe that in fact the source unfold-
ing can be continuously bloomed. As far as we know, this is open even for d = 2.
Interestingly, we know of no nonoverlapping unfolding that cannot be continuously
bloomed, and remain in disagreement on their potential existence.
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