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Introduction

Motivation and summary of results

At the origin of the ideas discussed in this thesis are the closely related notions of CR and contact
manifolds. The study of CR manifolds arose as a generalization of a real hypersurface of complex
space. Such hypersurfaces were for the first time studied by Henri Poincaré [Poi07], who showed
that two real hypersurfaces in C? are, in general, not biholomorphically equivalent. This was
later generalized to higher dimensions, among others by Chern and Moser [CM74]. An abstract
generalization has been introduced since and CR geometry has become an important field of
differential geometry, with links to many neighbouring fields. It has applications to partial
differential equations but also within the field of geometry, it is, for instance, closely linked
to conformal Lorentzian geometry through the Feffermann construction (for an introduction,
compare [BJI0, chapter 2.7] or [Bau99]).

An abstract CR manifold is defined as an odd-dimensional manifold equipped with a subbundle
of the tangent bundle H C T'M of codimension oneE] and an integrable almost-complex structure
J on this subbundle. Now, if the CR manifold is assumed to be orientable, it admits one-form 7
whose kernel coincides with H. We can then form the Lévy form L, = dn(-,J-). One can show
that if this form is nondegenerate, 7 is a contact form, i.e. n A (dn)™ vanishes nowhere. If the
Lévy form is even positive-definite, we call the CR manifold strictly pseudoconvexr and we can
then equip the manifold with a Riemannian metric g, = L, +717®n and this metric is compatible
with the contact structure in a certain sense.

Now, on a strictly pseudoconvex CR manifold, we always have a connection (covariant derivative)
which is uniquely determined by the fact that it is metric and the following conditions on its
torsion:

T(X,Y)=L,(JX,Y),

T(E, X) = 516, X] + J[6 X))

for any X,Y € I'(H), where £ is the Reeb vector field of the contact structure, i.e. uniquely
determined by the requirements 7n(§) = 1 and {.dn = 0. The Tanaka-Webster connection was
first introduced by Noboru Tanaka in [Tan75] and S.M. Webster in [Web78|. The aim of this
thesis is to give alternative descriptions of this connection, particularly through Dirac operators,
and to generalize it to general metric contact manifolds (i.e. manifold equipped with a contact
structure, an almost-complex structure on the kernel of the contact form and a metric compat-
ible with both) which do not come from CR manifolds.

A first generalization of the Tanaka-Webster connection to general metric contact manifolds is
given in the paper [Tan89] by Shukichi Tanno. He describes it as the unique metric connection
that makes the contact structure parallel and whose torsion fulfils certain equations. He also
gives explicit formulse for the Christoffel symbols. This generalization is picked up by Robert
Petit in [Pet05]. In this paper, he describes how every metric contact manifold admits a canonical
Spin® structure and describes their spinor bundles. He then studies the Dirac operator induced
on this spinor bundle by the generalized Tanaka-Webster connection.

In this thesis, we adopt a different generalization, introduced by Liviu Nicolaescu in [Nic05].
This generalization is obtained in the following way: To a metric contact manifold, we associate
a manifold M = R x M which carries an almost-hermitian structure (§,.J) extending the one we

! A more general theory of CR manifolds with higher codimensions also exists.
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have on the contact distribution of M. On this manifold, we can now use the theory of hermitian
connections (i.e. metric connections with respect to which the almost-complex structure is
parallel), as introduced by Pauline Libermann (cf. [Lib54]) and disucssed by André Lichnerowicz
in [Lic55] (in English [Lic76]) and, more recently, by Paul Gauduchon in [Gau97]. Building on
Gauduchon’s work, Nicolaescu defines a class of basic connection V? on TM which is closely
related to the first canonical connection introduced in [Lic55]. In particular, he proves that there
is one in this class that respects the splitting TM = 8t ® TM and thus induces a connection
on T'M. This induced connection is a contact connection (i.e. it is hermitian and the almost-
complex structure on the contact distribution is parallel with respect to it) and we have the
following result:

Theorem
The Tanaka-Webster connection of a CR manifold is the restriction to M of a certain basic

connection on M which respects the splitting TM =Rt ®TM.

Next, let N be any almost-hermitian manifold. Then it admits a canonical Spin® structure,
whose spinor bundle has a particular form described as follows: The complexified tangent bundle
TN.=TN ® C of the almost-hermitian manifold (N, .J, g) splits into the +i eigenspaces of the
(extended) operator .J, which we denote TN'? and TN®!. We can then form the spaces of
(p, q)-forms

APA(T*N) = AP((TNYO)*) A A(TNOH*).

Now, the spinor bundle S¢ of the canonical Spin¢ structure can be identified with the bundle
of (0,q)-forms and if N is spin, the spinor bundle of the spin structure has the form S ~
A% (T*N)® L, where L is a square-root of the canonical bundle. On either bundle, we have the
Hodge-Dolbeault operator # = v/2(9 + 8" ), where dw = projg 441 ©(dw) for w € T(A™(T*N))
(with a certain extension to L). Gauduchon compares the Hodge-Dolbeault operator on S with
geometric Dirac operators, i.e. Dirac operators induced by a connection on the tangent bundle, in
particular the Levi-Civta connection and the canonical connections. It is then deduced that the
Hodge-Dolbeault operator is, up to a Clifford multiplication term, equal to the Dirac operator
induced by the Levi-Civita connection ([Gau97, section 3.5]). He then extends this result to the
Spin spinor bundle as follows: He considers the Spin¢ bundle locally as a product S¢ = S@ L™,
where L~! is a square-root of the anti-canonical bundle and given a connection V on TN (and
thus, an induced connection on S) and a connection V¥ on L~!, he induces one on S¢ as their
product. Any such connection then defines a geometric Dirac operator and a similar result as
in the spin case is obtained for the Hodge-Dolbeault operator (|[Gau97, section 3.6]).
Nicolaescu then again applies this theory to the almost-hermitian manifold (M J, §) associated
to a metric contact manifold. He deduces that the Hodge-Dolbeault operator coincides with the
Dirac operator induced by the basic connection on TM and a canonical connection on L™!. The
spinor bundle of M has a similar structure to the one of M, where we take exterior powers of
the complexified contact distribution and it can thus be regarded as a subbundle of the spinor
bundle over M. Nicolaescu then studies the Dirac operator induced by the generalized Tanaka-
Webster connection on the spinor bundle over M and compares it with the Hodge-Dolbeault
operator.

In this thesis, we follow the approach of Nicolaescu, also discussing the necessary results of
Gauduchon. However, we take a different approach to connections on the Spin® spinor bundle
of an almost-complex manifold. Every Spin® structure canonically induces a U;-bundle P; over
the same manifold: In fact, this bundle is the det-extension of the unitary frame bundle Py.
Then, a connection V on the tangent bundle together with a connection form Z on P; induce
a connection on the spinor bundle. In particular, the connection form Z can be induced by a
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hermitian connection V# on the tangent bundle. Using this approach, we obtain the following
result:

Theorem

On the spinor bundle associated to the canonical Spin® structure of an almost-hermitian mani-
fold, the Hodge-Dolbeault operator coincides with the Dirac operator induced by a basic connection
and the connection form Z induced by the same basic connection.

Starting from this relationship, we can deduce a result that compares any geometric Dirac
operator with the Hodge-Dolbeault operator. In order to state the formula, we introduce the
potential of a connection, which is the difference between any metric connection and the Levi-
Civita connection.

Theorem

On the spinor bundle associated to the canonical Spin® structure of an almost-hermitian man-
ifold, let H be the Hodge-Dolbeault operator and let D.(V,V?) be the geometric Dirac operator
induced by the metric connection V with potential A and the connection form Z which, in turn,
is induced by the hermitian connection V* with potential A*. Then these operators satisfy the
following formula;

Du(V,V7) = H — %c(tr(A _ A+ %c(b(A _ a4 - %c(trc(Az _ %),

where A® is the potential of a basic connection and ¢ denotes Clifford multiplication.

Explicit formulae for the cases of the Levi-Civita connection and the canonical connections are
deduced.

Again following Nicolaescu, we use this result in the case of a metric contact manifold and the
almost-hermitian manifold associated to it. Connections on the spinor bundle associated to the
canonical Spin¢ structure of a metric contact manifold can be obtained in the same way as for
an almost-hermitian manifold. By comparing the spinor bundles and the Dirac operators of the
two manifolds, we then deduce the following result:

Theorem

On a metric contact manifold, the Dirac operator induced by the generalized Tanaka-Webster
connection and the connection form Z induced by it coincides with a Hodge-Dolbeault-type op-
erator.

If the manifold is CR, the Tanaka-Webster connection is the only contact connection that induces
this operator and whose torsion satisfies g(X,T(Y,Z)) =0 for any X,Y,Z € TC.

In this thesis, we give a presentation of the above results, supplemented by an introduction to
almost-hermitian, metric contact and CR manifolds and their canonical Spin® structures and a
presentation of the results on hermitian connections as discussed in [Gau97].

Structure

In the first two chapters, we present the necessary background on almost-hermitian, metric
contact and CR manifolds. We begin in the first chapter with the notion of almost-hermitian
manifolds. A large section is dedicated to differential forms on such manifolds, discussing both
the spaces of (p, ¢)-forms and some decompositions of the spaces of three-forms and T'M-valued
two-forms, which we will need later to describe hermitian connections. The second chapter
introduces metric contact and CR manifolds, first seperately and then explaining the relationship
between the two.
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In the third chapter, we turn our attention to spin and Spin® structures and their spinor bundles.
In the first two sections, we review some facts on spin representations and spin (Spin®) structures.
In the following section we then discuss connections on spinor bundles and their Dirac operators
and, in particular, investigate how certain properties of the Dirac operators are reflected in
the torsion of the connection. In a final section, we consider the cases which are important in
this thesis: The canonical Spin© structures on almost-hermitian and metric contact manifolds.
We prove their existence, describe their spinor bundles and discuss connections on the spinor
bundles, which can not only be induced in the usual way for spinor bundles, but also as covariant
derivatives of differential forms.

In the following chapter, we discuss the theory of hermitian connections, i.e. connections mak-
ing the almost-complex structure parallel. These connections are completely described by their
torsion, which splits into various parts, only some of which actually depend on the chosen connec-
tion. Having discussed the general theory, we then introduce canonical and basic connections. In
a second section, we apply this theory to a metric contact manifold M and the almost-hermitian
manifold M associated to it, obtaining a first description of the (generalized) Tanaka-Webster
connection.

In the final chapter, we turn our attention to Dirac operators. As in the chapter on connections,
we first consider the case of an almost-hermitian manifold and then apply this theory to a metric
contact manifold. In particular, we compare the Hodge-Dolbeault operator with geometric Dirac
operators.

The five chapters of the main text are supplemented by an appendix, where we collect some
results on connections on principal bundles, which we use in the description of connections on
spinor bundles.
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Introduction

Notation and conventions

In order to avoid confusion, we establish certain conventions and notation. To begin with, let
M and N be manifolds. Throughout this thesis, all manifolds are understood to be smooth
(i.e. differentiable of class C*°) and any mapping f : M — N will be assumed to be smooth if
nothing else is mentioned. The tangent bundle of a manifold M is denoted T'M and the tangent
space at a point © € M by T, M. For the exterior differential on the space of differential forms
we agree on the following convention: The exterior differential is defined in such a way that for
a k-form w and vector field X, ..., X

k
dw(Xo, ... Xp) = Y _(-1)'X(w(Xo, ... Xi, ..., X))
=0
+ Z(—l)”jw([Xi, Xj],Xo, ...,Xi, ...,Xj, ,Xk)

1<J

Note that this convention agrees with that in most of our sources, but differs from that in [Bla02]
and [KNG69].

Let furthermore mp: P — M and mg: Q — M be principal or vector bundles over M. in the
case of vector bundles, when speaking of a vector bundle morphism f: P — ), we always mean
a smooth map between the manifolds P and ) which is linear on each fibre and which satisfies

mp=mgo f.
The notation for the following spaces will be used without mention:
C>(M,N) smooth functions from M to N
I'(P) =T'(M, P) sections of P
I'U, P) local sections over U C M
L comp(P) compactly supported sections
X(M) =I'(T'M) vector fields over M
QF (M) =[(A*(T*M)) differential forms of order k& on M
QF(M,V) =T(V®A¥T*M)) differential forms with values in the vector space
or vector bundle V
Q](fomp(M ) compactly supported differential forms

vii






1

Almost-hermitian manifolds

This is an introductory chapter in which we discuss almost-hermitian structures. While the
manifolds we are really interested in are metric contact and CR manifolds, which we will intro-
duce in the following chapter, almost-hermitian structures play an important role because they
are closely related to metric contact manifolds.

In the first section of this chapter, we begin with basic definitions of almost-complex structures
and almost-hermitian metrics which are metrics compatible with the almost-complex structure
and discuss local bases adapted to these structures. In the following section, we discuss the
spaces of differential forms on an almost-hermitian manifold which are quite rich in structure
and which will be important for describing connections on almost-hermitian manifolds. Finally,
we apply this theory to the Kéhler and the Lee form, two differential forms canonically associated
to an almost-hermitian manifold.

1.1 Almost-complex Structures

Here we introduce the notion of an almost-complex structure, that is a manifold with a vector
bundle morphism modelled on multiplication by ¢ on a complex vector space. We begin with
the definition of an almost-complex structure and then study the structure of the complexi-
fied tangent bundle, before we introduce almost-hermitian metrics, i.e. Riemannian metrics
adapted to the almost-complex structure. Throughout this section, let M be a 2n-dimensional
differentiabld? manifold.

1.1.1 Definition Let E — M be a real vector bundle over M. A vector bundle endomorphism
JE— F

such that J? = —Id is called an almost-complex structure on E.
The tupel (M, J) where J is an almost-complex structure on T'M is then called an almost-
complex manifold.

1.1.2 Remark
(1) As (pointwise) det J? = (—1)?™ =1, J is an isomorphism.
(2) Obviously, J is modelled on the multiplication by ¢ in the case of a complex manifold. We shall

bear this idea in mind for further ideas in connection with almost-complex structures.

Let M be a complex manifoldﬁ Then, the multiplication by ¢ induces an almost-complex
structure on the (real) tangent bundle of the underlying real manifold. However, not every
almost-complex structure is induced by a complex structure. The following tensor may tell us
whether the almost-complex structure is indeed induced by an actual complex structure.

1.1.3 Definition Let (M, J) be an almost-complex manifold. The (2,1)-tensor field
1
N(X,)Y) = 1 (JX,JY] - [X,Y]| - JX,JY] - JJX,Y])

is called Nijenhuis Tensor of the almost-complex structure.

By differentiable or smooth, we always mean of class C°.
3When speaking of a complex manifold we mean a smooth manifold whose transition functions are holomor-
phic.
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Obviously, this tensor vanishes if J is induced by a complex structure. In fact, J being induced
by a complex structure is not only sufficient but also necessary. For more details on this, compare

section [[.2.11
Given an almost-complex structure on the tangent bundle, T'M may be considered as a complex
vector bundle by setting

(a+bi)X :=aX +bJX.

However, there is another way to equip M with a complex vector bundle which is more rich in
structure by complexifying the tangent bundle:

TM.=TM ® C.
The real tangent bundle can be considered as a subbundle via the following embedding:

TM — TM,
X—=X®Il1.

Obviously, we can also complexify the cotangent bundle and then the following identity holds
T*M.:= (TM.)* =T"M & C. (1.1)

We can now extend the almost-complex structure J to an almost-complex structure on T'M, by
setting J.(X ® z) :== (JX)® z for X € TM, z € C and demanding it to be C-linear. Note that
if we restrict J. to (the image of) T'M it is equal to J.

As opposed to the case where we simply considered T'M as a complex vector bundle, J does not
coincide with the multiplication by ¢ which gives us the following additional structure on T'M.,:
Because J. is a complex-linear operator on T M, with (J.)2 = —Id, it can only have eigenvalues
{#£i} and T'M, splits (pointwise) into eigenspaces

TM. = E(Je,i) ® E(J,, —i) = TM" o TM%!. (1.2)
Given a vector X € T'M, it splits into its (1,0) and (0,1)-parts as follows:
X=X —iJX e TM'YP,
XO0l.= X +4JX e TM!,

and both bundles are completely given by elements of this type.
In the same way as the tangent bundle, the cotangent bundle splits as

T*MC — T*MLO @ 1‘1*]\40,17

where T* M0 = (TMY0)* and T* M0 = (TM®1)*. Alternatively, one can extend the operator
J to the cotangent space via the formula (Ja)(X) = —a(JX) for any o € T*M and X € TM.
Then, the splitting introduced above is again a decomposition into the +i-eigenspaces of J.
Given an element o € T*M, its parts are given by

ot =a+iJae T* MY,
O i=a —iJa e T* ML

We can further introduce a complex conjugation on T'M, by setting
XRz=XQ®FZ,

which gives us that TM%! is the complex conjugate of T M0,



1.1 Almost-complex Structures

1.1.4 Remark Alternatively, one can use such a splitting of the complexified tangent bundle to define
an almost-complex structure, i.e. one defines an almost-complex structure as a subbundle TM° c T M,
such that TM°NTM0 = {0} and TM1° @ TM10 = TM.. One then defines the operator .J on TM, by
setting it equal to i on TM'? and equal to —i on its conjugate. Then, J? = —Id and it can be restricted
to T M where it is an almost-complex structure in the sense of definition [1.1.1

1.1.5 Remark An alternative way to define the complexification of T'M is to define
T.M.={X+iY|X,Y € T, M}
and to define the multiplication by complex numbers in the following, natural way:
(a+bi) (X +1iY)=(aX —=bY) +i-(bX +aY).
We can identify the two spaces as follows

X+i¥ »X®1+Y @i,
(aX) +i(bX) <1 X @ (a + ib).

Then, J extends as J.(X +iY) = J(X)+iJ(Y) to TM.. The embedding of TM in this case is trivial and
any local real basis of T'M is a complex basis of T'M,. Furthermore, the conjugation is given canonically
by

X +1iY =X —iY.

In what follows, we shall use whichever description of T'M, is more handy.

Almost-hermitian metrics

In order to do geometry on a manifold, we need to equip it with a metric. Bearing in mind that
for a hermitian scalar product we have

<U v >=1 < U0 >= —i < U, v >= — < iu,v >,
we introduce the following notion of a metric compatible with an almost-complex structure:

1.1.6 Definition Let (M, J) be an almost-complex manifold. Then a metric g is called almost-
hermitian if it is Riemannian and satisfies

9:(X,JY) = —¢,(JX,Y) forany ze M, X,Y € T, M.

A tuple (M, g, J) is called an almost-hermitian manifold if J is an almost-complex structure on
M and g an almost-hermitian metric.

Note that this implies
9(JX,JY) = —g(J?X,Y) = ¢(X,Y)

and that by
9 X ®2,Y ®@w) :=zwg(X,Y)

a hermitian metric is induced on T'M, by g.
The Riemannian duality P TM — T*M given by

gV, X)=X"(Y) VX,Y € T,M
with inverse %: T*M — TM given by

glaf, X) = a(X) for any X €e T,M,a € T, M,



METRIC CONTACT MANIFOLDS AND THEIR DIRAC OPERATORS

can be extended by C-linearity to T.M and T} M, ie (X + iY)? = X? 44Y?.
There is a caveat in this extension of duality: It exchanges types, i.e. the dual of a vector of
type (1,0) is a covector of type (0,1) and vice versae.

Before closing our discussion of almost-hermitian manifolds, we make some remarks about local
coordinates on such a manifold and about the frame bundle of such a manifold. We begin with
the local coordinates: Given an almost-complex structure on a vector bundle E, one can always
form a so-called J-adapted basis of F, i.e. a basis of the form e, f1,...,em, frn Where Je; = f;

and thus J f; = —e;. Moreover, such a basis can always be chosen as an orthonormal one. This is
done as follows: Given ey, ..., fj_1, chose e; normalized and perpendicular to span{er, ..., fj—1}.
Then we set f; := Je; and because g is almost-hermitian, we have g(ej, f;) = —g(fj,e;) and

thus the two vectors are orthogonal. Furthermore, for any k£ < j we have that

gler, f;) = —9(fr,ej) =0  and  g(fx, f;) = g(ex,e;) =0

and therefore, a basis thus constructed is orthonormal and J-adapted.

Furthermore, interpreting e;, f; as e; ® 1, f; ® 1, such a basis (or, indeed, any basis of T'M) can
be considered as a basis of T'M.. However, we can also construct another basis of T'M,. which
splits into bases of TM10 and TM%!. Define

2k = (ek—ifk) (k:L...,m),

2k = (ek+ifk) (k:zl,...,m).

SEISE

Then (z) is a basis of TM'0 and (Z) is a basis of TM%!,
Concerning the dual spaces, denote (e!, f1,....e™, f™) the dual of a J-adapted basis e1, ..., f.
Then a dual basis of (z,zx) is given by

We now turn our attention to the frame bundle of an almost-hermitian manifold (M, g,J). If
we consider T'M as a complex vector bundle, then the metric g is hermitian (this is due to the
fact that the multiplication by the imaginary unit is given by J and g is almost-hermitian) and
we can form unitary bases of TM. Given such a basis e, ..., ep, define f; = Je;. Because (e;)
is a complex basis and multiplication by ¢ is equivalent to applying J, the set e1, fi, ..., €m, fm
is a real basis of T'M. Now, if we set

(Py(M)), = {e = (e1,...,em)|e is a unitary basis of T, M}

Py(M) = [] (Por(M)),
zeM

and
f: PU(M) — PGL(M)
(e1,...,em) — (e1,Je1, ..., em, Jem),

then (Py, f) is a Up,-reduction of Pgr (M) (for more details on reductions, compare appendix

A3).
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Just like for the other structure groups, the tangent bundle, its dual and its exterior powers
can be realized as vector bundles associated to Py (M) in the usual way, where we define the
representation p on U,, as p o ¢, where ¢ is the inclusion of U,, in SOs,, and p the standard
matrix representation on R?™ (cf. appendix . If we want to consider T'M as a complex
vector bundle, then it is the associated vector bundle Py (M) x,, C™, where p. is the standard
matrix action on C™.
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1.2 Differential forms on almost-hermitian manifolds

This is a rather technical section in which we discuss some results on the structure of the
space of differential forms on an almost-hermitian manifold: We begin with a short introduction
to the spaces of (p,q)-forms and then describe various decompositions of the spaces Q3(M)
and Q%(M,TM) and the relationships between them following the work of Paul Gauduchon
(cf. |Gau97, section 1]). We will later use these results to describe the torsion of a hermitian
connection on an almost-hermitian manifold.

Throughout this section, the manifold considered is an almost-hermitian manifold (M, g, J) of
dimension n = 2m. At each point of M, we denote by (e;)"4, (fi)i*, a J-adapted basis which,
for ease of notation, we shall sometimes call (bz)?fl where bop_1 = ex and by, = fi.

1.2.1 The spaces of (p,q)-forms and integrability

The space of differential forms on the complexified tangent bundle of an (almost) complex
manifold can be decomposed into certain subspaces induced by the splitting into +i-eigenspaces
of TM,. To begin with, recall that the complexified cotangent space, splits in the same way as

T*MC — T*Ml,o EB T*M0’17

where T*MY0 = (TM'9)* or, alternatively, these two subspaces form the decomposition into
+i-eigenspaces of the operator J extended to T*M as explained in the preceding section. We
shall call the elements of the respective spaces 1,0-forms and 0,1-forms. We extend this notion
to exterior powers of higher order: The space of differential forms on T'M,

Qg (M) = D(AMT™ M)
splits as follows:
1.2.1 Definition A form w € Q’g(M) is called of type p,q if it is an element of
Qp,q(M) =T (AP(T*Ml,O) A Aq(T*MO’l)) )
This gives us the decomposition into subspaces
QF(M) = € ar1(M) (1.3)
p+q=k

and, extending the metric to the space of differential forms in the usual way, these subspaces

become orthogonal.

Just like the "ordinary” spaces of differential forms, the spaces AP4(T*M) can be realized as

vector bundles associated to the frame bundle. In order to do so, we consider the representation
Papg: Un — GL(API((R*™)"))

Papg(A)(ZTE A A 2T A RN LA ZRe) = pf ()20 A L p*(A)2P A pF(A)2RL A LA p*(A)zha,
where p*(A) is extended complex-linearly as follows:
. , 1, - ,
pr(A)2 = 7 (" (A)e’ +ip"(A)f7)

and analogously for zJ. Then, the following identity holds:
APA(T* M) ~ Py (M) Xp,,., APA((R?™)%),
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1.2.2 Remark (Local coordinates) Recall the discussion (cf. the end of section of local coordi-
nates (z;) and (z;) for the spaces TM? and TM%! respectively and their duals by (27) and (z7). Then
any form w € QP9(M) has local coordinates

w= Z LU[JZI/\QJ (wrg € C(M,QC)).
Il=p,|J|=q

Now, the space of real k-forms can be embedded into the space of complex forms, and thus,
every real form admits a decomposition into (p, ¢)-forms. Notice, however, that even if we begin
with a real form, this is a decomposition into complex forms.

We shall now study the behaviour of the decomposition into (p,q)-forms under the exterior
differential. First, note that the space of complex differential forms can be interpreted as follows:

QF(m) ~ QF (M) o C. (1.4)

This can be seen by remembering that any real basis of 7'M also forms a complex basis of T'M..
Then, taking exterior powers, the complex forms are just complex-linear combinations of real
forms, which is precisely the meaning of QF(M) ® C.

We can then extend the exterior differential on real k-forms to a complex-linear operator

d®Ide: QF(M) = QF (M) ® C — QM) @ C = Q¥ (M),

which, by a slight abuse of notation, we shall again call d.
Now, if we restrict the exterior differential to the space of (p, ¢)-forms, its image lies in Q279 (M)
which again splits. We now define two operators:
Q: QPA(M) — QPFLI(Ar)
W — Projop+1.q (dw),
0: QPUM) — QPITL(M)
W > Projop,e+1(dw).

It is now tempting to assume that d = @ + 0. This is, however, not true in general. In fact, this
property defines a certain class of almost-complex manifolds.

1.2.3 Definition An almost-complex manifold (M, J) (or the almost-complex structure J) is
called integrable if d = 0+ O

1.2.4 Proposition (cf. [Wel08, Theorem 3.7])
Let M be a complex manifold. Then the almost-complex structure induced by the complex struc-
ture is integrable.

In fact, this condition is not only necessary but also sufficient and closely linked to the Nijenhuis
tensor as the following theorem by Newlander and Nirenberg ([NN57]) shows. A more recent
proof can be found in [Ho6r66].

1.2.5 Theorem (Newlander-Nirenberg)
Let M be a differentiable manifold and J an almost-complex structure on M. Then the following
statements are equivalent:

(1) J is integrable,
(2) Nj=0,

(3) J is induced by a complex structure.
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1.2.2 TM-valued 2-forms and 3-forms on an almost-hermitian manifold

We shall study in great detail the spaces Q2(M,TM) and Q3(M) as they will be very useful
for describing the torsion of hermitian connections on almost-complex manifolds. We begin by
noting that the two spaces are closely related: Every three-form w € Q3(M) defines a T M-valued
two-form by

9 X,w(Y,2)) =w(X,Y,Z) for any X,Y,Z € X(M). (1.5)

On the other hand, every form B € Q?(M,TM) defines a trilinear real-valued mapping, skew-
symmetric in the last two arguments, by the same formula. We will always take the point of
view which seems more useful in the situation and, by a slight abuse of notation, will note both
the two-form and the three-form by the same symbol. To avoid some confusion, we agree to
separate the first argument from the others by a semicolon if the form is not skew-symmetric in
all three arguments, i.e. we write B(X;Y, Z) = g(X, B(Y, Z)) for B € Q*(M,TM).

One can then apply the Bianchi operator to make the form totally skew-symmetric:

b: Q* (M, TM) ~T(T*M @ A*T*M) — Q3(M)

which is given by
1
(bB)(X,Y,Z) := 5 (B(X;Y,2) + B(Y; 2, X) + B(Z; X,Y))

for any X,Y,Z € X(M). One immediately deduces the following elementary properties

1.2.6 Lemma
The operator b is a projection, i.e. b2 = b and for local coordinates (bj), the following formula
holds:

1. .
b(bj@bk/\bl)ng]/\bk/\bl.

Proof: The first statement is immediate from the definition. The second statement can be easily
checked by applying both forms to a 3-tuple of a local basis. O

The not totally skew-symmetric part of B € Q?(M,TM) can be further decomposed as follows:
Via the trace operator

tr: Q3 (M, TM) — QY (M)
Br— ZB(bj;bj,'),
j=1

we can associate a one-form to B. A one-form can then again be made into a T M-valued
two-form by

T QN (M) = QF(M, TM)

a(X,Y) = (@(Y)X — a(X)Y).

Therefore, we have a decomposition

Q*(M, TM) = QY(M) @ Q*(M) @ Q2(M, TM)
B=trB+bB + By,
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where

Q2(M, TM) = {B € Q*(M,TM)|tr B=0,6B =0},
By:=B—trB—bB e O3(M,TM).

The decomposition we have introduced so far only uses the manifold structure of M, whereas
the decomposition we shall introduce now is induced by the almost-complex structure. In due
course, we shall then compare the two structures.

1.2.7 Definition A TM-valued two-form B € TM ® A%(T*M) is called

e of type (1,1) if B(JX,JY) = B(X,Y),

e of type (2,0) if B(JX,Y)=JB(X,Y) and

e of type (0,2) if B(JX,Y) = —-JB(X,Y).
The respective subspaces of TM ® A?(T*M) will be denoted by

TM @ AYY(T*M), TM @ A>%(T*M) and TM @ A%*(T*M)
and the respective spaces of sections by
QbY (M, TM), Q*°(M,TM) and Q2(M,TM).

In the same way, the respective parts of B will be denoted by B%!, B*? and B%2.

We quickly note some elementary properties of the forms of the various types.

1.2.8 Lemma
(1) Let B € QY'Y (M, TM). Then the following equation holds:

B(JX,Y) = —B(X,JY).

(2) Let B € Q*(M,TM). Then the following equations hold:

B(JX,JY)=—B(X,Y),
B(X,JY) = B(JX,Y).

Furthermore,

Be Q*(M, TM) if and only if B(X;JY,Z)=—-B(JX;Y,Z).

(3) Let B € QY%2(M,TM). Then the following equations hold:

B(JX,JY)=—B(X,Y),
B(X,JY) = B(JX,Y).

Furthermore,

B e Q"2(M,TM) if and only if B(X;JY,Z) = B(JX;Y,Z).
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Proof: (1) B(JX,Y) = —B(JX, J?Y) = —B(X, JY).
(2) We have

B(JX,JY)=JB(X,JY) = —JB(JY,X) = —J2B(Y,X) = —~B(X,Y)
and B(X,JY)=-B(JY,X)=—-JB(Y,X)=JB(X,Y) = B(JX,Y). The equivalent formula-
tion of being of type (2,0) follows immediately from (L.5)) and the fact that g(J-,-) = —g(-, J-).
(3) is analogous to (2). O

From the above lemma, we conclude that the various subspaces of Q%(M, T M) are given by the
following local bases, where (e, fx) is a local J-adapted frame in TM and (e¥, f¥) its dual.

QYUY (M, TM)| has a basis consisting of the following forms:

el®<ej/\ek—|—fj/\fk)
fl®<ej/\e’“+fj/\f’f>
el®<ej/\fk—fj/\ek>

fz®<ej/\fk—fj/\ek).

(j<k/del,..m)

Q?%(M,TM)| has a basis consisting of the following forms:

el®(ejAek—fjAfk>+fz®(ejAfk—i-fjAek)

, , , , (j<k/del,..m)
fz®<ej/\ek—fj/\fk)—el®(ej/\fk—|—fj/\ek). ’ "

Q%2(M,TM)| has a basis consisting of the following forms:

el®<ej/\ek—fj/\fk>—fl®<ej/\fk+fj/\ek>
. , , ) (j<k/del,..m)
fiw (e nek— fnfE) e (e nfE4 finek).

Using these bases, the following lemma is an easy corollary:
1.2.9 Lemma
The space Q*(M, TM) decomposes into a direct sum of orthogonal (with respect to the metric
extended to forms in the usual way) subspaces as
Q3 (M, TM) = Q*°(M, TM) @ QY (M, TM) @ Q2 (M, TM)
and the (pointwise) dimensions of the subspaces are given by
rank TM @ AYY(T* M) = 2m?

and

rank TM @ A*Y(T*M) = rank TM ® A®*(T*M) = m?(m — 1).

10
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The subspaces we just discussed are in close relationship with the following linear operator on
O2(M, TM):
M: Q*(M, TM) — Q*(M, TM)
MB(X,Y):=B(JX,JY).

In fact, we have the following identities

QbY(M, TM) = E(9%,1),
Q*(M, TM) © Q" (M, TM) = E(9, —1),
where the first equality is obvious and in the second equality, the inclusion D is given by lemma
1.2.8] and the equality then follows from a dimension argument.

The following lemma, stated in [Gau97, formula (1.3.7)], describes the interplay of the operators
oM and b:

1.2.10 Lemma
Any w € QVY (M, TM) @ Q>*9(M,TM) satisfies the following equality:

w = 3bMw (1.6)
Proof: We have for w € QVY(M, TM) that

3(6Mw)(X,Y, Z) = w(X,JY, JZ) +w(Y,JZ,JX) +w(Z,JX,JY)
X, JY,JZ)+w(JX,Y,JZ) +w(JX,JY, Z)
XY, Z)+w(JY,JY,J?Z) + w(JX,JY, Z)

X.Y, 7)

w
w
w
w

~—~~ o~

and for w € Q*%(M, TM) that

3(6Mw)(X,Y, Z) = w(X,JY, JZ)+w(Y,JZ,JX) +w(Z,JX,JY)
=w(X,JY,JZ)+w(JX,Y,JZ) +w(JX,JY,Z)
= —w(JX,Y,JZ)+w(JX,Y,JZ) —w(J?X,Y, Z)
=w(X,Y,Z).

O

Now, consider a three-form w € Q3(M). On the one hand, w can be considered as a T M-valued
2-form and admits a decomposition as described above. On the other hand, we can also consider
w as a complex three-form and it thus admits a splitting into (p, ¢)-forms. However, this is a
decomposition into complexr forms. Yet, certain sums of these forms are again rea]E| as we shall
see in the sequel.

1.2.11 Definition Let w € Q3(M). We then define
whi=w? 4 w2’1,
w = w4 W30

The following lemma then compares the decompositions of Q3(M) into forms of type +/— and
into forms of type (1,1), (2,0) and (0,2).

“We call a form w € Q2(M) real iff w(X,Y,Z) € R for all X,Y,Z € TM

11
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1.2.12 Lemma
Let w € Q3(M). Then the following hold:

(1) w™ and w™ are real three-forms.
(2) w22 and wh! + w0 are again skew-symmetric in all three arguments.

(3) We have the following identities:

wt = w20 _{_wl,l,
w™ = w2

Proof: (1) To show that w® is real, we write w with respect to the following local basis, where

(ej, f;) denotes a local J-adapted basis, (e’, f7) its dual and, as above, 27 = %(ej +ifl):

w= Z A{klzj AP A+ Aéklg/\ Fadt+ )\gklzj AzE A+ )\iklzj AZF A2l
j<k<l

S N S VAP N Vi P VAP N

I A L e e A AL LD VAP Il
i<k

+

Obviously, the forms w™ can be expressed in this basis as follows:

wh= D" M AN+ NN F A N AR A
j<k<l

N AP LY NIV A NP

+ 3 MFT AL A MF T AT AR N AR AR X AR A
i<k

and

wo = Z MRN8 A 2+ MMZT A 2R AL
j<k<l

First, we note that the sum with only two indices goes completely to w™ and therefore, that
part of w™ must be real. Now, turning our attention to the parts with three indices, we note
that a form n € Q3(M) is real iff

for any V, W, Z € T'M,. (This can easily be checked by writing V' = Xy +iYy with Xy, Yy € TM

and using linearity). Thus, because w is real, )\{kl = )\gkl etc. These properties carry over to w®

and thus these forms also fulfil (1.7) and are thus real.
(3) Consider w™. Then, for X,Y,Z € TM we have

0=w (X +iJX,Y —iJY,Z)
—_—— —
€T MO1 eTML,0
—w (X,Y,2)+w (JX,JY,Z) +i(w (JX,Y,Z) —w (X, JY, Z))

12
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and thus
w (JX,Y, Z)=w (X,JY, 2),

which implies w™ € Q%2(M,TM). On the other hand, by the same equation
WX +4iJX,)Y —iJY,Z) =0

and thus w®? is of type —. Together, this yields w™ = w%2.

Now, we have w™ L wT and w®? L wh! 4 w?Y and therefore wt = wh! + w20,

As w¥ are three-forms and thus skew-symmetric in every argument, (2) follows immediately
from (3). O
Notation We denote the subspaces of Q3(M) consisting of forms of type 4 by QF (M).

Next, we want to compare the two decompositions we have just discussed with the following
one:

Q*(M,TM) = Q' (M) @ Q3(M) © Q}(M,TM).

In particular, we will prove three results, stated in [Gau97, lemmas 1-3 of section 1.4], that study
the behaviour of the spaces Qb1 (M, TM), Q*°(M, TM) and Q%2(M,TM) under the Bianchi
and trace operators.

1.2.13 Lemma
Let B € Q%2(M, TM). Then the following results hold:

(1) The trace of B vanishes: tr B = 0.
(2) The parts B® and bB are elements of QU2(M,TM).

Proof: (1) Using Bl(e;;e;,-) = —B(fi; fi, ), we obtain

tr B(X) =) _ Blejiej, X) + B(fj f;, X)
j=1
=0.
(2) We have, using lemma that

36B(X,JY,Z) = B(X;JY,Z)+ B(JY: Z,X)+ B(Z; X, JY)
= B(JX,Y,Z)+ B(Y;Z,JX)+ B(Z; JX,Y)
= 3bB(JX,Y, 7),

which implies bB € Q%2(M,TM). Because tr B =0 € Q?9(M,TM) we get that
B°=B—trB—bBc Q*(M,TM)
and have thus proven everything. O

1.2.14 Lemma
Let B € Q*°(M,TM). Then the identity

3
B = (6B — MbB) (1.8)
holds and the mapping b|g2.0: Q>O(M, TM) — QF (M) is an isomorphism.

13
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Proof: We have that

g(bB —MbB)(X;Y, Z) = % (B(X;Y,Z)+ B(Y;Z,X)+B(Z;X,Y)
—B(X;JY,JZ)-B(JY;JZ,X) - B(JZ;X,JY))
= % (B(X;Y,Z)+ B(Y;Z,X)+B(Z;X,Y)
+B(X;Y,Z)+B(Y;J?Z,X)+ B(Z; X, J*)
= B(X:Y,2).

This proves (|1.8]), which implies bB = %(bB — bMbB), which, in turn, is equivalent to bB =
3bMbB. Hence, for 1 < j,k, 1 <m, k <[, we have

bB(zj, 2k, z1) = bB(2j, J 2, J21) + bB(2k, J21, J25) + bB(2, J 2, J zp,)
Ja=iz —bB(zj, 2k, 21) — bB(2g, 21, 25) — bB (21, 25, 21)
= —3bB(zj, 2k, 21)-
This is equivalent to
0B (2, 2, 21,) = 0.
Analogously, one shows that bB(z;,zx, ) = 0 and thus bB € QT (M).

Now, b|Qz,0(M7TM) is injective because

1
bB(X,JY,JZ) = g(B(X; JY,JZ)+ B(JY;JZ,X)+ B(JZ,X,JY))
= %(—B(X;Y,Z)+B(Y;Z,X)+B(Z;X,Y))
= bB(X;Y,Z) - 2B(X;Y, Z)

and thus if bB is zero, so is B. To show that b|g2.0(rs,7ar) is onto QF (M), define for w € QF (M)
B’ := 3(w — Mw). Then,

3
6B’ = §(w — bMw)

1
g(w—fw) =w

3

Since
B(X;JY,2) = S(@(X,JY,1Z) ~ w(X.Y, 7)) = ~B'(X;Y, ),

we must have B’ € Q*9(M,TM) @ Q*?(M,TM). Yet, b ((B')*?) € Q (M) and w € QT (M)
and therefore b ((B’)%?) = 0. This implies that if we set B := (B')"?, we have bB = bB’ = w,
which yields surjectivity. O

Note that indeed B and B’ as defined in the proof coincide because

B— %(bB —MbB) — %(w M) = B,

We stress that we only know this a posteriori, because initially we did not know whether B’
thus defined was in Q*°(M, TM).

14
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QO+ (M) is not only isomorphic to Q%°(M, T M) but also to a certain subspace of Qb!(M, T M)
which we now define:

QbY(M, TM) = {B € Q" (M, TM)|bB = 0},
QLY(M, TM) is its orthogonal complement in QY (M, TM).

Then we have the following result.
1.2.15 Lemma

The mapping blg1: Q}L’l(M, TM) — QY (M) is an isomorphism and we have for any
Ae Q' (M, TM) that
3
A= Z(bA + 9MbA).
Proof: We first show that bA € QF (M) for any A € QLY (M, TM) (note that this is a trivial
statement for A € Qy' (M, TM)). Tt is sufficient to prove this for the elements of the basis of
QLY (M, TM) we introduced before. In particular, we show that the elements of that basis are
zero on three-tuples of type (2, 25, 2) and (%], Zj, Z;). To begin with, we have that
. . 1 . .

b (el ® (ej AeF 4+ fIA fk)> (21,25, 21) = gel A (63 Aek 4+ fIA fk> (€1, 25, ).

Using the definition of z;, 23, one obtains that for any w € Q3(M), we have that

W(el,Zj,Zk) = % (w(el7€j7€k) - W(el, f]?fk) - i(OJ(EZ,ej,fk) +W(€l, fjuek)))a

w(er, zj, 2k) = % (wlers ej,ex) —wler, fi, fr) +i(wler ej, fi) +wler, fj,ex))) -
Using this, we obtain that
2¢! A (ej Ak fI A fk) (21,2j,26) = €' A <€j Ner + I A fk> (e1, €5, €x)
— e n (& nek+ TS (e i i)
—i (el A (ej AeF+ I A f’“) (er, €5, fr)
+ el A (ej Aef + FEN fk) (elafjvek)>
=0
Analogously, one shows
A (e net+ ALY (31,75,70) = 0

and that the other elements of the basis are also zero on these tuples. By linearity, this proves

that bA € QF (M) for any A € QL (M, TM).
By definition of Q&' (M, TM), we have that ker(b|gin = Q' (M, TM) and thus that
INERPITE QLY (M, TM) — b(QLY (M, TM)) Cc QT (M)

is an isomorphism. To prove that it is an isomorphism onto Q7 (M), we still need to prove
surjectivity. Let w € QT (M) and define A% := 2(w + Mw). Then bAY = 2(w + bMw) and thus,
by lemma, [1.2.10[ we have bA“ = w. We have that A lies in Q%!(M, T M) because

A(X:JY,JZ) = z(w(X, JY,JZ) +w(X,Y, Z))
= A¥(X:Y, Z).

15
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Then (A%)3" lies in Qo™ (M, TM) and because b(A%)+" is zero, we have that b(A%)s" = w which
proves surjectivity. O

Just like in the case of Q*°(M, T M) we deduce that the inverse of b on Q}l’l(M, TM) is indeed
given by

b lw = Z(w + Mw).

Combining the above results, we obtain the following corollary.

1.2.16 Corollary
The operator b and the decompositions into types "commute” in the following way

(bB)” = (bB)*? = b(B*?) and (bB)T =b(BY + B?%) = b(BL! 4+ B2Y).

Using lemmas [1.2.14] and [1.2.15] we deduce that there exists an isomoprhism

©: Q¥0(M, TM) — QLY (M, TM)
given by
o(B) = z(bB + 9MBB), (1.9)
0 HC) = %(bC — MbC). (1.10)

for any B € Q20(M,TM) and C € Qp' (M, TM).
Finally, we introduce the following variant of the exterior differential that we will use later.

1.2.17 Definition We define the following operator:

de: Q*(M) — Q3 (M)
dw=—dw(J-,J-, J-)

16
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1.3 Properties of the Kahler form and the Nijenhuis tensor

In this section, we introduce the Kahler and Lee form and discuss some of their properties. In
particular, we prove a theorem that describes the various parts (as defined in the preceding
section) of the Nijenhuis tensor and the covariant derivative of the Kéhler form. These results
will be important for the description of a hermitian connection later.

1.3.1 Definition The Kdihler form of an almost-hermitian manifold (M, g, J) is the two-form
given by
F(X,)Y):=g(JX,Y).
The Lee form is the one-form defined by
2m

0(X) : ZdF b;, Jbj, X),
] 1

where (b;) is a local orthonormal basis.

1.3.2 Lemma
The Lee form is alternatively given by

1
0= 5 tr m(ch)+

Proof: 'We have that

ZdF b;, Jbj, X) = ZdF Jbj,bj, X)
Jj=1 j=1
2m
== dF(Jb;, J?b;, J*X)
j=1
2m
= (d°F)(bj, Jbj, JX).

j=1

Now recall d°F = (d°F)* + (d°F)%2. Using the properties of forms of type 0,2 and a J-adapted
basis (e;, f;), we compute

D (dF) (e, 5, TX) + (d°F)*2(f5, T f5, TX) =Y _(d°F)**(f;, €5, JX) = (d°F)"*(f;, ¢, JX)
j=1 j=1
=0
and thus conclude
2m 2m
> dF(bj, Jb;, X) =Y (d°F)(bs, Jb;, JX)
j=1 j—l
= Z (d°F)* (bj, Jb;, JX)
= trzm(dc )H(X). 0

17
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The following theorem is a collection of results on the type of the Nijenhuis tensor and the
(Levi-Civita-)covariant derivative of the Kahler form, where we understand VIF as a trilin-
ear mapping, skew-symmetric in the last two arguments (or, alternatively as an element of
O2(M,TM), see the preceding section for this identification) via the following equality

(VIF)(X:Y. 2) = (V4 F)(Y, 2).

1.3.3 Theorem (cf. [Gau97, Section 2, proposition 1])
For the Nijenhuis tensor the following statements hold:

(N1) N is of type (0,2).

(N2) N is trace-free and therefore splits as N = bN + Ny.

(N3) Applying the Bianchi operator to N yields bN = %(dCF)_.

For the covariant derivative of the Kahler form we have the following results:
(F1) The (1,1)-part vanishes: (VIF)b4! = 0.

(F2) (VIF)%2 and N determine each other by

(VIF)X(X,Y, Z) = 2No(JX,Y, Z) + %(dF)_(X, Y, Z)
=2N(JX;Y,Z) + (dF)~(X,Y, Z),

(1.11)

or, equivalently, by

(VIFYA(X;Y,Z) = N(JX,Y,Z) + N(JY,X,Z) - N(JZ,X,Y). (1.12)
(F3) The (2,0)-part of VIF is given by

(VIF)20 = = ((dF)* — m(dF)™).

DN | =

Proof: We begin by proving the elementary properties (N1), (N2) and (F1): We compute

AN(JY, Z) = [J?Y,JZ) — [JY, Z] — J(|J?Y, Z] + [JY, J Z))
= —J[JY,JZ)+ J[Y, Z] - [Y,JZ] — [JY, Z] = —JAN(Y, Z),

ie. N € Q% (M, TM) and we have thus proved (N1). That N is traceless follows immediately

by Lemma [1.2.13) which proves (N2).
We furthermore compute

(VIF)(X;Y, Z) = (VL F)(Y, Z)
= X(F(Y,2)) - F(V%Y, Z) — F(Y,V%Z)
= X(g(JY, 2)) +g(V%Y, ] Z) — g(JY, V% Z)
= —X(g(Y.J2)) + X(g(Y,J2)) - (Y, V% Z) - X(g(JY, Z)) + (V%Y. Z)
= X(g(Y.J2)) — g(Y, V%I Z) + g(J (V%Y ), I 2)
= —X(F(JY,JZ))+ F(V%JY,JZ) + F(JY,V%JZ)
= —(VIF)(X;JY,JZ).
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This yields VIF € Q?9(M,TM) @ QU2(M,TM), which proves (F1).
We now prove (F2): First, using the definition of NV, we obtain that
AN(JX;Y,Z)+4N(JY;X,Z) —4N(JZ; X,Y)
=g(JX,[JY,JZ) = [V, Z) = J([JY, Z) + Y, ] Z)))
+g(JY,[JX,JZ]) - [X, Z) - J(JX, Z) + [X, ] Z]))
Using that VY is torsion-free and reordering we further compute
AN(JX;Y,Z)+4N(JY;X,Z) —4N(JZ; X,Y)
=g(JX, V9, JZ) — g(JX,VI,JY) — g(JX,V$Z) + g(JX, VLY ) — g(JX, J (Vi 2))
+9(JX, JVLIY) — g(JX, IV IZ) + g(JX, IV, Y) + g(JY, V9 JZ) — g(JY, VY, ] X)
—g(JY,V%Z) + g(JY,V%X) — g(JY, J (V95 2)) + g(JY, IV IX) — g(JY, V%I Z)
+9(JY, IV, X) — g(JZ, V% JY) + g(JZ, V% JX) + g(JZ,V%Y) — g(JZ,V$ X)
+9(JZ, IV YY) = g(JZ, VS IX) + g(JZ, IN%TY) — g(JZ, TV X)
=9(JX, V9, JZ) + g(V9 X, JZ) — g(JX, V9 ,JY) — g(V9,JX,JY) — g(X, V%, Z)
—9(Viy X, Z) + g(X,V3JY) + g(V5 X, JY) — g(X, VY. JZ) — g(VY. X, JZ) + g(X, V] ,Y)
+9(V9,X,Y) - g(JX,VLZ) - g(VSIX,Z) + g(JX, VLY ) + g(VLIX,Y) + g(JY, VI T Z)
—g(V95JY, JZ) — g(Y, V9 2) + g(V9 Y, Z) — g(Y, V5% I Z) + g(V% Y, J Z)
—g(JY, V% Z) + g(VL Y. Z)
:JY(g(Xa Z)) - JZ(g(X7 Y)) + JX(g(Y7 Z)) - 2g(JZa V?TXJY) - JY(g(Xv Z)) + Z(g(Xv JY))
~Y(9(X,J2)) +JZ(9(X,Y)) = Y (9(JX, 2Z)) + Z(g(JX,Y)) = TX(g(Y, Z)) + 29(Z, VI Y)
— X(9(Y,J2)) +29(JZ,V%Y) — X(9(JY, 2)) + 29(Z,V%JY)
=—29(JZ, V9 JY) 4+ 29(Z, V9 Y) + 29(JZ,V%Y) 4+ 29(Z, V5 JY). (*)
On the other hand, consider (VIF)*?. We have that (VIF)%2(X;JY, Z) = (VIF)*2(JX;Y, Z)
and (VIF)20(X;JY,Z) = —(VIF)*Y(JX;Y,Z). As (VIF)\! =0, we obtain
2AVIF XX JY, Z) = (VIF)(X;JY,Z) 4+ (VIF)(JX;Y, Z)
=-X(9(Y,2)) - g(J(VXJIY),Z) + g(Y, VL Z)
+(JX)(9(JY, 2)) — g(J (V95 Y), Z) — g(JY, V% Z)
= —g(V&Y, Z) + g(V& Y, I Z) + g(V9x IY, Z) + g(V9 Y, T Z)
and thus
2VIF)"2(X;Y, 2) = g(V4 Y, Z) + g(V&Y, T Z) + g(V9 Y, Z) — (V9 JY, T Z).

Comparing this with (x) yields (1.12).
Next, we prove (N3). We begin by showing that
(d°F*N XY, Z) = —(dF)PN X, JY, JZ) =: (dF)*% (k4+1=2) (1.13)

c,k,l

i.e. in a manner of speaking ¢ and *! commute. One easily verifies that (dF) is indeed of

type (k,1). The identity
(dF)**Y(X,Y,Z) + (dF)*YY(X,Y, Z) + (dF)***(X,Y, Z)
= — (dF)*Y(JX,JY,JZ) — (dF)"Y(JX,JY,JZ) — (dF)*?(JX,JY, JZ)
= —dF(JX,JY,JZ)
=d°F(X,Y, Z)
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then proves (1.13]). We now use the following result:

k
dw(Xo, ., Xp) = Y (—1)/(VE F) (X0, s X5, ooy Xi).
7=0

Should the reader be unfamiliar with this result, a proof can be found at the beginning of section
Making use of this, we obtain in particular that

dF(X,Y, Z) = (V% F)(Y, Z) — (VL F)(X, Z) + (VL F)(X,Y)

1.14
=3(bVIF)(X,Y, 2). ( )
We then compute

(d°F)°*(X,Y,Z) = —(dF)**(J X, JY, ] Z)
= (dF)**(JX,Y, Z)
= 3(6VIF)2(JX,Y, 7).

Recall from corollary that b and %? commute. Thus,
(d°F)*2(X,Y, Z) = 36(VIF)"3(JX,Y, Z)
-N(X3;Y, Z)+ N(JY;JX,Z) - N(JZ,JX,Y)+ N(JY; Z,JX)
+N(JZ;Y,JX)+ N(X;Y,Z)+ N(JZ;JX,Y)

~N(X;Z,Y) - N(JY;Z,JX)
=N(X;Y,Z2)+ N(JY;JX,Z)+ N(JZ;Y, JX)

=N(Y;Z,X) =N(Z,X,Y)

= 36N (XY, 2),

which proves (N3).
Going back to (F2), we compute, using ([1.12)) and that N is of type (0,2), that

(VIF)"2(X;Y,Z) = N(JX;Y,Z)+ N(JY;X,Z) — N(JZ; X,Y)
= N(JX;Y,Z)-N(Y;Z,JX) - N(Z;JX,Y)
= —36N(JX,Y,Z)+2N(JX;Y, Z).
Because N is of type (0,2), so is bN and we thus obtain
(VIF)3(X:Y,Z) = 3bN(JX,JY,JZ) + 2N (JX;Y, Z)
= (d°F)**(JX;JY,JZ) +2N(JX;Y, Z)
= (dF)**(X,Y, Z) + 2N(JX;Y, Z),
which proves the second equation in . Continuing, we get
(VIF)2(X;Y, Z) = (dF)**(X,Y, Z) + 2No(JX;Y, Z) + 26N (J X, Y, Z)

2
T AR)OX, Y, 2) + 2N X3 Y, Z) + S (dF) 2 (IX,Y, Z)

2
= (dF)"*(X,Y,Z) + 2No(JX;Y, Z) — g(dCF)Oﬂ(JX, JY,JZ)

1
= g(dF)O’Q(X, Y,Z)+2No(JX;Y, Z),
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which concludes the proof of (F2).
Finally, for (F3), lemma [1.2.14] yields that

(VIF)20 = g(b(ng)Q’O — Mb(VIF)?Y).

Furthermore,
1 1
b(VIF)20 = (bVIF)?0 = g(azF)ZO = g(dF)Jr,

where the first identity follows from lemma [1.2.16| and the second from ((1.14). Note that the
(1,1)-parts of VIF and dF vanish. This yields the claim. O

This concludes our discussion of these forms and with that our introduction to almost-hermitian
manifolds. In the following chapter, we will introduce manifolds that admit an almost-complex
structure on a subbundle of their tangent bundle. The theory of differential forms on an almost-
hermitian manifold developed in this and the preceding section will be used again in the chapter
on hermitian connections, in order to describe their torsion.
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2

Metric contact and CR manifolds

This is another introductory chapter, this time presenting the structures that will be central
to this thesis. We begin with contact and metric contact manifolds. The latter are manifolds
with a contact structure, an almost-complex structure on the contact distribution and a metric
compatible with both. In a second section, we introduce CR manifolds, which we consider as
structures in their own right before adopting the point of view that they are metric contact
manifolds whose almost-complex structure is integrable.

2.1 Contact structures

This section serves to introduce contact and metric contact manifolds. It is this kind of man-
ifolds that we will mainly be studying throughout this thesis. We begin by presenting contact
structures, their Reeb vector fields and contact distributions and give some examples. We then
study contact manifolds which admit a Riemannian metric compatible with the contact struc-
ture, the so-called metric contact manifolds. Metric contact manifolds by definition carry an
almost-complex structure on their contact distribution and we consider the Lie derivative of this
structure in some more detail. In this section, assume that M is a differentiable manifold of odd
dimension n = 2m + 1.

2.1.1 Definition A contact structure on M is a one-form n € Q!(M) such that

A (dn)™ # 0, (2.1)

where # is to be understood as nowhere vanishing and (dn)™ means the wedge product of (dn)
with itself taken m times.
(M,n) is then called a contact manifold.

Because of the contact condition (2.1]), we have in particular that (dn)™ # 0. Therefore, at each
point x € M the dimension of the space {v € T, M|v.dn, = 0} cannot exceed one. Moreover, at
each point, we have 2m linearly independent vetors vy, ..., v, such that (dn,)™ (v, ..., vom) # 0.
Define «; = wv;adn,. Then dimkera; = 2m and because all these kernels lie in a 2m + 1-
dimensional space, their intersection must be at least of dimension one. An element &, of this
intersection fulfils &, udn, = 0. Furthermore, because of the contact condition, 1,(§;) # 0 and
demanding 7(&;) = 1 then uniquely defines &,. The vectors (&), define a smooth vector field,
because all the conditions are smooth. The vector field we have just described plays an important
role in contact geometry and we shall therefore give it a name.

2.1.2 Definition The Reeb vector field of a contact manifold (M, n) is the vector field uniquely
determined by
n€)=1 and &idn=0.

Furthermore, n induces a distribution C C TM (C, = kern,) that we shall call the contact
distribution. Recall (Frobenius Theorem) that C is integrable if and only if nAdn = 0. Therefore,
we can consider the condition as meaning that the contact distribution is ”as unintegrable
as possible”. Note that this means, in particular, that C is not involutive.

Given C as the kernel of n and £ such that n(§) = 1, we note that we can split the tangent
bundle into TM = C @ RE.

We now consider a first example:
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2.1.3 Example We consider R*"*! whose coordinates we shall call (z1,y1,...,Zm, Ym,2)
equipped with the one-form

m
n=dz— Z:cldyl
i=1

Then, we have

dn =ddz — Zm: dx; N\ dy; — Zm: xiddy;

i=1 i=1
= — Z dx; N\ dy;
=1
and thus
nAdn=(=1)"mldz ANdzy Ndy; ... \Ndzpy A dy, # 0. O

In fact, this contact structure on the standard real space is exemplary for all contact structures
as the following theorem shows.

2.1.4 Theorem (Darboux, cf. [Bla02, Theorem 3.1])
Let (M,n) be a contact manifold. Then, locally around every point p € M there exist local
coordinates (T1,Y1, ..., Tm,Ym, 2) such that locally

m
n=dz— Zaxzdyz
i=1
Let us consider one further example:

2.1.5 Example (cf. [Bla02, example 2.3.6])
We consider the three-dimensional torus T3 ~ R /(27TZ)3' First, we consider the following form
on R3:

n=siny dz + cosy dz € Q(R?).

This form is 27-periodic in every coordinate and thus induces a one-form on the torus. Next,
we calculate
dn =-cosy dy ANdx —siny dy A dz

and thus
nAdn= —sin®y dx Ady Adz + cos® ydz A dy A de = —dz A dy A dz.

This implies that 7 is indeed a contact form. O

In order to study geometric properties on a contact manifold, we need to introduce a metric on
it which we demand to be compatible with the contact structure in the following sense:

2.1.6 Definition A metric contact manifold is a tuple (M, g,n, J) with g a Riemannian metric
on M, n € QM) and J € End(TM) such that

(i) lInelf =1 for any z € M,
(i) dn(X,Y)=g¢g(JX,Y) forany X,Y € X(M) and

(iii) J2X = —X +n(X)¢ for any X € X(M), where £ is the metric dual of 7.
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2.1.7 Lemma
Let (M, g,n,J) be a metric contact manifold. Then

n A (dn)" #0,
i.e. (M,n) is contact: Furthermore, we have that & = n' is the Reeb vector field and fulfils that
JE=0.

Proof:  We first prove that ¢ fulfils the conditions for a Reeb vector field. Obviously 7(§) =
n||> = 1. Furthermore, we have that J2¢ = —& + n(£)¢ = 0. From this we conclude that
0 = g(J%¢, &) = —g(J€, JE) implying that J¢ = 0. Thus, we obtain dn(¢,-) = g(J¢,-) = 0.

Let, as above, C, = kern,. Then for X € C there holds J2X = —X, i.e. J is an almost-complex-
structure on C. We pick a local basis (e1, fi..., €m, fm,&) such that the first 2m elements are
orthonormal and J-adapted and denote (e!, f!,...,e™, f™,n) its dual. We then have

dn(ei, f3) = g(Jei, f5) = g(fi, f) = bij-
As £.1dn = 0, we have
dn = i el N fi
i=1
and thus
nA(dn)™=minAel A AT #0. O
On a contact manifold, one can also define a Nijenhuis tensor:

2.1.8 Definition The contact Nijenhuis tensor is defined by
1
N(X,Y) =4 (JX,JY]+ J*[X,Y] - J([JX,Y] + [X, JY])).

Note that because J2 # —Id, this tensor differs slightly from the one defined for almost-complex
structures. We stated that the Nijenhuis tensor of an almost-complex manifold vanishes if and
only if the almost-complex structure is integrable. No such ”easy” interpretation can be given in
the case of a contact manifold and we refer the reader to the following section for an introduction
to CR manifolds, which are, in a certain way, contact manifolds on which the almost-complex
structure on the contact distribution is ”integrable”.

The relationship between metric and contact structure on such a manifold is very close as the
following lemma shows:

2.1.9 Lemma
On a metric contact manifold (M, g,n, J), the metric g is completely determined by n and J by

g=n®n+dn(,J).
Proof: Fix x € M. Then for u,v € C, we see that
n @ n(u,v) + dn(u, Jv) = —dn(Jv,u) = —g(J*v,u) = g(v,u).
Furthermore, for u € T, M, we have

=1

An analogous argument for w in the first argument concludes the proof. O
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We conclude this section with some auxiliary results on the operator J and its Lie derivative
¢ = L¢J which will be useful later. Recall that the Lie derivative of an endomorphism F' of the
tangent bundle in the direction of a vector field X € X(M) is defined as follows

LxF(Y)=Lx(F(Y)) - F(LxY) = [X,F(Y)] - F([X,Y]).

2.1.10 Lemma (cf. [Bla02, Lemma 6.1 and Corollary 6.1])

Let (M, g,n,J) be a metric contact manifold. Then, for the Levi-Civita-covariant derivative of
J the following formula holds:

20((VX )Y, Z) = g(JX, AN(Y, Z)) + dn(JY, X)n(Z) + dn(X, T Z)n(Y').
In particular, we have V‘gJ = 0.

Proof: Recall that J?X = —X + n(X)¢ and thus

9(X,Y) = g(JX, JY) +n(X)n(Y)
= dn(X, JY) +n(X)n(Y) = dn(Y, JX) + n(X)n(Y).

Then, using the Koszul formula for V9 and the relationship between g and dn, we obtain

29((V% )Y, Z) = 29(V%(JY), Z) +29(V% Y, JZ)
=X (g(JY,2)) + JY (9(X,2)) — Z(9(X, JY))
+9([X, JY], Z) + 9([Z, X], JY) — g([JY, Z], X)
+X(9(Y,JZ)) +Y(9(X,JZ)) — JZ(9(X,Y))
+9([X,Y],JZ) + 9([VZ,X],Y) — g([Y, 2], X)
= X(dn(Y,2)) + JY (dn(X,JZ)) + JY (n(X)n(Z)) —
+dn([X, JY], JZ) +n([X, JY])n(Z) + dn(Y, [Z, X])
—dn(X, J[JY, Z]) = n(X)n([JY, Z]) + X (dn(Z,Y)) + Y (dn(Z, X))
— JZ(dn(X, JY)) = JZ(n(X)n(Y)) + dn(Z,[X,Y]) + dn([J Z, X], JY)
+([JZ, X])n(Y) — dn([Y, JZ], JX) — (Y, J Z])n(X).

Z(dn(Y, X))
+
+

Now, using that

0 = ddn(A, B,C) = A(dn(B, C)) — B(dn(A, C)) + C(dn(A, B))
- d”([Av B]? C) + dn([Av C]? B) - dn([B’ C]v A)

for any vector fields A, B,C € X(M), we obtain

29((V& Y, Z) = dn([Y, Z], X) — dn([JY, J Z], X) + JY n(X)n(Z)) — T Z(n(X)n(Y))
+0([X, JY)n(Z) — dn(X, J[JY, Z]) = n([JY, Z])n(X) + n([J 2, X])n(Y)
—dn([Y, JZ], JX) = n([Y, JZ])n(X)
= dn([Y, Z], X) = dn([JY, J Z], X) + JY (n(X))n(Z) + n(X)JY (n(Z2))
= JZm(X))n(Y) = n(X)JZ(n(Y)) + (X, JY])n(Z) — dn(X, J[JY, Z])
= (7Y, ZD)n(X) +n([J 2, X])n(Y) = dn([Y, J 2], JX) = n([Y, J Z])n(X).

Then using that for any vector fields A, B € X(M)

dn(A, JB) = A(n(JB)) — JB(1n(A)) — n([A, JB)),
=0
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we obtain

29((VX Y, Z) = dn([Y, Z), X) — dn([JY, JZ), X) + dn(JY, X)n(Z) + dn(JY, Z)n(X)

—JZ(X))n(Y) +dn(Y, JZ)n(X) — dn(X, J[JY, Z]) + n([J Z, X])n(Y')
—dn([Y,JZ],JX)

=—g(JX,[Y,Z]) + g(JX,[JY,JZ]) + dn(JY,X)n(Z) + dn(X, T Z)n(Y)
n(X)(dn(JY, Z) + dn(Y, JZ)) — dn(X, J[JY, Z]) + dn(J[Y, J Z], X)

=—g(JX, Y, Z]) +9(JX,[JY,JZ]) — g(JX, J[JY, Z]) — g(JX, J[Y, JZ])
+dn(JY, X)n(Z) + dn(X, JZ)n(Y)

Then, because J? = —Id 47 ® £, we obtain

29((V4 )Y, Z) = g(J X, IV, Z)) = n([Y, Z)n(J X) + g(J X, [JY, T Z)) — g(J X, J[JY, Z))
—9(JX, J[Y, JZ]) + dn(JY, X)n(Z) + dn(X, JZ)n(Y)
=g(JX,AN(Y,2Z)) +dn(JY, X)n(Z) + dn(X, JZ)n(Y),

which proves the claim. In particular, choosing X = & we obtain
29((VEN(Y), Z) = g(JEAN(Y, Z)) + dn(JY. §)n(Z) + dn(&, T Z)n(Y) = 0

and have thus proven everything. O

2.1.11 Lemma (cf. [Bla02, Lemma 6.2])
Let (M,g,n,J) be a metric contact manifold. Then the operator ¢ = L¢J is trace-free and
symmetric and we have J¢ = —@J.

Proof: We first prove an auxiliary result: Vgﬁ = 0. Note that

Len =d(n(§)) +Eadn =0
and thus
0= Len(X) =EM(X)) —n([€, X])
9(VE&. X) + g(§, VIX) — n(VIX = V4€)
9(VE&, X) — g(& V).

Noting that £ is a vector field of constant length and thus g(¢, V%&) = 0, this yields the claimed
equation.
Furthermore, we have VgJ = 0 and thus

9((LeJ)(X),Y) = g(Ve(JX) = VIx& = J(VEX) + T (VE),Y)
= g((VE)(X) =Vix &+ J(VE),Y).
=0

If X =&, this is zero. The same holds for Y = £ because

9(=VIxE+IVEEE) = —(JX)(9(€,€)) + 9(€, VIxE) —9(VEE JX) = 0.

=const =0 =0
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Thus, we now consider X,Y € &é+. Then, we have

9(LeT)(X),Y) = g(=Vix(€),Y) — 9(VS, JY)
= —(JX)(9(&,Y)) +9(& VIxY) = X(9(&, JY)) + 9(§, VX TY)
=n(V9xY) +n(VEJIY).

Because X,Y € &+ = C, we have that

dn(X,Y) = X(n(Y)) =Y (n(X)) —n([X,Y])
= —U([Xa Y])

Thus, we have
n([JX, Y]+ [X,JY]) = —=dn(JX,Y) — dn(X, JY)
=0
and hence

9(LeJ)(X),Y) =n(VIY) +n(VLJIY)
=n(V§JIX) +n(V9y X).

Arguing as above, the right hand side is equal to g(X, (L¢J)(Y")), which proves symmetry.

Next, by the preceding lemma, we have
29((V5I)(§), Z) = g(JX, AN (£, Z)) + dn(X, ] Z)
=g(JX,J*[¢, 2] — J[¢, I Z)) + dn(X, T Z)
= —g(JX,J(LeJ)(2))+9(JX,TZ)
Using the formula for J2, we deduce that
g(JX, JY) = —g(J?X,Y) = g(X,Y) = n(X)g(£,Y) = (X, Y) = n(X)n(Y)
and use this to compute
29((V5I)(&), Z) = —g(X, (LeJ)(Z)) +n(X)n((Le)(2)) + 9(Z, X) — n(Z)n(X)
= —9((LeJ)(X),2) + 9(Z, X) — g(n(X)&, Z),

where the last equation follows because the symmetry of ¢ implies that

n((LeJ)(2)) = 9((LeJ)(§), Z) = 0.
Therefore, we obtain the following equivalent statements:

(VET)(¥) = ~5(£eT)(X) + 5 X — sn(X)E,

2 2
IV = —5(LeT)(X) + 3X — 2n(X)E — V(JE),

1 1
VEE == (L) (X) + SIX + n(VEE) &
N——
(% &)=0

1 1
V4E = ST6X + SIX.
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Therefore, we obtain

9(X,JY) = dn(Y, X)
=Y (X)) — X(n(Y)) —n([Y, X])
=g(V§X,6) + g(X,V$E) — g(V4Y. &) — g(Y, V&) — 9(VY X, €) + g(V4 Y, §)
= g(X,V§.€) — g(Y, V%E)

2 1
S0 TOY 4+ JY) = g(¥, J9X + I X)
1
which is equivalent to

0= (9(X,JoY) —g(Y, J$pX))
=9(X, JoY) +g(JY, ¢X) = g(X, JoY) + g(X, ¢JY),

which implies J¢ = —¢J.

Concerning the trace, assume that A is an eigenvalue of ¢ with eigenvector X. Then ¢JX =
—JpX = —AJX, i.e. —A is also an eigenvalue of ¢, with eigenvector JX. This implies the
tracelessness. O

This concludes our introduction to contact manifold. In the following section, we introduce CR
manifolds, which may be considered as contact manifold whose almost-complex structure on
the contact distribution is integrable. We will come back to metric contact manifolds in later
chapters, when we discuss their spin structures, connections and Dirac operators.
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2.2 CR structures

CR manifolds are manifolds with an integrable almost-complex structure on a subbbundle of
their tangent space. They are modelled on a real hypersurface in standard complex space C™.
In this section, we will introduce these structures, first through the motivating example of a
real hypersurface and then as an abstract structure. We will pay particular attention to the
relationship between CR and contact manifolds. Much of this introduction is inspired by the
first chapter of [Jac90].

Let M?m+!1 c C™*! be a real hypersurface. We would then like to induce an (almost-)complex
structure on its tangent space. However, T'M is not stable under the complex structure of the
surrounding complex space. Therefore, we want to find a certain subspace of the tangent space
that is stable under the complex structure: We consider the stable tangent space of M:

Hy = T,M N J(TM),

where J denotes the standard almost-complex structure of the complex space C™*!. Then we
have the following result:

2.2.1 Lemma
Let M*™+t  C™HL be a real hypersurface. Then the following properties of its stable tangent
space hold:

(1) dimg H, = 2m
(2) J(H) C H and (J|g)?> = —1d
(3) For all X,Y € T'(H) we have that [JX, Y]+ [X,JY] € T'(H) and
J(JX, Y]+ [X,JY]) =[JX,JY] - [X,Y]. (2.3)
Proof: (1) As J is an isomorphism of C™*!, the dimensions of T,M and J(T,M) must agree.
T, M cannot be preserved by J as it is of odd (real) dimension and thus, by a dimension
argument, the intersection of T,,M and its image under J must be 2m. (2) is obvious.

(3) The second equation follows from the integrability of J. Obviously, [JX,Y] + [X,JY] €
[(TM). But from (2.3)), on sees that it is also in I'(J(T'M)) and thus in I'(H) O

One now uses these properties to define an abstract CR manifold:

2.2.2 Definition A (real) CR structure on a smooth manifold of odd dimension n = 2m + 1 is
a pair (H,J) such that

(i) H C TM is a subbundle of rank 2m
(ii) J: H — H is an almost-complex structure
(iii) For any X,Y € I'(H), the following holds:
o X, JY]+[JX,Y]eT'(H),
o J([JX, Y]+ [X,JY]) - [JX,JY]+ [X, Y] =0.

As an example we consider the so-called Sasakian manifolds. They play an important role in
the study of Killing spinors, as every manifold which is Sasaki, Einstein and spin admits a real
Killing spinor.

2.2.3 Example A Riemannian manifold (M?"*! g) together with a Killing vector field ¢ is
called a Sasaki manifold if it satisfies the following conditions:
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(a) 9(§,€) =1,
(b) 9 := —V9¢ satisfies Y2 X = —X + g(X, €)¢,
(€) (VE¥)(Y) =g(X,Y)§ —g(Y,§)X for any X,V € X(M).

Then, setting H = &+ and J = 1|y, we obtain a CR structure (H,.J). This can be seen as
follows: Obviously, H is a subbundle of rank 2m. Furthermore, if X € T'(H), then g(X,&) =0
and thus, (b) implies that J is an almost-complex structure on H. It remains to check (iii) in
the definition of a CR manifold. Let X,Y € I'(H). Then we obtain that

g([X, JY]+ [JX,Y],€) = (V%Y = VI, X + V9, Y — VL JIX,¢).

We have thatﬂ g(V%JIY) = g(V4 DY + J(V%Y),€). But, for any vector field Z € X(M),
we have that ¢(J(Z),§) = g(V%E,£) = 0, because ¢ has constant length. Therefore, we have
g(V%JIY) = g((V%J)Y,€) and hence, we obtain

9([X, JY]+ [JX, Y], &) = g(VE )Y — (VI )X — VI (X) + VY, ).
Now, we use property (c) and obtain

g([X, JY} + [JX7Y]7€) = g(g(X, Y)é‘ _g(Y7§)X - g(X, Y)§ —i—g(X,f)Y - vgY(X) + V%XY7§>
= _g(Y7 g)g(va) =+ g(Xvé-)g(va) - g(V%YX - v%XY7 g)
= —g(VIy X — VI, Y, 9).

Using that V9 is metric, H = ¢+ and the definition of 1, we deduce

—g(V%YX - V§XY7 §) =g(X, vf]]yf) —g(Y, Vf}Xﬁ)
= —g(X, J?Y) +g(Y, J*X)
= +g(Xa Y) - g(YvX)a
where the last equality follows because J is an almost-complex structure on H. Thus, g([X, JY]+
[JX,Y],§) =0,ie [X,JY]|+[JX,Y]€I'(H) for any X,Y € I'(H).
We still need to prove that the integrability condition is fulfilled. Because (V% J)Y = V% (JY)—
J(V%Y), we obtain

(V4D — (VD)X = J([Y. X]) + V4 (JY) — Vi (IX).

Analogously,
(VIx )Y = (V9 )X = [JX, JY] = J(VIY — V9 X).

Therefore, we have
(Vix )Y = (Viy )X = J(VE)Y = (V§.))X)

=[JX, JY]+ J*[X,Y] = J(V9Y — V9, X + VLIV — VI JIX)
=[JX,JY] - [X,Y] - J([JX,Y]+ [X,JY]) + g([X,Y],€)¢.

5In the computations, we will apply J to some vectors which are not necessarily in H. In that case, we assume
J to be extended by 1 for the purpose of this calculation.
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On the other hand, by property (c), we have

(Vix Y = (Vi )X = J(VE )Y — (V5 )X)
=g9(JX,Y){ —g(YV,§)JX — g(JY, X)E+ g(X,§)JY — J(g(X,Y)E — g(Y, )X
—g(X,Y)E+9(X,8)Y)
=(9(JX,Y) —g(JY, X)) ¢
(—9(V&EY) +9(VEE X)) €

Then, because V9 is metric and X,Y L &, we have

(—9(V&EY) +9(V5€, X)) = —g([X. Y], ).
Using all the above, we deduce
=(Vix )Y = (Viy )X = J(VX )Y = (Vi) X) — g([X, Y], €)¢
=0,
which proves that the integrability condition is fulfilled. ¢

Just like an almost-complex structure can be defined in terms of subspaces of its complexified
tangent space, so can a CR manifold. We go back to the example of a real hypersurface. The
space T(C™+1)%! can be written as

0 0

T(Cm—’—l)O’l = Span{%a ceey }7

0Zm+1

where we note zj := xj, + iy, the coordinates of C™*! and set
0 1/ 0 w 0
— == =—4i—].
07k 2 \ Oxy, Oy

0,1
H)'M := (T M), N (TC™ )™

Now, we set

This space has the following properties inherited from those of (TCm+1)O’1:

o HO'nH" = {0},
e dimc H)' =m,
e HY is involutive, i.e. [H*', HY] ¢ HOL.
We use these properties to define a complex CR structure on M.

2.2.4 Definition A (complex) CR structure on an odd-dimensional manifold M2 is a sub-
bundle H°' € T.M of complex rank m such that

(i) H' N HOL = {0},

(ii) [H°Y, HY ¢ HOL
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2.2.5 Remark This approach motivates the name Cauchy-Riemann or CR manifold: Recall that a
function on C™*! is holomorphic if and only if it is zero under all Cauchy-Riemann operators %. Thus,
in a certain sense, a CR structure on M is given by a space of Cauchy-Riemann operators. Indeed,

one can show that in the case of a real-analytic hypersurface in complex space, a real analytic function
f € C*(M,C) is induced by a holomorphic function on C™*! if and only if V/(f) = 0 for any V € T'(H!)
(for more details on this, compare chapter 1, paragraph 3 of [Jac90]).

Having given two definitions of a CR structure we now need to show that these are equivalent.
2.2.6 Lemma
A manifold M*™+ has a CR structure in the sense of definition |2.2.2 if and only if it admits
one in the sense of definition [2.2.].

Proof: Given a real CR structure, one extends .J to the complexification of H and defines H%!
as the —i-eigenspace of this extension. All required properties follow immediately.

Conversely, given a complex CR structure, choose a (local) basis {Lj, = Xy +1iY)} of H'. Then,
{X1,Y1,..., X, Yin } are pointwise linearly independent over the reals.

This can be seen as follows: Assume there exist A, ur € R such that

0= MeXp+ 1Y
k=1

N — wkz
=y 5 (L + Li) = =~ (L — L)
k=1

3

A — 1@ Ak + i —
k 2WkLk+ k 2WkLk,

(]

k=1

which implies A\x — iur = 0 and Ag + ipgp = O for all k and thus Ag, pr = 0 which proves the
claimed independence.

Now, going back to the main proof, define H = spang{ Xk, Yi|k = 1,...,m} and J X} = Y} (and
thus JY; = —X}). One verifies that J is independent of the choice of basis by extending it to
H ®C. One then sees that H' and HOT are the TFi-eigenspaces of J which uniquely determines
J on H ® C and thus on H. It remains to check the integrability condition: For XY € H, we
have that [X +iJX,Y +iJY] € T'(H") and thus

(X +iJX,Y +iJY] =) ap(Xp + i)
k=1

m
= Z o Xk + oYy
k=1

and also
(X +iJX,)Y +iJY] = [X,Y] - [JX,JY]+i([JX, Y]+ [X, JY]).
This implies

(X,Y] - [JX,JY] = Zaka, (2.4)
JX,Y]+[X,JY] = ZakYk

= J(Z p Xp). (2.5)
k=1
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Then, (2.5) proves that [JX,Y]+ [X,JY] € I'(H). Furthermore, (2.4) and (2.5 imply that

[JX,JY] - [X,Y] - J(X,JY]+ [JX,Y]) = — i Xy — J? i o X
k=1 k=1
=0.

This yields the claim. O

We now want to investigate the link between CR manifolds and contact manifolds. Let an
orientable CR manifold be given. We can then define a form n € Q!(M) which is nonzero,
and vanishes on H. This is possible globally because, since M is oriented, there exists a global
vector field in the complement of H on which we set 17 to be one and zero on H which completely
determines 7. We then define the Lévy form L, on H as

Lo(X,Y) == dn(X,JY)
for any X,Y € I'(H).

2.2.7 Definition (M, H, J,n) is called a nondegenerate CR manifold, if the Lévy form is nonde-
generate. If L, is additionally positive definite, the CR manifold is called strictly pseudoconvez.

In the case of a strictly pseudoconvex CR manifold, recalling Lemma[2.1.9] we define a Rieman-
nian metric on M by
gn =Ly +nOn.

Let & be the metric dual of 7. We then extend J by setting J¢ = 0. Then, by construction,
we have ||| = 1 and ¢,(JX,Y) = dn(X,Y). As n(H) = 0 and n(¢) = 1, we have J2X =
—X +n(X)& Thus, the tuple (M, g,,7,J) is a metric contact manifold.

2.2.8 Remark In fact, a nondegenerate Lévy form is enough for n to be a contact form. We consider
only the strictly pseudoconvex case here, because it is this case that gives us a (Riemannian) metric
contact manifold.

Conversely, if (M, g,,n, J) is a metric contact manifold, then (C, J|¢) fulfill conditions (i) and (ii)
of the definition of a (real) CR structure while we need an extra condition to ensure integrability.
To this end, we have the following result, stated in [NicO5, section 3.1]:

2.2.9 Lemma
A metric contact manifold is CR if and only if the following condition is satisfied:

JN(X,Y)=0 forall X,Y €T(C)
for its contact Nijenhuis tensor. In that case, the CR manifold is strictly pseudoconvex.
Proof: Note that on a metric contact manifold we have for all X,Y € I'(C) that

dn(X,Y) = X(n(Y)) =Y (n(X)) —n([X,Y])
= _n([Xv Y])

Thus we have

n([JX, Y]+ [X,JY]) = —dn(JX,Y) —dn(X,JY)
=0
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and thus [JX,Y] + [X,JY] € I'(C). Now we compute
X, JY] = [X, Y] = J([JX, Y]+ [X, JY)) =0,
which is equivalent to

AN(X,Y) —n([X,Y])§ =0 and to
AN(X,Y)+dn(X,Y)E =0.
Noting that
oJ=0
TS nAN(X,Y),
one obtains the following equivalent equations:

~J*N(X,Y) =0,
JN(X,Y) =0,

where the last equivalence follows because the image of J lies in C on which J acts as an

isomorphism. This yields the claim.

We summarize that every strictly pseudoconvex CR manifold is also a contact manifold and
conversely, a metric contact manifold is CR (and then automatically strictly pseudoconvex) if
and only if its Nijenhuis tensor fulfils J o N = 0. In the rest of this thesis, we will mostly
consider the more general case of a contact manifold and restrict our discussion to the case of a
CR manifold where necessary. Whenever we mention a CR manifold in the sequel, this is to be

understood as a metric contact manifold which is also CR.
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3

Spinor bundles, connections and geometric Dirac operators

In this section, we discuss the spinor bundles of a Spin- or Spin®-manifold and the connections
and Dirac operators they carry. In particular, we discuss how a connection on the tangent bundle
T M induces a connection and a Dirac operator on the spinor bundle and how certain properties
of the Dirac operator induced are reflected in the torsion of the connection. Our focus is on
Spin¢ structures and in particular on the canonical Spin structures on an almost-hermitian or
metric contact manifold.

In a first section, we review some facts about the spin groups and the representations of Clifford
algebras and spin groups and, in particular, give a description of the spinor module as a space
of exterior forms. In the following section, we move on from the purely algebraic viewpoint to
spin structures on manifolds and their spinor bundles. Having introduced those, we then discuss
the differential geometric core of this chapter, the connections induced on the spinor bundle by
connections on T'M and the Dirac operators defined by them. The theory developed so far is
then applied in the last section to the case of the canonical Spin® structure on almost-hermitian
and metric contact manifolds.

3.1 Some algebraic facts on Spin® and spinor representations

This section serves as a short introduction to the complex spin group Spin® and to the theory of
representations of Clifford algebras with a particular focus on induced representations of Spin®
and their relationship with representations of the unitary group U,,.

We assume that the reader is familiar with the spin group and will therefore discuss it only
where it serves as a background for understanding the respective theory for the complex spin
group Spin®. Also, because the theory of representations of Clifford algebras is well-known, we
only state the results we need without proof and refer the reader to sections I.5 and 1.6 of [LM&9]
for further details.

Let Cl, = Clif f(R", 22 +---+22) and Cl,, = Clif f(C", 22 + - - - 22) be the Clifford algebras of
the standard real and complex space respectively. The group Spin, is contained in Cl,, and in
Cl,, ~ Cl, ® C, we can consider the group generated by Spin, and the unit sphere S*:

3.1.1 Definition The complex spin group is defined as

- 1
Sping, = (Sping x5 )/{:tl} = Spin;, Xz, St

There are a number of mappings that give links between the Spin® group and other groups:
Noting \: Spin, — SO, the two-fold covering, we define the following:

A% Spin® — SO, A(lg,2]) = A(9),
1: Spint, — S* I([g,2]) = 2%,
i: Spin, — Spin, i(9) = [g,1]
and
j: St — Sping, j(z) =11,z
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Finally, defining sq: S' — S' by sq(z) = 22, we obtain the following commutative diagram,
where the row and the column are exact (cf. [Fri00, section 1.6])

1 (3.1)
Sl
.Y
J
1—i>5’pinn Spins, S 1

\ \e

SO,
1

Furthermore, we obtain a two-fold covering mapping
p: Spint — SO, x S
l9.2] — (Mg), 2%).

We will later use these maps in the discussion of representations and in the definition of Spin®
structures.

We now want to discuss the representations of Clifford algebras and the representations they
induce on the (complex) spin group. A Clifford representation is an algebra homomorphism

p: Cl, — Endc(V)

where V' is some complex vector space. As it turns out, there are not many ”different” Clifford
representations if we restrict ourselves to the ”smallest” representations possible. We now explain
what we mean by that:

3.1.2 Definition A Clifford representation p: Cl,, — Endc(V) is called irreducible if no de-
composition V = Vi @ V, such that p(Cl,,)(V;) C V; exists.
Two representations p;: Cl,, — Endc(V;) (i = 1,2) are called equivalent if there exists a vector
space isomorphism F': Vi — V5 such that for any ¢ € Cl,

Fopi(p) =pa(p)o F
The following theorem collects the results on representations of Cl,, we need:

3.1.3 Theorem (cf. [LMB89, sections 1.5 and I.6])
(1) Clay, ~ M(C,2™) and Clop41 = M(C,2™) & M(C,2™).

(2) The trivial representation
Clay, ~ M(C,2™) — End(C?")

is, up to equivalence, the only irreducible representation of Clap,.
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(8) Up to equivalence, the only irreducible representations of Clay,+1 are given by
Clopm i1 ~ M(C,2™) & M(C,2™) — End(C?") @ End(C*") 25 End(C?™)
where pr is the projection onto the first or second component.

Each representation of Cl,, induces one of its subgroups Spin,, and Spin{,, which we shall discuss
now. We begin with Spin:

3.1.4 Definition The spinor representation is the restriction of (one of) the irreducible repre-
sentation(s) of Cl,, to the spin group. We will note it

k: Spin, C Cl, C Cl,, — End(A,,).

This is well-defined by the following result:

3.1.5 Proposition (cf. [LM89, Proposition 1.5.15])

In the case where n = 2m+1 is odd, the restrictions of the two irreducible Clifford representations
to Spin, coincide and give an irreducible representation of the spin group.

In the even case, the restriction to Spin, splits into two irreducible representations

As the spinor representation comes from a mapping defined on all of the Clifford algebra, the
Clifford algebra acts on the spinor module in the obvious way. This action is called Clifford
multiplication.

3.1.6 Proposition (cf. [Fri00, section 1.5 (p. 24)])
There exists a positive definite hermitian scalar product (-,-) on A, such that

(z.0,9) = =(p, 2.9)
for all x € R™ and all o, € A,,.

One can now use the same theory for the complex spin group as well. The spinor representation
extends to Spin¢ as follows:

3.1.7 Definition The spinor representation on Spin is given by

KC: Spiné ~ Spin, xz, S — End(A,,)
(9, 2] — z(g).
All the above results carry over to Spin®, i.e. the complex spinor representation is well-defined,
it is irreducible if n is odd and admits a decomposition into the subspaces A if n is even.

In the even case, we have an alternative description of the spinor representation which we shall
later use to describe the spinor bundle on almost-hermitian manifolds.

3.1.8 Proposition (cf. [Mor96, Lemma 3.4.3])
The irreducible representation of Cl,, for even n = 2m is induced by the following mapping

cl: R¥™ > A% ((R*™)*) — A% ((R*™)")
(v,w) — V2 ((vl’o)b ANw — v0’14w> ,

where v10 and v*! denote the respective parts of v considered as an element of the complexifi-

cation R*™ @ C and where we equip R*™ with the standard almost-complex structure.
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Proof: We begin by proving cl?(v) = —||v||?:

cl?(v)(w) = V2cl(v) ((vl’o)b Aw—vP1oA w)
=2 ((vl’o)b A (vl’o)b Aw — vo’lJ((vl’O)b ANw) — (vl’o)l’ A (0O w) + vo’lwo’l_nw>
—9 <—(v1’0)"(v0’1)w 1 (,Ul,o)b A (00 w) — (vl,O)b A (vo,le)>
= —2(Ul’o)b(vo’l)w.

The last line is equal to —||v||*> which can be seen as follows: We have that v1'0 = (v — iJv)

and v®! = 1(v 4 iJv) and thus

L@(0) + (J0) (J0) — i((J6) (0) + 0 (J0)))

(Ul,O)b(UO,l) — 1

1 2
= Sllel’

Thus, this mapping extends to an action of Cl, and, extending by C-linearity to one of Cl,
which we will denote cl. Because the dimension of A% ((R?™)*) is 2™, ¢l must be the irreducible
representation. O

Recall that Spin, is a two-fold covering of SO,,, the structure group of an oriented Riemannian
manifold. We are thus led to ask whether there is a link between the complex spin group and
the unitary group U,, which is the structure group of an almost-hermitian manifold. Indeed,
one has the following result:

3.1.9 Lemma

Let m € N and n € {2m,2m + 1} and let f: Uy, — SO, x St be given by f(A) = (1A, det A)
where v is the inclusion map. Then there exists exactly one group homomorphism F such that
the following diagram commutes:

Spins,,

=

U, 150, xSt

Proof: By the theory of covering spaces, we need to show that fu(m1(Uy)) C pg(m1(Spins,,)).
We have that m;(Spin§,,) ~ Z. Let a be a generating element of that fundamental group.
Then, pg(a) = Ay (a) + lg(a). Recalling the exactness of the column in (3-1), we deduce that
B = Ay () must generate all of m1(SO,,). The row is also exact and m1(Spin,) = 1, therefore [,
must be bijective, i.e. v = l4(a) must generate m(S) ~ Z. Thus, py(a) generates the whole
fundamental group of SOy, x S and thus, the condition is trivial. O

While the proof using covering theory we have just given is short and elegant, we can also give
an explicit formula for F' which will be useful later: Let A € U,,. Then there exist unique
01,....,0,, € ]0,27) and a unitary basis ey, ..., e, of C"™ with respect to which the matrix has the
form
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whose inclusionlﬂ in SO, has the following form

cosfy —sinb;
sinf; cosf

cos@,, —sinb,,
sin6,, cosf,,

with respect to the basis eq, fi, ..., m, fm Where f; = Je; and J is the almost-complex structure
induced on R?>™ by the complex structure of C™. The form of ¢4 implies that it is the product
of rotations:
[,A — Déelv.ﬁ) 0--+0 Dé&nvfm)
1 m

)

where DéuM denotes the rotation around the origin by the angle 6 in the plain spanned by the
vectors u and v. Under the covering A we have for its preimage
—1(pleisfi) o L ain O o —ing. f
A (D(,J_ ) 2 (cosbje; +sinb;f;) (cosBje; —sinb; f;)

= — cos? 0; — 2sin6; cosbje; f; + sin? 0;
0. 6,
ZCOSEJ —{—SIDEJ-ijj.
On the other hand, det A = exp(i }_, 0;) and p([g, 2]) = A(g) X 22 and thus, setting

m
F(A) = H(cos%] + sin% -ejfj) | x e3 2%

j=1
fulfils the conditions of the above lemma.
Now, in the case, where n is even, we prove a result stated in [Mor96, Lemma 3.4.4], compar-
ing the representation cl o F with the standard representation of Uy, on A% ((R?™)*) that we
described in section [[.2.1k
3.1.10 Lemma
The Up,-representations pa : Up — A% (R2™)*) and clo F coincide.

Proof: Let A € U, and e, f1, ..., €m, fm as described above. Then z; = %(ej —if;) and their

conjugates z; = %(ej —if;) form a basis of R?™ ® C with z; € (R*™)%!. Denote 27 and 27 their

duals. We then have e; = %(z] +7%;) and thus e}’o = %zj and e?’l = %Z Analogously, we
have fjl’o = %zj and f](-]’1 = —ﬁ@ Thus, we obtain

cl(e; fi) (2 A . Azik) = V2el(ej)((£;°) A=F D)z AL A2

= icl(ej) (27 A+7Z0)21 A ... A 2K

The following calculations depend on whether j is an element of I = {iy, ..., it} or not. We first
consider the case where j = i,. In this case we obtain:

—

A(ejfi)(ZL A o Azik) = i(=1)P (T A =Z5) 20 Al Az AL A 2

=420 A ... A 2,

% We only consider the case of n = 2m here. The considerations for n = 2m 4 1 are analogous and the result
obtained is the same.
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In the other case, i.e. j ¢ I we have
(ejfi)(Z0 A A Zik) = icl(zd A —Z50)2d A2t A Az
= —iziL AL A 2,
Thus, we obtain that
cos%—l—isin% ZUA LA 2 ifjel

cl{cos— +sin—ze;f; | 22 AN A2k = o _ _
2 cosg —ising | 20 AL A% i 5T

2
_JeiZai Az ifjeT
e Wil2g N LN if G T
and thus,

A(F(A))(Z0 A oo A7) = 3 25105075 Zyer 050 Di=1 0700 A A 2
= eXi=1 450 A L i,

On the other hand, by the defintion of py, we have that

pA(A)(Z0 A o A zik) = p*(A)z8 AL A pt(A) 2k,

Writing A as a real matrix and writing 2/ = %(e‘j —if7), we obtain that

- 1 i ‘ .
pr(A)z) = \ﬁ (Cos 9]'@3 — sin ijJ + isinejeﬂ i cos ejfj)
U
= — (eiel —ie Jf])
vl
This implies that
_ o -

pA(A)(zh A A Zik) — 6223'21 9ij

which yields the claim. i

This concludes our discussion of representations of the even-dimensional complex spin group.
Here we used the almost-complex structure of R?™ to describe the spinor representation. We
now turn to the odd-dimensional case. In that case, we can use an almost-complex structure
on a 2m-dimensional subspace of R?™*+! and fix a transversal direction, thus creating a struc-
ture on R?"*! that resembles that on the tangent space of a contact manifold. The following
proposition, similarly stated in [Pet05l proposition 3.2], describes the spinor representation in
the odd-dimensional case.

3.1.11 Proposition

Let RZ™H = L(21, 41, ooy T, Yy 2)} and set V = {(z1,y1, .., Tm, Ym, 0) € R 1Y and define an
almost-complex structure on V by setting

J(xlvylu ceey x’rfnyn’mo) - (—yh$17 cery TYmy Ty 0)

Furthermore, write & = (0,...,0,1) and n = €. Let furthermore VY0 and VO be the +i
eigenspaces of J on V@ C. Then an irreducible Clifford representation of Clagn+1 is induced by

cl: R 5 AOT (V) — AYT (V)
(1, w) — V2((u! %) A —u®! ) +i(=1) 4 n(u)w

where ut® and u®' are the respective parts of the orthogonal projection of u onto V.
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Proof: We need to show that cl?(u) = —||ul? for any v € R?™*!. Then ¢l induces a represen-
tation of Cla,+1 and the dimension of A%"(V*) implies that it must be one of the irreducible
ones. So let u = v + A6 € R+ with v € V and w € A%#(V*). Then, we have that

cl(u)(w) = V2 ((vl’o)b Aw— v0’14w> +i(=1)* 1w
and thus
cl?(u)(w) = V2l (u) ((vl’o)b ANw — vo’le> + (=) el (u) (w)
=2 (") Aw) = (010 A (0™ 1)) + VE(=DFA) Aw
+ V2i(—1)F A% Jw + V2i(=1)FA (ﬂ(vm)b Aw— V20w + i(—l)k“)\w)
= 2" (0" Hw — N = —[|v]w.
This yields the claim. O

Just like in the even-dimensional case, we have the following result:

3.1.12 Lemma B
The U,,-representations py: Uy, — Endc (AO’* ((RQ’”)*)) and cl o ' coincide.

Proof: The proof from the even-dimensional case carries over, because the image F'(U,,) is only
generated by the first 2m basis vectors of R+, O

This concludes our discussion of representations of the spin groups. We will use the general
theory in the following section to introduce spinor bundles and will apply the more detailed
analysis of representations of Cl,, to spinor bundles of almost-hermitian and metric contact
manifolds in the last section of this chapter.
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3.2 Spin and Spin® structures and their spinor bundles

Having discussed the algebraic structure of the spin groups and their representations, we now
consider the "extension” of these concepts to manifolds, i.e. spin and Spin® structures on
(oriented Riemannian) manifolds. This section serves to give a short review of these structures
and the spinor bundles associated to them. The discussion will be short and serves mainly to
establish notation, because we assume that the reader is familiar with these structures, at least
in the spin case.

Spin structures

A spin structure on a manifold is the existence of a principal Spin-bundle together with a map
that extends the two fold covering \: Spin,, — SO, to a two fold-covering of Pso(M). More
formally, we have the following definition:

3.2.1 Definition A spin manifold is an oriented Riemannian manifold (M,g) whose frame
bundle Pso(M) admits a spin strcuture, i.e. a principal Spin,-bundle Py, (M) together with
a smooth map f: Pspin(M) — Pso(M) that commutes with the projections onto M such that
the following diagram commutes:

PSpin (M) X S’pinn e PSpin (M)
| |
Pso(M) X SOn —_— Pgo(M),

where A: Spin, — SO, is the two-fold covering map and the arrows in the lines denote the
group actions.

To this bundle we can then associate a vector bundle through the spinor representation:

3.2.2 Definition The spinor bundle of a spin manifold is the following vector bundle associated
to PSpin(M ):
S = Pszn(M) Xk Any

where « is the spinor representation.
Because k is defined on all of Cl,, C Cl,,, we obtain a Clifford multiplication mapping
c: Cly, x S, — Sy,
(X, v) = e(X)(v) = An(X)(v).
Considering the Clifford bundle

zeM

the Clifford multiplication carries over to a Clifford multiplication defined on CI(M,g) and S:
c: Cl(M,g) xS — S,

which for ease of notation we shall also write X.¢p = ¢(X)¢. It is compatible with the bundle
structure, i.e. the following diagram commutes:

CU(M, g) x S—— S

WCZXFSJ( /

M
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3.2 Spin and Spin® structures and their spinor bundles

where 7w, and wg denote the projections onto M for the respective bundle. S is therefore also
called a Clifford module.

One can also extend the Clifford multiplication map to Clifford multiplication of forms
c: U (M)xS—S

given by

cW)(@) = D w(Siys e 8y )i o8O,

11<...<tf

where (s;) is a local orthonormal basis.
Recall that A,, carries a postive definite hermitian scalar product (-,-). This product carries
over to a bundle metric on S by setting

()2 S xS, — C
¢, > (6, )z

This bundle metric then induces an L? scalar product

(6.9)12 = /M<¢<x>,w<x>>de<z> Vo, € To(S)

on the space of compactly supported sections of S.

Spin¢ structures
The notion of spin structure has a complex analogue which is the notion of a Spin¢ structure:

3.2.3 Definition A Spin® structure on an oriented Riemannian manifold (M™",g) is a Sping-
principal bundle Pog(M) together with a smooth map f: Pog(M) — Pso(M) such that the
following diagram commutes:

Pos(M) x Sping, —— Pos(M)
fX)\CJ, Jf\
Pgo(M) X SOn *>P50(M) — M

where again the horizontal arrows on the left stand for the group action and the horizontal and
diagonal arrows on the right for the projections onto M.

Given a Spin® structure (Pcg, f), we can associate the following bundles to it:

(1) An SO,-principal bundle I ©$/g1 which is isomorphic to Pso (M),

(2) An S'-principal bundle P; = PCS/Spinn'

The bundle P; will become important later and we will therefore consider it in some more
detail. We obtain that the projection map &: Pog — Pso x P is a two-fold covering map.
This covering can actually be used as an alternative definition of a Spin® structure by demanding
the existence of a Spin-bundle Pog together with a S'-bundle P; and a two-fold covering map
&: Pog — Pso x Py. For a proof of the equivalence, see again [Fri00, section 2.4].

3.2.4 Definition The determinant line bundle of a Spin® strcuture is the complex line bundle

L= P1 XUy C= PCS X Spine C.
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As for a spin structure, we want to associate a vector bundle to a Spin¢ structure. Recall that
the mapping x: Spin, — SO(A,) can be extended to a representation of Spin{ by setting

kS Sping, — U(Ay,)
9, 2] — 2r(9)

and we can then associate a vector bundle to the Spin®-bundle
S¢ = PCS Xk An

which we will call the spinor bundle associated to the Spin® structure. In the same way as for
the real case, S¢ and I'g(S¢) carry scalar products.

In the next section, we shall see how any connection on 7'M induces one on S and S¢ respectively
and how they determine a first-order differential operator on the spaces of sections of the spinor
bundles.
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3 SPINOR BUNDLES, CONNECTIONS AND GEOMETRIC DIRAC OPERATORS

3.3 Basic properties of connections and geometric Dirac operators

In this section, we shall study connections and the Dirac operators they induce. We begin
with a short introduction to connections and their torsion and potential. We then move on to
consider how a metric connection on T'M induces one on the spinor bundles S and S¢ and how
certain properties of a connection are related to properties of the Dirac operator it induces. In
particular, we prove relationships between the torsion of the connection and the self-adjointness
of the Dirac operator and how a comparison of the torsion of two connections can show whether
they induce the same Dirac operator.

By a connection on T'M, we understand a linear operator

V:I'(TM) —T(T"M @ TM)
satisfying

V(fX)=df e X + f - (VX)
for any f € C*°(M), X € X(M). As it is well know, any Riemannian manifold (M, g) admits
exactly one connection which is both metric, i.e.

X(9(Y,2)) = 9(VxY,Z) + 9(X,Vx Z)
and torston-free, i.e.
VxY - VyX =[XY].

That connection is called the Levi-Civita-connection and will be noted V9. If we drop the
requirement that the connection be torsion-free, we obtain the much larger class of metric
connections, which we shall note A(M,g). These connections are described by the following
data:

3.3.1 Definition Let V be a metric connection on (M, g). Then the (2,1)-tensor 1" defined by
T(X,Y) :=VxY - VyX — [X,Y]

is called the torsion of V.
The (2, 1)-tensor A defined by
AXY :=VxY - V%Y

is called the potential of V.
We can consider A and T as elements of Q2(M,TM) as follows:

T(X;Y,Z) = g(X,T(Y, Z)),
where the conventions for writing two-forms as trilinear mappings from section are used. We
stress that 7' is already a T'M-valued two-form (in the classical sense) by its original definition,
while A is not. Therefore, the conventions for understanding them as two-forms differ. It is

obvious that V is completely described by its potential. However, it is also completely described
by its torsion as the following result shows:

3.3.2 Lemma
The potential and torsion of a metric connection V € A(M,g) are related as follows:

T=—-A+3bA,
A= —T+ng.
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Proof: To begin with, note that we have

T(X;Y,Z) =g(X,VyZ —NzY = [Y, Z])
9 X5V Z+ Ay Z — VY — AzY —[Y, Z])
9( X, Ay Z — AzY)

AYZ,X)+AZ; X,)Y).

Then, the first identity follows immediately from (*) because
AY:Z,X)+ A(Z: X,Y) = 3bA(X;Y, Z) — A(X;Y, Z).
Concerning the second identity, we calculate

AX:Y, 2) Y T2 X, Y) + AY; X, 2)

=T(Z;X,Y) = A(Y; Z,X)

Yz, X,Y) - T(X:Y,Z) — A(Z;Y, X)

—T(Z;X,Y) ~ T(X;Y,Z) + A(Z; X, Y)

Yz X,Y) - T(X:Y,2) + T(Y; Z,X) + A(X; Z,Y)
=T(Z; X,Y)-T(X;Y,2)+T(Y;Z,X) - A(X;Y, Z),

which is equivalent to

A, 2) = J(T(ZX,Y) = T(X;Y, 2) + T(V; 2, X))

=-T(X;Y,Z2)+ ng(X;Y,Z).

0

Any metric connection on T'M defines a connection on the spinor bundle associated to a spin
structure as follows. First, let M be a spin manifold. Then, every metric connection on M
induces a connection on S which we now describe: Let V be a metric connection on T'M, then
it induces a connection one-form CV € Q!(Pso(M), s0,,) on Pso(M), locally given by

(CY)¥(X) = (CV)(ds(X)) = ZQ(VX% 8j)Eij, (3.2)

where s: U C M — Pso(M) is a local section in the frame bundle and E;; € R"*™ given by
(Eij)ki = —0ik0j1+0;101 (for more details on this compare appendix|A.3). Under the two-sheeted
coverings

[+ Pspin(M) — Pso(M),
A Sping — SO,

this connection form lifts to a connection one-form CV € QY(Pgpi, (M), spin,) such that the
following diagram commutes:

T Papin (M) < spin,,

7T

TPso(M) —5— s0,
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As S is a vector bundle associated to Pgp, (M), the connetion form C'V induces a connection \Y
on S. By proposition it is given locally on U C M by

Vxolu =[5 X () + Y g(Vxsi,s;)si.5;.0], (3.3)
i<j

where ¢|y = [s,v] with s = (s1,...,sn) € T'(U, Pso(M)),v € C*(U,A,) and 5 is a lifting of s to
Pgpin,(M). This connection has the following properties with respect to the Clifford mutiplication
and the scalar product on S:

3.3.3 Lemma B
Let X, Y be vector fields and let ¢ € T'(S). Then for the connection V induced on S by any
metric connection V on TM, we have

6){(1/.(,0) = (ny).(p + Yv.exgo.
Furthermore, V is metric with respect to the hermitian scalar product on S.

Proof: A proof of these facts can be found in [Eri00, section 3.1, pp. 58f]. It is stated there for
the connection induced by the Levi-Civita connection, but holds for any metric connection. [J

Now, any connection on S together with Clifford multiplication defines a first order differential
operator.

3.3.4 Definition Let M be spin and V a metric connection on T'M. Then the first-order
differential operator

D(V): T(S) s T(T*M ©'S) - T(S), (3.4)

where ¢ denotes Clifford multiplication is called the geometric Dirac operator associated to V.
The operator DI = D(VY) is called the Riemannian Dirac operator

These operators will be considered in great detail in the rest of this thesis. We begin in this
chapter with some basic properties and show how these properties are reflected in the torsion
of the connection that was used to define the Dirac operator. We begin by defining self-adjoint
operators.

3.3.5 Definition A Dirac operator is called formally self-adjoint, if

(D(¢), )2 = (¢, D(¢)) 2 for any ¢, € Teomp(S).

Not all Dirac operators have this property and we want to investigate which ones do. We begin
with a well-known result.

3.3.6 Lemma (cf. [LM89, Proposition II.5.3])
The Riemannian Dirac operator is formally self-adjoint.

Proof: Fix some point x € M. We can then use a local orthornomal basis (s, ..., s,) that

is x-synchronous, i.e. a basis that is obtained from an orthonormal basis of T, M by parallel
transport along radial geodesics. In particular, such a basis fulfils V¢, s (z) = 0.
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We then obtain that

(Do( = Z (), 9 (x))

Il

|
-
Q

:
i

= (p(@), DIp(2)) = D s5((p,554)) ().

j=1
We can define a vector field V uniquely by demanding that
0 (V (@), W (2)) = (p(a), W(2).0(x)) for any W € X(M),z € M.
Then, using that V¢;s;(x) = 0, we obtain

> silleysi))(@) =D [si(g(Visy)) (@) — g(V, VY s5) ()]
j=1 j=1
=Y 9(VLV,s))(x)
=1
= div(V)(x).
Integrating over M and using Stoke’s theorem then yields the claim. O

We now introduce two properties of connections relating to their Dirac operators:

3.3.7 Definition A metric connection V on T'M is called nice, if the geometric Dirac operator
it induces is formally self-adjoint.

Two connections V! and V? are called Dirac equivalent if they induce the same geometric Dirac
operator.

These properties are reflected in the structure of the torsion. To see this, we first prove an
auxiliary result stated in [Nic05l formula (1.4)].

3.3.8 Lemma
Let M be spin and V a metric connection on M. Then the following formula holds for geometric
Dirac operators:

D(V) = D9 — %c(tr A)+ gc(bA),
where A is the potential of V, i.e. V =V9 + A.

Proof: This is proven using the local formula for V. With the usual conventions, we have

Vxe =[5 X (v —i—Zg VxSj,8k)8.5k.0],
i<k

Vixp = —|—Zg X Sjs Sk)Sj.5k- V).
i<k

20



3.3 Basic properties of connections and geometric Dirac operators

Now, the Dirac operator can locally be written as D(V)p = >, Sk.%sk(p. Using all this, we
obtain that locally

n

(D(V) =D%)p = Z[ZSV, % ZQ(ASsza Sk)S1.5.5%-V].

=1 i<k
Using that s;.sp. = —sj.5;. and (using that both connections are metric) that g(Ay,s;,sx) =
—g(sj, As, 51), we can rewrite this as
1 n
(D(V) =D =[5, 1 Z 9(Ag, 85, 5K)51.55.55.V].
l,j,k=1

First, we only consider the terms where [ = j. For these we obtain

n

1
[5,1 Z 9(As; 85, 8k) 8-55- 5k-V]

k=1 )

1
=—s, 1 Z A(sj; s, Sk)Sk-v]
Jk=1

R
=—15, 1 ; tr A(sg)sg.v]

R
=— [8,4;131'14.’0]

1
=——tré.e.
i
Next, for k = [ we have that
9(As, 55, 5k)8k-5.5K. = —g(8j, As). Sk)Sk-5.Sk- = §(55, As, 5k)5;.Sk-5k-
and thus the same calculations as for j = [ can be applied and both cases together yield

—% tr A.. Finally, for | # j, k, we go back to considering only indices j < k and obtain for that
part of the sum

g
(s, 5 Z Z 9(Ag, 85, 5K)81.55.5k.V]

=1 1#5.k
i<k
1
=55 Z 9(Ag, S5, 5k)51.55.55.V + Z 9(Ag,Sj,5k)51.55.55.V + Z 9(Ag, S, 5k)51.55.5k.V
j<k<l j<i<k 1<j<k |
1
=153 Z A(sq, 84, Sk)S1-55.55-0 + Z A(Sg,55,51)5k.55.51.0 + Z A(Sj, Sk, 51)5j-5k-51.V
L j<k<l j<k<l J<k<l ]
-3
:[575 Z (bA)(sj, Sk, 51)5;j-5k-51.0]
j<k<l
3
=—(bA).ep.
5 (04).0
The claim follows putting together the above facts. g

From the above lemma we deduce the following result:
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3.3.9 Corollary
Assume that M is spin and let V be a metric connection on TM. The the following statements
hold:

(1) V is nice if and only if its torsion satisfies trT = 0.

(2) Assume V is nice. Then we have
3 3

(3) Assume V' and V? are nice. Then they are Dirac-equivalent if and only if 6T = bT?.

Proof: We use the above formula. The Riemannian Dirac operator is symmetric. Recall that
the Clifford multiplication by forms can be calculated by

w.¢: Z w(sil,...,sik)sil...sik.¢

11 <...<U

for some orthonormal basis (si,...,s,). We know that Clifford multiplication by such vec-
tors is skew-symmetric. Thus Clifford multiplication by a one-form is skew-symmetric whereas
multiplication by a three-form is symmetric (bringing over all vectors gives one minus, reorder-
ing them another one). Thus, for D(V) to be symmetric ¢(tr A) must vanish. Yet, because

c(tr A)? = —| tr A||? this implies that tr A itself must vanish, which by lemma is equivalent
to the vanishing of tr 7. This proves (1). (2) follows immediately from (1) and then, (3) is an
immediate consequence. 0

We have the following converse:

3.3.10 Corollary
Let P = D9 + w be an operator on I'(S) with w € Q3(M). Then, P is the geometric Dirac
operator induced by VI + A where A = %w.

Proof: Using the above results, we deduce that

2 1
D(Vg—i—gw):Dg—gtigu—i—bw:Pw:Dg—i—w.

g

Note that this is only a partial converse of lemma [3.3.8 as obviously not all geometric Dirac
operators will have the form D9 4+ w with a three-form w. More precisely, this captures exactly
the nice connections. Furthermore, note that there may be many other connections inducing
the same Dirac operator.

In the case of a Spin® structure, we can induce a connection on S¢ as follows: We fix a metric
connection V on T'M and the connection one-form CV it induces on Psp. As opposed to the
case of a spin structure, this is insufficient for inducing a connection form on the principal
Spin-bundle, because Pog(M) is not a covering of Psp. Therefore, we need to fix an auxiliary
connection form Z on P;. Together, they form a connection form CV x Z on Pgo x P;, which

now lifts to CV x Z such that the following diagram commutes:

—

CVxZ . ¢ . .
TPog(M) ——— spinf, ~ spin, © iR (3.5)

de JP*
VxZ

T(Pso(M) x Py) —% 50, @ iR.
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As above, CV x Z induces a connection VZ on S€. Using the expression from proposition
we deduce that locally, it can be described as follows: Let ¢ € I'(S¢) be localy described by
dlu = [s X e,v], where s € I'(U, Pso) and e € I'(U, P,) and s x e is a lifting to (U, Pog) and
finally, v € C*°(U, A,,). Then, we have that

(V46)() = [ X e, X(v) + < (A7 x 2)7(X)) 0]
— [5 X e X(v) + ((AV X Z)(ds/>\</e(X))> 0]
= [3 x e, X(v) ((p ((C’V X Z)SXC(X))) ] (using )

= [8/;(/6, Zg VXsJ,Sk ( _]k’)+ ZG(X) ]
j<k
N 1 1.,
=[sxe, X(v)+ 5 Zg(vxsj,sk)sj.sk.v + §Z (X).v].
i<k

As for a real spin structure, we can define geometric Dirac operators.

3.3.11 Definition Let M admit a Spin® structure and let V be a metric connection on M and
Z a connection on P;. Then the first-order differential operator

Du(V,2): T(S°) Vo5 T(T*M ® §°) —%5 T(S) (3.6)

is called the (Spin©-)geometric Dirac operator associated to V and Z.
The operator DZ(Z) = D(VY, Z) is called the Riemannian Dirac operator.

The notion of self-adjointness is defined as in the spin case. The next lemma collects some
results on connections on S and their Dirac operators. It is proven as in the spin case.

3.3.12 Lemma
Let M be a Spin®-manifold and let V be any metric connection on TM and Z a connection

form on Py. Let furthermore VZ be the connection induced on the spinor bundle S¢ by V and
Z. Then, we have the following results:

(1) For any vector fields X,Y € X(M) and spinor field ¢ € S°, the following formula holds:

VZ(Y.p) = (VxY).p+ Y.VZ.0.

(2) The connection VZ is metric with respect to the hermitian scalar product on S€.
(8) The Riemannian Dirac operator D.(Z) for any connection Z is formally self-adjoint.

The Dirac operator D.(V, Z) does of course depend on V and Z. However, the difference between
it and the Riemannian Dirac operator induced by the same connection Z on P; depends only
on V as the following lemma shows:

3.3.13 Lemma
Let M admit a Spin¢ structure (Pggs, P1, f), let V be a metric connection on TM and Z a
connection on Py. Then the following formula holds for the geometric Dirac operators:

DoV, Z) = DI(Z) — %c(tr A)+ ;c(bA).
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Proof: This is proven exactly as in the case of a spin structure. The additional connection Z

~ 7
appears in the local formulee of both VZ and V9~ and thus the difference D.(V, Z) — DZ(Z)
looks exactly as in the real case. O

One easily deduces the following results from the above formula:

3.3.14 Corollary
Let M be a manifold admitting a Spin® structure and let V', V? be metric connections on TM
and Z1, Zy connections on Py. Then the following statements hold:

(1) D.(V, Z1) is formally self-adjoint if and only if D.(VY, Z3) is, which holds if and only if
tr Tt = 0.

(2) DC(VI7Z1) = DC<V27ZI) Zf and Only Zf DC(V17ZQ) - DC(V27ZQ) :
(3) Assume V', V2 are nice. Then D.(V', Z1) = D.(V?, Z1) if and only if 6T = bT?2.

Assume now that M is also spin. Then D.(V', Z1) is formally self-adjoint if and only D(V*
is.  Furthermore, two connections V', V? are Dirac equivalent if and only if D.(V', Z1) =
D.(V?,71).

And we can also extend the following corollary to the complex case:

3.3.15 Corollary
Let P = DJ(Z) + w be an operator on I'(S°) with w € Q3(M). Then, P is the geometric Dirac
operator Do(VI + A, Z) with A = 3w.

We can now extend the notion of nice and Dirac equivalent connections to the case where M
admits only a Spin® structure.

3.3.16 Definition Let M be a manifold admitting a spin or a Spin® structure and let V be a
metric connection on T'M. We call V nice if D(V) or D.(V, Z) (for any connection Z on P;) is
formally self-adjoint.

We call two connections Dirac equivalent if the Dirac operators induced by them on S or S¢ are
equal.

By the above results, this is well-defined. Recalling the condition for Dirac equivalence in the
case of nice connections, we introduce the following notion:

3.3.17 Definition Two metric connections V! and V? are called quasi-equivalent if bT' = bT?2.

Note that two nice connections are quasi-equivalent if and only if they are Dirac equivalent.
In the general case, the notion of quasi-equivalence is, as the name suggests, less strict and in
particular (as we shall see) a nice connection can be quasi-equivalent to one that is not nice.
This concludes our discussion of connections and Dirac operators for the moment. In the fol-
lowing section we will study the existence of Spin¢ structures on almost-complex and contact
manifolds.
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3.4 Spin® structures on almost-complex and contact manifolds

There are many more manifolds admitting a Spin¢ structure than manifolds admitting a Spin-
structure. In the words of H.B. Lawson and M.-L. Michelsohn ”it requires some searching about
to find an oriented manifold which is not Spin® (cf. [LM89, p. 393]). Among the manifolds
admitting a Spin® structure are those whose frame bundle admits a U,,-reduction, in particular
almost-hermitian and metric contact manifolds.

In this section, we shall examine the Spin® structures of these manifolds, paying particular
attention to the structure of their spinor bundles and the connections on them. We begin
with the more well-known case of an almost-hermitian manifold and then proceed to analogous
constructions on a metric contact manifold.

3.4.1 Lemma
Let M be a manifold admitting a Ug-reduction of its SO frame bundle. Then M admits a
Spinc-structure.

Proof: The existence of a Ug-reduction means that there exists a Up-bundle @) together with a
mapping hq : Q — Pso(M) and one then has Pso = @ Xy, SOz;. By lemma there exists
a mapping F' : U, — Sping,, such that po F' = f. We define a Spin® bundle by

Pcs = Q xf Sping,

and
hes : Pos — Pso
(¢, 9] — hq(@)A°(g)-
Then
hes((g, 9l9) = hes(la, 99/) = hq(a)A“(99/) = hq(9)A°(9)A(g7),
which proves that (Pog, heg) is a Spin® structure. O

The case of almost-hermitian manifolds

In particular, any almost-hermitian manifold of dimension n = 2m admits a U,,-reduction
Py (M) of its frame bundle (compare the discussion in section [1.1). Thus, any almost-hermitian
manifold admits a Spin® structure. The Spin® structure described above

Pcs(M) = PU(M) XF Spm;

is called the canonical Spin® structure of the almost-hermitian manifold. Because we can always
find an almost hermitian metric on an almost-complex manifoldﬂ any almost-complex manifold
admits a Spin® structure (however, it is not canonical any more, because we first have to choose
an almost-hermitian metric).

We want to study the canonical Spin® structure in some more detail: Recall that with each Spin®
structure, we have a Uj-bundle P; = Pog/Spin. In the case of the canonical Spin®-structure,
this bundle can be written as

Pl _ (PU XF (Spinn XZQ Sl))/

sznn = PU Xdet Sl?

T As it is well known, there always exists a Riemannian metric h. Then g = h + h(J-,J-) is almost-hermitian.
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i.e. it is a S'-extension of P;. The equality is immediate from the definiton of F. We can then
give a more detailed description of the two-fold covering &:

&: Pog(M) = Py(M) xp Spiné — Pso x (Py(M) xge SY)
(5,19, 2]] — (sA(g)) % [s,2°].

Similarly, the canonical line bundle is given by
L = Pog x; C = Py xp Spins,, x; C.
Because [ = prg o p, we obtain from the definition of F' that [ o F' = det. Thus, we have that
L = Py, xget C = A¥(TM), (3.7)

where A¥ indicates that the exterior powers are taken over C and that T'M is considered as a
complex vector bundle.
Moreover, the associated spinor bundle can also be given a more explicit description:

3.4.2 Proposition
Let (M, J,g) be an almost-hermitian manifold and let S¢ be the spinor bundle associated to the
canonical Spin®-structure on M. Then we have S¢ ~ A% (T*M) and Clifford multiplication is
given by

Xp=12 <(X1’O)b Ap— Xo’l_mp)

for any X € T,M and ¢ € S5.
Proof: We have that that
S = Pog x5 A% (R*™)*) = Py, xp Spins,,, x5 A% (R*™)*).

By lemma [3.1.10} the representations py and cl o F coincide and we thus have (cf. proposition

A.11) that
S¢ = Py(M) x,, A% ((R¥™)*) = A% (T*M).

By the definition of Clifford multplication on M, the above formula for elements of TM C
CIl(M, g) comes from the formula for ¢l as described in proposition O

Using the above formula, one obtains that Clifford multiplication for one-forms is then given by
.o = V2" A — (aF)lp).

Now, note that we have two ways of defining a covariant derivative on S¢. The first way is the one
described in the previous section, possible for any spinor bundle associated to a Spin®-structure.
However, due to the special form of S¢ here, we have a second way which is inducing a covariant
derivative on forms, given by the following formula

(Vxw)(X1, o0y Xp) = X (@(X1, 000 X)) = > (X1, oy Ve X, ooy Xg). (3.8)
j=1

We now discuss the relationship between the two covariant derivatives. In order to do so, we
first introduce the notion of a connection compatible with the almost-hermitian structure.

3.4.3 Definition Let (M, g,J) be an almost-hermitian manifold. Then a connection V on T'M
is called hermitian it it is metric and parallelizes the almost-complex structure: VJ = 0.
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3.4.4 Lemma

Let (M?™ g,.J) be an almost-hermitian manifold and ¥V a hermitian connection on TM. Then
the connection form C induced by V on the frame bundle restricts to a connection form on the
unitary frame bundle Py(M).

Proof: A priori, C € QY (TPgr(M), gl,,,). Obviously, its restriction to Py is still a connection
form. We only need to show that C'(X) € u,y,, i.e. that

O(X) = —C(X) (3.9)

as a complex matrix. As a real matrix C(ds(X)) = (wjx(X)) where the w;, are defined by
Vsj =) wkj ® s for some basis s1, ..., som.
If C(X) is to come from a complex matrix, (w;j) must fulfil that

W2j—12k—1 W2j—12k\ _ [W2j—-12k—1  W2j—12k (3 10)
W25 2k—1 w252k —W2i-12k W2j-1,2k—1

and the condition (3.9 translates as

W2j—12k—1  W2j—1,2k _ [ TW2k-1,2j-1 W2k—1,25 ‘ (3'11)
—W2j—-1,2k W2j—1,2k—1 —W2k—1,2j5 omegagk—1,25—1

Now let eq,...,e, be a unitary basis of T'M understood as a complex vector space, then we
can form a real basis {si,..., Som} by setting sop_1 = e and so = Jeg. From (VJ)ep =
V(Jex) — J(Vey) we obtain that Vso, = J(Vsag—1). Thus, we obtain

m
Zw2j,2k(X)82j + woj—1,2k(X)s2j—1 = Vxsop
=1
= J(Vxso—1)

m
= J (D wajae—1(X) 52 + waj—125-1(X)s25-1)
7=1
m
= —wajon-1(X)szj1 + wzj-1,26-1(X)s2),
j=1

from which we conclude wgjor—1 = woj—12k and woj_12x—1 = wajok, exactly fulfilling (3.10]).
We already know that C' is a connection on Pso(M) and hence that C fulfils C = —C7, i.e.
wjk = —wy, j. Together with the above, this yields (3.11)) and the claim is thus proved. ]

Now, starting with a hermitian connection V, we prove that the covariant derivative defined by
(3-8) can be alternatively described as follows: Because

APAT M) ~ Py (M) xpy API((R™)7)

(cf. discussion in section|1.2.1)), we can induce a connection on A%" by considering the connection
form C'V induced on Py (M) and then the covariant derivative induced on the associated vector
bundle A%", which we shall denote V€. The following proposition compares the two connections
in a somewhat more general setting.
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3.4.5 Proposition

Let ¥V be a connection on TM. Then the covariant derivatives induced on Q (M) by and
the covariant derivative VC induced on the sections of the associated vector bundle A™ (T*M) by
the connection form CV on Pgr(M) coincide.

The same result holds in the case of an almost-hermitian manifold and a hermitian connection
for the covariant derivative induced on Q%" (M) by formula and the one induced by CV on
Py (M) and the representation py .

Proof: Both covariant derivatives must satisfy the Leibniz rule
V(fa)=df @ a+ fVa.

Furthermore, it is easily seen that both covariant derivatives satisfy the following rule with
respect to the exterior product:

V(iaAp)=(Va)ANB+aA (VP).

Therefore, it is sufficient to verify that the two coincide on a basis of one-forms. Now let
(51,...,8n) be alocal basis over U C M and let (s', ..., s") be its dual. Then, by proposition
V¢ is given over U C M by

VE(s) = [5,de? (X) + dep™ ((CV)*(X))(e7)]

where s/ = [s,e’]. In order to proceed, we calculate dp*. Recall that p(B) can be interpreted
as left multiplication by B and p*(B) as right multiplication by B~!. Thus, the differential is
right multiplication by —B. Now recall the local formula for (CV)*: If Vs = Yol wik ® s,
then (CV)*(X) is the matrix (w;z(X)). Thus, we obtain that

dp*((CV)3(X)) = —(win(X)).

Therefore, considering €/ as a row vector, we have that

P(CY)(X))e! = —€ - (win(X))
= — Z leel
=1
and therefore
VS (s7) = [s,de? (X Zwﬂ
Testing this on the basis (si) gives
VS(s7) (sk) = X (57 (s1)) ngz

= —wjk(X).
On the other hand,

= —wip(X), (3.12)
so that the two are equal. O
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3.4.6 Corollary
Let V be a metric connection on a Riemannian manifold. Then, for the connection extended to
one-forms the following relationship holds for any o € QY(M):

Vxa = (Vxal)

Proof: 1t is again sufficient to prove this for elements of a basis (s;) and its dual (s?). In this

case, we have 3? = 57 and (s7/)% = s;. Furthermore, using (3.12)), we deduce that

n
Vs = — ijk(X)sk,
k=1

where the wj;, are defined by Vxs; = Y 1, wg;j(X)sk. Because V is metric, w is skew-symmetric
and we thus obtain

(Vs == win(X)sk)’ = = D _wir(X)s".
k=1 k=1

This yields the claim. O

Next, we want to use this result to compare the two connections on S¢. Recall that Pog and P;
are extensions of the unitary frame bundle Py and thus Py is a reduction of those two bundle
with the reduction maps given by

¢cs: Py — Pos
p— [p.1]F
¢o1: Py — P,
p— [P, 1]qet-

Now, if we choose a hermitian connection V on T'M, we obtain a connection on the unitary
frame bundle. A connection form C on Py however, admits a det-extension, i.e. a connection
form Z on P; uniquely determined by the requirement

0 Z = (d(gt)* oC=trC

(cf. proposition . Thus, every hermitian connection V on T'M induces a connection form

ZY on P; as described above.

In what follows, we consider two hermitian connections V¢ and V?. Let C the connection

form induced by V¢ on Py(M) and Pso(M) and C* the connection form induced by V* and

furthermore Z the connection form induced by V* (or Cﬂon the Uj-bundle P;. Together, C
3.3)

and Z induce a connection form C' x Z (compare section which, in turn, induces a covariant
derivative on the spinor bundle which we denote VZ. Recall that we have a local formula for
this covariant derivative, which uses a representation of a local spinor field ¢ € I'(U,S°) as
¢ = [s X e,v], where s € I'(U, Pso(M)) and e € T'(U, P;) and s X e is a lifting of the product to
a local section of Pog(M).

Due to the special structure of Pog which we have for the canonical Spin®-structure, we can
consider a particular type of local sections:

3.4.7 Lemma

Let (M, g,J) be almost-hermitian and let Pog(M) be its canonical Spin® structure with spinor
bundle S¢. Let s € I'(U, Pso(M)) be a local section of the SO-frame bundle and define e = ¢y 0s.
Then the following holds:
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Proof: We need to show that £(¢cs(s)) = sxe. Recall that the two-fold covering map &: Pog —
Pso(M) x Py is given by &([u, [g, 2]z,]F) = uX(g) X [u, 2%]4et and thus

E(pos(s)) =&([s,[1,1]]F) = sA(1) x [s,1] = s X ¢1(s) = s X e.

]
Then, the local formula for V7 is given by
~ ——— dcs(s)
Vi = [pos(s). dv(X) + r(Cx Z (X))
= [pcs(s), dv(X) + kepg(C x Z(ds(X)))v] (3.13)

and we therefore consider ¢fg(C x Z) in some more detail:

pcsC X Z =p; ¢CS(C x Z o df)
:p; (C X Zod(go (;305)).

Recall from the proof above that £ o ¢ = id x¢;. Taking the derivative, we obtain
¢0sC x Z =p; N (C + ¢12)
and, using that Z is the det-extension of C?, we obtain
¢5sC % Z = p7H(C + (det).C7).

We note that det is the complex determinant here (i.e. we understand C? as taking values in
the complex space u,,). Its derivative is the complex trace trc. Thus, we obtain

¢*CS(T>?/Z = p; 1 (C + tre C + tre C% — trc C)

1
= F.(C)+ B trc(C* — C).
Then, continuing from (3.13]), we obtain

Ve = [6(s), do(X) + ra0g(C x Z(ds(X)))o]

= [#(s), dv(X) + ra (Fe(C*(X))v + %trc((CZ)S(X) — C*(X))v]

= [8(s), (pa)«(C*(X))v + %trc((cz)s(X) — C*(X))vl. (3.14)

We know the first part of the above formula to be equal to the covariant derivative induced on
forms and will now consider the second part in some more detail. Locally, C*(X) is a matrix
given by wji(X) which are given by Vs; = > wij(X)si and the trace is to be understood in
the sense of that matrix (considered as a complex matrix). Now, we obtain that

Vs — Vis; = > (wii(X) — wi;(X))s;.
k

On the other hand, we have that

C z C 2
Visj — Vis;j = Agxsj — Ax s,
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where A¢ and A% denote the potential of V¢ and V7 respectively. Then, we have that
wi; (X) — wip; (X) = g((Vi — Vi)sj, sk) = A9(X; 55, 58) — A%(X, 55, 51).

Now, A is a real form and we will need to translate the complex trace onto such a form. A
complex n x n-matrix B = (zj;) is represented by a real 2n x 2n matrix Bg given by

Br = (Z;1) where each Zj;, is a block Zj;, = (iﬁg?zg _;ér(lz(:z,z;)>
j j

The complex trace is given by summing over all z;;, thus we have

m

m
tre B=) (Br)aj2j +1 Y (Br)ajzj-1.
s =1

In our case, we have matrices in so or forms skew-symmetric in the last two arguments and are
thus left with the imaginary part only. We are therefore led to define

tr. Q(X) = ZZ QX5 boj,b25-1)

7j=1
for any Q € Q?(M,TM) and an adapted basis (b;) and thus have
[pes(s), tre((C7)*(X) = C(X)v] = tre(A® — A%)(X).

In particular, this means that [¢pcs(s), tr((C?)*(X) — C%(X))v] is indeed well-defined, i.e. inde-
pendent of the choice of s and we can split (3.14]) into two parts and obtain

V% = Vi + tr(A° — A%)(X) - .

We summarize our results in the following theorem:

3.4.8 Theorem

Let (M,g,J) be an almost-hermitian manifold and let it be equipped with its canonical Spin®
structure, noting S¢ ~ A% (T*M) the associated spinor bundle. Let furthermore two hermitian
connections V¢ and V? be given on TM with potentials A¢ and A*. We still note V€ the
connection induced by V¢ on the bundle of exterior forms.

Let C and C# be the connection forms induced on Py (M) and let Z be the det-extension of C*.

Furthermore, note VZ the covariant derivative induced on S° by the connection form C x Z.
Then the following formula holds for all vector fields X € X(M) and all spinor fields p € T'(S°):

o c 1 c z
Vie=Vie+ itl“c(A — A%)(X) - .

The case of metric contact manifolds

The case of a metric contact manifold is very much analogous to that of an almost-hermitian
manifold, due to the almost-hermitian structure we have on the contact distribution. Extending
the results to a metric contact manifold, one only needs to find a way to deal with the additional
vector field £ which is perpendicular to the contact distribution. In this section, we describe

the Spin® structure of a metric contact manifold and its spinor bundle and connections on this
bundle.
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As discussed in section [2.1] any contact manifold of dimension 2m + 1 admits a U,,-reduction
of its frame bundle. Therefore, it admits a canonical Spin¢ structure. Its spinor bundle can
be given a more detailed description, described in [Pet05, section 3], which we discuss in the
following. In order to do so, we introduce spaces of (p,q)-forms on a metric contact manifold:
We know that such a manifold admits a contact distribution C which carries an almost-hermitian
structure (J, g). Complexifying C and splitting the complexified space into the +i-eigenspaces
of J, we obtain a decomposition
CeC=Ccqc™

just like in the case of an almost-hermitian manifold. Extending this decomposition to the dual
by setting (C*)}? = (C1?)* and taking exterior powers, we obtain the bundles

APA(C*) = AP((C*)H0) A AY((C)O).
The sections are denoted
QPA(C) =T (API(CY)).

3.4.9 Proposition
Let (M, g,n,J) be a metric contact manifold. Then M admits a canonical Spin®-structure which
s given by

Pos(M) = Py(M) xp Spin©,

where F is the mapping described in lemma[3.1.9. The associated spinor bundle then has the
form

S¢~ A% (CY)
and Clifford multiplication is given by

X.p=+2 ((XLO)b Ap— Xo’l_:ap> +i(—1)98 T (X )

for any X € X(M) and ¢ € T'(S?) ~ Q% (C). The (0,1) and (0,1)-parts are taken of the
projection of X onto C.

Proof: The first statement is immediate from lemma The second statement follows because
S = Pos(M) x5 A% (CY)
= Py(M) x Spin® x5 A% (CH).
Just like in the almost-hermitian case, one proves that
Pu(M) %, A% ((RZ™)%) = A7 (C¥).

By lemma [3.1.12| the representations pj and clo F coincide and we obtain the second statement
by proposition The formula for the Clifford multiplication follows from proposition [3.1.11
O

Just like in the almost-hermitian case, given a metric connection V on T'"M, we have two ways
of inducing a connection on S°: As the extension of the connection to forms or via the Spin®
structure. The analogue of a hermitian connection is here played by the so-called contact
connection:

3.4.10 Definition Let (M, g,n, J) be a metric contact manifold. Then a connection V is called
contact if it is metric and J is parallel with respect to it: VJ = 0.
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Note that a contact connection also parallelizes the Reeb vector field. This can be seen as follows:
We have that 0 = (VJ)§{ = V(JE) — J(VE). Because JE = 0, this implies that J(VE) =0, i.e.
VE = X with A € C°°(M). However, because ¢ is of constant length, we have g(V¢, &) = 0 and
thus V& = 0.

The following result is then an easy consequence of lemma

3.4.11 Lemma
Let (M, g,n,J) be a metric contact manifold and V a contact connection. Then the connection

form induced by V on the frame bundle restricts to a connection form on the unitary frame
bundle.

The result for the induced connections on S€¢ is also analogous to the one for almost-hermitian
connections as we state in the following theorem.

3.4.12 Theorem

Let (M, g,n,J) be a metric contact manifold and let it be equipped with its canonical Spin® struc-
ture, noting S¢ ~ A% (C*) the associated spinor bundle. Let furthermore two contact connections
V¢ and V* be given on T M with potentials A° and A*. We still note V€ the connection induced
by V¢ on the bundle of exterior forms.

Let C and C? be the connection forms induced on Py (M) and let Z be the det-extension of C*.

Furthermore, note VZ the covariant derivative induced on S° by the connection form C x Z.
Then the following formula holds for all vector fields X € X(M) and all spinor fields p € T'(S°):

o c 1 c z
Vi = Vi + 5 tre(A° = 47)(X) - .

Proof: In the proof of theorem we only used the facts: We have a vector bundle with
an almost-complex structure carrying two covariant derivatives that parallelize this structure.
These connections induce a connection form on the bundle of unitary frames of the vector
bundle Py and thus on the P;-bundle. Therefore, the result holds in the case of a metric contact
manifold as well. ]

Note that the results carry over so nicely because the frame bundle Py (M) consists of frames
of the contact distribution only and the transversal direction £ does not play any role. This is
mirrored by the mapping F': Uy, — Sping,, 1 whose image lies in the subgroup Spin$,, and by
the spinor module which is the bundle of exterior powers of the contact distribution only. It is
only in the Clifford multiplication that we need to take the additional direction into account.

With this, we close our discussion of the canonical Spin® structures of almost-hermitian and
metric contact manifolds. The explicit description of their spinor bundles and the connections
on them will be picked up again in chapter [3.4] where we describe Dirac operators in these
bundles.
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4

Connections on almost-hermitian and metric contact manifolds

In this chapter, we will study connections on contact manifolds which are induced by connections
on an almost-hermitian manifold obtained from the contact manifold by taking the cartesian
product with the reals. We begin by discussing connections on general almost-hermitian man-
ifolds, describing how these connections are completely determined by certain parts of their
torsion and introducing certain distinguished sets of hermitian connections. In the following
section, we apply this theory to the almost-hermitian manifold M = R x M associated to a
metric contact manifold M. In particular, we consider a hermitian connection that restricts
to a connection on M which, in the case where M is CR, coincides with the Tanaka-Webster
connection.

4.1 Hermitian connections

We now develop the theory of hermitian connections described by their torsion as developed
by Paul Gauduchon in [Gau97]. We begin with some introductory definitions and elementary
results, before proving the main theorem, which describes the structure of the torsion of a
hermitian connection. In this section, we assume that (M?™,.]) is an almost-complex manifold
with almost-hermitian metric g. Recall that a hermitian connection is a metric connection
fulfilling VJ = 0.

We know from section that any metric connection is defined by its potential and thus, that
the space of metric connections forms an affine space directed by Q?(M,TM). The space of
hermitian connections is directed by a certain subspace as the following lemma shows:

4.1.1 Lemma
The space A(M, g,J) of hermitian connections is an affine space directed by Q%'(M).

Proof: Let V1, V2 € A(M,g,J). We consider V! —V? as an element of Q?(M,TM) in the same
way as for the potential. We then have

(V= V(X JY,JZ) = ﬂVXJYJZ) g(V%JIY,JZ)

(VXY + J(VY),JZ) = g(VX )Y + J(VXY), Z)
(J(VXY),JZ) = g(J(VXY),J Z)
(VI = V*)(X;Y,2)

g
g

and thus, the difference is in Qb(M, TM). O

As we already mentioned, we will now analyse the torsion of a hermitian connection. As the
following theorem shows, some parts of the torsion do not depend on the choice of V and the
connection is therefore completely determined by the remaining parts.

4.1.2 Theorem (cf. [Gau97, section 2.3, proposition 2])
Let V be a hermitian connection on an almost-hermitian manifold (M,g,J) and let T be its
torsion, considered as an element of Q?(M,TM). Then the following hold

(1) T%? is independent of V and given by

T%? = N.
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(2) The component b(T?>0 — Tal’l) is independent of V and given by

1
b(T%° — T = g(ch)Jr. (4.1)
Equivalently, one has

20— o I = L (@F)* = M(EF)T) = (VT (42)

with ¢ as defined in (1.9)) and (1.10]).

(3) T is entirely determined by its components To*" and (6T)t which can be chosen arbitrarily.
More precisely, for any given three-form wt € QY (M) and two-form B € Qé’l(M, TM),
there exists exactly one hermitian connection whose torsion satisfies T = B and (6Tt =
wt. One then has

3 1 3 1
T2’O:7 + *ch+_7 +_7 dCF+ 4
i + 4( ) 49ﬁw 393?( )T, (4.3)
1 1
TH = St —(d°F)" + Somut — —M(dF)T, (4.4)
8 8 8 8
and the complete torsion is thus given by
1 c\+ 3 c i+ 9 + 3 +
T:N—Fg(d F) —éfm(d F) +§w —éimw + B. (4.5)

Proof: First step: We show that V is hermitian if and only if
AX;JY, Z)+ AX;Y,JZ) = —(VIF)(X;Y, Z) (4.6)
Let V be hermitian. Then

AX; Y, Z) + A(X;Y,JZ) = g(AxJY, Z) + g(Ax Y, J Z)
= 9(VxJY,Z) + g(VxY,JZ) = g(VXJY, Z) — g(V4Y, J Z)
=—g(Vx)Y,Z) + g(J(VxY), Z) + g(VxY, JZ)
nag )
— g(V%JIY, Z) — g(V%Y, I Z)
— —g(V9IY. Z)  g(VSZ,JY) — (VY. IZ) + g(V%Z, JY)
=—X(g(JY, Z)) + g(J(V&Y), Z) + 9(V% Z,JY)
= —(VIF)(X;Y, 2).

On the other hand, let (4.6 hold. Then, by the same calculations we obtain
(VIF)(X;Y, Z) = g(V&JIY, Z) + g(V4Y, T Z),
AX; Y, Z) + A(X; Y, JZ) = —g(Vx )Y, Z) — g(V&JY, Z) — g(VLY, JZ)

for any XY, Z € X(M). Hence, we have VJ = 0.

Second step: We use A = —T + %bT to reformulate (4.6) as a condition on the torsion, which
yields

S (6T(X, Y, Z) + bT(X:Y, JZ)) = (VOF)(X:Y, Z).  (4.7)

T(X;JY,Z)—}-T(X;Y,JZ)—§
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Using that TV1(X; JY, Z) + TYY(X;Y,JZ) = 0, we obtain that
T(X;JY,Z)+T(X;Y,JZ) =T*°(X;JY, Z)+T*%(X;Y, JZ)+T**(X; JY, Z)+ T**(X;Y, J Z).

Using the properties of (0,2)- and (2,0)-forms and the facts that (b7)%% = (67)~, (bT)"! +
(6T)%0 = (bT) " as well as (VIF)1! = 0, one obtains that (4.7) is equivalent to

2T0%(JX;Y, 2) = 3(6T) " (JX: Y, Z) = (VOF)* (XY, 2),  (48)
oT02(JX.Y, Z) — g((bT)+(X; JY, Z) + (6T)*(X;Y, JZ)) = (VIF)*°(X;Y,Z).  (4.9)

Third step: We now prove the actual claims.
From (4.8)) and theorem we obtain the following:

2T°2(JX;Y,Z) = 2N(JX;Y, Z) + (dF) ™ (X,Y, Z) + 3(bT) " (J X, Y, Z). (4.10)
Using the well-known formula for the exterior derivative of F', wo obtain

dF(X,Y,Z) = X(F(Y,Z)) - Y(F(X,2)) + Z(F(X,Y))
~ F([X,Y],2) + F([X,2],Y) - F([Y, Z], X)
= X(g(JY, 2)) =Y (9(JX, 2)) + Z(9(J X, Y))
—9(J[X, Y], 2) + g(J[X, 2],Y) — g(J[Y, 2], X).

Because V is metric and by the definition of T, this can be seen to be equal to

dF(X,Y,Z) = g(VxJY, Z) + g(JY,VxZ) — ¢(Vy JX, Z) — g(JX,Vy Z) + ¢(V 2 I X,Y)
4 g(JX,V,Y) + o(VxY,JZ) — g(Vy X, JZ) —T(JZ: X,Y) — g(Vx Z,JY)
4 g(Vu X, JY) + T(JY; X, Z) + g(Vy Z, JX) — g(V Y, JX) — T(JX;Y, Z)
=9(VxJY,Z) - g(VyJX,Z) + g(VzJX,Y) + g(VxY,JZ) — g(Vy X, J2Z)
—T(JZX,Y) + g(VzX,JY) + T(JY; X, Z) — T(JX:Y, Z).

Using that VJ = 0, we then obtain
—|—g(J(VyX),Z)—T(JZ;X,Y)— (( zX), )+T(JY,X,Z)— T(JX;Y,Z)
=-TJZ; X,Y)+TJY; X, Z)-T(JX;Y,Z

)-
For ease of notation, we introduce the operator 9 : Q2(M,TM) — Q*(M,TM) given by
MB(X;Y,Z) = B(JX;Y,Z). With this convention, we have

dF = =36NT

and therefore
(dF)~ = =3(6NT)~ = —36(M7T)"2

by the results of section m Furthermore, (MT)%2 = MNT%2, which can be seen as follows:
First, using the properties of (0,2)-forms, one sees that MT%2 € QO2(M,TM) and NT?° €
O29(M,TM). Furthermore, obviously 9 and 9 commute and thus N7t € QLL(M, TM),
which yields the required result.

Therefore, we have

(dF)™(X;Y,Z) = —=36T**(X;Y, Z) = —3bTY2(JY;Y, Z) = —3(bT) " (JY}Y, Z).
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Together with (4.10)), this yields (1).
Next, using (4.9), we obtain that

T29X;Y,Z) = %(VQF)27O(JX; Y,Z) + % ((6T)* —M(bT)1) (JX;TY, Z).
By the results of section we have that (b7)" = bT?% + bT! and thus
XY, Z) = %(VQF)ZO(JX; Y, Z) + z(bTZO —MbT>)(JX; JY, Z)
+ Z(bT;’l —MOT N (JX;TY, Z)

1
2

where the second equality follows from lemma [1.2.14] and from (1.10]). This yields

(VIR (IX;Y, Z) + T (JX; JY, Z) + o HTHY) (I X; Y, Z)),

(T — o TP)(X:Y, 2) = (VIF)*(JX:Y. Z). (4-11)

Together with theorem this yields (4.2)).
Furthermore, by defintion of ¢ and using (4.2)), we obtain

b(T*° =T = b(T*" — o~ 1(T1))
- %(b(d@Fﬁ — bM(d°F)T)
SEF)T — (@)t
. 2 6
= @Ry

This proves (2).

Using the computations above, one sees that V is hermitian if and only if the conditions set in
(1) and (2) are satisfied. Therefore, the remainig parts of 7" can be chosen freely. Now, if we let
Ty' = B and (b7)* = w™, then wt = b(Ta" + T20). Using (2), one then obtains that

B(T2) = 5 (" + 5 (EF)"),
b(T) = (" — (@ F)).

Then, using lemmas [1.2.14] and [1.2.15] we obtain
3

T2,0 _ 5(b(II*Q,O) o mbTQ,O)
3 . 1 3 1
=: —(d°F)* — ~omwt — M(d°F)*
T 4( ) 4imw 3 (d°F)
T = 2 (o(TH) + MoT),
3 . 1 3 1
= —wh — (d°F)" + SMwt — —M(d°F) ™.
Putting together all the parts of T' one then obtains the formula for 7' claimed in (3). This
concludes the proof. O

In the sequel, we shall denote the hermitian connection defined by T+' = B and (b7T)*T = wt
by V(B,w™).
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4.1 Hermitian connections

We will now make use of the above results to introduce certain distinguished hermitian con-
nections by manipulating the defining data B and w™. We begin by introducing the class of
canonical connections, which are characterized by B being zero and w™ a certain multiple of
(d°F)™.
4.1.3 Definition A hermitian connection V! = V(0, %(chﬁ) with ¢ € R is called a canon-
ical connection.
The torsion of a canonical connection is then given by

3t—1 t+1

T'=N + T(dCF)+ - T931(dCF)+. (4.12)

Of particular interest for us are the canonical connections for the parameters 0 and 1 which we
consider now.

4.1.4 Definition The canonical connection V? is called the first canonical connection.

Using (4.12)), we deduce that its torsion is

0= N - %((ch)Jr +M(dF)H),

4.1.5 Remark This connection is distinguished among the canonical connections as it is the projection
of the Levi-Civita connection onto the space of hermitian connections in the following sense (cf. [Gau97,
section 2.5]): The space of metric connections A(M, g) is an affine space directed by Q2(M,TM). If we
choose V9 as the zero element, then A(M,g) ~ I'(TM ® A?(T*M)). Recalling the proof of the above
theorem, one sees that under this identification

A(M,g,J) ~T ;(TM @ A*(T*M))
={AcT(TM @ A(T*M))|A(X;JY,Z) + A(X;Y,JZ) = —(VIF)(X;Y, Z)}.

Then, the first canonical connection is the image of the Levi-Civita-Connection (the zero element) under
the projection of Q*(M,TM) onto T';(TM @ A?(T*M)).

We note that V° is completely characterized in A(M, g, .J) by the conditions
T} =0 and T%°=0.

That these conditions are fulfilled is easily deduced from (4.3) and (4.4). The converse is
immediate from (3) of theorem [4.1.2]
The other canonical connection that we will use in the sequel is the following one:

4.1.6 Definition The second fundamental connection or Chern connection ist the canonical
connection with parameter ¢t = 1.

The torsion of this connection is given by
1
T' =N+ 3 ((d°F)" —m(d°F)*).

In general, the canonical connections are not nice: Using that tr N = 0, one obtains that
3t—1 t+1

tr T8 = tr N + — tr(d°F)* — 4 tr M(d°F) T
1
— —% tr M(d°F)*
t+1
=——9
2 )

where 0 = %tr M(d°F)* is the Lee form. In general, the Lee form does not vanish. To overcome
this, we introduce another set of connections:
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4.1.7 Proposition (cf. [Nic05, Lemma 3.2])
For every B € Qi’l(M, TM) such that tr B = %0, there exists a hermitian connection V°(B)
uniquely determined by the following conditions:

(i) V° is nice,
(i) VP is quasi-equivalent to V°,
(iii) (T?)+" = B.

4.1.8 Definition A hermitian connection V?(B) as described in the above proposition is called
a basic connection.

Proof: We must have that V?(B) = V(B,w™") for some w™ € QF(M). The second condition
implies (using theorem [1.3.3) that b7® = bT°. We know that

b(T?) = BN — % ((d°F)* + b(d°F)*)
= é(ch)* - i ((d°F)* + bM(d°F)™)

B L (@r - @),

3
On the other hand, by theorem [.1.2] we have that
1 3 9 3
TP = N + Z(d°F)" — SM(d°F)* + —w — Somw™ + B.
8 8 8 8
Hence, using bN = %(dCF)* and bB = 0 as well as lemma [1.2.10] we obtain
1 1 1 9 1
67" = ~(d°F)" + Z(d°F)" — <(d°F)" + —w’ — M
L@F)T @) L@ )+ St
1
=—(d°F)” +w™.
3
Therefore, we see that b7 = bT" is fulfilled if we chose wt = —2(d°F)*. If we do so, we have
b Lot L ¢+

This implies, because N is trace-free, that
1
trT® = tr N + tr B, — Z(tr(dCF)+ + tr M(d°F)™)
1 1 .
=—0-—= nt
29 1 tr M (d°F)
1

1
:70—7 =
5 20 0

and thus, the connection is nice. O

The torsion of such a connection is then given by
1
TP =N — Z((dCF)+ +M(d°F)*) + B. (4.13)

This concludes our discussion of hermitian connections. In the following section, we will apply
this theory to an almost-hermitian manifold associated to a metric contact manifold.
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4 CONNECTIONS ON ALMOST-HERMITIAN AND METRIC CONTACT MANIFOLDS

4.2 Connections on contact manifolds

We now want to use the theory developed in the previous section to describe contact connections
on a metric contact manifold. Recall that a connection is called contact if it is metric and fulfils
VJ = 0. We pay particular attention to the case where the manifold is CR. In this case we have
the following connection on the strictly pseudoconvex CR manifold M:

4.2.1 Definition Let (M, g,n,J) be a metric contact manifold that is CR. Then the metric
connection VT uniquely determined by the requirements

(i) TH(X,Y) = Ly,(JX,Y)¢
(it) T7(X,€) = —5([§, X] + JI¢, JX])
is called the Tanaka-Webster connection of the CR manifold M.

4.2.2 Remark The definition we have given here, using the real CR structure, follows the approach in
[BJ10, section 2.7]. One can also characterize the Tanaka-Webster connection through its torsion on the
complexified tangent space TM.. For more details on this, see [DT06l section 1.2].

In what follows, we want to describe the Tanaka-Webster connections using the theory of her-
mitian connections. To this end, we associate an almost-hermitian manifold to the contact
manifold in the following way: Let (M?™*! g 7, .J) be a metric contact manifold. We set

M :=TR x M,
G :=dt* +g,

and define J € End(T'M) by setting
Jle = Jle, J&E=—0t and Jot = ¢.

It is easily seen that (M LG, J ) is almost-hermitian. We will now use connections on M to describe
connections on M. In particular, we want to describe the Tanaka-Webster connection of M by
a certain basic connection on M. This section is based on work by Liviu Nicolaescu [Nic05),
section 3.1].

We begin by describing the almost-hermitian structure on M and its relation with the contact
structure on M in some more detail, starting with a result on the Kahler form, stated in [Nic05,
section 3.1].

4.2.3 Lemma
On M, the Kdhler form staistfies the following identity:

ﬁ:dt/\n+dn.

Proof: We have that TM = Rot®REGC. Tt is therefore enough to prove the claimed relation for
combinations of vectors of the aforementioned subspaces. To begin with, let X,Y" € T'M. Then,
FX,)Y)=g(JX,Y)=g(JX,Y)—g(n(X)&,Y) =dn(X,Y). On the other hand, dt An(X,Y) =
0.

Next, let X € C. Then, we have ﬁ(X, ot) = (jX, Ot) = 0. On the other hand, (dt A n +

g
dn)(X,0t) = 0. Continuing, we see that F'(§,0t) = g(—0t,0t) = —1 and on the other hand
(dt Am+dn)(&,0t) = —1. Finally, F(0t,0t) = 0 = (dt An+ dn)(dt, Ot). O

We use this result to calculate the derivative of the Kéahler form. We obtain

dF = d(dt An) + ddn = —dt A dn.
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To calculate d°F, we note that dtoJ = n and no.J = —dt. Furthermore, dn(J-, J.) = dn(J-, J-) =
dn, and we deduce that

d°F = —n A dn. (4.14)

Let (e, fi)*; be a J-adapted frame of C. We can extend it to a J-adapted frame on M by
setting
eg:=0t and fy:=¢.

Next, we consider the Nijenhuis tensor of M:

4.2.4 Lemma (cf [Bla02, section 6.1])
For the Nijenhuis tensor N of the almost-complex manifold (M J) and the Nijenhuis tensor N
of the metric contact manifold (M, g,n,J), the following formule hold for any X,Y € X(M):

N(X,Y)=N(X,Y)+ %dn(X, Y)E,
N(ot, X) = i(cgj)(X).

Proof: To begin with, note that by the structure of M, we have that

for any X,Y € X(M). Furthermore, for X € X(M), write X = X¢ + n(X)¢§ where X¢ is the
projection onto the contact distribution of X. Thus, one obtains that JX = JX — n(X)dt.
Thus, we obtain

AN(X,Y) =[JX,JY] - J(JX, Y]+ [X,JY))

(X, Y] -
= [JX, JY] = [JX,n(Y)0t] — [n(X)ot, JY] + [n(X)0t, n(Y)0t] — [X,Y]
— JJX, Y]+ Jn(X)ot, Y] — J[X,JY] + J[X,n(Y)ot]
= [JX,JY] = [JX,n(Y)0t] — [n(X)0t, JY] + [n(X)0t,n(Y)0t] — [X,Y] = J[JX,Y]
+n([JX, YOt + J[n(X)ot, Y] — J[X, JY] 4+ n([X, JY])t + J[X, n(Y)oH].

Now, recall that [fX,Y] = f[X,Y] - Y(f)X and —[X,Y] = J?[X,Y] — n([X,Y])¢. Obviously,
[X,0t] = 0. Then, we obtain
AN(X,Y) =4AN(X,Y) — n([X,Y))é — JX (n(Y))dt + JY (n(X))dt + n([J X, Y])t
+0([X, JY])At — J(Y (n(X))dt) + J(X(n(Y))ot)
+0(X)[0t, n(Y)0t] — n(Y)0t(n(X))ot
=AN(X,Y) = n([X, Y])§ = JX (n(Y))0t + JY (n(X)) + n([J X, Y]0t) + n([X, JY])Ot
= J(Y(n(X)dt) + J(X(n(Y))dt) +n(X) dt(n(Y)) 0t — n(Y) dt(n(X)) dt.
=0 =0
Using that £Lan(B) = La(n(B)) —n(LaB) = A(n(B)) — n([4, B]) for any vector fields A, B, we
obatain
AN(X,Y) = AN(X,Y) + (Lyyn)(X)0t — (Lyxn)(Y)Ot = Y (n(X)E + X (n(Y)E = n([X, Y])¢
= 4AN(X,Y) + (Lyyn)(X) = (Loxn)(Y) + dn(X, Y)E.

Finally, note that for any vector field U, one has Lyn = Uldn + d(U.n). Now, no J = 0 and
thus we obtain that
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(Lrym)(X) = (Lixn)(Y) = dn(JY, X) —dn(JX,Y) = dn(JY, X) + dn(Y, JX) = 0,

which proves the first equation.
To prove the second equation, we calculate

A~

N(8t, X) = —[ot, X] + [¢, JX] — J([¢, X] + [ot, JX])
—[JX, €] = [&,n(X)ot] — J([6, X]) + n([¢, X))ot — J[ot, JX —n(X)oH]
—[JX, €] = [&n(X)ot] — J(& X]) + n([¢, X))ot + J (0t(n(X))ot)
—( ¢J)(X) — E(n(X))ot + ([, X])ot
= (LeJ)(X) — (Len)(X)Ot.

However, we have that
Len = d(n(§)) + &adn =0, (4.15)
which yields the claim. O

Furthermore, we have the following results stated in [Nic05]:

4.2.5 Lemma
On M, the following identities hold:

(1) The Lee form is given by 6 = —mdt.
(2) The Nijenhuis tensor takes the following form: Z\A/]M =N+ in ® dn.

Proof: (1): Using the definition of 6 and a J -adapted basis (e;, f;) of C, we calculate

0 = = (—dt A dn(dt,€,-) + dt A dn(€, 0t,-) %Z dt A dn(e;, fj,-) +dt Adn(fj,ej, )

N |

m

Z dt A\ dn(ej, f;,-) +dt Adn(fj,ej,-).

The last part can only be nonzero if the last argument is 0t. In that case, one obtains

R 1 X
0(0t) = 5 > —dt Adnlej, £3,0t) + dt Adn(fj,e;, 0t)
j=1
1 m
=5 > —dnlej. f;) + dn(fj.e))
j=1
= _m7

which proves (1). (2) follows immediately from the preceding lemma. O

Furthermore, we know from theorem that bN = %(cicﬁ ). AHEwever, we have that (d°F) =
—n Adn = —3b(n®dn). Now, n®dn is of type 1,1 and thus (d°F) is of type + and therefore,
bN vanishes. This implies

1
0—bN|M—bN+ b(n@dn)—bN—F—n/\dn,
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which is equivalent to

1
bN = ——n Adn.
1277 n

This concludes the preliminary remarks on the structure of M and some data associated with it.
We now move on to actually consider connections on M , where we focus on basic connections.
Recall that these connections are determined by B € Qil(M ,TM ) satisfying B = %é = —gdt.
Because we want this connection to induce a connection on M, it will need to preserve the
splitting TM = ROt @ TM. To see what conditions we will need to impose on V? for this to
hold, we first discuss the behaviour of a general basic connection with respect to this splitting.
Recall that the torsion of V? is given by

~ 1 .~ .~
T =N — Z((dCF)+ +MdF)")+ B

N 1
:AP+B+ZmAdn+mmAdm. (4.16)

Now, we know that V? = V9 4+ A where A® = —T? 4+ %bTb and we can thus calculate V°. First
we deduce that

. 1
T = bN +bB+-(nAd d
b b tb +4m n + b9Min A dn)

1
=37 A dn, (4.17)

where we used that bMin A dn = %77 A dn (cf lemmal.2.10]). Hence, we obtain that
A® = —N—B+1n/\d77—19ﬁ77/\dn.

We are now ready to start calculating with V? where we assume B(dt,-,-) = 0. We begin by
considering Vth , where X € X(M). We then obtain that
=0
—
(Ve X, V) = §(V5,X,Y) +A(08 X,Y)
N 1 1 A
=—-N(0t; X,Y) + 1" Adn(0t; X,Y) — 1" Adn(0t; JX,JY)

for any Y € X(M). From lemma we know that N (0, X,Y) = 0 and because dt_n, Ot dn =
0, we have

(V9 X, Y)=0.
Furthermore,
G(V2, X, 0t) = A(dt; X, 0t)
= —N(dt; X, 0t) + i" A dn(0t; X, 0t) —n A dn(0t; JX, €)
=0,

because by lemma we know that N(X,0t) € (M) and thus N(dt; X, dt) = 0. Therefore,
altogether, we obtain
V%X =0 forany X € X(M). (4.18)
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Furthermore, we have
G(V5,0t, X) = A(dt;0t, X) = —A(dt; X, 9t) = 0. (4.19)
Next, because § is metric we obtain that §(V°0t, dt) = -(§(0t, dt)) — §(dt, V°0t) implying
§(Vbat, at) = 0. (4.20)

Together with (4.19)), this implies that V5,0t = 0.
Next, we have that

G(V%ot,Y) = A(X;0t,Y)
~ 1 1
= —N(X;0t,Y)— B(X;0t,Y) + 1" ANdn(X;0t,Y) — 17 ANdn(X, & JY —n(Y)ot)

= 40X, J6(¥)) = BX:00,Y) = {0 Adn(X.€, JY).

We know that n A dn(X;&,JY) = —dn(X,JY) = —g(JY, JX) = —g(X¢, Yc) where X is the
projection of X on C and the last identity follows because g(JY, JX) = g(J(Ye+n(Y)E), J(Xe +
n(X)§&)) = g(JYe, JXc) = g(Ye, Xe) (be reminded that because J is not an almost complex
structure on all of TM, the identity g(JX,JY) = ¢(X,Y’) would be wrong in general). Thus,
we obtain

. 1.
§(Viot,Y) = —1 (X, 0Y) —g(Xe, Ye)) — B(X;0t,Y). (4.21)
Next, we consider

G(V5Y,0t) = AY(X;Y,0t) = —A(X;0t,Y)

= (X, 0Y) — g(Xe, o)) + BX:OLY). (422

We summarize the above results: Any basic connection V°(B), where B(dt;-,-) = 0, satisfies
the following equations:

V4, X =0, (4.23)

§(Viot, X) =0, (4.24)

§(VPat,ot) =0, (4.25)

§VRO1Y) =~ (G(X, 0Y) — g(Xe,Ye)) — BIX;91,Y), (1.26)
§VRY, 0) = (9(X, 0Y) — g(Xe, Ye)) + B(X;01,Y) (127)

for any X,Y € X(M). The fourth and fifth equations give us conditions that B m,ust satisfy if
Vb(B ) is to respect the splitting. We now prove that such a B does exist.

4.2.6 Lemma (cf. [Nic05, Lemma 3.2])
There exists a form B € Qi’l(M,TM) such that tr B = —"3dt fulfilling

(1) B(9t;-,-) =0,

(ii) B(X;Y,0t) = 2(§(X,9Y) — g(Xc,Ye)) for any X, Y € X(M).
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Proof: To simplify the notation, we introduce a wedge product
A : End(TM) x QY (M) — Q*(TM)
(FAa)(X;Y,2) = (FX) Aa)(Y, Z)

where -> denotes the j-dual. For this product the following holds:
Lemma: For F € End(TM) and a € Q' (M) define

1 1
Fi=3S(F+F) and F.=_(F—F).
Then, for a local basis (b;), the following formulse hold:

2m—+2
tr(FAa)=trF-a— Y a)(Fb),
=1

b(FAa)= ;(g(F_~, JA Q).

Proof: We have

2m—+2

tr(F A a)(X) = Z ((Fb;)" A ) (b, X)
2m-—+2
= Z g(Fb;, bi)ou(X) — g(Fbi, X)a(b;)

2m—+2

= tr(F)a(X) — > alby)(Fb;)’(X),

i=1

which proves the first identity. Furthermore, we have

o(F A 0)(X, ¥, 2) = 5 ((FX) Aa)(¥, 2) + (FY) A a)(Z,X) + (FZ)" Aa)(X.Y))

A\
(FX,Y)a(Z) = §(FX, Z)a(Y) + §(FY, Z)a(X) - §(FY, X)a(2)
d(FZ,X)a(Y) = §(FZ,Y)a(X)

Na)Y

os\>—‘+

((X)(9(FY, Z2) = §(F"Y, Z)) + a(Y)(9(F X, Z) = §(F" X, Z))
+a(Z)(9(FX,Y) — 9(F" X,Y)))

(G(F-- ) Na) (X, Y, Z),

[SCI )

which yields the claim.

Now, going back to the main proof, we define

By = 36 ndt+ (J6) A,
1
K

1
BI:Bo+Bl+§77®d7],

By :=——(PcNdt+ (JPe) An),

where Pz denotes the projection onto C.
We use the basis by = 0t,by = £, bogr1 = ek, bogro = fr(k > 1) where (e, fr) is a J-adapted
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basis of C. We then have, because ¢ and J¢ are trace-free, that

4tr By = tr(¢ A dt) + tr((J@) An)
2m—+2
_ Z (¢bs, ) + G(Jpbi, -)n(bs)
- —g(¢at, ) = 9((JD)E, ).

Using that ¢0t = 0, Jp = —¢J and JE = 0 this trace can be seen to be zero. Furthermore,
because ¢ and J¢ are symmetric, we obtain that (Bp)_ vanishes and thus b(By) = 0. Next, we
show that B; € Q1 (M, TM). We begin with By.

To begin with, let X € X(M),Y,Z € I'(C). Then, because dt and 7 are zero on Y and Z, we

have o
By(X;JY,JZ) =0= By(X;Y, 2).

Next, we have

4By(X,JE,JY) = —4By(X,0t, JY)
—(¢X)’ Adt(8t, JY) — (JoX)" An(dt, JY).

Because 7 is zero on 0t and JY, we obtain
ABy(X,JE,JY) = —(¢X)’ A dt(8t, JY) = §(¢X,JY).
Analogously, one obtains
4Bo(X,6,Y) = (JoX)" An(&,Y) = —§(J$X,Y) = §(¢X, JY).
The definition of J inplies
MBy(X,E,0t) = —By(X,0t,§) = Bo(X, &, 0t). (4.28)
Finally, we have

AMBo(X,0,Y) = 4Bo(X, &, JY) = (JOX ) An(E, JY)

and
4By(X,0t,Y) = (¢X) Adt(dt,Y) = —§(¢X,Y),

which proves that MBy = By, i.e. By € Q" 1(]\4 TM)
For Bi, we have

Bi(X:Y,Z) =0=MBy(X:Y, Z).

With calculations analogous to those for By one sees that
AMBL(X:€,Y) = —(Xe)’ Adt(Ot,TY) = §(Xe, JY) = (JXc) An(€Y) = 4B1(X.€,Y)
and
AMB(X;04,Y) = (JXe)’ An(E,JY) = —g(JXe, JY) = (Xe)’ AOt(OL,Y) = 4B (X;0t,Y)

and, as above, by definition of J on & and Ot, the required identity follows in the last case.
Obviously, n ® dn € QY1 (M, TM) and thus B € QY (M, TM).
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Next, we compute the trace of Bj:

2m+2

tr(By) = — (tr(Pe)dt + tx(TPe)) — 3 (Pebi, Y (be) + (Pebe, Jn(br)
=1

~~

=0

because any b; that does not vanish under dt or 7 is perpendicular to C.
We furthermore have that

2m~+2 m
trPe= Y §(Pebj,b;) Z glej,ej) + 9(f3, f;) = 2m
=1 =1
and tr JPz = 0. Therefore, we have tr By = —%dt. Using that b(n ® dn) = %77 A dn and

tr(n ® dn) = 0 and putting together the above facts, we obtain that B is in Q;’l(]\;[,TM) and
that tr B = — 4 dt.

Obviously, we have B(ot,-,-) =0.

It remains to show that B satisfies (ii). Using the above results we see that

B(X;Y,0t) = —By(X,0t,Y) — By(X;0t,1)

L, .
:_Zg(¢X7Y)+ g(XC7YC)7

e

which concludes the proof. O
Now, using the results (#.23)) to (#.27), we deduce that for the basic connection V*(B) with B

as described in the lemma above, we have
V%X =0 forany X € (M),
V%Y € (M) for any X,Y € X(M), (4.29)
VOt =0 ie. dt is parallel wirth repsect to V°.

We will denote this connection by Vb. Because it respects the splitting TM = Rt ® TM, it
induces a connection on M which we shall denote VTW and call the generalized Tanaka- Webster
connection. As VP is hermitian, VIV is contact. It is also nice, because V? is and thus the
trace of its torsion is zero and therefore also zero on M.

We want to describe its torsion in some more detail. Recall that N Iy = N + in ® dn and,
because no J = 0 and dn(J-,J-) = dn, we have M(n A dn)|ps = n ® dn. Using the explicit
description in the proof of the lemma, we deduce

Blu = {((76) An— (JPe) Am) + gn o dn

1 1
ZEKLwAn—JAm+§n®m%

Thus, using (4.16)), we deduce that

1
ZWAdn+mmAde4

1 1 1 1 1
:N+Z77®d7l+1((<]¢)/\77—J/\Tl)+*77®d7l+177/\d77+177®d77

=N+n®dn+ - ((qu J)An+mnAdn).

T™ = Ny + Bla +
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4.2 Connections on contact manifolds

Now, assume that the metric contact structure on M fulfils J o N = 0, i.e. we have a strictly
pseudoconvex CR structure on M. We want to show that in this case, VI'W coincides with the
Tanaka-Webster connection. Due to the additional restriction on N, the Nijenhuis tensor can
be written as

N = ((76) A —n®d)

This can be seen as follows: As J is an isomorphism on C, any part of N that is already in C
must be zero. Furthermore, the image of J on T'M is in C and thus any part of N that is an
image under J must be zero. Therefore, we obtain N(Y, Z) = [JY, JZ], or, as a trilinear form,
N(X;Y,Z) = g(X,[JY,JZ]). Now, write [JY,JZ] = Pe([JY, JZ]) +n([JY, JZ])¢. By the same
arguments as above, Pe([JY, JZ]) must be zero and thus N(X;Y,Z) = 0 for any X € I'(C).
Now, recall from the proof of lemma that

1
NY,Z)= —Edn(Y, 2)¢ forany Y, Z € I'(C). (4.30)
Furthermore,

N(EY) = U6V + PIEY] - J(JE Y]+ [€,7Y])
_ %(JQ[&Y] — J[¢,JY))
_ %J(J[g,Y] —[¢,JY))

1
= - JoY. (4.31)

Putting together the above remarks and (4.30)) and (4.31]), we obtain the claimed formula.
Using this, we obtain for the torsion of V7"

1 1
TTW:Z((qun)—77®dn)+17®d77+1((J¢—J)77+77/\d77)

1 3 1 1
- — ‘h@dn— = “nAdn.
2(J<i>/\77)+477<>3> n—gJ An+nAdy
Thus, for X,Y,Z € T'(C), we have

T™W(X;Y,Z) = 0 because n(C) = 0,
T7W(E X, Y) = (X, ) + gn Adn(€, X,Y)
=dn(X,Y),
TTV(X6¥) = S((FOX) An)EY) + 0 A dn(X.6Y) ~ {(TX) An)E,Y)
- —%g(ngX,Y) - idn(X, ) + ig(JX, Y)
= —J9(X, JGY) = 3dn(X,Y) + 1dn(X,Y) = ~g(X, J6Y),
T (&€,Y) = 0.
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Thus, we obtain

TTW(X,Y) = dn(X,Y)¢
= —L,(X,JY)¢
= Ln(JX, Y)a

TV (e X) = 3 J6X

_ —%J([g,JX] — J[&, X))

1

= —5 (& TX] + 1€ X] = (€, X])¢)

— _%(J[g, JX]+ (& X] +dn(&, X)¢)

_ _%u[e, JX)+ € X)).

Hence, VIW is the Tanaka-Webster connection in this case. Putting the above results together,
we obtain the following result

4.2.7 Theorem

Let (M, H, Jog) a CR manifold and (g,n,J) a metric contact structure such that kern = H and
Jlg = Jogr. Let furthermore (M, j,g) given by M = Rx M, Jot =&, JE = —0t and j|H =Jlg
and § = dt?> + g. Then the Tanaka- Webster connection of M is uniquely determined as the
restriction to M of the connection V° on the almost-hermitian manifold (M, j,f]) satisfying the
following conditions:

(i) V° is hermitian,
(ii) V° is nice,
(i4i) V° is quasi-equivalent to V°,
(iv) (T®)¥' = B with B as described in (the proof of) lemma .

We conclude this section by noting one further property of the torison of the Tanaka-Webster
connection.

4.2.8 Definition Let (M, g,n,J) be a metric contact manifold that is CR. Then a contact
connection on T'M whose torsion satisfies

9(X,T(Y,Z)) =0 forany X,Y,Z € I'(C)
is called a CR connection.

It is immediate from the explicit description of the Tanka-Webster connection that it is CR.

In this chapter, we have provided an alternative description of the Tanaka-Webster connection.
However, we still need to explicitly describe a part of its torsion. In the following chapter, we
will give a characterization by means of the Dirac operator it induces, where there will be no
more need for an explicit description of the torsion. The property that V" is a CR connection
will be very useful for that, in general, many connections induce the same Dirac operator, but,
as we will see, there is at most one amongst them that is CR.
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5

The Hodge-Dolbeault operator and geometric Dirac operators

This section will be devoted to the study of the relationship between the Hodge-Dolbeault
operator and certain geometric Dirac operators, in particular those induced by canonical and
basic connections. In the first section, we study Dirac operators on almost-hermitian manifolds,
showing in particular that the Hodge-Dolbeault operator is a geometric Dirac operator. In the
following section, we then look at the operators induced on a metric contact manifold by those
on the associated almost-hermitian manifold. In particular, we see that the Tanaka-Webster
connection induces a Hodge-Dolbeault-like operator and is the only CR connection to do so.

5.1 Dirac operators on almost-hermitian manifolds

In this section, we will study Dirac operators on almost-hermitian manifolds. Recall that every
almost-hermitian manifold has a canonical Spin¢ structure with spinor bundle S¢ ~ A% (T*M).
On this bundle, we have a particular Dirac type operator:

5.1.1 Definition The Hodge-Dolbeault operator is the operator
H:T(S¢) ~ Q%" (M) — Q% (M)
w— V2(0w + 9 w).

We will compare this operator with the geometric Dirac operators induced by the various con-
nections on an almost-hermitian manifold (Levi-Civita, canonical, basic). In particular, we will
show that H is a geometric Dirac operator.

We begin by proving some auxiliary results on the covariant derivative of differential forms,
linking it to the exterior differential d and the Dolbeault operator 9. Recall that every connection
V on TM induces one on Q" (M) by

(Vxw)(X1, ooy Xp) = X (@(X1, 000, Xp)) = > w(X1, o, Vi Xiy ooy Xi) (5.1)
i=1
This covariant derivative is closely related to the exterior differential as the following lemma,
stated in [Gau97, section 3.5], shows.

5.1.2 Lemma

Let V be any metric connection on the tangent space T M of some almost-hermitian manifold
(M,g,J) and T its torsion. Then the following equalities hold for the exterior differential d and
co-differential § of a differential form w € QF(M):

~

dw(X07 7Xl€) = (—1)](VXJW)(X03 "'7Xja ey Xk‘)

M QM”

J

3 ()BT (Xu, X5), X0, -y Xy ooy Xy ooy X

o
A
iy

8w (X1, Xim1) = — Y (Vi) (bj, X1, ooy Xpo1) + w((tr T)%, X1, ooy Xjom1)

T o
LI

=2 (D g(T(XG5 )0l Xuy ooy Xy ooy Xim1))

[
Il
—
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where, as usual, X'j means that X; does not appear in the formula, and where T with three
arguments and trT" are to be understood in the sense introduced in section [1.2.3.

Proof: (1) The right hand side is equal to

k
S (1) (Xj(w(Xo,...,Xj,...,Xk)) W(V x5, X0, ooy Xy ooy Xp) = o —w(Xo,...,Xj,...,VXij))
§=0
+ 3 (1) P(T (X, X), Xo, ooy Xy s Ko oo Xi).
a<f

Reordering the first sum and using Vi, X; — Vx, Xy = [Xy, X;] + T(Xg, X;), we obtain that
the r.h.s. is equal to

k
D (1 X (w(Xo, oo Xy o Xi) = D (=1 (w(1X5, X0, Xoy ooy Xy ooy X0, o, Xi)
7=0 <l

w(T(XZ,X) X(),... X,...,Xj,...,Xk))

> (1) PPu(T(Xa, X5), Xo, oo Xay ooy Xy oony Xi)
a<f

=dw(Xo, .., Xp) = Y _(=1)™w(T(Xi, X;), Xo, ooy Xiy ooy Xy oory Xi),

i<j
which proves the first identity.
(2) To prove this identity, we recall that the codifferential is defined by
dw=(—1)"sdxw
for any w € QF(M). Now, we write w with respect to a local basis (b;) with dual (b’) as

w = le[bl where for I = (iq,...,ix), b! = bt A--- Ab and wy = w(byy, ..., b;, ). We then have
locally that

*W = ij*bl :wasgn(I,J)bJ
I I

where J is the complement of I in {1,...,n} and sgn(I,J) is the sign of the permutation
(1,...,n) — (I,J). Thus, we obtain

x«w(bj,,....b; ) =sgn(l,J)wr. (5.2)

We now first prove the second formula for the Levi-Civita-connection, which has no torsion. In
that case, we have the following equalities:

6w (biyy oy bip ) = (=)™ s dx w(byy, .y by )

(=)™ sgn(c, 1)(d * w)(bay, -+ bay_yy) (@ ={1,.;n}\ )
n—k+1 ' e

= (=)™ sgn(a, 1) Y (—1)J(vgaj 4 W) (Days oo Dy oos by _r)-

Jj=1

—~
N
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5.1 Dirac operators on almost-hermitian manifolds

We consider this sum in some more detail. We have that *V = V% and thus, the sum is equal
to

n—k+1
(=)™ sgn(a, 1) Y (=17 (V] w)(Bays-wos bays -oos by i)
i=1 ’
(52) nk+1 "
= (=)™ sgn(a, 1) Y (=1) sen(ay, I, (@ \ {a;})(V] @) (o biys s biyy)
j=1
n—k+1
= >0 W (HVE, w)baybir, b )
j=1
n—k+1
= - (vlg) w)(bajﬂbh? b’Lk 1)
j=1

fz Vg “,...,bikfl),

where the last identity is due to the fact that the terms we have added are zero because
(Vb].w)(bj, bil’ ey bik-71) =0ifjel.

Next, we prove the claim for any metric connection V. We begin by comparing the covariant
derivatives V and VY induce on forms. Using that V = V9 + A, we deduce

Vxw(X1, . Xi) = X (@(X1,.., Xi) = Y w(X1, ., VX X, o, Xi)

Therefore, we obtain

n

0w(X1, 00y Xp1) = = (V] )by X1,y Xg1)
pn=1

n n
—Z Vb w buaXb ...,Xk_l) — Zw(Abub“’Xl’ ---an—l)
1 pn=1

H:
n k—1
= wlby X,y Ap, Xy oy X
p=1j=1
Because . .
Ap, by =D g(Ap, by b)by =Y Albu: by, )b,
v=1 v=1

we obtain that .

ZA,, w = (tr A)F = —(tr T)%
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This leaves us to consider the third sum. We have that

n k—1
ZZwU)P“X(N"‘7Aquj7"'7Xk)
p=1j=1
k=1 n
=3 > (—1)!g(Ap, X, b)w by, b X, eory Xy ooy Xig1)-
Jj=1pr=1

Recalling that A = —T + §bT, we see that this is equal to

1
Z Z ( (byss X5, bw) + <T<bu;Xj,by>+T<Xj;by,bu>+T<by;bmxj>>)-
j=1p,rv=1
w(b,j,bu,Xl,...,XN,...,Xk_l)
k—1 ' .
=3 (T, by, b)w(by, by X,y ooy Xy ooy Xm1)
Jj=lv<p
k—1 n
1 ] s
-5 > (T (b X, by) = T(by, by X)) by by X1,y Xy oony Xim1).
7j=1 =1

The first of these two sums is precisely equal to

k—1
D (=1 g(T(Xj5,)), (s Xy ooy Xy ooy X))
Jj=1

The second sum, on the other hand, vanishes, because we can write it as
k—1 on
(=17 )" T(by, X5, bo)w(by, by, X1, oy Xy oo Xpm1)
Hv=1

T

I

> <

n

(=17 > by, X, b)w(bpy by Xy ooy Xpiy oony Xpo1),
p,v=1

_l’_

DO | =
<.

Il

—_

which is zero. This yields the claim. O

This lemma has an extension to the operators 0 and 9.
5.1.3 Lemma (cf. [Gau97, Lemma 3.5])
Let (M, g, J) be an almost-hermitian manifold and let V be a hermitian connection on T M with
torsion T. Then, for w € Q% and Zy, ..., Z;, € TM%' we have that
k

0w(Zy, ..., Zy,) = Z(— V(Y 2,0)(Zo,s vy Zjy ey Zi)

+Z V(T2 Z5, Z0), Zoy ooy Ly vy Zty ooy Zi),
g<l
n

D' W(Z1, s Zomr) = = > (V,w)(bj, Z1, ooy Zimy) + w((tr TV, 21, oy Zpon)

.
=

kol

-1

- g(g(Zj7T270('7 '))1("}('7 *y Zl7 ey Zjv ceey Zkfl))'
1

[
Il
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5.1 Dirac operators on almost-hermitian manifolds

Proof: One uses lemma For Zy,...,Z;, € TM%!, we simply have dw(Zy,..., Z1) =
0w(Zy, ..., Z1). We can then replace T by T2 for the following reason:

T(Z;, 7)) = T(X;, 2) +iT(J X, Z))
= T(X;, X)) — T(JX;, X)) +i(T(JX;, X)) + T(X;, JX})).

Hence, for TH! we have TH1(X;, X;) = THY(JX;,JX;) and TH(JX;, X)) = —TH(X;, JX))
and thus the (1,1)-part vanishes. For the (0,2)-part we obtain T%%(X;, X;) = —T%?(JX;, JX;)
and T92(JX;, X;) = —J(T%?(X;, X;)) = T%?(X;, JX;) and thus

T%%(Zj, Zy) = 2T%%(X;, Xi) — 20JT**(X;, X;) € TM™Y,

which vanishes when we take the scalar product with an element of TM%!. Therefore the only
part that remains is the (2,0)-part (and this part is, by an analogous calculation, indeed in
TMOY).

The second identity follows by the same arguments. O

We will now use these results to compare the Hodge-Dolbeault operator and geometric Dirac
operators. Throughout this section, we assume that the manifold M is of even dimension n = 2m
and equipped with an almost-complex structure J and an almost-hermitian metric J. We will
use the following local frames without further explanation: eq, fi, ..., eém, fm denotes a J-adapted
frame and given such a frame we set

. \}é(ehrz‘fj) G=1,....n),
Fim (I —iff) (j=1,....n).

V2

Compare section [1.1] for more details on this. One easily deduces

1 .
(e)"0 = —2; (e,)"! = —7;,

(DY = —=z, ()™ = ——=7.

Recall that in the case of a Spin® structure, to induce a connection on the spinor bundle, we
not only need a connection on 7'M but also an auxiliary connection form Z on P;. Throughout
this section, we take the point of view that the connection form Z is the det-extension of
some connection form A% on Py (M) induced by a connection V* as described in section
We will denote such a Dirac operator by D.(V,V?) with the conventions that we note the
Riemannian Dirac operator D¢ (V?) := D.(VY, V#) and the Dirac operators of the canonical and
basic connections D:(V?) = D.(V, V?) and D4(V?) = D.(V?, V?) respectively.

In [Gau97], Gauduchon considers Dirac operators of hermitian connections. However, he chooses
another approach to the auxiliary connection, considering the Spin® spinor bundle as the tensor
product of the spin spinor bundle with a square root L™! of the anti-canonical bundle and then
introducing a connection on this bundle as the product of a connection on the spinor bundle
(for the spin structure) and a unitary connection on L~!. Using this construction, he deduces
the following relationship between the Hodge-Dolbeault operator and the geometric Dirac DY 1
operator induced by the Levi-Civita connection on T'M and a connection on L that is induced
by the second canonical connection (cf. [Gau97, section 3.6]):

1
H:Dgl_,

1 (@) = e((@F)).
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As we take another approach to the definition of a connection on S€, his results differ somewhat
from ours.

The first result that we prove is the central one of this section, relating the Hodge-Dolbeault
operator to a geometric Dirac operator, namely the geometric Dirac operator induced by a basic
connection.

5.1.4 Theorem

Let (M, g,J) be an almost-hermitian manifold and S° the spinor bundle of its canonical Spin®
structure. Then the Hodge-Dolbeault operator on S¢ is the geometric Dirac operator induced by
the basic connection V? and the connection form Z® which is also induced by the basic connection:

H =DV,

Proof: Recall the expressions for d and 8" from lemma We will apply those for a basic
connection. As V? is nice, the trace of its torsion vanishes. Furthermore, comparing the explicit
formulee for the torsion of V? and the first canonical connection VO (cf. the discussion in section

4.1)
TP =N — i((dCF)J“ +M(d°F)Y)+ B (B € QLY (M, TM)),
TN %((ch)J“ MR,

we see that they only differ in their (1, 1)-part. As we know that the (2,0)-part of the torsion of
the first canonical connection vanishes, the respective part of the torsion of the basic connection
must also vanish. Therefore, applying the results of lemma to the basic connection, we
obtain for any Zy, ..., Z; € D(TM%1):

Ow(ZO, ceey Zq) =

M=

(_1)j(vajw)(Z07 X Zj7 ceey Zq)7
1

O 21y Zg1) = =Y (V3. w)(bj, Z1, e Zg1).-

j=1

.
Il

We will rewrite these two expressions in a slightly different way. Any Z € I'(T'M 0.1y can locally
be written as Z =3 (?z; and ¢ = 29(Z). Therefore, we can write

80.}(20, ceey Zq)

A

(=1 (VW) (Zoy s Zjy oees Z4)

- 114

J:k
m —_—

= 2k A (VEw)(Zo, - Zy)
k=1

Because all forms appearing above are of type (0, %), both sides are equal to zero if an argument
is of type (1,0). Therefore, we can use the above formula not only for arguments of type (0,1),
but write generally

k

Ow = szk/\ (VZw).
k=1
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5.1 Dirac operators on almost-hermitian manifolds

. —x .
Concerning the formula for 9 , we can write

m
= Z ej_:Vij + fj_IV’]’cjw

<.
Il
-

(e )0 lva w+ (f; )OI_IV

I
Ms

<.
Il
-

Thus, we obtain

Ms

Hw =20+ \/i[zm L)+ (e)1 V8 w+ (£ VY, ]

Jj=1

Using the definition of Z;, we obtain

Hw =20+0") sz (V2w) +i2d A (Vw) +V2(e) "' uV2 w + vV2(f;) " 5V w
- Z V2[(e]°) AVEw) + (10 A () + (e) " aVE w + (/7)1 oV w]
j=1

m
= Z ej.ngw + fj.Vl]’cjw.
j=1

Using theorem we deduce that the connection V® on forms coincides with the spinor
derivative induced by V? and the auxiliary connection Z? induced by V°. This yields the claim.
O

Using this result, we can now deduce results on the relationship between the Hodge-Dolbeault
operator and any geometric operator, using lemma (which compares two Dirac operators
induced by two different connections on T'M and the same auxiliary connection Z) and theorem
(which can be used to compare two Dirac operators induced by different connections 7).
We recall the following definition for a form Q € Q?(M,TM):

m

tre Q(X) = ’LZ Q(X, bgj, bgjfl),
j=1

where (s;) is an adapted basis. We begin by giving a general formula which we will then apply

to some special cases.

5.1.5 Proposition

Let V be any metric connection and V* a hermitian connection on the tangent bundle of an
almost-hermitian manifold (M,g,J). Let A and A® note their potentials. Then the following
relationship between the Dirac operator D.(V,V?) and the Hodge-Dolbeault operator holds:

1

DoV, V?) = H — %c(tr(A — %) + Je(b(A — A7) - %c(trc(Az _ ).

Proof: From the main theorem, we have that

b b
H = Zej.vejw + fj.ijw.

i=1
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For the spinor connection induced by V? and V* we have by theorem that
~ 1
Vhw=Viuw+ 5 tre(4” AY)(X)w.

Thus, we obtain the following equality:

- V. Y/ 1 z 1 z
H = Z ej.VeZ]_w + fj.V?jw + &35 tro(A* — A%)(ej)w + f]§ tre(A* — A% (f))w
j=1

= Du(V?, V) 4 4 tro(4° — A (*)
Furthermore, by lemma [3.3.13] we have that
DLV, V?) = DYT?) — eltr(4) + 3e(b4),
Du(V?, V) = DI(V?) — %c(tr(Ab)) 4 %c(bAb).
Combining these two with (*) yields the claim. O

Note that tr.(-) gives an imaginary one-form, which (as opposed to a real-valued one-form)
acts symetrically on spinors, thus not interfering with the formal self-adjointness of D(V, V*?).
As a first application, we compare the Riemannian Dirac operator with the Hodge-Dolbeault
operator:

5.1.6 Corollary
For the Riemannian Dirac operator, the following identity is satisfied:

DYV?) = H + oel(dF)" — (dF)").

Proof: By the above proposition, we have
1 1
DI(VP) =H + ic(tr APy — Ec(bAb).

We will therefore need to calculate A°. Recall that A® = —T° + %bT b Therefore, tr A® =
—tr 7% = 0. Furthermore, bA? = %bTb and we have

TP =N — i (d°F)* + M(d°F)") + B,.

and therefore, using 369 (d°F)* = (d°F)", we obtain

bT" — BN — ©

i <(dCF)+ - ;(dCF)Jr) + bB.

Because B € Q' (M, TM), we have that bB = 0. Furthermore, we know from theorem m
that bN = £(d°F)~. We obtain

1 1
TP = Z(d°F)™ — =(d°F)*
6T = 5 (dF)” — 5(d°F)
and therefore ]

bA" = — ((d°F)” — (d°F)").

(=N

This yields the claimed equation. O

As another application, we consider the geometric Dirac operators induced by the canonical
connections.
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5.1.7 Corollary
For the geometric Dirac operators of the canonical connections, we have the following equality:

o) + L@ F))

DYV, V') =
Proof: From proposition [5.1.5] we have that

%mm—M»

DV, V) =H — %c(tr(At — Ab)) + 5

We know that

3t t+1
T =N + ‘4MT)—j¥mW)
and therefore, as tr N = 0,
1
tth:—t%t M(d°F)*
t+1
— _LQ.
2
Therefore P
tr Al = %9

and using that tr A® = 0, we obtain tr(A° — A") = —£10. It remains to calculate b(A* — A?).
We have already calculated that

bAb = «d?F) — (d°F)T).

(=2 \

Using again the formula for the torsion of V¢, we deduce

3t — t 1
6T = BN + = wm +(dC)
1 2t —
— Z(d°F o T (d°F
L)+ @Ry
and thus
1 2t — 1
wN—A%ZEMTr : uC) Eafm——uWﬁ)
t
= _(d°F)*.
S(d°F)
Combining all these results, we obtain the claimed formula. ([l

One might also use proposition to deduce formulze for the Dirac operators D(VY, V*) and
D(V!, V#) but we omit these as they would lead to quite tedious calculations without any direct
interest to us.

This concludes our discussion of Dirac operators on almost-hermitian manifolds. The most
important result is that the Hodge-Dolbeault operator is induced by the basic connection. This
will be used in the following section to describe the Dirac operator of the Tanaka-Webster
connection.
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5.2 Dirac operators on contact manifolds

As we have done for connections, we will now use the theory of Dirac operators on almost-
hermitian manifolds developed in the previous section to describe Dirac operators on a metric
contact manifold with particular focus on the CR case. In this section, let (M2?™*! g, n,.J)
be a metric contact and (M , 3, J ) the associated almost-hermitian manifold (for more details
on the manifold M, compare section . We denote S¢ and S¢ the spinor bundles of their
respective canonical Spin® structures. Using the relationship between Hodge-Dolbeault operator
and geometric Dirac operators on M and the relationship between the Spin©-spinor bundles of
M and M , we describe a Hodge-Dolbeault-like operator that is the geometric Dirac operator
induced by the generalized Tanaka-Webster connection.

We know from the preceding section that the Hodge-Dolbeault operator % on M coincides with
the geometric Dirac operator induced by a basic connection V? and the connection form Zf’ on
Py, which is also induced by V. In our case, we will always choose the basic connection V? as
defined after lemma [£.2.6

As we are interested in Dirac operators and connections on M, we want to study how H acts
on M, ie. on S° In order to do so, we will take a closer look at the relationship between S¢
and S¢ and the Clifford multiplications on the two bundles. The calculations we are about to
present roughly follow [Nic05l section 3.3]. Recall that because C admits an almost-hermitian
structure, its complexification admits a splitting into the +i-eigenspaces of J, which we denote
C'0 and C%!. Taking the duals of each subbundle, this splitting extends to the dual bundle C}.
Taking exterior powers, we obtain the bundle of (p, ¢)-forms

API(C) = A((€0)) A AT(E)).

Using this bundle, we can describe the spinor bundles as follows (cf. propositions and
3.4.9):

Se ~ AOT (TN = AT (T* MO,
S¢~ A% (C*) = AT((C*)%).
To compare the two, we first make some remarks on local bases of M. We will always use a

J-adapted local basis (€0, fo, €1, f1s -y €m, fm), where eg = 0t, fo = £ and (eq, fi, ..., em, fm) iS a
J-adapted basis of C. From this basis, we can deduce bases (z;) of TMY and (z;) of TM%! with

duals (27), (27) in the usual way (cf. the beginning of section . Of particular importance are
the following elements:

0 = —sleo—ify) = 5= (01 = i9),
B = o+ ifo) = (0t + i),
20 = %(dt—m’n),
20— é(dt—m).

Then, we note that

T*M = Rdt & Ry & C*
T*M,=Cz’@ Cz0 ¢ C*.
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and therefore X X o
T*Ml,O —_ (CZO D (C*)l,O and T*MO,l — (0 @ (C*)O’l,
which implies o
AYP(T*M) = C20 A A%P71(C*) @ AYP(CH).
In particular, we have
AO,even(T*M) _ C; A AO,odd(C*) ® AO,even(C*)
and o
AO,odd(T*M) = Cz0 A AO,even(C*) D AO’Odd(C*).
Now, S¢ splits as S¢ = SAi @S¢ with SSE = AOeven/odd( *M ). We then have an identification
X1 S84~ AV (T AL 5S¢~ A% (CY)
E/\W()—l-wl — wo + w1
with the inverse mapping given by x ' (w) = w for w € A%***"(C*) and y 'w = 20 A w for
w € A%04(C*). Now, we set
1 _
J = é(dt) = —=(é(2°) + &(29)).
(dt) ﬂ( (z7) +¢(2Y))

By definition of the Clifford multiplication, we have that
o(=") = V2 (") A = (")) = —v2 7,
_ . 1o\ _
e(20) =2 <200,1 A— (zow) J> — V20,

Because elements of S¢ are differential forms on C, we have that Zg1¢) = 0 for any ¢ € S°. Thus,
Jlse = V2 204 and for ¢ = 20 A wg 4wy € SS |a, we have

T =wo+ 20 Aw; GSE_!M

and every element of S¢ |37 can be written in this form. Hence, we have J SA‘jr = S¢ |5r and obtain
an identification —xJ: S¢ |y — S°. Therefore, along M, we can write S¢|p; ~ S¢ @ S°. Using
this decomposition, we can write forms ¢ € S¢ ~ S¢ @ S¢ as column vectors by

(1/11> ST+ IX e (5.3)
(0
with 11,99 € S¢. With respect to this decomposition, we can write J as
(0 K
(2 %) >
and because J? = c(dt)? = —||dt||* = —1, we have that K1 Ky = —1, Ko K; = —1.

We now compare the Clifford multiplication on S¢ and S¢.

5.2.1 Lemma A
The Clifford multiplication ¢ of S¢ and ¢ of S¢ are related by

(X)) = x (TeX)(x ()
for any X € TM, ¢ € S°.
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Proof: By propositions and the two Clifford multiplications on a (0, ¢)-form are given
by

oxX) = V2 (X0 A =Xx01),
o(X) = V2((X2)" A =X20) + (1) hin(X).
Note that for X € I'(C), the (1,0)-+(0,1)-splitting of T*M and C agree because X = Xcl’0 + Xg’l
and because (C*)10 ¢ T*M"0 we have Xcl’0 € T*M"Y and analogously for Xg’l. We now check

that the claimed relationship holds on a basis of T'M.
We begin with &. We have that c(€)y = i(—1)914). On the other hand, ¢40 = -z, and

€01 = — 75, Therefore, for ¢ € Q%9=2(C) Y
V20 ’
{0 ) = VA ol h v+ ﬂ‘offﬁ)
=iz0NY

and therefore

T (x ) =iT (20 A y)
=iz0 N0 N —iZoa(20 A )
= —itp 4020 A (Zop)
= —ip = i(—1)* 1y,

Then, we obtain the following equality:
X (Te©) () =i(=1)* .

Analogously, for 1 € Q09=2k+1(C), one uses that ¢(&)(x ') = &(€)(20 A 1)) and obtains the
claimed equality as well.

Next up, we consider an element e; of a J-adapted basis (ej, f;) of C. We have that ejl.’o = %zj

071 j—

1 ==
and e = 5% Thus, we have

clej)p = 29 Np =z
and for ¢ € Q%2¥(C), we have
eg) (1) = F A — 50,
Hence, we obtain

Té(e))(x ) = 20 A 23 Avp — Fgazd A — 20 NFj b + Zo iz )
= 20N (7 A — ),
X (Té(e)(x ")) = 27 A —Z5 .
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For ¢ € Q02*+1(C), we have
&(e) (x 1) = é(e;) (20 A )
NI NP —Z5a(20 AY)
A 20 A+ 20 A (Z 1),
Téle)) () = 20 A 23 A 20 Ap 4 20 A 20 A (F5 ) — Foa(29 A 20 Avp) — Zou(20 A (ZF5u0))
= —Zu AN2OANY —Z5 )

=21 Nop — Zj b

Il
‘ o

I
R

This yields
X (Tele)) (1)) = 27 A — 7.
An analogous argument for f; then yields the claim. O

We now conclude our discussion of the relationship between the two spinor bundles and apply
the results. We want to consider the geometric Dirac operator induced by VIW. To this
end, we make some remarks about connections induced on the spinor bundle S¢ associated to
the canonical Spin® structure on M. As in the almost-hermitian case, a connection on S¢ is
defined by a metric connection V on T'M and a connection form Z on P; which can be induced
by a hermitian connection on T'M (see section for more details). Here, we will consider
the geometric Dirac operator H = D.(VIW VIW) (for the notation, see section . For
reasons which will become clear later, we will call it the contact Hodge-Dolbeault operator. To
compare it with the Hodge-Dolbeault operator on SC, we will first need to compare the spinor
connections on the two bundles. We know that VW is the restriction of V? to T'M. Thus,
the covariant derivatives induced by the two connections on the bundles of forms coincide on
A" (C*) € A% (T*M). By theorems|3.4.8/and [3.4.12| we then deduce that the spinor connections
coincide on A%"(C*).

Then, from the local formule of the geometric Dirac operators of Vb and VTW  we obtain the
following expressions, where 1 € I'(S°):

A 0) = 0 Vhau(x 1) + ) The (1 0) + D (eeg) Vhe, +ef)V0, ) (1), (5.5)

=1

Hip = (Vo + 3 (c(ej)wej +e(f;)V fj) b
i=1
Now, using the relationship between Clifford multiplication on S¢ and S¢ above, we deduce

Hip = xTe(x " VEV Y+ xTele))x VIV + xTe(f;)x V. (5.6)
i=1
Furthermore, Vb and x commute: Let ¢ = 20 Atpg + 1 € F(SAfL), ¥o,11 € T'(S€). Then,
X(VPxp) = x (VA@ Ao + 20 A Vo xipg + VAbX¢1>
=X (VA”E A ¢0) + Vbxio + Vbxi

X (VA@ A wo) + Vox (xp).
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Yet, Vbz0 = 0 for the following reason: We have
. 1 - .
Vbx20 = —(Vbxdt —iVPoxn).
X \/5( X xn)

Now, from equation (4 in the discussion of contact connections, we know that vbot = 0.
Furthermore the restriction of V? to TM is contact and thus £is Vb_parallel. Then, by corollary

Vbdt = Vb = 0 and thus V?20 = 0. This proves the claimed relationship.
Hence, we deduce the following formula from ([5.6)):

HY = XTEE)Vre(x ) + D xTe(ej) Ve, (X T) + xT&(f5)VPr, (X 1)
=1
Using , we obtain that
H(x 1) = &) Vharp — Tx 1 HY.

A similar result can be obtained using the isomorphism between S¢|;; and S¢ instead of x.
Writing this in the block form defined in (5.3)) with respect to the splitting Se =S¢ IS¢, we

have
- - H 0
_ Vb _
H= j( ot (0 K1HK2>) ‘ (5.7)

We go back to the splitting Q% (M) = 20 A Q%" (C) & Q%" (C) and will give an alternative
description. In order to do so, we remark that by the definition of z° and 20, we have n’? =

120 and thus é(n) = 20 A +iZgu. Hence, for wi,ws € Q07 (C) we have

— 1 20 and 170’1 =7

V2
Te(in) (29 Awy 4+ ws) = =T (29 A +Z52) (20 A wi + wo)
:j(—wl —E/\WQ)
= (=29 Awy + wa).

Therefore, we obtain

1 _ _
5(1 — Jeé(in) (20 Awy +wa) = 20 Aw,

%(1 + Té(in) (20 A wi + ws) = wo,
i.e. we have that
%(1 + Te(in)Selw = A% (CY).
In particular, we have that
%(1 — Jé(in))SE |ar =20 A AOe%(C),
%(1 + Jé(in))S | = Aderen(Cr),

We define
Si— :AO,even(C*) and SC_ :AO’Odd(C*).
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By the above result and the known relationship between Clifford multiplication on S¢ and Se,
we have that S are the eigenspaces of ¢(in) to the eigenvalue +1.

Now, let w € Q%4(C). Then, dw € QO4t1(M) and therefore, it admits a splitting in the above
sense, i.e. there exist (Gw)g € Q%4(C) and (dw); € Q%4TL(C) such that

Ow = 20 A (Ow)o + (Ow)y
= 51— Fé(in))B + 5 (1 + Té(in)) B
Thus we obtain operators on S¢ as follows:
5.2.2 Definition We define the following operators:

50: S¢ — S§°

w — (Ow)o,
Oc: S¢ — §°
w#—%(éwhzz%ﬂ:%jf@n”gw
with notation as above.

By construction, we have that do(S§) C S¢ and 9¢(S%) C SS. Furthermore, one has that

EAaw:%u—meﬁw

= %&u + %j(? A Ow + Zgu0w)
1 1

= §5w + 5(—704(270 A Ow) + 20 A (Zgadw))
=20 A (ZT)JEW)

and thus, we have that Jow = Zy_0w. We keep this in mind for later use.
Now, let ¢ € I'(S) be t-independent. Then, using (5.7)), we have that

o H 0 X
=7 (3 i) ()
_ (0 Ki\(H 0 X
N Ky 0 0 KyHK; 0
_ 0 HEKL (xe
- \—KyH 0 0/’
i.e. we have that H¢ = —x ' JH 1, which implies
X THxe = V2T @+
for any t-independent ¢ € I'(S%), or, equivalently,
Hip=VoxJ (0 +8)x v
for any ¢ € I'(S°).
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Now, let ¢ € I'(S¢). Then ¢ = ¢_ +1_ with ¢+ € I'(SS) and we obtain that
@+ )" = (@+8) (0 Ao +9y)
(5 ) Ath. — 20N (DY) +Tpy +0 (20 N1h) + 8¢
2N (Bep—) + 20 A Doty + Betpy + 9 (29 Ap_) + (20 A Dy + Be) 1y
= ZO A (Bothy — Beo_) + Bery + (20 A Do) Yy + Tpthy +0 (20 A1p_).
We know that (20A)* = Zg_ ie (29 A 8p)* = pZoo and because Zguh, = 0, we obtain

@+ Ay +y) = 20N @ovpy — Bep—) + Deoy +0ppy +0 (ZONP-).  (5.8)

The term that still remains somewhat unclear is 9" (29 Atp_) and we now want to study it in
some more detail: We have that

(0,3 (0 A_)) 2 = (B, 0 A p) 12
= (29 A Do + Dea, 20 Aap_) 2

= (500&, ZOJ(ZO ANY_))r2 + (Gca,ﬁ AN )2

= (a,050_) 2 + (Bea, 20 Ap_) 2

Now, a admits a splitting o« = a— + 20N a4. Using this, we obtain

(0, 0" (20N )2 = (Do, Dptp-) 12 + (D + Be(20 A ay), 20 Ap) 2
= (a, 012 + Bea—, 29 Ap_ )2 — (20 A (Beay ), 20 Ap_ ) 2
= (04753@07)@ + (70—’5(304*7"7&*)112 - (O“rag(f’w*)L?
=0
= (o, 0pt-) g2 — (0N oy, 20 N Betp- )2 — (Foaa, Detp-) 2
=0

= (a758¢—)L2 - (av?AEZ’w—)LQ
Therefore, we conclude o o
D (ONY_) =g — 2O N DL
Combining this with we obtain that
@400 Ay- +y) = 20 A Doths — Dep—) + Derps + ety + gtp— — 20 A Dt
=20 A (Bov+ — Detp— — Det-) + Detbs + by + -
Using , we then obtain that
HE NG +63) =V (T@+T)E A G- +14))
= Vax (O A =70) (0 A Bovoy — Devr- — Dev-)
+0cty + Doty + 53¢—))
= V2 @0y — Betp- — Fptp) = A Betbs + Do+ Ty-) )
= —V2(00¢+ — B — o) + V2(Dcths + gt + o).
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Writing this in block form, i.e. writing ¢, 4+v_ = (14,%_)T, we obtain

1/1+> < -9 (dc +3Z)> <¢+)

H =2 - "L _ . 5.9
(& @+ 9 )\ >
Therefore, we can characterize the Tanaka-Webster connection of M as a connection inducing
the Hodge-Dolbeault-like operator defined by (5.9). Yet, as we know, there may be many

connections inducing the same Dirac operator. We do, however, have the following uniqueness
result:

5.2.3 Theorem (cf. [Nic05, Proposition 3.11])

Let (M, g,n,J) be a metric contact manifold that is CR. Then each class of Dirac equivalent
connections contains at most one nice CR connection.

Proof: In order to prove this theorem, we extend V to a connection V on the almost-hermitian
manifold M via the following formulse:

0
ot
where U,V € F(M,TM) are interpreted as elements of X(M) parametrized by ¢, i.e. U(t,-) €
X(M). It is obvious that the operator thus defined is a connection. We now prove that it is
hermitian, i.e. that VJ = 0. As VJ is tensorial in both arguments, it is enough to test it on

vector fields which form a pointwise basis, i.e. on 9t and vector fields X,Y € X(M) that are
independent of ¢. For these, we obtain

V.ot=0 and (VyV)(t,-) =VyesV(t,:) and VeU = .U,

?atj(é?t) = @3t(j0t) - j(ﬁatat)

0
- ag - Oa
VxJ(8t) = Vx(Jot) — J(Vxdt)
=Vxé=0,
@atj(X) = @at(jX) — j(@atX)
A - ., 0
= Vo (JX) — Van(X)0ot — J(aX)

=0
and
VxJ(Y)=VxJY — J(VxY)
=VxJY — JVxY 4+ Vx(n(Y)dt) + n(VxY)dt

= (VxJ)Y + (=X(n(Y)) + n(VxY))ot
=0,

where the last equality follows, because V is contact and because
X(n(Y)) = X(9(Y,€)) = 9(VxY.§) + g(Y, Vx§) = n(VxY).

Having established that V is indeed hemitian, we now consider its torsion T. For u,v € T, M
and a t-independent vector field U € X(M) such that U(z) = u, we have

T u,v) = T(u,v),
T(u,dt) = V,0t — Vg U — [U,dt] = 0,
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which completely determines T because it is tensorial. Thus, we can write
T=T,

where we set 9tJT = 0. Then, by theorem we can write

P TN . .

T =N+ L (F) - gzm(dcpﬁ 2ot - gzmaﬁ + B (5.10)
where &t € QF(M) and B € QL' (M, TM). On the other hand, we have for V°

b G, 1aes + 3 jc o\ + 9 + 3 +

where again wy € Q3(M) and By, € Q¢' (M, TM). Thus, we can write
T=T+(T-T"
9 3
=T+ §w+ - gzmw + B, (5.11)

where wt = ot — u)b+ and B= B — By. In particular, this implies

bT = b1 = bT? + guﬁ — gbsmw
= b7 +w™,

where we made use of the fact that bw™ = fw™. Therefore, we obtain
wt =bT — bT".

Because b7 does not depend on V but only on its Dirac equivalence class (cf. corollary ,
the Dirac equivalence class of V completely determines w™ and thus @*. What is more, we
know that w™ = bT — Iy A dn and thus that 9t_w™ = 0.

To show that V is uniquely determined, we still need to show that B is also completely deter-
mined by the Dirac equivalence class of V. Then, by , T would be completely determined
and so gould be V and thus V. We begin by noting that we know

T(at; K )
T(';8t> )

T°(dt;-,-) =0 and (5.12)

= 0,
=0, T(,dt,-) = 0. (5.13)

Because dtuw™ = 0, (5.12) and (5.11)) imply that

B(0dt;-,-) = 0.
Furthermore, by (5.11)) and (5.13)), we obtain that
3

and thus, B is completely determined if one of the arguments is 0t. Furthermore, because
B € QYY(M,TM), we have that B(X;&,Y) = B(X;0t,Y) which is known. Furthermore,
because bB is zero, we have

0=0bB(X;¢Y)=B(X;§Y)+B(&Y,X)+ B(Y; X,§)

known known
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for any vector fields X and Y and thus, B is completely determined if one of the arguments is
€. Finally, we use the property that V and V" = V|3, are CR. connections to deduce that

0=T(GY,Y) = THXY, 2) + 0wt (XY, 2) — S0 (X3Y, 2) + B(X:Y, 2)
= %M(X; Y,Z) — gsmoﬁ(x; Y,Z)+ B(X;Y, Z)

for any X,Y,Z € I'(C), which completely determines B. This yields the claim. O

In particular, this implies that the Tanaka-Webster connection of a strictly pseudoconvex CR
manifold is the unique nice CR connection that induces the operator H as defined in (5.9). We
can summarize our findings on the (generalized) Tanaka-Webster connection as follows:

5.2.4 Theorem

Let (M, g,n,J) be a metric contact manifold. Then the generalized Tanaka-Webster connection
induces the contact Hodge-Dolbeault operator H defined for any ¢ =¥y +1¥_ € I'(S°) by

Hip = V2xT 0+ ) (0 Ao +1y)

w1 -2t 5" ()

as its geometric Dirac operator.
If the manifold is CR, the Tanaka-Webster connection is the only nice CR connection to induce
this operator as its geometric Dirac operator.

or, equivalently by
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Appendix

Connections on principal bundles

A.1 Connections on principal bundles

The way we induce connections on a spinor bundle is based on the more general concept of
connections on principal bundles and the connections (covariant derivatives) they induce on
associated vector bundles. It is this theory that we review in this appendix. Because it serves
mainly to list well-known facts for the convenience of the reader, we omit all proofs and refer
the reader to [Bau09l chapter 3] which we used in writing this appendix. We begin by defining
what we understand by a connection on a principal G-bundle P 5 M.

A.1 Definition The vertical tangent space of P is the subbundle TvP C TP given at each
point by Tv,P = T},(Pryp).

A horizontal tangent space is a vector space complement (at each point) of the vertical tangent
space.

A connection Th on P is a smooth and right-invariant choice of a horizontal tangent space, i.e.
ThyP C T,P, Thy,P ® Tv,P = T,P at any point p € M and dRy(Th,P) = Thy,P, where R,
denotes right multiplication by g.

A.2 Remark The vertical tangent space is given by the kernel of the projection: Tw,P = ker(m,) and

is furthermore isomorphic to all fundamental vector fields evaluated at p, where the fundamental vector
fields are given by

d
X(p) = - (exp(tX)p)li=o where X € g.

Another way to describe a connection is through a one-form with values in g, the Lie-algebra of

G:
A.3 Definition A connection one-form is a form C € Q!(P, g) such that
(i) R;C = Ad(g') o C, where R, stands for right multiplication,

(ii) C(X)= X for all X € g.
These two definitions are equivalent in the following way:

A.4 Proposition (cf. [Bau09, Satz 3.2])
Connections and connection one-forms are in a 1-to-1 correspondence defined as follows:

(1) If a connection Th is given, define C' by

Cp(X(p)+Yn) =X forall X €9, € TH,P.

(2) Let C be given. Then define Th as the kernel of C.

Yet another way to describe a connection is by local connection forms: Given a local section
s € I'(U, P) and a connection one-form C, we define

C* =CodscQYU,g).

These local forms then fulfil a certain transformation rule which we shall describe now. In order
to do so, we establish certain functions: Let s; € I'(U;, P), s; € I'(U;, P) be two local sections.
Then there exists a transition function g;; € C*°(U; N Uj, G) such that

si(x) = s;()gij(x)
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for any = € U; N U;. Furthermore, we consider the Maurer Cartan form uc € Q'(G, g) defined
by (puc)g = dLy—1. We then define the functions

Wij = gfj,ug ie. ,uij(X) = dLgij(x)*l(dgij(X)) forX € TQE(UZ N U])

Using these, we can now state the transformation rule:

A.5 Proposition (cf. [Bau09, Satz 3.3])
(1) Let C be a connection one-form and s;, s; local sections of P. Then the local forms C*,C®i
satisfy the following transformation rule:

C®% = Ad(g;l) o C% + i -

(2) Let {(U;,s;)} be an open cover of M with local sections of P and let {C; € QY (U;, g)} fulfil
Ci = Ad(g;;") o Cj + i
Then there exists a connection one-form C such that C®% = C;.

Having reviewed the various ways to define connections on a principal bundle, we now move on
to discussing how a connection on a principal G-bundle P defines a connection on an associated
vector bundle E = P x,V where p: G — GL(V) is a representation of the Lie group G. The first
step is to define an absolute differential D¢ : Q¥(M, E) — QF+1(M, E). To define this operator,
we note that QF(M, E) ~ QF(P,V)(©*) where
QF (P, V)G9 = {w e QF(P, V)| X aw = 0 for all vertical X and Riw = p(a ) ow Va € G}.

We then define

DC: QP V) — Q"Y(PV)

] ] (A.14)
w +— dw(projrpp s ..., proj ThP-).

It can be shown that D (QF(P,V)(&P)) ¢ QF+1(P, V)(Er) and therefore D induces an operator
on OF(M, E).

A.6 Definition The operator d°: Q*(M, E) — QFF1(M, E) induced by the operator defined
by (A.14)) is called the absolute differential induced by the connection C.

For this absolute differential we have the following result:

A.7 Proposition (cf. [Bau09, Satz 3.11])
The absolute differential d© satisfies the following identity for any o € QF(M, E),w € QY (M, E):

d%(o Aw) = (d%0) Aw + (=1)Fa A (dw).

Now, note that we have Q°(M, E) ~ T'(E) and QY(M, E) ~ T'(T*M ® E) and by the preceding
proposition d°: T'(E) — T(T*M ® E) is a covariant derivative.

A.8 Definition The differential operator
V= d%qomp)  T(E) — T(T*M @ E)
is called the covariant derivative induced by C.

We have the following local formula for V¢:

A.9 Proposition (cf. [Bau09, Satz 3.12])

Let C' be a connection one-form on P and E = P x,V a vector bundle associated to P. Let
furthermore e € I'(E) with local representation e|y = [s,v] where s € I'(U, P) andv € C*(U,V).
Then the following formula holds:

(Ve)(@) = [s(x), duv(X (@) + p< (C*(X (2))v()].
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A.2 Reductions and extensions of principal bundles

Reductions and extensions of principal bundles are important tools for changing the structure
group of a principal bundle. In this appendix, we first introduce the two notions and then
describe how connections behave with respect to extensions and reductions.

A.10 Definition Let (P,m, M,G) be a principal bundle and A\: H — G a morphism of Lie
groups (i.e. smooth and compatible with the multiplication). Then a A-reduction of P is a
principal H-bundle (Q, mg, M, H) together with smooth map f: Q — P such that

(i) mo f =mq,
(i1) f(qh) = f(g)A(h) for all ¢ € Q and h € H,
or, equivalently, such that the following diagram commutes:

Qx H——Q
m N
PxG——P—"5 M.

If « : H — G is the inclusion map of the subgroup H < G, we simply call a t-reduction an
H-reduction.

Under a reduction, associated vector bundles behave as follows:

A.11 Proposition (cf. [Bau09, Satz 2.17])
Let (Q, f) be a A-reduction of P and p: G — GL(V') a representation. Then there is a vector
bundle isomorphism (i.e. a bijective vector bundle morphism) of the associated vector bundles

QxpnVPx,V
[q,v] — [f(q),v]

The operation of reducing the structure group of a principal bundles has an inverse of sorts, the
extension of a principal bundle:

A.12 Definition Let ) be a principal H-bundle and let A: H — G be a Lie group morphism.
Then H acts on G by h-g = A(h) - g and

P .= Q X\ G
is called a \-extension of Q).

The following theorem explains how extensions and reductions relate to each other:

A.13 Proposition (cf. [Bau09, Satz 2.18])
Let (Q,mq,M;H) be a principal H-bundle and A\: H — G a Lie group morphism. Then the
following holds:

(1) The \-extension of Q is a principal G-bundle over M.
(2) Define
f:Q—P=Qx,G
g lg,1].
Then (Q, f) is a A-reduction of P.
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(8) Let (Q, f) be a A-reduction of a principal G-bundle P. Then P is isomorphic to the A-
extension of Q.

Now, given a connection on a principal bundle, we ask ourselves whether this connection induces
one on the extension (reduction) of the bundle. The answer is given by the following proposition:

A.14 Proposition (cf. [Bau09, Satz 4.1])

Let (P,mp, M,G) be a principal G-bundle, \: H — G and ((Q,mg, M, H), f) a A-reduction of
P. Let furthermore C be a connection form on Q. Then there exists exactly one connection form
C on P such that

dfq(The (Q)) = Th P, (A.15)

or, equivalently,

ffC=xoC. (A.16)

A.15 Definition In the situation as described above, C' is called a A-reduction of C' and C is
called a A-extension of C.

Note that by the above proposition, extensions of connections always exist. Reductions, however,
do not exist in general.

A.3 The case of frame bundles

With any manifold, we have a particular principal bundle, the frame bundle. The (general)
frame bundle Pgr (M) is the bundle of all frames or bases, i.e.

(Par(M))z = {s = (s1, ..., 8n)|s is a basis of T, M},

Par(M) = [ (Par(M)),
xeM

If M is n-dimensional, it is a principal GL,-bundle, with the action of A = (A4;;) € GL,, given
by

n n
(317--~73n) CA= E SjAjl')"'y E SjAjn
J=1 J=1

This bundle is closely related to the tangent bundle and to its dual and exterior powers: The
tangent bundle can be realized as an associated vector bundle as follows: Let p: GL,, - GL(R")
be the standard matrix action (left multiplication, with R™ considered as a space of column
vectors). Then the tangent bundle is isomorphic to the vector bundle associated to Pgr (M) by
p:

TM ~ Pgr(M) x,R".
The isomorphism is given as follows: Denote ey, ..., e, the standard basis of R™ and fix a basis
§ = (81, ..., 8p) of T M and let X € T, M. Then, X can be written as X = >, X;s; and is then
mapped to [s, > ;X jej]. One easily verifies that this mapping is well-defined and is indeed an
isomorphsim.
Furthermore, we consider the dual representation p*: GL, — GL((R™)*). It is given by
p*(A)(a)(X) = a(p(A~HX) for any A € GL,,a € (R")* and X € R™. Thus, writing o as
a line vector, p*(A)a = a- A~!. Then we have that

T*M ~ Pgr(M) % (R™)*,
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where the isomorphism is constructed analogously to the one for T'M.

The space of exterior powers of T*M can also be constructed as a vector bundle associated to the
frame bundle in a similar way. To this end, we extend the representation p to a representation
p* with image in GL(A¥(R™)*) as follows: The endomorphism p¥(A) is defined on elements of
type a1 A ... A, as follows:

(A (a1 Ao M) = (0 (A)ar) A A (" (A)a)
and extended linearly. We then have an isomorphism
Par(M) x e AF((R™)*) = AF(T* M)
[(81, ey 8n), €0 A o A €] — 81 A LA 8™

If M has additional structure, we can reduce the structure group of the frame bundle: Let
(M, g) be a Riemannian manifold. We can then form the bundle of orthonormal bases Po(M)
which is an O-reduction with the reduction map simply given by the inclusion map. If (M, g) is
additionally oriented, one can form the bundle of oriented, orthonormal frames Pgo (M) which
is a reduction of the structure group to the special orthogonal group. The structure group can
be further reduced to the unitary group when M admits an almost-hermitian structure; this is
discussed in section [L.1]

Because the frame bundles are so closely related to the tangent bundle, every covariant derivative
V on T'M induces a connection on Pgp (M), defined by local connection forms as follows: Given
a local basis (s1,...,s,) over U C M, V can be locally expressed by Vs; = > )| wi; ® s where
wk; € QYU). Then a connection form on the frame bundle C € Q' (PgL(M),gl,) is defined
locally by

n
C* =) wiByj,
ij=1
where B;; € R™" is defined by (Bj;)n = ;105 In other words, C*(X) is simply the matrix

(wig (X))ij—1-
Now, if (M, g) is Riemannian and V is metric, it induces a connection on the bundle of orthogonal
frames Pp(M) (on Pso(M) if (M, g) is oriented) and the local formula can be written as follows:

(€)(X) = 5 - o(Vsi ) Fy,
1<j
where Eij = _Bij + B]z
The connection induced on Pg(M) (we note the structure group simply G, the following result
holds for all possible structure groups) then induces a covariant derivative on the associated
vector bundle TM again. We shall note this covariant derivative V. Then V¢ and V coincide:
By proposition [A.9] we have

Vs = [s, X (er) + p«((CV)*(X))ey]
= [s, (W (X)) - ex]

= [5, Z wuk(X)eu
I

= prk(X)Su = Vxsyp,
m

where we used s = [s, eg].
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