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Abstract. Zero forcing number has recently become an interesting graph parameter stud-
ied in its own right since its introduction by the “AIM Minimum Rank–Special Graphs
Work Group”, whereas metric dimension is a well-known graph parameter. We investigate
the metric dimension and the zero forcing number of some line graphs by first determining
the metric dimension and the zero forcing number of the line graphs of wheel graphs and the
bouquet of circles. We prove that Z(G) 6 2Z(L(G)) for a simple and connected graph G.
Further, we show that Z(G) 6 Z(L(G)) when G is a tree or when G contains a Hamiltonian
path and has a certain number of edges. We compare the metric dimension with the zero
forcing number of a line graph by demonstrating a couple of inequalities between the two
parameters. We end by stating some open problems.
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1. Introduction

Let G = (V (G), E(G)) be a finite, simple, undirected, and connected graph of

order |V (G)| > 2 and size |E(G)|. For a given graph G and S ⊆ V (G), we denote

by 〈S〉 the subgraph induced by S. For a vertex v ∈ V (G), the open neighborhood

of v is the set N(v) = {u ; uv ∈ E(G)}, and the degree of a vertex v ∈ V (G) is

degG(v) = |N(v)|; an end-vertex (also called pendant) is a vertex of degree one. We

denote by∆(G) the maximum degree, and by δ(G) the minimum degree of a graphG.

The distance between two vertices u, v ∈ V (G), denoted by dG(u, v), is the length of

the shortest path in G between u and v; we omit G when ambiguity is not a concern.

The diameter, diam(G), of a graph G is given by max{d(u, v) ; u, v ∈ V (G)}. The

line graph L(G) of a simple graph G is the graph whose vertices are in one-to-
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one correspondence with the edges of G; two vertices of L(G) are adjacent if and

only if the corresponding edges of G are adjacent. Whitney [30] showed that K3

and K1,3 are the only two connected non-isomorphic graphs having the same line

graph.

A vertex x ∈ V (G) resolves a pair of vertices u, v ∈ V (G) if d(u, x) 6= d(v, x).

A set of vertices W ⊆ V (G) resolves G if every pair of distinct vertices of G is

resolved by some vertex in W ; then W is called a resolving set of G. For an ordered

set W = {w1, w2, . . . , wk} ⊆ V (G) of distinct vertices, the metric code (or code,

for short) of v ∈ V (G) with respect to W , denoted by codeW (v), is the k-vector

(d(v, w1), d(v, w2), . . . , d(v, wk)). The metric dimension of G, denoted by dim(G),

is the minimum cardinality over all resolving sets of G. Slater [28], [29] introduced

the concept of a resolving set for a connected graph under the term locating set.

He referred to a minimum resolving set as a reference set, and to the cardinality of

a minimum resolving set as the location number of a graph. Independently, Harary

and Melter in [17] studied these concepts under the term metric dimension. Since

metric dimension is suggestive of the dimension of a vector space in linear algebra,

sometimes a minimum resolving set of G is called a basis of G. Metric dimension

as a graph parameter has numerous applications; among them are robot navigation

[21], sonar [29], combinatorial optimization [26], and pharmaceutical chemistry [7].

It is noted in [16] that determining the metric dimension of a graph is an NP-hard

problem. Metric dimension has been heavily studied; for surveys, see [1] and [8].

The notion of a zero forcing set, as well as the associated zero forcing number,

of a simple graph was introduced in [2] to bound the minimum rank of associated

matrices for numerous families of graphs. Let mr(G) be the minimum rank and

let M(G) be the maximum nullity of the associated matrices of a graph G; then

mr(G) +M(G) = |V (G)|. Let each vertex of a graph G be given one of two colors,

“black” and “white” by convention. Let S denote the (initial) set of black vertices

of G. The color-change rule converts the color of a vertex u2 from white to black

if the white vertex u2 is the only white neighbor of a black vertex u1; we say that

u1 forces u2, which we denote by u1 → u2. And a sequence, u1 → u2 → . . . →

ui → ui+1 → . . . → ut, obtained through iterative applications of the color-change

rule is called a forcing chain. Note that, at each step of the color change, there may

be two or more vertices capable of forcing the same vertex. The set S is said to be

a zero forcing set of G if all vertices of G will be turned black after finitely many

applications of the color-change rule. The zero forcing number of G, denoted by

Z(G), is the minimum of |S| over all zero forcing sets S ⊆ V (G). It is shown in

[2] that M(G) 6 Z(G). The zero forcing parameter has been heavily studied; see

[13], [14] for surveys. More recently, the zero forcing parameter has become a graph

parameter of interest studied in its own right [9], [19].
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Bailey and Cameron initiated a comparative study of metric dimension and base

size (along with other invariants) of a graph in [1]. In [11], we initiated a comparative

study between metric dimension and zero forcing number of graphs. The metric

dimension and the zero forcing number coincide for paths Pn, cycles Cn, complete

graphs Kn, complete bi-partite graphs Ks,t (s+ t > 3), for examples; they are 1, 2,

n−1, and s+ t−2, respectively. For the Cartesian product of two paths, zero forcing

number can be seen to be arbitrarily larger than the metric dimension. On the other

hand, the bouquet (or amalgamation) of circles shows that the metric dimension may

be arbitrarily larger than the zero forcing number (see [9] and [20]). Recently, Feng,

Xu and Wang [15] obtained bounds of the metric dimension of the line graph L(G) of

a connected graph G of order at least five, and they proved that dim(L(T )) = dim(T )

for a tree T . In this paper, we determine the metric dimension and the zero forcing

number of some line graphs. We show that dim(L(W1,n)) = n − ⌈n/3⌉ for a wheel

graph W1,n = Cn +K1, where n > 6, and dim(L(Bn)) = 2n − 1 for a bouquet Bn

of n > 2 circles. We prove that Z(G) 6 2Z(L(G)) for a simple and connected graph

G. Also, we prove that Z(L(W1,n)) = n + 1 for n > 3, and Z(L(Bn)) = 2n− 1 for

n > 2. Further, we show that Z(G) 6 Z(L(G)) when G is a tree or when G contains

a Hamiltonian path and has a certain number of edges. Finally, we compare the

metric dimension with the zero forcing number of a line graph by demonstrating

a couple of inequalities between the two parameters. We conclude this paper with

some open problems.

2. Metric dimension of some line graphs

To put things in perspective, before proceeding onto results specific to our paper,

we recall some basic facts on the metric dimension of graphs.

Theorem 2.1 ([7]). For a connected graph G of order n > 2 and diameter d,

f(n, d) 6 dim(G) 6 n− d,

where f(n, d) is the least positive integer k for which k + dk > n.

Theorem 2.2 ([15]). For a connected graph G of order n > 5,

⌈log2 ∆(G)⌉ 6 dim(L(G)) 6 n− 2.

A generalization of Theorem 2.1 has been given in [18] by Hernando et al.
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Theorem 2.3 ([18]). Let G be a graph of order n, diameter d > 2, and metric

dimension k. Then

n 6

(⌊2d
3

⌋
+ 1

)k

+ k

⌈d/3⌉∑

i=1

(2i− 1)k−1.

The following definitions are stated in [7]. Fix a graph G. A vertex of degree at

least three is called a major vertex. An end-vertex u is called a terminal vertex of

a major vertex v if d(u, v) < d(u,w) for every other major vertex w. The terminal

degree of a major vertex v is the number of terminal vertices of v. A major vertex

v is an exterior major vertex if it has positive terminal degree. Let σ(G) denote

the number of end-vertices of G, and let ex(G) denote the number of exterior major

vertices of G.

Theorem 2.4 ([7], [21], [24]). If T is a tree that is not a path, then dim(T ) =

σ(T )− ex(T ).

Theorem 2.5 ([15]). For a tree T that is not a path, dim(L(T )) = σ(T )− ex(T ).

Theorem 2.6 ([7]). Let G be a connected graph of order n > 2. Then

(a) dim(G) = 1 if and only if G = Pn,

(b) dim(G) = n− 1 if and only if G = Kn,

(c) for n > 4, dim(G) = n − 2 if and only if G = Ks,t (s, t > 1), G = Ks + Kt

(s > 1, t > 2), or G = Ks + (K1 ∪Kt) (s, t > 1); here, A + B denotes the join

of two graphs A and B, and C denotes the complement of a graph C.

Theorem 2.7 ([1]). For the complete graphKn for n > 6, dim(L(Kn)) = ⌈2n/3⌉.

2.1. Wheel graphs. Let W1,n = Cn +K1 be the wheel graph on n+ 1 vertices

(see (A) of Figure 1).

v wn

w1

w2

w3
w4

w5

(A) W1,n

u0

u1

u2

u3
u4

u5

u6

ln−1

l0

l1

l2l3

l4

l5

l6

(B) L(W1,n)

Figure 1. The wheel graph and its line graph.

470



Theorem 2.8 ([5], [27]). For n > 3, let W1,n = Cn +K1 be the wheel graph on

n+ 1 vertices. Then

dim(W1,n) =

{
3 if n = 3 or n = 6,

⌊(2n+ 2)/5⌋ otherwise.

Theorem 2.9. For n > 6, dim(L(W1,n)) = n− ⌈n/3⌉.

P r o o f. Let S be a resolving set for L(W1,n), where n > 6.

First, we show that dim(L(W1,n)) 6 n− ⌈n/3⌉ by constructing a resolving set for

L(W1,n) of cardinality n − ⌈n/3⌉. See (B) of Figure 1 for the labeling of L(W1,n).

We consider three cases.

Case 1 : n = 3k, where k > 2. One can easily check that S = {li ; i ≡ 1 or 2

(mod 3)} forms a resolving set for L(W1,3k) with |S| = 2k.

Case 2 : n = 3k + 1, where k > 2. One can easily check that S = {li ; i ≡ 1 or 2

(mod 3)} forms a resolving set for L(W1,3k+1) with |S| = 2k.

Case 3 : n = 3k + 2, where k > 2. One can easily check that S = {li ; i ≡ 1 or 2

(mod 3) and 0 6 i 6 3k − 1} ∪ {l3k} forms a resolving set for L(W1,3k+2) with

|S| = 2k + 1.

Thus, dim(L(W1,n)) 6 n− ⌈n/3⌉ for n > 6.

Next, we will show that dim(L(W1,n)) > n − ⌈n/3⌉. For 0 6 i 6 n − 1, define

Ui = {li−1, ui, li}, where the subscript is taken modulo n. For each i, define ci as

follows. We will use ci to count the vertices in S ∩ Ui, where li and li−1 are each

counted as 1/2, because each of these vertices might possibly appear in two different

sets, and ui is 1. Thus, if S ∩ Ui = ∅, then ci = 0. If S ∩ Ui = {li−1} or {li}, then

ci = 1/2. If S ∩Ui = {ui} or {li−1, li}, then ci = 1. If S ∩Ui = {ui, li} or {ui, li−1},

then ci = 1.5. When Ui ∩ S = Ui, we have ci = 2. Notice that |S| >
n−1∑
i=0

ci.

First, we claim that ci = 0 for at most one value of i. Suppose, to the contrary,

that ci = 0 and cj = 0 where i 6= j. Then ui and uj are not resolved by S, since

d(ui, lt) = d(uj , lt) = 2 for t 6= i − 1, i, j − 1 or j, and d(ui, ut) = d(uj , ut) = 1 for

t 6= i or j. Thus, ci = 0 for at most one i.

Next, suppose ci = 1/2 for some i. Suppose Ui∩S = {li}. If Ui+1∩S = {li}, then

ui and ui+1 are not resolved, since d(ui, li) = d(ui+1, li) = 1, d(ui, lt) = d(ui+1, lt) =

2 for t 6= i − 1, i, or i + 1, and d(ui, ut) = d(ui+1, ut) = 1 for t 6= i or i + 1. Thus,

ci+1 > 1. Similarly, if Ui ∩ S = {li−1}, then ci−1 > 1. Thus, if ci = 1/2 for some i,

then either ci−1 or ci+1 is at least 1.

If n = 3k + 1, then it follows from the above observations that |S| >
n−1∑
i=0

ci >

k(1/2 + 1 + 1/2) + 0 = 2k = n − ⌈n/3⌉. If n = 3k + 2, then |S| >
n−1∑
i=0

ci >
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k(1/2 + 1 + 1/2) + 1 + 0 = 2k + 1 = n − ⌈n/3⌉. If n = 3k, then |S| >
n−1∑
i=0

ci >

(k − 1)(1/2 + 1 + 1/2) + 1 + 1/2 + 0 = 2k − 1/2. Since |S| is an integer, we have

|S| > 2k = n− ⌈n/3⌉.

Thus, dim(L(W1,n)) > n−⌈n/3⌉ for n > 6. Therefore, dim(L(W1,n)) = n−⌈n/3⌉

for n > 6. �

L(W1,3) L(W1,4) L(W1,5)

Figure 2. Shown in solid vertices form a minimum resolving set for L(W1,n), for each n ∈
{3, 4, 5}.

Proposition 2.10. dim(L(W1,3)) = dim(L(W1,4)) = 3 and dim(L(W1,5)) = 4.

P r o o f. We first consider n = 3, 4 (see Figure 2). If n = 3, then dim(L(W1,3)) > 2

since any two vertices u, v in L(W1,3) satisfy |N(v)∩N(w)| > 2, and dim(L(W1,3)) 6

3 since {l0, l1, l2} forms a resolving set for L(W1,3); thus, dim(L(W1,3)) = 3. If n = 4,

then diam(L(W1,4)) = 2 and dim(L(W1,4)) = 3: dim(L(W1,4)) > 3 by Theorem 2.1,

and dim(L(W1,4)) 6 3 since {l0, l1, l2} forms a resolving set for L(W1,4). Next, we

consider n = 5; notice that dim(L(W1,5)) > 3 by Theorem 2.1 and the fact that

diam(L(W1,5)) = 2. One can easily check that {l0, l1, l2, l3} forms a resolving set for

L(W1,5), and hence dim(L(W1,5)) 6 4. Further, a case by case analysis, based on the

sizes of |S∩{li ; 0 6 i 6 4}| and |S∩{ui ; 0 6 i 6 4}|, shows that dim(L(W1,5)) > 3.

Therefore, dim(L(W1,5)) = 4. �

By Theorem 2.9 and Proposition 2.10, we have the following

Corollary 2.11. For n > 3,

dim(L(W1,n)) =





3 if n = 3, 4,

4 if n = 5,

n− ⌈n/3⌉ if n > 6.

2.2. Bouquet of circles. The bouquet of circles has been studied as a motivating

example to introduce the fundamental group on a graph (see [23], page 189). More
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recently, Llibre and Todd [22], for instance, studied a class of maps on a bouquet of

circles from a dynamical system perspective.

It is well known that dim(Cn) = 2 for n > 3. For kn > kn−1 > . . . > k2 > k1 > 2,

let Bn = (k1 + 1, k2 + 1, . . . , kn + 1) be a bouquet of n > 2 circles C1, C2, . . ., Cn,

with the cut-vertex v, where ki + 1 is the number of vertices of Ci (1 6 i 6 n). Let

V (Ci) = {v, wi,1, wi,2, . . . , wi,ki
} be such that vwi,1 ∈ E(Bn) and vwi,ki

∈ E(Bn),

and let the vertices in Ci be cyclically labeled, where 1 6 i 6 n. See Figure 3 for

B4 = (3, 4, 5, 6) and its line graph.

v

w1,1w1,2
w2,1

w2,3

w2,2

B4 = (3, 4, 5, 6)

u1,1u1,3
u2,1

u2,4

u1,2

u2,2

u2,3

C̃1

C̃3

C̃4

L(B4)

Figure 3. Labelings of a bouquet of four circles B4 = (3, 4, 5, 6) and its line graph.

Theorem 2.12 ([20]). Let Bn = (k1+1, k2+1, . . . , kn+1) be a bouquet of n > 2

circles with a cut-vertex. If x is the number of even cycles of Bn, then

dim(Bn) =

{
n if x = 0,

n+ x− 1 if x > 1.

Referring to Figure 3, let C̃1 = {u1,j ; 1 6 j 6 k1}, C̃
2 = {u2,j ; 1 6 j 6 k2}, . . .,

C̃n = {un,j ; 1 6 j 6 kn} be such that 〈C̃i〉 = L(〈V (Ci)〉) for Ci ⊆ Bn, where

1 6 i 6 n and n > 2.

Theorem 2.13. Let Bn = (k1 + 1, k2 + 1, . . . , kn + 1) be a bouquet of n > 2

circles with a cut-vertex. Then dim(L(Bn)) = 2n− 1.

P r o o f. Let S be a minimum resolving set for L(Bn), n > 2. Let Si = S ∩ C̃i,

where 1 6 i 6 n. If |Si| = 0 for some i, then ui,1 and ui,ki
will have the same

code; thus |Si| > 1 for each i ∈ {1, 2, . . . , n}. Next, we claim |Si| > 2 for all

but one i ∈ {1, 2, . . . , n}. Assume, to the contrary, that there are Si and Sj with

|Si| = 1 = |Sj | and put, without loss of generality, i = 1 and j = 2. We will show that

the set U = {u1,1, u1,k1
, u2,1, u2,k2

} cannot be resolved by S. First, it is clear that

every s ∈ S− (S1∪S2) has the same distance to each vertex in U . Now, we show x1
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and x2 in S
1 and S2, respectively, cannot resolve U . Notice |d(ui,1, xi)− d(ui,ki

, xi)|

is 0 or 1, and d(uj,1, xi) = d(uj,kj
, xi) for i 6= j, where i, j ∈ {1, 2}. To have any

chance of resolving U , we must have |d(ui,1, xi) − d(ui,ki
, xi)| = 1 for i ∈ {1, 2}.

But, in this case, a vertex from {u1,1, u1,k1
} and a vertex from {u2,1, u2,k2

} will

necessarily share the same code. We hereby remark that K4 induced by U still

requires three vertices to resolve as it is embedded in C̃1 ∪ C̃2, in contrast to the

situation in Figure 4. Thus, dim(L(Bn)) > 2n− 1. Next, one can easily check that
( n−1⋃

i=1

{ui,1, ui,⌈ki/2⌉+1}
)
∪ {un,⌈kn/2⌉+1} forms a resolving set for L(Bn), and thus

dim(L(Bn)) 6 2n− 1. Therefore, dim(L(Bn)) = 2n− 1. �

K4

dim(K4) = 3

G

dim(G) = 2

Figure 4. A graph G ⊃ Kn such that dim(G) < dim(Kn); here, the solid vertices form
a minimum resolving set for each graph.

3. Zero forcing number of some line graphs

We first define edge zero forcing in a graph.

Definition 3.1. Let G be a connected graph of order n > 2. In analogy with

the usual (vertex) color-change rule, we define the edge color-change rule as follows.

Let each edge e ∈ E(G) be given either the color black or the color white. A black

edge e1 forces the color of e2 from white to black if e2 is the only white edge adjacent

to e1. An edge zero forcing set F ⊆ E(G) and the edge zero forcing number Ze(G)

are then analogously defined.

Observation 3.2. Let G be a connected graph of order n > 2. Each edge zero

forcing set of G corresponds to a (vertex) zero forcing set of L(G); this is a direct

consequence of the definition of L(G).

We recall the lower bounds of the zero forcing number of a connected graph G and

its line graph L(G).
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Theorem 3.3 ([4]). For any connected graph G of order n > 2, Z(G) > δ(G).

Lemma 3.4 ([12]). If a graph G contains as a subgraph the complete graph

Km (m > 2), then Z(G) > Z(Km) = m− 1.

Proposition 3.5 ([2]). For the complete graph Kn of order n > 4, Z(L(Kn)) =

(n2 − 3n+ 4)/2.

Proposition 3.6. For any connected graph G of order n > 2,

∆(G)− 1 6 Z(L(G)) 6 |E(G)| − (δ(G) − 1),

and both bounds are sharp.

P r o o f. The lower bound immediately follows from Lemma 3.4, since L(G) con-

tains K∆(G) as a subgraph. For the sharpness of the lower bound, take G = K1,n−1.

The upper bound obviously holds for δ(G) 6 2. So, let v0 ∈ V (G) be a vertex of

degree δ = δ(G) > 3, and let v1, v2, . . . , vδ be the vertices adjacent to v0. We claim

that E(G)−{v0v2, . . . , v0vδ} forms an edge zero forcing set for G. The claim follows

from the observation that, for each i ∈ I = {2, . . . , δ}, there exists a black edge e

incident with vi and adjacent to v0vj (j ∈ I) exactly when j = i (see Figure 5): this

is because the edges incident with vi (i ∈ I) and not satisfying the requirement of

the observation lie in the set Ai = {vivj ; j = 0 or j ∈ I − {i}}, and |Ai| 6 δ − 1 <

degG(vi). For the sharpness of the upper bound, take G = Kn (see Proposition 3.5).

�

v0

v1

v2

v3

v4

Figure 5. Here, degG(v0) = δ(G) = 4 and the edges drawn in dashed lines are excluded
from the edge zero forcing set of G. Note that A4 = {v4v0, v4v2, v4v3} and,
a priori, an edge in A4 cannot force. But the edge v4v1 can force the edge v4v0
to black.

The path cover number P (G) of G is the minimum number of vertex disjoint

paths, occurring as induced subgraphs of G, that cover all the vertices of G.
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Theorem 3.7 ([2], [3]).

(a) [3] For any graph G, P (G) 6 Z(G).

(b) [2] For any tree T , P (T ) = Z(T ).

Theorem 3.8 ([2]). For any nontrivial tree T , Z(L(T )) = σ(T )− 1.

Proposition 3.9 ([11], [25]). Let G be a connected graph of order n > 2. Then

(a) Z(G) = 1 if and only if G = Pn,

(b) Z(G) = n− 1 if and only if G = Kn.

Theorem 3.10 ([10]). Let G be any graph. Then:

(a) For v ∈ V (G), Z(G)− 1 6 Z(G− v) 6 Z(G) + 1.

(b) For e ∈ E(G), Z(G)− 1 6 Z(G− e) 6 Z(G) + 1.

Next, we compare Z(G) and Z(L(G)).

Theorem 3.11. For any connected graph G, Z(G) 6 2Z(L(G)).

P r o o f. Let Z be a minimum edge zero forcing set for G. Form a set Z ′ in

V (G) by taking both end-points of each edge which appears in Z. Notice that

|Z ′| 6 2|Z| = 2Z(L(G)). We claim that Z ′ is a zero forcing set for G.

Notice that if an edge is black, then both of its end-points are black in G, but the

converse is not necessarily true. In the first iteration (i.e., one global application of

the color-change rule) of edge zero forcing, the black edges in Z force other edges

to become black. Each edge which is forced to become black is adjacent to a black

edge, so at least one end-point of each edge that is forced black was already black

in G. If both end-points were black in G, then nothing changes in G. Suppose one

end-point, say u, was black, and the other end-point, say v, was white. Then uv

is forced by a neighboring black edge to become black. Without loss of generality,

the neighboring black edge was xu for some x ∈ V (G). Every edge other than uv

adjacent to xu must have been black, so all of their end-points were black in G. In

particular, every neighbor of u other than v was already black, so v is forced to turn

black in G in this iteration. Thus, we maintain the property that if an edge is black,

then both of its end-points are black after the same number of iterations.

Since eventually every edge is black, and G is a connected nontrivial graph, even-

tually every vertex of G is black. Thus, Z ′ is a zero forcing set for G. �

Next, we give an example of a tree T satisfying Z(T ) 6= Z(L(T )), which is worth

mentioning, since dim(T ) = dim(L(T )) for any tree T due to Theorem 2.5 and the

fact L(Pn) = Pn−1.
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Remark 3.12. The tree T of Figure 6 satisfies Z(T ) = P (T ) = 7, and one can

easily check that Z(L(T )) = 11; here T of Figure 6 can be viewed as a tree obtained

by attaching 4 copies of a subtree on 6 vertices at the central vertex. If T ′ is a tree

obtained by attaching k > 3 branches of the subtree at the central vertex, one can

easily check that Z(T ′) = P (T ′) = 2k − 1 and Z(L(T ′)) = 3k − 1.

T L(T )

Figure 6. A tree T satisfying Z(T ) 6= Z(L(T )), where the solid vertices form a minimum
zero forcing set for T and L(T ), respectively.

Theorem 3.13. For any nontrivial tree T , Z(T ) 6 Z(L(T )).

P r o o f. Let T be a tree of order n > 2. By Theorem 3.8 and Theorem 3.7 (b),

it suffices to show

(3.1) P (T ) 6 σ(T )− 1.

First, notice that (3.1) holds for T = P2. Notice also that every tree T may be

obtained from P2 by attaching finitely many pendant edges. Let T = T ′ + e denote

the vertex sum of T ′ and a disjoint copy of P2, and assume (3.1) holds for T
′. If

σ(T ) = σ(T ′), then e = uv is “attached” to an end-vertex v′ of T ′; let’s say v is

identified with v′. Take any path cover C′ of T ′ with |C′| = P (T ′) 6 σ(T ′) − 1.

Since v′ is an end-vertex in T ′, it must be either the first or the last vertex in a path

Q′ ∈ C′. Let Q = Q′ + e, where the vertex sum is formed by identifying v′ in T ′

with v of e. Then C = (C′ − {Q′}) ∪ {Q} is a path cover for T ; hence (3.1) holds

for T . If σ(T ) = σ(T ′) + 1, then C = C′ ∪ {u} suffices as a path cover for T showing

that (3.1) holds for T . �

Next, we recall a result which is useful in establishing the lower bound for the zero

forcing number of some line graphs.

Proposition 3.14 ([2]). Let G be a graph of order n > 2. If G contains a Hamil-

tonian path, then mr(L(G)) = n− 2.
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Proposition 3.15. Let a connected graph G either have order n 6 4 or contain

a Hamiltonian path and satisfy |E(G)| > 2(n− 2); then Z(G) 6 Z(L(G)).

P r o o f. If 2 6 n 6 4, for any connected graph G (not necessarily containing

a Hamiltonian path) one can check all cases to see that Z(G) 6 Z(L(G)). So, let

G have order n > 5 and contain a Hamiltonian path. Notice that Z(G) 6 n − 1

by connectedness of G; note also that Z(G) = n − 1 if and only if G = Kn by

Proposition 3.9 (b). Since Z(Kn) 6 Z(L(Kn)) by Proposition 3.5, it suffices to

consider Z(G) 6 n − 2. By Proposition 3.14, Z(L(G)) > M(L(G)) > |V (L(G))| −

(n− 2) = |E(G)| − (n− 2). The assertion Z(G) 6 Z(L(G)) is satisfied by requiring

that |E(G)|−(n−2) > n−2, which is equivalent to the hypothesis |E(G)| > 2(n−2).

�

3.1. Wheel graphs. We first determine the zero forcing number of the wheel

graph W1,n for n > 3.

Proposition 3.16. For n > 3, Z(W1,n) = 3.

P r o o f. Since δ(W1,n) = 3, Z(W1,n) > 3 by Theorem 3.3. It is easy to see that

{v, w1, wn} forms a zero forcing set of W1,n (see (A) of Figure 1): w1 → w2 → . . . →

w⌊(n+1)/2⌋ and wn → wn−1 → . . . → w⌈(n+1)/2⌉. So, Z(W1,n) 6 3. Therefore,

Z(W1,n) = 3 for n > 3. �

Theorem 3.17. For n > 3, Z(L(W1,n)) = n+ 1.

P r o o f. Let n > 3. SinceW1,n contains a Hamiltonian path, mr(L(W1,n)) = n−1

by Proposition 3.14. Since Z(G) > M(G) andM(G) = |V (G)|−mr(G) for any graph

G, we get Z(L(W1,n)) > n+1 as L(W1,n) has order 2n. On the other hand, take the

labeling given in Figure 1; we see that S = {l0, l1}∪{ui ; 1 6 i 6 n−1} forms a zero

forcing set for L(W1,n) : l1 → l2 → . . . → ln−1 → u0. Therefore, Z(L(W1,n)) = n+1

for n > 3. �

dim(L(W1,8)) = 5 Z(L(W1,8)) = 9

Figure 7. Minimum resolving set and minimum zero forcing set (solid vertices in each case)
of the line graph of the wheel graph W1,8.

The next result shows that the above result is “edge-critical” in some sense.
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Proposition 3.18. Let G = L(W1,n) for n > 3. Then Z(G− e) = n for any edge

e ∈ E(L(W1,n)).

P r o o f. Let H = L(W1,n) − e, where e is an edge of L(W1,n). We will show

that there exists a zero forcing set S for H with |S| = n, and thus Z(H) 6 n. If

e = liui, say i = 0, then S = {l0, ln−1} ∪ {ui ; 1 6 i 6 n − 2} forms a zero forcing

set: l0 → l1 → l2 → . . . → ln−2 → un−1 → u0. If e = lili+1, say i = 0, then

S = {l1} ∪ {ui ; 1 6 i 6 n − 1} forms a zero forcing set: (i) l1 → l2 → . . . → ln−1;

(ii) u2 → u0 → l0. If e = uiui+1, say i = 0, then S = {l0, l1} ∪ {ui ; 1 6 i 6 n− 2}

forms a zero forcing set: (i) u1 → un−1; (ii) l1 → l2 → . . . → ln−1 → u0. If

e = uiuj with |i − j| 6= 1 (mod n), say i = 0, then S = {l0, ln−1} ∪ ({ui ; 0 6 i 6

n − 1} − {u1, uj}) forms a zero forcing set: (i) u0 → u1; (ii) l0 → l1; (iii) u1 → uj;

(iv) l1 → l2 → . . . → ln−2. So, in each case, we have Z(H) 6 n. On the other hand,

Z(H) > n by Theorem 3.10 (b) and Theorem 3.17. Thus, Z(H) = n. �

3.2. Bouquet of circles.

Theorem 3.19 ([9]). Let Bn = (k1 +1, k2 +1, . . . , kn +1) be a bouquet of n > 2

circles with a cut-vertex. Then Z(Bn) = n+ 1.

Theorem 3.20. Let Bn = (k1 + 1, k2 + 1, . . . , kn + 1) be a bouquet of n > 2

circles with a cut-vertex. Then Z(L(Bn)) = 2n− 1.

P r o o f. Since ∆(Bn) = 2n, Z(L(Bn)) > 2n− 1 by Proposition 3.6. On the other

hand, take the labeling given in Figure 3; since
( n−1⋃

i=1

{ui,1, ui,2}
)
∪{un,1} forms a zero

forcing set for L(Bn), Z(L(Bn)) 6 2n− 1. Thus, Z(L(Bn)) = 2n− 1. �

dim(L(B4)) = 7 Z(L(B4)) = 7

Figure 8. Minimum resolving set and minimum zero forcing set (solid vertices in each case)
of the line graph of the bouquet of four circles B4 = (3, 4, 5, 6).
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4. Comparison and open problems

In this section, we compare the metric dimension with the zero forcing number of

a line graph by demonstrating a couple of inequalities between the two parameters.

We also mention some open problems. First, recall some results obtained in [11].

Theorem 4.1 ([11]).

(a) For any tree T , dim(T ) 6 Z(T ).

(b) For any tree T and an edge e ∈ E(T ), dim(T + e) 6 Z(T + e) + 1.

As an immediate consequence of Theorem 2.5 and Theorem 3.8, we have the

following

Corollary 4.2. For any tree T , dim(L(T )) 6 Z(L(T )).

If the order of a connected graph G is 4 or less, one can check all cases to see that

dim(L(G)) 6 Z(L(G)). Now, we show that dim(L(G)) 6 Z(L(G)) is satisfied for

another class of graphs.

Proposition 4.3. Suppose that a connected graph G of order n > 5 contains

a Hamiltonian path and satisfies |E(G)| > 2(n− 2). Then dim(L(G)) 6 Z(L(G)).

P r o o f. Let G satisfying the hypotheses be given. Notice that dim(L(G)) 6 n−2

by Theorem 2.2. By Proposition 3.14, Z(L(G)) > M(L(G)) > |V (L(G))|− (n−2) =

|E(G)| − (n− 2). The assertion dim(L(G)) 6 Z(L(G)) is satisfied by requiring that

|E(G)|−(n−2) > n−2, which is equivalent to the hypothesis |E(G)| > 2(n−2). �

Proposition 4.3, together with the fact 2·|E(G)| =
∑

v∈V (G)

deg(v) = |V (G)|·(average

degree of G), implies the following

Corollary 4.4. Let a connected graph G have order n > 5 and contain a Hamil-

tonian path. If 5 6 n 6 8 and the average degree of G is at least 3, then

dim(L(G)) 6 Z(L(G)); if n > 9 and the average degree of G is at least 4, then

dim(L(G)) 6 Z(L(G)).

Next, we give a table on metric dimension and zero forcing number of some line

graphs. We denote by T a tree, Ks,t the complete bi-partite graph of order s + t,

W1,n the wheel graph of order n+ 1, Bn the bouquet of n circles. Further, [n] next

to a formula indicates that the formula can be found in reference [n].
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L(G) Metric Dimension Zero Forcing Number

L(T ), T 6= Pn σ(T )− ex(T ) [15] σ(T )− 1 [2]

L(Kn), n > 6 ⌈2n/3⌉ [1] (n2 − 3n+ 4)/2 [2]

L(Ks,t), s, t > 2

{

⌊2(s + t− 1)/3⌋ if s 6 t 6 2s− 1

t− 1 if t > 2s
[6] st− s− t+ 2 [2]

L(W1,n), n > 3















3 if n = 3, 4

4 if n = 5

n− ⌈n/3⌉ if n > 6

n+ 1

L(Bn), n > 2 2n− 1 2n− 1

We conclude this paper with some open problems.

P r o b l e m 1. We proved in Theorem 3.13 that Z(T ) 6 Z(L(T )) for any nontrivial

tree T . We also proved in Proposition 3.15 that Z(G) 6 Z(L(G)) for a graph G such

that |E(G)| > 2|V (G)| − 4 and G contains a Hamiltonian path. For a general

graph G, we proved in Theorem 3.11 that Z(G) 6 2Z(L(G)). We conjecture that

Z(G) 6 Z(L(G)) for any G.

P r o b l e m 2. It is stated in Corollary 4.2 that dim(L(T )) 6 Z(L(T )) for a tree T .

We proved in Proposition 4.3 that dim(L(G)) 6 Z(L(G)) for a graph G such that

|E(G)| > 2|V (G)| − 4 and G contains a Hamiltonian path. We conjecture that

dim(L(G)) 6 Z(L(G)) for any G.

P r o b l e m 3. A characterization of a tree T such that dim(T ) = Z(T ) is given

in [11]. What about characterizing dim(G) = Z(G) for other classes of graphs?

P r o b l e m 4. We proved in Theorem 2.13 and Theorem 3.20 that dim(L(Bn)) =

Z(L(Bn)). What about characterizing dim(L(G)) = Z(L(G)) for other classes of

graphs?

A c k n ow l e d g em e n t. The authors thank the anonymous referees for some

helpful comments and suggestions which improved the paper.
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W.Haemers, L.Hogben, R.Mikkelson, S. Narayan, O.Pryporova, I. Sciriha, W. So,
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