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METRIC DIOPHANTINE APPROXIMATION

IN JULIA SETS OF EXPANDING RATIONAL MAPS

by RICHARD HILL and SANJU L. VELANI

In loving memory of Janaki Divani

ABSTRACT

Let T : J —> J be an expanding rational map of the Riemann sphere acting on its Julia set J and f: ] —> R

denote a Holder continuous function satisfying f(x) ^ log | T^x) \ for all x inj. Then for any point ZQ inj define

the set D^(/) of " well-approximable " points to be the set of points in J which lie in the Euclidean ball

B^exp^S?^1/^^)))

for infinitely many pairs (j>, n) satisfying T^^) == ZQ . We prove that the Hausdorff dimension ofD^(f) is the unique

positive number s{f) satisfying the equation P(T, — s(f) .f) === 0, where P is the pressure on the Julia set. This

result is then shown to have consequences for the limsups of ergodic averages of Holder continuous functions. We

also obtain local counting results which are analogous to the orbital counting results in the theory of Kleinian groups.

1. INTRODUCTION

1.1. Part of number theory is concerned with finding rational numbers p / q which

are good approximations to a real number x. For any x one can find infinitely many pjq

whose distance from x is less than q~
2
. If one can find infinitely many^/y whose distance

from x is less than q~
T with T > 2 then x is said to be a r-well approximable number.

In this article we shall associate to a dynamical system T : X -> X various sets of well

approximable points in X in analogy with the classical theory of well approximable real

numbers. We shall calculate (Theorem 1) the Hausdorff dimensions of these sets. As a

consequence we obtain in 1.5 results on the distribution of ergodic averages for Holder

continuous functions^: X -> R, and we also solve in 1.3 the <( shrinking target problem "

introduced in [9]. Furthermore our method shows a link between conformal measures

and local counting results, which we describe in 3.

We shall restrict our attention to the case where T : C -> C is an expanding

rational map of degree d ^ 2 of the Riemann sphere C = C u { oo } and J == J(T) is its

associated Julia set (see [1]). It is known thatj is non-empty, perfect and fully invariant,

which means that

T-^jD-j^Ta).
25
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By the definition of expanding (see Chap. 9 of [1]), there exists a X> 1 and an integer
m ̂  1 such that

| (T-)^) | ̂  X for all z in J(T),

where T' is the derivative ofT. For expanding maps, J is not the whole ofC (see Theorem 4

of [21]) and so we may and will assume throughout that oo ^J. Thus we can think of

J as a metric space with the usual metric on C.

1.2. The main result. — We shall now introduce a class of <( well approximable "

subsets ofj for which we shall calculate the Hausdorff dimensions. The notation B(.v, r)

will mean a ball with centre x e C and radius r > 0 (with respect to the usual metric

on C), and S will denote the Hausdorff dimension ofj.

Let/:J ->R be a Holder continuous function satisfying/^) ^ log | T{x) | for

all x in J and write /„ for the n-th ergodic sum of/. This means that

/^):=^/(T^).

All logarithms in this article will be to the base e. For any point ZQ in J, let I = I(^o)

be the set of pairs {y, n) (n eN) such that T"(j/) = ZQ. We now define the following

subset ofj

UJ/) '.={x e ] : x e B(j/, exp(—/^(j/))) for infinitely many pairs [y, n) el}.

In § 4 of this article we shall prove the following:

Theorem 1. — The set D^(jf) has Hausdorff dimension s{f), where s{f) is the unique

solution to the pressure equation

P(T,-. /)=0.

For the definitions of pressure, Holder continuity and Hausdorff dimension the

reader is referred to section 2. The Hausdorff dimension of D^(/) is independent of

our choice of ^o? ^us in future we shall simply write D(jf) for the set D^(y). Also we

shall only be working with one rational map T at any one time and so we will leave T

out of the pressure notation, i.e. write P(— s f) for P(T, — sf). Theorem 1 generalizes

the results and conjectures of [9], which we shall presently describe. The theorem can

also be viewed as an extension of the Bowen-Manning-McGluskey formula which states

that P(— 8 log | T' |) =0. Furthermore Theorem 1 can be thought of as an analogy

of the Jarnfk-Besicovitch theorem, see 1.4.

¥or f(x) = log | T'(^) | one can easily deduce that dimD(y) = dimj. Thus for

f< log | T' |, we have D(y) 3 D(log [ T' |) and there is nothing to investigate.
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1.3. Connections with previous work, — Let ZQ be a point ofj and let T be a real,

positive number. In [9] we considered the following two sets of (c well approximate 5)

points in J,

W(r) := { x ej : T^) e B(^o, exp(— rn)) for infinitely many^ e N }.

W(r) :={A; ej : T^) eB(^, | (T")'^) I-") for infinitely many n e N }.

Note that W(r) is the set of points whose forward orbits enter a shrinking target (centred

at Zo) infinitely often. For this reason we refer to the problem of describing the set W(r)

as the (< shrinking target problem 55 (see [9, 10, 11]). It was shown in [9] that for T ^ 0,

W(r) has Hausdorff dimension S/(l + r) and that the HausdorfF dimension of W(r)
satisfies the bounds

8X ^ dim(W(r))^ ^(r),
X + T v ——— v -

where j-(r) eR^0 is the unique solution to the pressure equation

P( -^ log |T ' l ) =^T

and ^ is a positive constant. It was conjectured that dim(W(r)) = ^(r), and we shall

now show that this is true. We shall show that these results and the conjecture are in

fact consequences of Theorem 1.

We first note the relations between the sets D(/) (/as above) and the sets W(r)
and W-(r).

Proposition 1. — If f(x) = (1 + r) log | T(^) | then there is an N e N such that

-pN ̂ y) ^ ^N ̂ y.̂  ^ Q^^

Proposition 2. — Iff{x) == log | T{x) \ + T then there is an N e N such that

T^DC/^CT^MCD^).

These propositions follow from the Kobe Distortion Theorem and the fact that

all analytic inverse branches of T" are well defined on balls in a neighbourhood UofJ

(see 2.2). We sketch a proof of Proposition 1 to illustrate how these propositions can

be proved. In fact they follow from Propositions 2 and 3 of [9]. Suppose x eW'(T).

This implies that for infinitely many natural numbers n one has

T-WeB^KTTOI-).

This, in turn, implies that

^eT-WoJ^TOn).
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Thus for some inverse branch T^~n
 of T71 one has

^eT-(B(^oJ(TTOn).

Ifj?== T^
n
[zQ), then by using the Kobe Distortion Theorem one can show that there

is a constant 01 such that

B(^, C-11 (T»)'W I——1) C T.-Wo, | (T»)'W I-)) C B(^ C | (T»)'W I——1).

Using the chain rule we have that

| (T»)'M I-1-1 = "II1! T'(T^) I-7-1 = exp(- "S1 (T + 1) log | T(T-;f) |)
i==0 1 = 0

==exp(-/^A;)).

We therefore have that

B(^, G-1 exp(-AM)) C T-(B(^ | (T^W D) C B(^ C exp(-/,M)).

Choose N large enough so that for all n > N, A; ej one has exp(y^(;c)) ^ C. The result

now follows.

We now show how Theorem 1 combined with Propositions 1 and 2 give the results

and the conjecture of [9]. We first treat the case of W'(r). We have the relations

T^ D((l + T) log | T{x) |) C T1^ W(T) C D((l + r) log | T{x) |),

from which it follows that

dim W(r) == dim D((l + r) log | T{x) |).

Therefore by Theorem 1 we have

dim W-(T) =.(/),

where s(f) is the unique solution to the pressure equation

P(^(/) . ( l+T)log |T ' | ) -0 .

However the Hausdorff dimension 8 of J is characterised as the unique solution to the

equation P(— .ylog | T' |) ==0 (this is the Bowen-Manning-McCluskey formula). We

therefore have that dim W'(r) == s{f) == 8/(1 + ^) as required.
Now consider the set W(r). It follows as above from Proposition 2 and Theorem 1

that dim W(r) = s(f) where s(f) is the solution to

P(-.(/) .(log|T' |+T))=0.

From this we have that

P(-.(/).log|T'|)=.(/)T,

which is the result forseen in [9].
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1.4. Classical Diophantine approximation. — We will now describe a connection

between our theory and an aspect of the classical theory of Diophantine approximation,

which we briefly recall.

Let x be any real number. It was shown by Dirichlet that there are infinitely many

rational approximations pjq to x, such that

^-f-<L.
1 9

This result is the best possible of its kind, in that if one replaces the q~
2 on the right

by q~
T with T > 2 then the set C(r) of x for which there are infinitely many approxi-

mations piq with

,-^<i
? f

has zero Lebesgue measure. The set G(r) is the classical set of r-well approximable

numbers. The Jarnfk-Besicovitch Theorem [2, 14] states that for T > 2 the Hausdorff

dimension of C(r) is equal to 2/r. We shall now reinterpret this result.

For the moment let J be the closed interval [0, 1] instead of a Julia set, and let

T : J -> J be the Gauss map, which is given by

T{x) == x~
1 mod 1 if x =t= 0.

For convenience we shall define T(0) == V2 — 1. The point of this is to ensure that

zero is not a periodic point. Furthermore we shall set ZQ = 0 ej.
With this notation in mind, define as before the set

I
x e B(j/, exp(—y^(j/))) for infinitely many pairs (j/, n) \

D(/) := x ej : },
satisfying T^) == ZQ j

where f^ is an ergodic sum of a Holder continuous function y:J->R. Letting

f{x) =jlog|T'M | we have

(^ \
Proposition 3. — The equality D - log | T' [ j = G(r) holds true.

This is an immediate consequence of the following observation.

Lemma. — Ifpiq is a rational number (we are assuming that p and q are coprime) then

there is a unique n such that T^/y) = 0 and one has

I (TT(^) l = ̂
The lemma can be proved by induction on q; the uniqueness of n follows from

our choice of T(0).
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If one could prove an analogue of Theorem 1 for the Gauss map then this would

imply by Proposition 3 the result dim C(r) == 2/r. At present we have not been able

to prove such an analogue. However using the techniques of [9] it is possible to show

(see [10] when it is completed) that in the special case when f{x) ==
 T log | T'(;v) |, one

still has for the Gauss Map and similar transformations P(— dim D(/) f{x)) == 0.

This implies the classical result.

1.5. Exceptional sets for ergodic averages. — We will now point out some consequences

of Theorem 1 concerning ergodic averages of Holder continuous functions. We return

to the rational map setting, in which T is an expanding rational map and J is its Julia set.

Recall that if one has a T-invariant, ergodic probability measure [L on J, then

for (Ji-almost all x m J

^fnW -> f /W ̂
n J jn J j

as n -> oo. However this need not be true for all x inj. To study those points x for which

this fails to hold we define for ^ e R the sets

Ex;(x) := ( x ej : limjup -^f^x) ̂  j,

Ex70c) := ( x ej : lim^mf^f^x) ̂  )•

Note the trivial relations:

(1) Exi. „ ̂ (AX + B) = Ex™^) for A, B e R, A + 0,

hence results concerning Ex^(^) are equivalent to results on Ex^(^). As before let d

denote the degree of T. We shall prove the following

Theorem 2. — Let f:J -> R be a Holder continuous function and let ^ e R. Then

k/+B)i
dim Ex/ (^) ^ sup ^

A

where the sup is over real numbers A > 0 and B such that the following inequalities are satisfied

A{f{x) + B) ^ log | T'M | for all x in J,

AOc+B)^suplog|T'M|
a;GJ

and pLiogrf^l—jLo.
\ X ~ i /

This can be reduced to the following weaker result.
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Proposition 4. — Let /:J->R be as in 1.2 and ^ ^ sup^j log [ T\x) [. 7/*
^ > log af/dim D(/) ^A^

dim Ex7(/) ^ dim D(/).

To prove Proposition 4 we require the following

Lemma 1. — With f : J — R as in 1.2 one has D(/)\D(^) C Ex7(%) and

DOc)\D(/)CEx;Oc).

We first prove the lemma. Suppose x e D(/)\D(^). Then ^ e B(^, exp(—/^(j/)))

for infinitely many {y, n) e I, but there are at most finitely many (jy, n) el for which

we have x e B(j/, exp(— ^)). There are therefore infinitely many (j/, n) el for which

one has x eB(j/, exp(—/J^)))\B(^, exp(— ^)). Now by the Holder continuity of/

and the fact that/^ log | T' | there is a positive constant G(/) such that

x eB(j, C(/) exp(-^M))\B(^ exp(- ^))

for infinitely many n. This implies that

C(/) exp(-/,M) > exp(- ^),

for infinitely many 72 and therefore

"^^^W^X.

This shows that D(/)\D(^) C Ex7()c). A similar argument proves the other assertion
made in the lemma.

We shall now prove Proposition 4. Suppose that dim D(/) > dim D(^). Then

it follows that dim(D(/)\D(^)) = dim D(/). By the lemma this implies that

dim Ex7(/) ^ dim D(/) whenever dim D(/) > dim D(^). We now calculate dim D(^).

By Theorem 1 we have that P(— dim(D(^)) ^) == 0. On the other hand by the varia-

tional principle for pressure (see section 2.3) we have that

0 = P(- dim(DOc)) ^) = sup (^ + f - dim(D(/J) ^ da{x) \
\ J j f

=s^p{^ -d im(D(^ ) )^}

= h^ - dim(D(^)) /„

where h^ is the topological entropy of T :J -^J. This in combination with the well

known fact [15] that for rational maps h^ = log d {d is the degree of the rational map)

implies

dimD(^) = log^/7.

We therefore have that dimEx7(^)^ dimD(/) whenever dim D(/) > log d]-^ and

this completes the proof of the proposition.
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We now prove Theorem 2 using Proposition 4 and the relations (1). Let/be any

Holder continuous function and ^eR , choose A>0, B e R so that for all x ej,
A(f(x) + B) > log | T'(^) | and so that

A Q c + B ) ^ sup^log|T'M|

and A(^ + B) > (log rf)/.(A(/+ B)).

Then by Proposition 4, we have

dim Ex70c) = dim Ex^^^A^ + B)) ^ s{A{f+ B)).

Since s(A{f+ B)) = A-1
 s{f+ B), the condition A(% + B) > (log rf)/^(A(/+ B))

reduces to ^ + B > (log rf)/.?(/+ B). On reformulating these conditions we obtain the
theorem.

1.6. On the proof of Theorem 1 and counting results. — The proof of Theorem 1, the

main result of this paper, follows by obtaining the upper and lower bounds for dim D(/)

separately. The set D(/) is a lim sup set and the upper bound for dim D(/) follows

by considering its natural cover (see 4.1). The proof of the lower bound result is based

on the classical approach of constructing a <( Cantor-type " subset of D(/) on which a

probability measure satisfying a certain mass distribution principle is constructed (see

4.2-4 > 4). The construction relies heavily on the existence of the Denker-Urbariski

conformal measures supported on the Julia set of a rational map (see 2.4), which are

a generalization of the more standard 8-conformal measures initially constructed by

Patterson [18] on the limit sets of Kleinian groups and later extended to the rational

map setting by Sullivan [21]. The Denker-Urbaiiski conformal measures combined

with a well controlled covering of the Julia set allow us to obtain local pre-image counting

results (see section 3, in particular Theorem 4 and the <c Key Lemma "). For example

we obtain the following result as a special case of Theorem 4. Let B be a ball centred
on J. Then for any real number X ^ X()(B)

S 1 x v(B) X8,
(y, n) G I :

V E B and | (T»)'(i/) [ s$ X

where v is the 8-conformal measure supported onj which for expanding maps is a constant

multiple of 8-dimensional Hausdorff measure. Such counting results are central to our
particular Cantor construction.

Notation. — To simplify notation the symbols < and > will be used to indicate

an inequality with an unspecified positive multiplicative constant. If a < b and a > b

we write a x b, and say that the quantities a and b are comparable. If/is a differentiable

function we shall denote by/' the derivative of/. The set of non-negative real numbers

will be written R^°. We shall use the following convention for constants. Constants

which arise during a proof will be called q, ^? • • • ? whereas those constants appearing
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in the statements of lemmas will be called €3, G^ . . . We shall treat the symbols c^, etc.

as reusable constants, so that q will have a different meaning in the proof of Lemma 5

from that in the proof of Proposition 7. The constants in capital letters will on the other

hand have a fixed meaning throughout the paper. Finally, we mention that the number 2

appears a lot in this paper. The only aspect of the number 2 which we shall be interested

in is the fact that it is bigger than 1; it could (almost) be replaced throughout the paper
by for example the number 3.7.

Acknowledgments. — We would like to thank the Sonderforschungsbereich 170 in

Gottingen in particular Paddy Patterson, and the Max-Planck-Institut fur Mathematik

in Bonn for their support and hospitality. We would also like to thank Manfred Denker
for his interest and help.

2. MATERIAL REQUIRED FOR THE PROOF

The proof of Theorem 1 makes essential use of the conformal measures defined

and constructed by Denker and Urbaiiski [7], and the concept of pressure, introduced

by Ruelle [17, 19]. We shall also require some geometric results onj which we give first.

2.1. Hausdorff measure and dimension

The Hausdorff dimension of a non-empty subset X of the ^-dimensional Euclidean

space R*is an aspect of the size of X which can discriminate between sets of Lebesgue

measure zero. The upper bounds on the Hausdorff dimensions of the sets D(jf) of well

approximable points will follow from the definition of this dimension, which we include
in order to establish notation.

The diameter sup{ | x — y | : x, y e V } of a non-empty subset V of R^ will be

denoted by ^(V). A collection { V,} such that 0 < d(V,) ̂  p for each i and XC U,V
is called a p-cover of X.

Let s be a non-negative number and for any positive p define,

00

e^(X) == inf{ S rf(V,)8: { V, } is a countable p-cover of X }.

The s-dimensional Hausdorff measure Jf^(X) of X is defined by

jr(X) = Urn e^(X) = sup ^(X)
P-»-0 p>0

and the Hausdorff dimension dim X of X by

dim X = inf{ s : ̂ (X) = 0 } = sup{ s : ̂ (X) == oo }.

Further details and alternative definitions of Hausdorff measure and dimension can be
found in [8].

A general and classical method for obtaining a lower bound for the Hausdorff

dimension of an arbitrary set X in R^ is the following mass distribution principle [8].

26
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Lemma 2 (Mass Distribution Principle). — Let D be a metric space with a Borel probability

measure [L. Suppose there are constants TQ,S,C> 0 such that for all x e D, 0 < r < r^ one has

^{x,r))<C.rs.

Then the following holds

dim D > j.

Proof. — Suppose one has a p-cover {V ,} of D with p< r^. Then one has

S, d(V,)
8
 ̂  S, 2C-1 (Ji(V,) > 2G-1 (x(W). Therefore JT(W) ^ 2C-1 (x(W) > 0, which

implies the lower bound on the dimension. D

2.2. Geometry of the Julia set

We need the following powerful result from complex analysis (see [13]).

Kobe Distortion Theorem. — Let A C C be a topological disc with boundary containing

at least two points and let V C A be compact. Then there exists a constant K(A, V) such that for

any univalent holomorphic function f: A -> C the following inequality is satisfied,

sup i17^^^^^.
a^ev \f{y) \

One useful consequence of this theorem is the following:

Bounded Distortion Property. — There is an absolute constant K such that iffis a univalent

holomorphic function defined on a disc 'B[z, 2r) in C then

B(/(.), K-1
 r \f\z) |) C/(B(., r)) C B(/(.), Kr \f{z} |).

Throughout this article K will denote the constant arising in the statement of the Bounded

Distortion Property.

The following lemma is also well known, and can be found (amongst other places)
in [9].

Lemma 3. — Let T be an expanding rational map with Julia set J. Then there is a neigh-

bourhood U of] such that T'^U) C U and for any ball BC U, all inverse branches of iterates

of T are defined on B.

Covering Lemma. — Let ZQ be a point in J. Then there exist positive constants Ci, Cg and

a positive integer HQ with the following properties: for all n ̂  /Zg,

JC U B(^C,|(T»)'(j)|-1);
V: T"(y) == ZQ

the following union

J^-^-^l^)^)!-1)

is disjoint.



METRIC DIOPHANTINE APPROXIMATION 203

Let U be the neighbourhood ofj in C constructed in Lemma 3. For a ball B = B(^, r)

we shall sometimes write 2B for K(x, 2 r ) . I f B C C i s a ball centred on a point ofj, then
we define

^o(B) := sup{ n e N : T^B) C U and T^a is injective },

7^(B) := inf{ n e N : TP(B) DJ}.

Note that one always has the inequality ^(B) ^ ^(K)- Also note that n^(B) always exists
and is finite since T :J ->] is an open map and is topologically exact.

Lemma 4. — There is a constant €3 independent of B = 1S(x, r) such that

î(B) — no (B) ^ C3. Furthermore one has

| (T^B))'^) [ ̂  | (T^)'^) | x r-1.

Proo/'. — Let

1 . , , ,
^^g^eJ^ecMrl^- j l -

Thus any ball centred on J and of radius 2c must be contained in U. For any n € N

let T^-n
 : BCT* x, 2c) -^ U be the inverse branch of T" which takes T" x back to x. The

existence of this inverse branch is guaranteed by Lemma 3. Note that inverse branches

are automatically injective. Applying the Bounded Distortion Property to this map,
we obtain for any n e N,

B(^ ,K-1 | CPTO |-1) C T^B^ x, c)) C B(^, cK \ (T^'M |-1).

Choose natural numbers p, q to satisfy

cK-11 (T^1)'^) |-1^ 2r^ cK-1 \ (T^^x) \-\

cK | (T3)'^) |~1 ^ r^ cK | (T3-1)'^) |-1.

Since T is expanding, it follows that | p — q \ is bounded independently of x, r. Note

that Tp maps T;- ̂ B^ x, c)) injecdvely to U. Therefore by the above inclusion, T^ maps

B(.v, cK~
11 (T^'^) |~1) injecdvely to U. However by choice of J&, we have

2BC B(A:, cK-
11 (T^M |-1). This shows that ^o(B) ^ ^. On the other hand, by choice

of q and using the other inclusion above, one can show that T°(B) 3 B^^A:), c). This
implies that ^(B) ^ q + ̂ (T^), c)). Let

<:2:=sup{7Zi(B(^)) : ̂ ej}.

By the Covering Lemma and the fact that T is expanding, one knows that ^ is finite.

Therefore ni(B) ^ q + ̂ . It follows that ^i(B) == ^o(B) + 0(1) =j^ + 0(1), and the
other equation follows from the choice of p. D
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An essentially equivalent statement to part of Lemma 4 is the following (which
we shall occasionally find more appropriate).

Lemma 5. — Let x ej and n eN. Then n^{x, \ (T1)'^) |-1)) == n + 0(1).

2.3. Pressure

As before, let T be an expanding rational map with Julia set J. At this point it

is worth mentioning that since T is expanding, the dynamical system (J, T) has a finite

Markov partition (see section 7.29 of [19]). Using this fact we may apply results proved

for shift spaces (for example in [17]) to our case. We shall define the pressure of a Holder

continuous function. For a comprehensive account of the concepts introduced in this
subsection, the reader is referred to [3, 6, 17, 19].

Recall that a function /:J ->• R is said to be Holder continuous if there is

a constant C(/) satisfying the following condition: for any ball B == B(A;, r) C U with
x ej and any n in N such that T" is injective on B, one has for a l l j inBnJ

l/nW-/^)I^C(/).

This definition of Holder continuity is the standard definition given for functions on

shift spaces [17]. It is in fact equivalent to the form more usually used in complex

dynamics, which states that there are constants r^, a> 0 such that if x,y ej satisfy

I x —V \
 < ̂  then one has

 \f{
x
) —/(jO 1 ^ 1 ^ —y I". We now give a sketch of how

one can obtain the above property from the more standard definition. By the Holder
continuity off,

\fnW -fnU) I ̂  S | T\X) - T^jQ [a.
<»0

Now T" is injective on B, thus by the Bounded Distortion Property the right hand side
of the above inequality is less than or equal to the quantity

I T^-^) - T1-1^) ["(I + K" "S1 IWW |-01).
i= i

Since T is expanding, one can find a bound G(/) on this expression which depends
only on T, a and K.

Let/:J ->R be a Holder continuous function. For any positive s one defines

an (n, e)-separated set to be a set F^(s) of points ofj such that for any two distinct points
x,y e F^(s) one has

| T^ x — T^ | > s for some k < n which may depend on x, y.

We shall write

P(T,/, s) = limsup - log sup { S exp(/J^)) }
n n 2GF»(e)
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where the supremum is over all maximal (%, e) -separated sets F^(s) ofj. The pressure

P(T,y) off is defined as

P(T,/)=|i^P(T,/,s).

The existence of this limit is a consequence of the Holder continuity off. We shall usually

write P(/) instead of P(T,/).

An important property of pressure is the following variational principle (see [22]),

P( / )=s^pj^+^/W^)j

where the supremum extends over all ergodic T-invariant Borel probability measures or

on J and hy denotes the measure-theoretical entropy of T with respect to (T.

In the casejf== 0, the pressure P(0) reduces to the topological entropy A^p of T.

This is always equal to log d [15], where d is the degree of the map T.

For s ^ 0, consider the function s i-»- P(— s f). This is a strictly decreasing, convex

function which vanishes at exactly one point s =: s(f). Forf{x) == log | T'(^) | one has

that s(f) == 8 (:== dim(J)). This equality is known as the Bowen-Manning-McCluskey

formula. We remark again that Theorem 1 can be viewed as an elaborate generalization

of this formula.

2.4. Conformal measures

Let T:J —^J be as before. Furthermore let h:J —^R be a Holder continuous

function. A measure ^ on J is said to be A-conformal (with respect to T) if

v,(T(A)) - f exp(^)) d^{x)
J A

for every Borel subset A o f J such that T restricted to A is injective. Suppose that v is

A-conformal with respect to T, and suppose that T71 is injective on some A C J. Then

iterating the above relation n times (each time approximating h uniformly by a step

function) one obtains

^(T^A)) = f exp(^)) ̂ ),
J A

where hn is the n-th ergodic sum of A. This means that v is A^-conformal with respect

to T\

We shall require the following theorem of Denker and Urbariski (see the first

part of the theorems on p. 104 and p. 125 of [7]) which guarantees the existence of

A-conformal measures.

Theorem. — Let h :J -> R be a Holder continuous function satisfying P(— h) =0 and

h{x) > 0 for all x ej. Then there is a unique non-atomic h-conformal probability measure on J.

In fact we require the following slight generalization of this, a proof of which

we sketch.
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Theorem 3. — Let h :J -^R ^ a Holder continuous function satisfying P(— h) =0,

^ j^o^ that for some n e N, AJA;) > 0/i?r ^/ A: ej (here h^ is the n-th ergodic sum of h).

Then there is a unique non-atomic h-conformal probability measure on J.

Proof. — Let n be chosen so that h^(x) > 0 and h^+^x) > 0 for all x ej. Then

by the previous theorem, there exists a measure ̂  on J which is ^-conformal with respect

to the transformation T". Similarly, there is a measure v^i which is h^ + i-conformal

with respect to the transformation "P + \ However, by iterating the conformality relation

n + 1 times one may deduce that ̂  is h^ ^. ̂ -conformal with respect to T^"4'^. Similarly

one shows that v^i is h^ + ̂ -conformal with respect to T^"^. Therefore by the

uniqueness part of the previous theorem, we have v^ = ^n+r Now using the fact that v^

is both ^-conformal with respect to T71 and A^i-conformal with respect to ^n+l
, one

deduces that it is ^-conformal with respect to T. We have thus proved the existence

part. For uniqueness, suppose v is any A-conformal measure. Iterating the conformality

relation n times, one shows that v is ^-conformal with respect to T", and thus by the

uniqueness part of the previous theorem we have v = v^. D

Remark. — Another way of deducing Theorem 3 from the theorem of Denker and Urbanski

would be to observe that h^ is cohomologous to h (via a Holder coboundary). The conclusions of

Theorem 3 remain unchanged if h is replaced by a cohomologous function,

As in 1.2, let/: J -> R be a Holder continuous function satisfying f{x) ̂  log | T'(^) |

for all x inj. We shall apply the above theorem to the function h: == s{f) ./: x h-> s(f) .f(x)

where s(f) is the unique solution to P(— s f) == 0. Since T is expanding and/^ log | T' [,

there is an n e N such that/J^) > 0 for all x ej. Thus h == s(f) ./satisfies the conditions

of the theorem. Therefore there is a unique non-atomic s{f) /-conformal probability

measure supported on J, which we shall denote by v. The conformality condition means

that, for every Borel subset A C J on which T is injective,

(2) v(T(A)) = f exp(.(/) f(x)) d^x).
J A

Lemma 6. — There are constants C^, €5 such that for any ball B centred on a point of]

and for any x e B one has

C, exp(- .(/) /^B)W) ^ ^(B) ^ C, exp(- .(/) f^(x)).

Proof. — By the Holder continuity of/ there is a constant C(/) such that for

x,y eB one has |/^(B)W —fn^y} ^ CS(/). Iterating the relation (2) we obtain

(T"»'B>(B)) = f exp(.(/) f^{z)) d^z),v[L'—(t5)) = exp(^(./) .L^(^)) d^z]
JBJB

< f exp(^/) f^(z)) d^z}.1 ^ exp(j(/) f^^(z}) d y ( z
JBJ B



METRIC DIOPHANTINE APPROXIMATION 207

Therefore, using Lemma 4 we obtain the inequalities

,-^cm exp(.(/)/^)W) ^(B) ^ v^o^B)),

1 ^ e^^ exp(.(/)(/^B)W + €3 sup (/M))) v(B).
a;ej

The lemma follows by setting G^ := exp(— s{f) (C(/) + 03 supa;gj(/(A;)))) and

C,:=exp(</)C(/)). D

Lemma 7. — There is a positive constant Gg such that for any ball B centred on J one has

v(2B)^Gev(B).

Proo/'. — This follows from the previous lemma when one knows that ^o(B) — ^o(2B)

is bounded from above. Such a bound follows from Lemma 5 using the fact that T is

expanding. D

3. LOCAL COUNTING RESULTS

We now depart from our main aim to describe a simple application of our methods.

LetJ, T,/be as before. Counting results are results which describe the number of periodic

points or pre-images or preperiodic points, etc. that there are in a dynamical system.

However there are usually infinitely many of them, and so one tries to answer the question

how many there are of a given (< size ".In order to obtain asymptotic estimates for

such numbers as the " size " increases it is usual practise to define a dynamical zeta

function and to obtain some kind of analytic continuation. These methods are based

on techniques from analytic number theory, in which one counts the number of prime

numbers of a given size. We give an example of this, counting pre-images of a given

" size 9?. Let I be the set of all pairs {y, n) ej X N such that T^j/) == ZQ. Define

7r(X):-#{(j^)eI:/,(j^X}.

In order to estimate 7c(X) one defines the dynamical zeta function

Z{s):== S exp(-y,OQ).
(v, n) e I

It is known that Z{s) converges in the right half plane P(— 9?^)./) < 0, and that

under certain conditions on/one may obtain an analytic continuation of Z to a larger

domain. Then using a Tauberian Theorem one deduces that

T^X)^^,

where s{f) is the unique solution to the equation P(— s.f) == 0. This was by way of

an introduction; we shall not use these techniques here. As usual, the notation 7r(X) ̂  ̂ 8(/)x

means that 7r(X) ^-s(/)x
 -. I as X tends to infinity.
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We shall be interested in counting pre-images which lie in a given ball in J. Let
B == B(;v, r) be a ball centred on a point x ej, and define

7c(B,X):=#{( j^) e I : j / e B and /^) ̂  X}.

We shall prove the following.

Theorem 4. — Let s{f) be the solution to the equation P(— s.f) =0 and let v be the

unique s{f) .f-conformal measure. 7/*B is a ball centred on a point of] then there is a constant

Xo(B), such that for X> Xo(B) one has

^B,X)^v(B)<W

where the implied constants are independent of B.

This result is analogous to those for the orbital counting function in the discrete

group setting first found in [16]. To prove Theorem 4 we need the following lemma,

which is in turn proved using the Covering Lemma of 2.2.

Lemma 8 (Covering Result). — There are constants Cy, Cg, Cg, G^ with the following

property. For any x ej, X e R^° there is a pair {y, n) e I such that

A;eB(j/,CJCrr(jO|-1), and Uy) - €3 ̂  X </^(j0 + Cg.

Furthermore, there are no more than Cg pairs (y,n) el withf^y) — Cg < X </,»+i(j0 + Cg,

such that

^B(j,c,o|crr(jQ|-1).

Proof. — Let x, X be given. Then choose n so that

/,M<X^^).

By the Covering Lemma of 2.2, there is a point y ej satisfying T"^) = ^ and with

x eB(j/, Gy | (T")'^) |~1). Since/is Holder continuous there is a constant C(/) such

that |/JjQ -J^(A;) | ^ G(/). We therefore have

/n00 - C(/) ^ X^/,^0) + C(/).

The first part of the lemma follows by setting Gg = C(/). Now suppose that (j/i, n-^) e I

also has these properties. Since some finite ergodic sum of/ is bounded away from zero

it follows that | n — n^ | can take on only a bounded number of values. By setting C^o

to be the Cg of the Covering Lemma of 2.2, we have that for any n^ there is at most

onej^i satisfying x eB(j^, Gio | (T")'^) |-1). Thus there are only a bounded number

of pairs (ji, n-^) satisfying the conditions of the lemma. We would like to thank Manfred

Denker for suggesting the proof of this lemma. D
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Proof of Theorem 4. — Let I(X) be the set of all (j/, n) e I such that

fnU)-C^X^f^(y)+C,.

Then by the previous lemma one has

^J^^i^'^n'
and the multiplicity ofU^eux) B(^ C^ | (T»)'(j>) |-1) at any point is < C». Therefore
for any measure m on J one has

^.^z.x,7"^^10!^'^!"1))^^

^J^^'^^'-^

Similarly we have for any ball B,

k ..̂ lao: ^^[(TT^r1))^)
B(y,Cio|(T")'(i/)|-l)CB

^ .̂ x,.. -(B(^ CJ (T")'(^) I-)).
B(y, C3j(Tn)r(l/)|-l) n B + 0

Let X be large enough so that for (j/, n) e I(X) one has Gy | (T^)^^) |~1 < r/2. We
then have

^.^x^^^l^'^l""1)^^
V e B(as, r/2)

^.^x,:"^^'^'^'"1^
V e B(a;, 2r)

Now let v be the s{f) ./-conformal measure. We have for (j/, n) e I(X) by Lemmas 6,
7 and 5,

v(B(^ G, | (T-)'(j/) 1-^)) ̂  ,(B( ,̂ Gio | (Tr^) I-1))

^exp(-^/)/^))^^^x

We therefore have

7r(B(^ r/2), X + Cg) - TC(B(^ r/2), X - Gg) < v(B) ^(/)x

and v(B) ^(/)x
 ̂  7r(B(^ 2r), X + C^) - 7T(B(^, 2r), X - Cg).

Thus by Lemma 7 we have

7r(B(^, r), X + Cg) - 7r(B(^, r), X - Cg) x v(B) /(/)x

This is equivalent to the theorem. D

27
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We shall now prove by a similar method (but using the Covering Lemma of 2.2

instead of Lemma 8) a result which we need in § 4. The number S(B, n) for n e N will

be defined as follows:

(3) S(B, n) := S exp(-.(/) ./,(j0).
V : T" y == ZQ , B(y, exp(- /n(y))) C B

Key Lemma. — There are constants Gn, Ci2, C^ > 0 depending only on T, J, / J-^A

^^ if K is a ball and n > ̂ o(B) + €13 ^A^

GnS(B,^)<v(B)<G^S(B,7z) .

proof. — This lemma is a straightforward application of the transformation

formula (2) for v to the Covering Lemma of 2.2. We have a covering ofB:

(4) BC U BC^GiKT^'OOl-1).
V : T»v == ZQ . B(y, Ci ItWd/)!"1) n B + 0

From this follows

(5) v(B) ^ S v(B(j/, Ci | Crr^) |-1)).
„: T" y == iSo. B(y, Ci | (T")'(y)|~1) n B + 0

By Lemmas 7, 6 and 5 we have ^(B(js Gi | (T»)'(j/) |-1)) ̂  exp(- s{f)f^)).

Together with (5) this gives us

(6) v(B) < S exp(- s(f)f,( j)).
v: T" v == (BO . B(i/, exp(- /»(y))) n B + 0

This is almost one half of the lemma. To obtain the other half one notes that

B D U BO^lcrrool-1).
V: T" v = 20 > B(y, exp(- /„(!/))) C B

This gives us in the same way (Lemmas 7, 6 and 5) that

(7) v(B) > S exp(- s(f)f^y)).
V: T"y == ZQ , B(y, exp(- ^(y))) C B

Now let r be the radius of B. Choose C^ l^g6 enough so that for all x ej, n ^ G^ one

has | (T^^A;) | ̂  2K-1. Since TZ> ^o(B) + Ci3 it follows by Lemma 4, the chain rule

and the Kobe Distortion Theorem that

\(TnY{y)\-l^r|2,

so the condition B(j^, exp(-/J^))) n B + 0 implies B(j/, exp(--/Jj/))) C 2B. We

have therefore shown in (6) and (7) that

S(2B,%) §>v(B) >S(B,n) .

Thus by Lemma 7 we have

v(B)^S(B,^).

This finishes the proof of the lemma. D
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The following corollary is used in the upper bound on dimD(y) in 4.1.

Corollary 1. — One has

S exp(-.(/)./,(^)xl.
y : T" y == ZQ

4. PROOF OF THEOREM 1

We now prove Theorem 1. The proof consists in obtaining an upper bound and

a lower bound for the Hausdorff dimension of D(y) separately. The upper bound is

easy and we shall prove that first. Letf be as in 1.2 and let s(f) be the unique solution
to P(- s.f) == 0.

4.1. The upper bound. — The set D(y) is a lim sup set, that is

D(/):= n U JJ BQ>, exp(-A(^))).
q == i n == q y: T"(y) = SSQ

Thus for any natural number q there is a <c natural " cover of D(y):

D(/)C U U B(^exp(-AOQ)).
n = ff v'. T"(y) = SQ

Since T is expanding, there exists a X > 1 and an integer m ̂  1 such that [ (T^)'^) [ ^.X

for all ^ in J. Let ^ == min{ | (T")'^) | : x ej, 1 ̂  % ̂  m }. Then for any q ^ 1

[ (T8)^) | ̂  X^ ^ for all x in J,

[?l y r-̂ iwhere — denotes the integer part of — . Clearly, \
LmJ

 c^ —> oo as q -> oo. We havew J ° r w / ? i i

that/^ log | T' |, hence for all x in J

(8) exp(-/,(j)) ^ | CP)'M i-1^ X-^ ^-w.

Fix a positive e. By the definition of the Hausdorff measure

^^(DCnX S S exp(- (.(/)+ s)A(j)),
»=<z yrT"^) ==2!o

where p > 2qX~LW- l. From inequality (8) we see that exp(— e/,»(j/)) ^X^1-^6. This

fact combined with Corollary 1 implies that

Jfp^-^DC/))^ S \~^\
W = f f

Since X> 1, the above sum tends to zero as q -^ oo. Thus .^^'^(D^)) is zero and

on letting s tend to zero we obtain

dim D(/) <</•),

as required. D
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4.2. The lower bound. — We have given the upper bound on dimD(/); we now

prove the lower bound. In what follows the word (< measure 5? will mean (( Borel

probability measure ". We shall use a classical method of constructing a Cantor-like

subset K of D(/) and a measure [L supported on this subset. The measure will satisfy
the condition

(9) pi(B(^ r)) ^ r8^-8 for all r < ^(s), x e K.

This implies by the Mass Distribution Principle (cf. 2.1, Lemma 2) that K has dimen-

sion ^ s{f) — s. Letting s tend to zero and observing that KC D(/) we obtain that

dimD(/) ^ s(f). This together with the upper bound obtained in 4.1 completes the
proof of Theorem 1.

4.3. The Cantor set. — We begin by constructing the Cantor-like set K.C D(/).

Let N(Z) for I e N be a rapidly increasing sequence of natural numbers. We shall use
the notation

r(j, /) :== Cg exp(-/^(jQ)

and B(^/):==B(j/,r(j^)).

Note that the constant C^ (from the Covering Lemma) forces the various B(j/, I ) with

the same level / to be disjoint. We define sets K(/) for / e N recursively as follows:

K(1):==J,

K ( / + 1 ) : = = U B ( ^ / + 1 ) ,

the union being taken over all pairs (jy, N(/ + 1)) el such that B(j/, / + 1) C K(Z).
The set K is defined to be the intersection

00

K == n K(/).
We must show that K is a subset of D(/). Let x e K. Then x e K(/) for every / e N.

Therefore x eB(j/, exp(—/^(j^))) for the infinite sequence N(Z). This implies that x

is in D(y). We therefore have that

KCD(/).

Generalizing the B(j^ /) notation, for any x e K(/) we shall write B(;c, /) to mean the

unique ball B(j^, /) containing x.

4.4. A measure on K. — We now construct a measure [JL on K. This will be defined

to be the limit of a sequence of measures pij, where ^ is a measure supported on K(^).

This sequence of measures will be defined recursively. We define ^4 to be any probability

measure on K(l) :=J. Suppose that the measure ^ on K(/) is defined. The set K(/)

is a union of balls B(j^, /). vVe shall use the notation

(<^) :== (.,(B(^))

for each of the balls B(j^, /) which constitute K(^).
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Now consider one of the balls B(j/, /) which make up K(/). It contains a finite

number of balls B(^ / + 1) which make up its intersection with K(/ + 1). We define

V-i+i^^ ^ + 1)) := ^(^ ^ + 1)? where the numbers [L^Z, I + 1) are given by the
recursive formula

r (7 / 4- 1 ^ 8(^

(10) ^•^c.^^r^^')-

where, as in 3,

S(B^):= S exp(^(/)/^)).
(V, ») e I: B(i/,exp(- /„(!/))) C B

It follows from the way we have constructed the measure that (Ji^i(B(^, /)) = (JI;(B(J/, /)).
Since the sets B(^, /) n K generate the or-algebra ofBorel subsets ofKit follows that the

measures ̂  tend to a limit (JL. Since each (JL; is supported on K(Z) and K(Z) D K(Z + 1) D .. .

it follows that (JL is a measure on K, see Proposition 1.7 of [8J. It remains to prove the
estimate (9) on (JL.

4.5. An estimate on the numbers \L(y, 1). — By the Key Lemma and (10) we have that

r ( v l)8^

^•^.(B^-l))^-'-')-

Iterating this relation we get

l-i r( -» j\s(f)

(11) ^ 1) = r{^ l)
8
^ x ̂  ——T—y X exp(0(/)).

The terms in the product in (11) are of the form ^(B^/^B) for a ball B. We now prove

a general estimate on such terms. To state this it will be convenient to use the notation

gW ==fW — log | T'(^) |. We shall also write g^ for the ergodic sum:

^-^(T^).

Lemma 9. — Let B = B{x, r), x ej. Then for any y e B nj one has

yS(f)

- ^ ><exp(^(/)^B)(jO).

Proof. — Lemma 6 tells us that

v(B) ^exp(- s(f)f^)) = exp(-.(/)^(j/)) | (T^B))'^) [-.(/).

On the other hand, we have, by Lemma 4,

rx | (T^)'^) |-1.

The lemma follows from the two formulae. D
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Using Lemma 9 we now have from (11)

1 - 1

n <
i=l

(12) ^ 1) == r{^ l)8^ x nexp(.(/) ̂ B(.,i))(j0) X exp(0(/)).

4.6. The measure of an arbitrary ball. — We shall now estimate [ji(B) for a

general ball B. Given a ball B centred on a point x of K we choose / such that

N(Z — 1) ^ ^(2B) + C^^ N(/). From this condition it follows that B intersects < 1

of the balls B(j^ / — 1) in the construction on K(/ — 1). It is thus sufficient from the

point of view of obtaining the bound (9), to estimate (JI(B n B(j/, I — 1)) for each

^J^ I — 1) m K{1 — 1) separately, and we might as well assume that B intersects only

one B( j , /— 1). We may also assume (from the point of view of obtaining an upper
bound on ^.(B n B(j^ / - 1))) that BCB( j , / - l ) . This implies the inequality

^o(B) ^ no{K{x, I — 1))? which we shall use below.
We have

^(B)^ S ^l).
(v, N(O) e I: B(i/, I) n B + 0

By (12) we get

[i(B) ^ S r(j/, Q^^
(v, NO)) e I: B(y, I) n B + 0

l—l

n <
i==l

X ^nexp(j(/)^^(^)) x exp(0(/)).

Since B C B(;v, / — 1), we have for each term in this product B(j/, i) == B(.y, z). Therefore

(x(B) ^ S r(j/, ^8(/)

(V, NO)) e I: B(y, !) n B + 0

(-1

X H^xp{s{f)g^^)) x exp(0(/)).

Since g is Holder continuous andj/ e B(A;, ?) for z < / — 1, this gives us

!-1

n <» = i[x(B)^ nexp(.(/)^^,i))W)

X S r(^, l)8
^ x exp(0(/)).

(V, N(!)) e I: B(y, 0 n B + 0

Now from the condition on / we deduce that r{y, 1) ^ r/2 for every y appearing in the

above sum. Therefore the condition B(j/, /) n B 4= 0 implies B(j, /) C 2B, and we have

<-i
n <(i(B) ^ n exp(.(/)^^.i))W) X 2(2B,N(/)) x exp(0(/)).1=1

Applying the Key Lemma (§3) we obtain

(i(B)<^nexp(.(/)^^^M) x v(2B) x exp(0(/)).
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Now from Lemmas 7 and 9 we get

(X(B)< ^nexp(.(/)^,^,,,M) x W/' x exp(- .(/) g^(x))

X exp(0(/)),

and the inequality K(((B) > Bo(B(a;, / — 1)) gives us

(X(B)< Vexp^^)^,^.,,^)) X ^B)^' X exp(0(/)).
i-l

Let e > 0. We now choose the sequence N(Z) to grow quickly enough so that for all
x e K, / e N,

r(j,/- l)-^ n2'expM./-) ̂ ,(B(,,.))(J)) X exp(0(/)).
i== 1

We then have

^(B) ^ ^B)^-6.

This finishes the proof. D
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