Metric Entropy of Convex Hulls

Fuchang Gao
University of Idaho

Abstract

Let T be a precompact subset of a Hilbert space. The metric entropy of the convex hull of T is estimated in terms of the metric entropy of T, when the latter is of order $\alpha=2$. The estimate is best possible. Thus, it answers a question left open in [LL] and [CKP].

0.1 Introduction

Let H be a separable Hilbert space and let T be a precompact subset. Define the covering number

$$
N(T, \varepsilon):=\inf \left\{n: \exists t_{1}, t_{2}, \ldots, t_{n} \in T \text {, s.t. } T \subset \bigcup_{k=1}^{n} B\left(t_{k}, \varepsilon\right)\right\}
$$

where $B(x, \varepsilon)$ is the open ε-ball centered at $x \in H$. The set

$$
N_{\varepsilon}(T):=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}
$$

is called an ε-net of T. The quantity $\log N(T, \varepsilon)$ plays an important role in the theory of empirical processes (cf.[D]). It is called the metric entropy of T.

Let $\operatorname{cov}(\mathrm{T})$ denote the convex hull of T. It is natural to ask for good estimates of $\log N(\operatorname{cov}(T), \varepsilon)$ in terms of $\log N(T, \varepsilon)$. It is known (cf. [C])
that if $\log N(T, \varepsilon)<c \cdot \varepsilon^{-\alpha}$ for some $\alpha>0$, then

$$
\begin{array}{ll}
\log N(\operatorname{cov}(T), \varepsilon) \leq c \cdot \varepsilon^{-2}\left(\log \varepsilon^{-1}\right)^{1-2 / \alpha}, & 0<\alpha<2 \\
\log N(\operatorname{cov}(T), \varepsilon) \leq c \cdot \varepsilon^{-\alpha}, & \alpha>2
\end{array}
$$

and those are best possible. As we can see from the above that the situation is completely different for $\alpha<2$ and $\alpha>2$. The case $\alpha=2$ was open. In [LL], Li and Linde studied the metric entropy of $\operatorname{cov}(T)$ via certain quantities originated in the theory of majorizing measures. Among others, they obtained some finer estimates of $\log N(\operatorname{cov}(T), \varepsilon)$, which lead to some important partial results for $\alpha=2$. For example, the upper bounds for the entropy of $\operatorname{cov}(T), T=\left\{t_{1}, t_{2}, \ldots\right\},\left\|t_{i}\right\| \leq a_{i}$, by functions of the a_{i} 's only. Their results are optimal for the slowly decreasing sequence $\left(a_{i}\right)$. However, in general, the estimate of the metric entropy of $\operatorname{cov}(T)$ for the case $\alpha=2$ was left open.

In this paper, we give the best possible estimate for the case $\alpha=2$. More precisely, we prove the following

Theorem 1 Let H be a separable Hilbert space and let T be a precompact subset of H.
(i) Suppose $\log N(T, \varepsilon)<\varepsilon^{-2}$, then for some $c>0$,

$$
\log N(\operatorname{cov}(T), \varepsilon) \leq c \cdot \varepsilon^{-2}\left(\log \varepsilon^{-1}\right)^{2}
$$

(ii) There exists a set T, and a constant $c>0$, such that

$$
\sup _{\varepsilon>0} \varepsilon^{2} \log N(T, \varepsilon) \leq 8
$$

and for all $\varepsilon<c$,

$$
\log N(\operatorname{cov}(T), \varepsilon) \geq c \varepsilon^{-2}\left(\log \left(\varepsilon^{-1}\right)\right)^{2}
$$

0.2 Proof of (i)

Without loss of generality, we assume the diameter of T is 1 . For $k \geq 1$, let N_{k} be a 2^{-k}-net of T with minimal cardinality. Denote $D_{1}=N_{1} \cup\{0\}$ and

$$
D_{n}=\left\{z \in N_{n}-N_{n-1}:\|z\| \leq 2^{-n+1}\right\} \cup\{0\}
$$

for $n>1$. Then

$$
T \subset D_{1}+D_{2}+\cdots+D_{n}+\cdots
$$

where "+" means the Minkowsky sum. By the assumption of (i), D_{n} consists of no more than $e^{c 2^{2 n}}$ vectors for some constant $c>0$. Denote $C_{n}=\operatorname{cov}\left(D_{n}\right)$ and $E_{n}=C_{1}+C_{2}+\cdots+C_{n}$, then we have

$$
\operatorname{cov}(T) \subset C_{1}+C_{2}+\cdots+C_{n}+\cdots=E_{n}+C_{n+1}+\cdots
$$

For any $0<\varepsilon<1 / 4$, suppose $2^{-n+2} \leq \varepsilon<2^{-n+3}$. Because $C_{n+1}+$ $C_{n+2}+\cdots$ has diameter at most 2^{-n+1}, we have

$$
\log N(\operatorname{cov}(T), \varepsilon) \leq \log N\left(E_{n}, 2^{-n+1}\right)
$$

To estimate the right side above, we need the following lemma, whose proof is standard.

Lemma 1 There exists a constant c, such that for any $\lambda>0$,

$$
\log N\left(E_{n}, \lambda\right) \leq c n^{2} \cdot \lambda^{-2}
$$

Proof: For each $k \leq n$, suppose $D_{k}=\left\{x_{1}, x_{2}, \ldots, x_{d_{k}}\right\}$, where d_{k} is the cardinality of D_{k}. Thus, $d_{k} \leq e^{c 2^{2 k}}$. For each $z_{k} \in C_{k}, z_{k}$ can be expressed as

$$
z_{k}=\sum_{i=1}^{d_{k}} a_{i} x_{i}, a_{i} \geq 0, \sum_{i=1}^{d_{k}} a_{i} \leq 1 .
$$

Define random vector Z_{k}, so that

$$
\operatorname{Pr}\left(Z_{k}=x_{i}\right)=a_{i}, 1 \leq i \leq d_{k}, \text { and } \operatorname{Pr}\left(Z_{k}=0\right)=1-\sum_{i=1}^{d_{k}} a_{i} .
$$

Let $Z_{k, 1}, Z_{k, 2}, \ldots, Z_{k, m_{k}}$ and $Z_{k, 1}^{\prime}, Z_{k, 2}^{\prime}, \ldots, Z_{k, m_{k}}^{\prime}$ be independent copies of Z_{k}. Then

$$
E \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} Z_{k, i}=z_{k}
$$

Thus, by convexity and symmetrization, we have

$$
\begin{aligned}
E\left\|\sum_{k=1}^{n} z_{k}-\sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} Z_{k, i}\right\| & =E\left\|E^{\prime} \sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} Z_{k, i}^{\prime}-\sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} Z_{k, i}\right\| \\
& \leq E E^{\prime}\left\|\sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}}\left(Z_{k, i}^{\prime}-Z_{k, i}\right)\right\| \\
& =E E^{\prime}\left\|\sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}}\left(Z_{k, i}^{\prime}-Z_{k, i}\right) r_{k, i}(t)\right\| \\
& \leq 2 E\left\|\sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} Z_{k, i} r_{k, i}(t)\right\|
\end{aligned}
$$

where $\left(r_{k, i}(t)\right), 1 \leq k \leq n, 1 \leq i \leq m_{k}$, is a Rademacher sequence. Integrating with respect to t over $[0,1]$, and using Fubini, we obtain

$$
\begin{aligned}
E\left\|\sum_{k=1}^{n} z_{k}-\sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} Z_{k, i}\right\| & \leq 2 E\left(\sum_{k=1}^{n} \frac{1}{m_{k}^{2}} \sum_{i=1}^{m_{k}}\left\|Z_{k, i}\right\|^{2}\right)^{1 / 2} \\
& \leq 2\left(\sum_{k=1}^{n} \frac{1}{m_{k}} 2^{-2 k+2}\right)^{1 / 2}=\lambda
\end{aligned}
$$

taking $m_{k}=4 n 2^{-2 k+2} \lambda^{-2}$. This in particular implies that for some realization,

$$
\left\|\sum_{k=1}^{n} z_{k}-\sum_{k=1}^{n} \frac{1}{m_{k}} \sum_{i=1}^{m_{k}} Z_{k, i}\right\| \leq \lambda
$$

But, there is no more than

$$
\prod_{k=1}^{n}\left(d_{k}\right)^{m_{k}} \leq e^{c n^{2} \lambda^{-2}}
$$

possible realizations of $\sum_{k=1}^{n} \sum_{i=1}^{m_{k}} Z_{k, i} / m_{k}$. The lemma follows.

Applying Lemma 1 with $\lambda=2^{-n+1}$, and keeping in mind that $2^{-n+2} \leq$ $\varepsilon<2^{-n+3}$, we obtain

$$
\begin{aligned}
\log N(\operatorname{cov}(T), \varepsilon) & \leq \log N\left(E_{n}, 2^{-n+1}\right) \\
& \leq c \cdot n^{2} 2^{-2 n+2} \\
& =c^{\prime} \varepsilon^{-2}\left(\log \varepsilon^{-1}\right)^{2}
\end{aligned}
$$

Remark 1 Both Li and Linde pointed out to me that the result (i) can be derived from a result in [CKP]. We include the proof because the current proof seems more transparent, and holds for any Banach space of type 2. Also, it is more convenient to the readers.

0.3 Proof of (ii)

Let $\left(\mathbf{e}_{k}\right)$ be a standard basis of H. For each integer $k \geq 1$, we define

$$
D_{k}=\left\{2^{-k} \mathbf{e}_{i}: e^{2^{2 k-2}} \leq i \leq e^{2^{2 k}}\right\} \cup\{0\}
$$

and $T=D_{1}+D_{2}+\cdots+D_{k}+\cdots$. For any $0<\varepsilon<1$, suppose $2^{-n} \leq \varepsilon<$ 2^{-n+1}. Define $S_{n}=D_{1}+D_{2}+\cdots+D_{n}$. Because S_{n} is an 2^{-n}-net of T, and S_{n} has cardinality no more than

$$
\prod_{k \leq n} e^{2^{2 k}} \leq e^{2^{2 n+1}}
$$

we have $\log N(T, \varepsilon)<2^{2 n+1}$. Thus

$$
\varepsilon^{2} \log N(T, \varepsilon)<2^{-2 n+2} \cdot 2^{2 n+1}=8 .
$$

To obtain a lower bound for $\log N(\operatorname{cov}(T), \varepsilon)$, we need the following lemma.

Lemma 2 There exists $c>0$, such that for $e^{-2^{2 k-3}}<\delta<c \cdot 2^{-k}$,

$$
\log N\left(\operatorname{cov}\left(D_{k}\right), \delta\right)>c \cdot \delta^{-2}
$$

Proof: Denote $I_{k}=\left\{i: e^{2^{2 k-2}} \leq i<e^{2^{2 k}}\right\}$, and let $\left|I_{k}\right|$ be the cardinality of I_{k}. Consider the set

$$
A=\left\{\sum_{i \in I_{k}} a_{i} \varepsilon \mathbf{e}_{i}: a_{i} \text { is non-negative integer, } \sum_{i \in I_{k}} a_{i} \leq 2^{-k} / \varepsilon\right\} .
$$

Let m be the largest integer, such that $m \leq 2^{-k} / \varepsilon$. Then A has cardinality no less than $\left|I_{k}\right|^{m} / m!>\left|I_{k}\right|^{m / 2}$. For each $t \in A$, and $2 \leq l<m$, consider

$$
B(t, l)=\left\{s \in A:\|t-s\|_{1} \leq l \varepsilon\right\} .
$$

$B(t, l)$ contains no more than $2^{l}\left|I_{k}\right|^{l} \leq\left|I_{k}\right|^{2 l}$ elements. Thus A contains a subset U of cardinality more than $\left(\left|I_{k}\right|^{m / 2}\right) \div\left(\left|I_{k}\right|^{2 l}\right)$, whose mutual l_{1} -
distance between any two elements is at least $l \varepsilon$. Thus, the mutual $l_{2^{-}}$ distance is at least $\sqrt{l} \varepsilon$. Let $l \approx m / 6$. Because $A \subset \operatorname{cov}\left(D_{k}\right)$, we have

$$
\begin{aligned}
\log N\left(\operatorname{cov}\left(D_{k}\right), \sqrt{l} \varepsilon\right) & \leq \log N\left(\operatorname{co}\left(D_{k}\right), \sqrt{m / 6} \cdot \varepsilon\right) \\
& \geq \log \left(\left|I_{k}\right|^{m / 2} /\left|I_{k}\right|^{m / 3}\right) \\
& \geq \frac{m}{6} \log \left|I_{k}\right|
\end{aligned}
$$

which implies that $\log N\left(\operatorname{cov}\left(D_{k}\right), \delta\right) \geq c \cdot \delta^{-2}$ for some $c>0$ and $e^{-2^{2 k-3}}<$ $\delta<c \cdot 2^{-k}$.

Lemma 3 For $n \geq 12$, let $m=[n / 6]$, and

$$
E_{n}=\operatorname{cov}\left(D_{m}\right)+\operatorname{cov}\left(D_{m+1}\right)+\operatorname{cov}\left(D_{m+2}\right)+\cdots+\operatorname{cov}\left(D_{n}\right)
$$

Then for some constant $c>0$,

$$
\log N\left(E_{n}, \sqrt{n} \cdot 2^{-2 n-1}\right) \geq c n \cdot 2^{4 n}
$$

Proof: \quad By Lemma 2, for each $m \leq k \leq n$, there exists a set $S_{k} \subset$ $\operatorname{cov}\left(D_{k}\right)$ of cardinality $L=e^{c \cdot 2^{4 n}}$ whose mutual distance between any two elements is at least $2^{-2 n}$. Consider the set

$$
F_{n}=S_{m}+S_{m+1}+\cdots+S_{n}
$$

For $t, s \in F_{n}$, suppose

$$
t=t_{m}+t_{m+1}+\cdots+t_{n}, \text { and } s=s_{m}+s_{m+1}+\cdots+s_{n}
$$

with $t_{k} \in S_{k}$ and $s_{k} \in S_{k}$. Define the Hamming distance

$$
h(t, s)=\text { cardinality of }\left\{k: t_{k} \neq s_{k}, m \leq k \leq n\right\} .
$$

For each $t \in F_{n}$, the ball

$$
B_{h}(t, n / 3):=\left\{s \in F_{n}: h(t, s) \leq n / 3\right\}
$$

contains no more than $(n L)^{n / 4}<L^{n / 3}$ elements. Thus F_{n} contains a subset of cardinality $L^{n-m} \div L^{n / 3} \geq L^{n / 2}$, whose mutual Hamming distance between any two elements is at least $n / 4$. Thus the mutual l_{2}-distance is at least $\sqrt{n} \cdot 2^{-2 n-1}$. This implies that

$$
\log N\left(F_{n}, \sqrt{n} \cdot 2^{-2 n-1}\right) \geq \frac{n}{2} \log L=\frac{c n}{2} 2^{4 n} .
$$

Now we finish the proof of (ii). For any $0<\varepsilon<2^{-24}$, there exists $n \geq 12$, such that

$$
\sqrt{n+1} \cdot 2^{-2 n-3}<\varepsilon \leq \sqrt{n} \cdot 2^{-2 n-1}
$$

Because $F_{n} \subset \operatorname{cov}(T)$, we have

$$
\begin{aligned}
\log N(\operatorname{cov}(T), \varepsilon) & \geq \log N\left(F_{n}, \sqrt{n} \cdot 2^{-2 n-1}\right) \\
& \geq \frac{c n}{2} 2^{4 n} \\
& \geq c^{\prime} \varepsilon^{2}\left(\log \varepsilon^{-1}\right)^{-2}
\end{aligned}
$$

Acknowledgment The author thanks J. Creutzig, W. Li and W. Linde for there interest and valuable comments.

0.4 Reference

[BLL] B. Bühler, W. Li and W. Linde, Location of Majorizing Measures, Asymptotic Methods in Probability and Statistics with Applications, Birkhauser, Boston.(to appear)
[BP] K. Ball and A. Pajor, The entropy of convex bodies with "few" extreme points, London Math. Soc. Lecture Note Ser. 158(1990), 25-32.
[C] B. Carl, Metric entropy of convex hulls in Hilbert spaces, Bull. London Math. Soc. 29(1997), 452-458.
[CKP] B. Carl, I. Kyrezi and A. Pajor, Metric entropy of convex hulls in Banach spaces, preprint, 1997.
[D] R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal. 1(1967), 290-330.
[LL] W. Li and W. Linde, Metric Entropy of Convex Hulls in Hilbert Spaces, Studia Mathematica (to appear).

Fuchang Gao
Department of Mathematics
University of Idaho

Moscow, Idaho 83844-1103
fuchang@uidaho.edu

