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Abstract

Let T be a precompact subset of a Hilbert space. The metric
entropy of the convex hull of T is estimated in terms of the
metric entropy of T , when the latter is of order α = 2. The
estimate is best possible. Thus, it answers a question left
open in [LL] and [CKP].

0.1 Introduction

Let H be a separable Hilbert space and let T be a precompact subset. Define

the covering number

N(T, ε) := inf

{
n : ∃t1, t2, . . . , tn ∈ T, s.t. T ⊂

n⋃
k=1

B(tk, ε)

}

where B(x, ε) is the open ε-ball centered at x ∈ H. The set

Nε(T ) := {t1, t2, . . . , tn}

is called an ε-net of T . The quantity log N(T, ε) plays an important role in

the theory of empirical processes (cf.[D]). It is called the metric entropy of

T .

Let cov(T) denote the convex hull of T . It is natural to ask for good

estimates of log N(cov(T ), ε) in terms of log N(T, ε). It is known (cf. [C])
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that if log N(T, ε) < c · ε−α for some α > 0, then

log N(cov(T ), ε) ≤ c · ε−2(log ε−1)1−2/α, 0 < α < 2,
log N(cov(T ), ε) ≤ c · ε−α, α > 2,

and those are best possible. As we can see from the above that the situ-

ation is completely different for α < 2 and α > 2. The case α = 2 was

open. In [LL], Li and Linde studied the metric entropy of cov(T ) via certain

quantities originated in the theory of majorizing measures. Among others,

they obtained some finer estimates of log N(cov(T ), ε), which lead to some

important partial results for α = 2. For example, the upper bounds for the

entropy of cov(T ), T = {t1, t2, . . .}, ‖ti‖ ≤ ai, by functions of the ai’s only.

Their results are optimal for the slowly decreasing sequence (ai). However,

in general, the estimate of the metric entropy of cov(T ) for the case α = 2

was left open.

In this paper, we give the best possible estimate for the case α = 2.

More precisely, we prove the following

Theorem 1 Let H be a separable Hilbert space and let T be a precompact

subset of H.

(i) Suppose log N(T, ε) < ε−2, then for some c > 0,

log N(cov(T ), ε) ≤ c · ε−2(log ε−1)2;

(ii) There exists a set T , and a constant c > 0, such that

sup
ε>0

ε2 log N(T, ε) ≤ 8,
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and for all ε < c,

log N(cov(T ), ε) ≥ cε−2(log(ε−1))2.

0.2 Proof of (i)

Without loss of generality, we assume the diameter of T is 1. For k ≥ 1, let

Nk be a 2−k-net of T with minimal cardinality. Denote D1 = N1 ∪ {0} and

Dn = {z ∈ Nn −Nn−1 : ‖z‖ ≤ 2−n+1} ∪ {0}

for n > 1. Then

T ⊂ D1 + D2 + · · ·+ Dn + · · · ,

where “+” means the Minkowsky sum. By the assumption of (i), Dn consists

of no more than ec22n
vectors for some constant c > 0. Denote Cn = cov(Dn)

and En = C1 + C2 + · · ·+ Cn, then we have

cov(T ) ⊂ C1 + C2 + · · ·+ Cn + · · · = En + Cn+1 + · · · .

For any 0 < ε < 1/4, suppose 2−n+2 ≤ ε < 2−n+3. Because Cn+1 +

Cn+2 + · · · has diameter at most 2−n+1, we have

log N(cov(T ), ε) ≤ log N(En, 2−n+1).

To estimate the right side above, we need the following lemma, whose

proof is standard.

Lemma 1 There exists a constant c, such that for any λ > 0,

log N(En, λ) ≤ cn2 · λ−2.
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Proof: For each k ≤ n, suppose Dk = {x1, x2, . . . , xdk
}, where dk is the

cardinality of Dk. Thus, dk ≤ ec22k
. For each zk ∈ Ck, zk can be expressed

as

zk =
dk∑
i=1

aixi, ai ≥ 0,
dk∑
i=1

ai ≤ 1.

Define random vector Zk, so that

Pr(Zk = xi) = ai, 1 ≤ i ≤ dk, and Pr(Zk = 0) = 1−
dk∑
i=1

ai.

Let Zk,1, Zk,2, . . . , Zk,mk
and Z ′

k,1, Z
′
k,2, . . . , Z

′
k,mk

be independent copies of

Zk. Then

E
1

mk

mk∑
i=1

Zk,i = zk.

Thus, by convexity and symmetrization, we have

E

∥∥∥∥∥
n∑

k=1

zk −
n∑

k=1

1
mk

mk∑
i=1

Zk,i

∥∥∥∥∥ = E

∥∥∥∥∥E′
n∑

k=1

1
mk

mk∑
i=1

Z ′
k,i −

n∑
k=1

1
mk

mk∑
i=1

Zk,i

∥∥∥∥∥
≤ EE′

∥∥∥∥∥
n∑

k=1

1
mk

mk∑
i=1

(Z ′
k,i − Zk,i)

∥∥∥∥∥
= EE′

∥∥∥∥∥
n∑

k=1

1
mk

mk∑
i=1

(Z ′
k,i − Zk,i)rk,i(t)

∥∥∥∥∥
≤ 2E

∥∥∥∥∥
n∑

k=1

1
mk

mk∑
i=1

Zk,irk,i(t)

∥∥∥∥∥
where (rk,i(t)), 1 ≤ k ≤ n, 1 ≤ i ≤ mk, is a Rademacher sequence. Integrat-

ing with respect to t over [0, 1], and using Fubini, we obtain

E

∥∥∥∥∥
n∑

k=1

zk −
n∑

k=1

1
mk

mk∑
i=1

Zk,i

∥∥∥∥∥ ≤ 2E

(
n∑

k=1

1
m2

k

mk∑
i=1

‖Zk,i‖2

)1/2

≤ 2

(
n∑

k=1

1
mk

2−2k+2

)1/2

= λ,
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taking mk = 4n2−2k+2λ−2. This in particular implies that for some realiza-

tion, ∥∥∥∥∥
n∑

k=1

zk −
n∑

k=1

1
mk

mk∑
i=1

Zk,i

∥∥∥∥∥ ≤ λ.

But, there is no more than

n∏
k=1

(dk)mk ≤ ecn2λ−2

possible realizations of
∑n

k=1

∑mk
i=1 Zk,i/mk. The lemma follows.

Applying Lemma 1 with λ = 2−n+1, and keeping in mind that 2−n+2 ≤

ε < 2−n+3, we obtain

log N(cov(T ), ε) ≤ log N(En, 2−n+1)

≤ c · n22−2n+2

= c′ε−2(log ε−1)2.

Remark 1 Both Li and Linde pointed out to me that the result (i) can be

derived from a result in [CKP]. We include the proof because the current

proof seems more transparent, and holds for any Banach space of type 2.

Also, it is more convenient to the readers.

0.3 Proof of (ii)

Let (ek) be a standard basis of H. For each integer k ≥ 1, we define

Dk =
{
2−kei : e22k−2 ≤ i ≤ e22k

}
∪ {0},
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and T = D1 + D2 + · · ·+ Dk + · · ·. For any 0 < ε < 1, suppose 2−n ≤ ε <

2−n+1. Define Sn = D1 + D2 + · · · + Dn. Because Sn is an 2−n-net of T ,

and Sn has cardinality no more than

∏
k≤n

e22k ≤ e22n+1
,

we have log N(T, ε) < 22n+1. Thus

ε2 log N(T, ε) < 2−2n+2 · 22n+1 = 8.

To obtain a lower bound for log N(cov(T ), ε), we need the following

lemma.

Lemma 2 There exists c > 0, such that for e−22k−3
< δ < c · 2−k,

log N(cov(Dk), δ) > c · δ−2.

Proof: Denote Ik = {i : e22k−2 ≤ i < e22k}, and let |Ik| be the cardinal-

ity of Ik. Consider the set

A =

∑
i∈Ik

aiεei : ai is non-negative integer,
∑
i∈Ik

ai ≤ 2−k/ε

 .

Let m be the largest integer, such that m ≤ 2−k/ε. Then A has cardinality

no less than |Ik|m/m! > |Ik|m/2. For each t ∈ A, and 2 ≤ l < m, consider

B(t, l) = {s ∈ A : ‖t− s‖1 ≤ lε}.

B(t, l) contains no more than 2l|Ik|l ≤ |Ik|2l elements. Thus A contains

a subset U of cardinality more than (|Ik|m/2) ÷ (|Ik|2l), whose mutual l1-
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distance between any two elements is at least lε. Thus, the mutual l2-

distance is at least
√

lε. Let l ≈ m/6. Because A ⊂ cov(Dk), we have

log N(cov(Dk),
√

lε) ≤ log N(co(Dk),
√

m/6 · ε)

≥ log
(
|Ik|m/2/|Ik|m/3

)
≥ m

6
log |Ik|,

which implies that log N(cov(Dk), δ) ≥ c · δ−2 for some c > 0 and e−22k−3
<

δ < c · 2−k.

Lemma 3 For n ≥ 12, let m = [n/6], and

En = cov(Dm) + cov(Dm+1) + cov(Dm+2) + · · ·+ cov(Dn).

Then for some constant c > 0,

log N(En,
√

n · 2−2n−1) ≥ cn · 24n.

Proof: By Lemma 2, for each m ≤ k ≤ n, there exists a set Sk ⊂

cov(Dk) of cardinality L = ec·24n
whose mutual distance between any two

elements is at least 2−2n. Consider the set

Fn = Sm + Sm+1 + · · ·+ Sn.

For t, s ∈ Fn, suppose

t = tm + tm+1 + · · ·+ tn, and s = sm + sm+1 + · · ·+ sn
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with tk ∈ Sk and sk ∈ Sk. Define the Hamming distance

h(t, s) = cardinality of {k : tk 6= sk,m ≤ k ≤ n}.

For each t ∈ Fn, the ball

Bh(t, n/3) := {s ∈ Fn : h(t, s) ≤ n/3}

contains no more than (nL)n/4 < Ln/3 elements. Thus Fn contains a subset

of cardinality Ln−m ÷ Ln/3 ≥ Ln/2, whose mutual Hamming distance be-

tween any two elements is at least n/4. Thus the mutual l2-distance is at

least
√

n · 2−2n−1. This implies that

log N(Fn,
√

n · 2−2n−1) ≥ n

2
log L =

cn

2
24n.

Now we finish the proof of (ii). For any 0 < ε < 2−24, there exists

n ≥ 12, such that

√
n + 1 · 2−2n−3 < ε ≤

√
n · 2−2n−1.

Because Fn ⊂ cov(T ), we have

log N(cov(T ), ε) ≥ log N(Fn,
√

n · 2−2n−1)

≥ cn

2
24n

≥ c′ε2(log ε−1)−2.
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