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METRIC FOLIATIONS ON HYPERBOLIC SPACES

Kyung Bai Lee and Seunghun Yi

Abstract. On the hyperbolic space Dn, codimension-one totally geo-
desic foliations of class Ck are classified. Except for the unique parabolic
homogeneous foliation, the set of all such foliations is in one-one corre-
spondence (up to isometry) with the set of all functions z : [0, π] → Sn−1

of class Ck−1 with z(0) = e1 = z(π) satisfying

|z′(r)| ≤ 1

for all r, modulo an isometric action by O(n− 1)× R× Z2.
Since 1-dimensional metric foliations on Dn are always either homoge-

neous or flat (that is, their orthogonal distributions are integrable), this
classifies all 1-dimensional metric foliations as well.

Equations of leaves for a non-trivial family of metric foliations on D2

(called “fifth-line”) are found.

1. Introduction

Let F be a foliation on a Riemannian manifold (M, g). The tangent vector
field (vertical) and the complementary vector field (horizontal) of F are denoted
by V andH, respectively. The foliation F is said to be metric if∇v : H×H → V
is skew-symmetric, or equivalently, the leaves of F are equi-distant locally.

Such a foliation is flat if the orthogonal distribution is integrable (and hence
forms a totally geodesic foliation); is homogeneous if it consists of the orbits of
a free action of a subgroup of the isometry group. Gromoll-Grove ([4]) showed
that 1-dimensional metric foliations on constant curvature spaces are either flat
or homogeneous. As a consequence, the only 1-dimensional metric foliations of
Euclidean spheres are the Hopf fibrations S2n+1 → CPn.

On the other hand, on the Euclidean spaces En, Gromoll-Walschap ([6])
proved the only metric foliations (of any dimension) are homogeneous (the
orbits of a free isometric group action by generalized glide rotations).
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Not too much seems to be known for hyperbolic spaces even though the above
statement (flat or homogeneous) holds true. In [3], there is a “classification” of
metric foliations onH2, where it is stated that there are 3 kinds of 1-dimensional
metric foliations. However, we show that there are infinitely many metric
foliations which are all characteristically different.

Our model space is the open ball Dn in the Euclidean space with the hyper-
bolic metric given by, for X,Y ∈ Tu(Dn),

〈〈X,Y 〉〉u =
4〈X,Y 〉

(1− |u|2)2 ,

where 〈, 〉 is the Euclidean inner product. The aim of this paper is to find and
classify all codimension-one totally geodesic foliations on Dn. The main result
is the following.

Main Theorem. Except for the unique parabolic homogeneous foliation, the

set of all codimension-one totally geodesic foliations of class Ck on the hyper-

bolic space Dn is in one-one correspondence (up to isometry) with the set of all

functions z : [0, π]→ Sn−1 of class Ck−1 with z(0) = e1 = z(π) satisfying

|z′(r)| ≤ 1

for all r, modulo the action of O(n − 1)× R × Z2, where O(n − 1) and R are

the elliptic and hyperbolic isometries associated with the geodesic axis joining

±e1 = (±1, 0, . . . , 0) and Z2 is a reflection interchanging e1 and −e1.
We also obtained an equation of the leaves for a 1-dimensional metric folia-

tion on D2 which has the property that every leaf intersects one fixed geodesic
curve at a constant angle.

Here are some well-known facts.

Proposition 1.1 ([10, Theorem 5.19]). Let F be a foliation with associated

vector field V (V is a vector field tangent to the leaves of F). Then F is a

metric foliation if and only if

(1.1) 〈〈[V,X ], X〉〉 = 0

holds for every vector field X such that 〈〈V,X〉〉 = 0 and 〈〈X,X〉〉 = 1.

Proposition 1.2 ([10, Theorem 5.23 and Theorem 5.19]). Let F be a foliation

on a Riemannian manifold, and X its complementary distribution. Suppose

X is integrable. Then F is a metric foliation if and only if X yields a totally

geodesic foliation.

By [4], every 1-dimensional metric foliation on a constant curvature manifold
is either flat or homogeneous. But it is not hard to see that on the hyperbolic
space Dn, except loxodromics, every 1-dimensional homogeneous foliation is,
in fact, flat. Thus, by Proposition 1.2, the complementary distribution of
such becomes a codimension-one totally geodesic foliation. Therefore, there is
one-one correspondence between the class of all 1-dimensional metric foliations
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except loxodromics and the class of all flat codimension-one totally geodesic
foliations on Dn.

Remark. The Lifschitz function in [13, Section 3] is closely related to our con-
struction. Our work gives more precise result using the characterizing equation
〈〈[V,X ], X〉〉 = 0 and presents many interesting new examples, including the
equation of a “fifth line”.

2. The arc-radius and arc-center functions z(r)

Sn−1 will denote the boundary sphere of Dn. Every codimension-one totally
geodesic submanifolds are spheres perpendicular to the boundary sphere Sn−1.
Even though such submanifolds do not touch Sn−1, we shall extend them to
the boundary (so that each leaf is a compact set). We shall talk about only
codimension-one totally geodesic foliations on Dn.

Let a codimension-one totally geodesic foliation of class Ck be given. There
exists a unique leaf that contains the center of the space Dn. It is a Dn−1

(an (n − 1)-dimensional ball passing through the center) which divides the
space into two regions. On each region, the leaves eventually gets smaller and
smaller (in Euclidean sense). By compactness, such geodesic spheres converge
to a point on the boundary sphere. Therefore, there are at most two such limit
points, and it is possible for these two limit points coincide and there is only
one limit point. Such a point on the boundary of the ball will be called a limit

of shrinking geodesics. We name them as A and B.

The set of all centroids of the fibers, C, is a 1-dimensional embedded sub-
manifold of Dn, connecting A and B. For each c ∈ C, there is a unique leaf Lc,
an (n−1)-dimensional Euclidean sphere perpendicular to the boundary sphere.
Furthermore, Dn = ∪{Lc : c ∈ C}. Consider the (Euclidean) line connecting
c and the center of Dn (There is one case where c equals the center of Dn.
In that case, the line should be the line perpendicular to the fiber Lc which
is a hyperplane passing through the center of Dn). These lines intersect the
boundary sphere Sn−1 at two points. Choose one point from these two points
in a continuous fashion so that when c moves from A to B along C, the resulting
points draw a curve on the boundary sphere joining A and B. This defines a
map z : C → Sn−1. Also determined is the (spherical) arc-length from z(c) to
the boundary of the fiber Lc, which will be called the arc-radius of Lc. The
point z(c) is called the arc-center of Lc. Summarizing, we have a bundle map

(arc-radius) r : Dn −→ (0, π)

which maps each leaf to its arc-length. This bundle is a product bundle (since
the base space is contractible). Thus we have (0, π) −→ C →֒ Dn, a cross-
section to the bundle. Composing the map (0, π) −→ C with C

proj−−−−→ Sn−1,
we get a map

(arc-center) z : (0, π) −→ Sn−1



66 KYUNG BAI LEE AND SEUNGHUN YI

which we call by z again (abuse of notation).

Z

P

Q

O

z(r)
r

We use u = (u1, . . . , un) for our coordinate system for the space Dn. For
r < π/2, the real radius and center of a geodesic are related to r and z(r) as
follows:

PZ = Radius = tan r,(2.1)

Z = Center = (sec r)z(r).(2.2)

For r > π/2, the real center is −Z (on the opposite side of Z).

Using the relation between the real center, the real radius with r, z(r) in
(2.1), the equation of a totally geodesic sphere is

(2.3) |u− (sec r)z(r)|2 = tan2 r,

where the norm is the Euclidean norm. Then the gradient vector field

V = u− (sec r)z(r)

will generate a metric foliation, and its complementary distribution

X = (u− (sec r)z(r))⊥

will be a codimension-one totally geodesic foliation whose leaves have the equa-
tion (2.3).

The vector filed V is of class Ck−1 if and only if X is of class Ck−1. If that
is the case, the two foliations associated to the distributions V and X are of
class Ck.

Lemma 2.1. z(r) is of class Ck−1 as a function of r if and only if V (and X)
is class Ck−1 as a function of u.

Proof. Suppose z(r) is a function of r of class Ck−1. Let

F (u, r) = |u− (sec r)z(r)|2 − tan2 r, 0 < r < π
2 .
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Then
F (u, r) = u · u− 2(sec r)u · z(r) + 1,

since |z(r)| = 1. We have

∂F

∂r
= −2(sec r) ((tan r)u · z(r) + u · z′(r)) .

We claim that
|u · z′(r)| < |(tan r)u · z(r)|

on the totally geodesic sphere |u − (sec r)z(r)|2 = tan2 r (This will say then
∂F
∂r
6= 0).
Let α be the angle between u and z′(r). Since z(r) · z′(r) = 0, we have

|π2 − α| < r so that π
2 − r < α < π

2 + r for 0 < r < π
2 . This implies

|u · z′(r)| = |u| · |z′(r)| cosα
≤ |u| cosα

< |u| cos(π
2
− r)

= |u| sin r.
On the other hand, from u · u− 2(sec r)u · z(r) + 1 = 0, we get

u · z(r) = 1

2
(cos r)(|u|2 + 1).

So,

|(tan r)u · z(r)| − |u · z′(r)| > 1

2
sin r(|u|2 + 1)− |u| sin r

=
1

2
sin r(|u| − 1)2

≥ 0.

Consequently, ∂F
∂r
6= 0 for all 0 < r < π/2. Therefore, ∂F

∂r
is never 0 for any

u ∈ Dn. If z(r) is a Ck−1-function of r, then F (u, r) is a Ck−1-function (of u
and r). By the Implicit Function Theorem, r can be represented as a Ck−1-
function of u on Dn. By interchanging the role of the two limit points (A and
B) of shrinking geodesics, we conclude also that ∂F

∂r
6= 0 for all π/2 < r < π

in the above argument, and get the same conclusion. For the smoothness at
r = π

2 , see Remark 5.3. Consequently, V is of class Ck−1.

Conversely, suppose V is a function of u of class Ck−1. Then

(sec r)z(r) = u− V
is of class Ck−1. Since |z(r)| = 1, we have

sec r = |u− V | (Euclidean norm),

and we see both r and

z(r) =
1

|u− V | (u− V )
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are of class Ck−1 as functions of u. Now consider the obvious map

ξ : (0, π) −→ Dn

whose image is the geodesic connecting A and B (assuming A 6= B). Then

z(r) =
1

|u− V | (u− V ) ◦ ξ(r),

which shows that z(r) is a function of r of class Ck−1. The case A = B is
trivial. �

Proposition 2.2. Let r and z(r) be the arc-radius and the arc-center function

for a totally geodesic foliation of class Ck (k ≥ 1), respectively. Then z(r) is a

function of class Ck−1, and satisfies |z′(r)| ≤ 1 for all 0 < r < π.

Proof. Let r1 < r2. Find the unique leaves L1 and L2 of arc-radii r1 and r2,
respectively (Note that there are two leaves of “arc-radius” r1, but according
to our convention, one is r1 and the other is r1+

π
2 ). These two circles on Sn−1

do not intersect if and only if

arc-distance(z(r2), z(r1)) ≤ r2 − r1(2.4)

(In fact, when arc-distance(z(r2), z(r1)) = r2 − r1, they do intersect at one
point. However the two geodesic spheres (without the artificial boundary that
we added) do not intersect). Let θ = arc-distance(z(r2), z(r1)). This is the
angle between the two rays from the center O of Dn to z(r1) and z(r2).

From the cosine law, we have

1 + 1− |z(r2)− z(r1)|2 = 2 cos θ.

Thus,

θ = cos−1
(

1− 1
2 |z(r2)− z(r1)|

2
)

so that the condition (2.4) becomes

cos−1
(

1− 1
2 |z(r2)− z(r1)|

2
)

≤ r2 − r1.

Since cos θ is a decreasing function in 0 ≤ θ ≤ π, this yields

|z(r2)− z(r1)|2 ≤ 2 (1− cos(r2 − r1)) .

Dividing by (r2 − r1)2, we get

∣

∣

∣

∣

z(r2)− z(r1)
r2 − r1

∣

∣

∣

∣

2

≤ 2× 1− cos(r2 − r1)
(r2 − r1)2

.

This implies

|z′(r)|2 ≤ 2 lim
(r2−r1)→0

1− cos(r2 − r1)
(r2 − r1)2

= 1.
�
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Proposition 2.3. Suppose z = z(r) : (0, π) → Sn−1 is a differentiable map

satisfying

|z′(r)| ≤ 1

for all 0 < r < π. Then the collection of all totally geodesic spheres of arc-

center z(r) with arc-radius r for 0 < r < π forms a codimension-one totally

geodesic foliation on Dn. If z is of class Ck−1, then the foliation is of class

Ck.

Proof. For each 0 < r < π, pick the point z(r) ∈ Sn−1, and draw the geodesic
sphere of arc-radius r. By tracing back the proof of Proposition 2.2, we find
that the condition |z′(r)| ≤ 1 guarantees no two geodesic spheres intersect.
Therefore, as r grows from 0 to π, the geodesic spheres sweep whole space Dn.

We prove that our vector field V satisfies the necessary differential equation
(1.1) of the metric foliation. Let

v = u− (sec r)z =
∑

i

(ui − (sec r)zi)Ei,

x = x(u) =
∑

i

xiEi

be tangent vectors at u (which will be vertial and horizontal later), where
Ei =

∂
∂ui

. Since |z|2 = 1, the geodesic equation

(u− (sec r)z) · (u − (sec r)z) = tan2 r

becomes

|u|2 − 2(sec r)(u · z) + 1 = 0(2.5)

or, equivalently

(sec r)(u · z) = 1
2 (1 + |u|

2),(2.6)

where u · z denotes the Euclidean inner product of u and z.
Recall that our hyperbolic metric on Dn is given by, for X,Y ∈ Tu(Dn),

〈〈X,Y 〉〉u =
4〈X,Y 〉

(1− |u|2)2 .

Conditions for the vector field x to satisfy are

〈〈v, x〉〉Dn = 0, 〈〈x, x〉〉Dn = 1.

The former is 4〈v,x〉
(1−|u|2)2 = 0. Thus,

(2.7) u · x = (sec r)(z · x).
The latter condition yields

(2.8) |x|2 = 1
4 (1− |u|

2)2.

Now we start calculation:

〈[v, x], x〉 (Euclidean inner product is good enough)
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=

〈

[

∑

i

(

ui − (sec r)zi

)

Ei,
∑

j

xjEj

]

,
∑

k

xkEk

〉

=
∑

i

(

ui − (sec r)zi

)

∑

j

(

∂xj
∂ui

xj

)

∑

i,j

xjxi
∂

∂uj

(

ui − (sec r)zi

)

.

From the equality (2.8), we have

∑

j

(

∂xj
∂ui

xj

)

= 1
2

∂

∂ui
|x|2 = 1

2

∂

∂ui

(

1
4 (1− |u|

2)2
)

= 1
2 (|u|

2 − 1)ui

so that the first term becomes
∑

i

(ui − (sec r)zi)
∑

j

(

∂xj
∂ui

xj

)

= 1
2 (|u|

2 − 1)
(

(u · u)− (sec r)(z · u)
)

= 1
2 (|u|

2 − 1)
(

|u|2 − 1
2 (1 + |u|

2)
)

(from (2.5))

= 1
4 (|u|

2 − 1)2.

In the second term,

∂

∂uj

(

ui − (sec r)zi

)

= δij − zi
∂

∂uj
(sec r) − (sec r)

∂

∂uj
zi

= δij − zi(sec r)(tan r)
∂r

∂uj
− (sec r)z′i

∂r

∂uj

so that the second term becomes
∑

i,j

xjxi
∂

∂uj

(

ui − (sec r)zi

)

=
∑

i,j

xjxi

(

δij − zi(sec r)(tan r)
∂r

∂uj
− (sec r)z′i

∂r

∂uj

)

= |x|2 − (sec r)(tan r)(x · z)(x · ∇r) − (sec r)(x · z′)(x · ∇r)
= 1

4 (1 − |u|
2)2 − (sec r)(tan r)(x · z)(x · ∇r) − (sec r)(x · z′)(x · ∇r).

Altogether, we get

〈[v, x], x〉
= 1

4 (|u|
2 − 1)2

−
(

1
4 (1− |u|

2)2 − (sec r)(tan r)(x · z)(x · ∇r)− (sec r)(x · z′)(x · ∇r)
)

= (sec r)(x · ∇r)
(

(tan r)(x · z) + (x · z′)
)

.

Once the arc-radius function z(r) is known, the variable r is defined implic-
itly by the geodesic equation (2.5). In other words, the geodesics are the level
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surfaces for the function r = r(u). Therefore, its gradient ∇r is orthogonal to
all of the vectors x perpendicular to v. Thus,

x · ∇r = 0.

Consequently 〈[v, x], x〉 = 0. The Euclidean inner product vanishes, and so does
hyperbolic inner product (One can prove x ·∇r = 0 by brute force calculations.
From (2.5), take derivatives, and form the dot-product. With the help of
equalities (2.7), (2.8) and |x| = 1 etc., one can finally see this vanishes).

Consequently, the vector field V yields a metric foliation, and its natural
orthogonal foliation X yields a totally geodesic foliation of class Ck. �

3. Examples

In this section, we present some 2 and 3-dimensional examples. For D2, we
use the coordinates (u, v) instead of u = (u1, u2). For a fixed r, the normalized
gradient of the circle

(

u− z1(r)

cos r

)2

+
(

v − z2(r)

cos r

)2

− tan2 r = 0

defines a global unit vector field

V (u, v) =
1− u2 − v2

2

(

u cos r − z1(r)
sin r

∂

∂u
+
v cos r − z2(r)

sin r

∂

∂v

)

which satisfies the differential equation (1.1). Therefore, as far as the function
z(r) satisfies the condition |z′(r)| ≤ 1, the vector field V (u, v) gives rise to a
metric foliation on D2.

Getting an explicit formula of the flows for the vector field V , one needs to
solve differential equation from the vector field. This is not always easy. Here
are some examples.

Example 3.1. z(r) = (1, 0), constant. The geodesic foliation will be just the
“concentric” (only the arg of the center is fixed) circles with the same arc-center
(1, 0). Obviously, this is a homogeneous one generated by a group of hyperbolic
isometries. The vector field V is given by

V (u, v) =
(u cos r − 1)

sin r

∂

∂u
+

(v cos r − 0)

sin r

∂

∂v

whose integral curves are

(u cos r − 1)2 + (v cos r)2 = sin2 r

for r > 0.

Example 3.2. z(r) = exp ( 1
k
sin kr)i, k a constant. The arc-centers of the

geodesic circles lie in the arc-interval − 1
k
and 1

k
on the boundary of the unit

circle.
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Figure 1. z(r) = exp ( 1
k
sinkr)i

Example 3.3. If a piecewise-differentiable function z(r) satisfies the condition
|z′(r)| ≤ 1 on each subinterval where z(r) is differentiable, it still satisfies the
condition |z(r2)− z(r1)| ≤ |r2− r1| globally, and thus gives rise to a piecewise-
smooth metric foliation. Since V involves z(u, v) which is continuous, the flows
will be of class C1.

For example, z(r) is given as a piecewise-smooth function:

arg z(r) =

{

3
√
3

4π r, 0 < r ≤ 2π
3

sin r, 2π
3 ≤ r ≤ π.

Figure 2. z(r) is given as a piecewise-smooth function

Note that z(r) is not smooth. The metric flows are not second-time differ-
entiable. They are only of class C1.
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Example 3.4. The following totally geodesic foliation on D3 is generated by
the arc-center function z : (0, π)→ S2 given by

z(r) =
(

sin r
2 cos(

1
6 sin(5r)), sin

r
2 sin(

1
6 sin(5r)), cos

r
2

)

.

Note that |z′(r)| ≤ 1 is satisfied. The curve z(r) starts at one limit of shrinking
geodesics (r = 0) and ends at the antipodal point of the other limit of shrinking
geodesics (r = π).

Figure 3. A codimension-one totally geodesic foliation onD3

generated by z(r), with the image of z(r). Only the boundary
S2 are shown (from two different view points).

4. The “fifth line”

In this section, we study codimension-one totally geodesic foliations on Dn

whose leaves have a same angle to a fixed geodesic curve. In dimension 2, the
complementary foliation to such, that is, a metric foliation on D2 whose leaves
have a same angle to a fixed geodesic curve is called a fifth line in [3]. Such a
condition gives rise to a certain differential equation. However, the differential
equation on the disk model was exceptionally hard to solve. In fact, as far as
the authors know, its complete solution seems to be unknown. See [3] for an
integral form.

We change the equation to the upper half plane model, solve the differential
equation, and translate to our disk model to get finally a solution on D2.

We are in the upper half plane model with xy-coordinate. Without loss of
generality, we may assume that the fixed geodesic is the y-axis. Suppose X is
a geodesic foliation with the property that every leaf intersects the y-axis at a
constant angle H .
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H

H

O

r

ar

From the geodesic equation (x− ar)2 + y2 = r2, r can be solved in x and y.
Thus the metric flow is

V (x, y) = (x− ar, y)

=

(

−x+ a
√

x2 + (1− a2)y2
−1 + a2

, y

)

and a non-unit speed geodesic flow is

X(x, y) =

(

−y, −x+ a
√

x2 + (1− a2)y2
−1 + a2

)

.

We know the integral curves of the geodesic flow already; namely, the solutions
to

∂x

∂t
= −y,

∂y

∂t
=
−x+ a

√

x2 + (1− a2)y2
−1 + a2

are the circles:

(4.1) (x− ar)2 + y2 = r2

for varying r’s.
To find the metric flow, we need to solve for V (x, y). That is, we need to

solve

∂x

∂t
=
−x+ a

√

x2 + (1− a2)y2
−1 + a2

,

∂y

∂t
= y.

From the second, we get

(4.2) y(t) = cet.

From
∂x

∂t
=
−x+ a

√

x2 + (1 − a2)c2e2t
−1 + a2

we do the change of variable. Let

(4.3) x =
√

1− a2cet tan s
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and get a new equation in s:

(1− a2)∂s
∂t

= a(−1 + a sin s) cos s.

Solving this for s, we get

et =
d(1− sin s)

1+a

2a

(1− a sin s)(1 + sin s)
1−a

2a

,

where d is a integral constant. Now the equations (4.3) and (4.2) yield

(4.4)











x = (1−a)2λ(1−sin s)
1+a

2a

(1−a sin s)(1+sin s)
1−a

2a

tan s

y = λ(1−sin s)
1+a

2a

(1−a sin s)(1+sin s)
1−a

2a

,

where λ = cd. This is our equation for the leaves of the metric flow on the
upper half plane model.

Proposition 4.1 (Equation of Fifth Line (on H2)). The geodesic foliation

with the property that every leaf intersects the y-axis at a constant angle H has

integral curves given by (4.4), where a = cosH.

The variable s is the curve parameter. For s = 0, (x, y) = (0, λ) so that the

variable λ gives continuous family of geodesic curves starting at points on the

y-axis.

Proposition 4.2 (Equation of Fifth Line (on D2)). The 1-dimensional met-

ric foliation in D2 with the property that every leaf intersects the u-axis at a

constant angle H has integral curves:
{

u(a, η, t) = −q−1 · d2(a sin t+ 1)(1− sin t)
1
a + (sin t+ 1)

1
a (a sin t− 1),

v(a, η, t) = q−1 · 2
√
1− a2d cos2 t a+1

2a tan t,

where

q(a, η, t) = 2d cos2 t
a+1

2a + (sin t+ 1)
1
a (1− a sin t) + d2(1 − sin t)

1
a (a sin t+ 1)

and d = η−1
η+1 .

The variable t is the curve parameter, and a = sinH. For t = 0, (u(a, η, 0),
v(a, η, 0)) = (η, 0) so that the variable η gives continuous family of geodesic

curves starting at points on the u-axis.

This was obtained by conjugating the previous function in (4.4) by following
map H2 → D2 given by

(x, y) 7→ 1
x2+(1+y)2 (1 − x2 − y2, 2x).

It is not hard to check that
∂v(a,η,t)

∂t
∂u(a,η,t)

∂t

∣

∣

∣

t=0
=

a√
1− a2

.
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Therefore, the angle of the curve with the u-axis is a constant, say H . Then
a = sinH .

Of course, such a foliation can be defined using our z-function. Consider the
geodesic equation

(

u− z1(r)

cos r

)2

+
(

v − z2(r)

cos r

)2

= tan2 r.

A

B

Z

MU

T

O

One can calculate

ZM

ZU
=
z2(r)/ cos r

tan r
=
z2(r)

sin r
.

Set it to K and solve for z to get

z1(r) =
√

1−K2 sin2 r,

z2(r) = K sin r.

Recall that

K = sinH = cosJ, where J is the angle ∠MUT.

By our procedure,

z(r) = (
√

1−K2 sin2 r,K sin r), 0 ≤ K ≤ 1,

yields a metric foliation whose leaves intersect the u-axis at the constant angle
J = cos−1(K).

One can verify that this function z(r) satisfies the condition |z′(r)| ≤ 1 since
|K| ≤ 1.

A similar construction as above works in any dimension Dn. It will yield
codimension-one totally geodesic foliations of a constant angle with a fixed
geodesic curve. Let

Λ = (λ2, . . . , λn) : (0, π) −→ Sn−2 ⊂ R
n−1
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Figure 4. z(r) = (
√

1−K2 sin2 r,K sin r), (with K = 0.9)
The leaves of the right-hand side foliation are the “fifth lines”.

be a Ck−1-map. Then define an arc-center-function by

z1(r) =
√

1−K2 sin2 r,

z2(r) = Kλ2(r) sin r,

· · ·
zn(r) = Kλn(r) sin r.

Then
∑n

i=1 zi(r)
2 = 1 and K is the cosine of the angle of intersection with

the u1-axis. The arc-center function z(r) of such foliations are simple closed
curves, because z(π) = z(0) = e1. Of course, z should satisfy the condition
|z′(r)| ≤ 1, which is equivalent to

n
∑

i=2

z′i(r)
2 ≤ 1−K2

K2 sin2 r(1 −K2 sin2 r)
.

Conversely, any codimension-one totally geodesic foliation which has a constant
angle with the u1-axis has the arc-center function as above.

Getting the equation of corresponding metric foliation seems to be very
difficult in higher dimensions. Here is an example in dimension 3, with λ2(r) =
r

6K ; λ3(r) =
√

1− ( r
6K )2, where K = 0.6. Thus,

z1(r) =
√

1−K2 sin2 r,

z2(r) =
r

6
sin r,

z3(r) =
√

K2 − ( r6 )
2 sin r,

where K = 0.6.
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Figure 5. Codimension-one totally geodesic foliation of a
constant angle with a fixed geodesic curve in D3. Notice that
z(r) is a simple closed curve.

5. Classification

In Proposition 2.2 and Proposition 2.3, we showed that there is a correspon-
dence between the totally geodesic foliations and the functions z(r) satisfying
|z′(r)| ≤ 1.

All codimension-one totally geodesic foliations
←→ {z : (0, π)→ Sn−1 : |z′(r)| ≤ 1}.

Certainly, the group of isometries Isom(Dn) ∼= O(1, n) acts on this functions
space. We shall find a subset of the functions space which contains a funda-
mental domain of the action.

Recall that every codimension-one totally geodesic foliation has at most two
limit of shrinking geodesics A (and B). This means that the arc-center function
z(r) has values near e1 for small values of r. Observe that

z(0) = A(= e1),

z(π) = −B
for any z(r). Furthermore, we have:

Lemma 5.1. The foliation satisfies z(0) = −z(π) if and only if it is the unique

1-dimensional parabolic homogeneous foliation.

Proof. Clearly z(0) = −z(π) is equivalent to A = B. A 1-dimensional parabolic
homogeneous foliation has a unique limit of shrinking geodesics. That is, A =
B.

Conversely, suppose z(0) = e1 = −z(π). It is not too hard to see the follow-
ing: If the spherical geodesic distance from z(p) to z(q) is equal to |q−p|, then
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Figure 6. Parabolic homogeneous foliations: z(r) = (cos r)e1
+(sin r)e2.

z(r) itself is the spherical geodesic curve from z(p) to z(q) for p ≤ r ≤ q. This
fact forces z(r) to be of the form

z(r) = (cos r)e1 + (sin r)e

for 0 < r < π, where e is a point on the equator u1 = 0. We may assume that
e = e2 (by an isometric rotation). Thus, arg(z(r)) = r. It is clear that this is
the unique parabolic homogeneous foliation. More precisely, let

N =













0 0 1 . 0
0 0 1 . 0
1 −1 0 . 0
. . . 0 .
0 0 0 . 0













∈ so(1, n).

Then,

ϕ(t) = etN =













t2+2
2 − t2

2 t . 0
t2

2
2−t2

2 t . 0
t −t 1 . 0
. . . 1 .
0 0 0 . 1













∈ SO(1, n).

With the isometry Dn −→ R1,n (the hyperboloid model) given by

x = (x1, x2, . . . , xn) 7→
1

1− |x|2
(

1 + |x|2, 2x1, 2x2, . . . , 2xn
)

,
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which is a parabolic map, sending x to

1

4 + 4x2t+ (1− 2x1 + |x|2)t2
(

4x2te1 + (1 − 2x1 + |x|2)(t2e1 + 2te2) + 4x
)

.

The group {ϕ(t) : t ∈ R} on Dn is a 1-dimensional isometry group which act
on Dn freely, yielding the above foliation. If we fix x and move t in the above
expression, we get the leaves of the foliation. �

Theorem 5.2 (Classification Theorem). Except for the unique parabolic homo-

geneous foliation (in Lemma 5.1), the set of all codimension-one totally geodesic

foliations of class Ck on the hyperbolic space Dn is in one-one correspondence

(up to isometry) with the set of all functions z : [0, π] → Sn−1 of class Ck−1

with z(0) = e1 = z(π) satisfying

|z′(r)| ≤ 1

for all r, modulo the action of O(n − 1) × R × Z2, the elliptic and hyperbolic

isometries associated with the geodesic axis joining −e1 and e1 = (1, 0, . . . , 0)
and a reflection interchanging e1 and −e1.

The condition |z′(r)| ≤ 1 forces the curve z(r) to lie only on one side of a
hemisphere of Sn−1.

Proof. Since our foliation is not parabolic one, we know A 6= B. There exists
an isometry which fixes e1, and maps B to −e1. This means that

z(0) = e1 = z(π).(5.1)

The subgroup of isometries which map the geodesic axis joining e1 and −e1
onto itself is

SO(n− 1)× R× Z2.

This group acts on the space of functions {z : (0, π) −→ Sn−1} satisfying the
conditions |z′(r)| ≤ 1 and (5.1).

The isometries in SO(n−1) are the elliptic rotations around the axis joining
e1 and −e1, as [ 1 0

0 K ] ∈ SO(n), which is also Euclidean isometries on Dn. By
such an isometry, the arc-center functions are rotated around the axis. The
isometries in R are the hyperbolic isometries with axis joining e1 and −e1.
More precisely, let

ψ(t) =













cosh(t) sinh(t) 0 0 0
sinh(t) cosh(t) 0 0 0
0 0 · · · 0 0
0 0 0 1 0
0 0 0 0 1













∈ SO(1, n).

With the isometry Dn −→ R1,n (the hyperboloid model) given by

(x1, x2, . . . , xn) 7→
1

1− |x|2
(

1 + |x|2, 2x1, 2x2, . . . , 2xn
)

,
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this is a hyperbolic map, sending x to

ϕ(t) :









x1
x2
· · ·
xn









7→ 2

∆









x1 cosh(t) +
1
2 (1 + |x|2) sinh(t)
x2
· · ·
xn









where ∆ = 1− |x|2 + (1 + |x|2) cosh(t) + 2x1 sinh(t).
The group Z2 is generated by the reflection about the hyperplane u1 = 0,

(x1, x2, . . . , xn)↔ (−x1, x2, . . . , xn).
This interchanges e1 and −e1. The arc-center function will be changed to
z(π − r).

Clearly, the actions by O(n − 1) and R commute each other. Also the
reflection about u1 = 0 commutes with O(n−1)×R, and altogether, they form
a subgroup isometries O(n− 1)× R× Z2. �

The set of foliations described in the theorem contains only one homogeneous
one: Its arc-center function is given by the constant function z(r) = e1.

Remark 5.3. Let F be the metric foliation with the arc-center function z(r).
The hyperbolic isometry ϕ(t) in the proof of Theorem 5.2 maps the level set
|u− (sec r)z(r)|2 = tan2 r with r = π

2 to a level set with smaller than r if t > 0.
Therefore, in the proof of Proposition 2.3, one can apply the argument for the
case of 0 < r < π

2 to the new foliation ϕ(t)(F), and conclude that r is a smooth
function of u near the level set for r = π

2 .

According to [4], every 1-dimensional metric foliation on a constant curva-
ture space is either homogeneous or flat (that is, the orthogonal distribution is
integrable and hence forms a totally geodesic foliation). The only 1-dimensional
homogeneous foliations on Dn are the ones generated by a parabolic isometry
or by a loxodromic isometry which we know well.

Corollary 5.4. Every 1-dimensional metric foliation on Dn is homogeneous

or orthogonal to the codimension-one totally geodesic foliation classified in The-

orem 5.2.
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