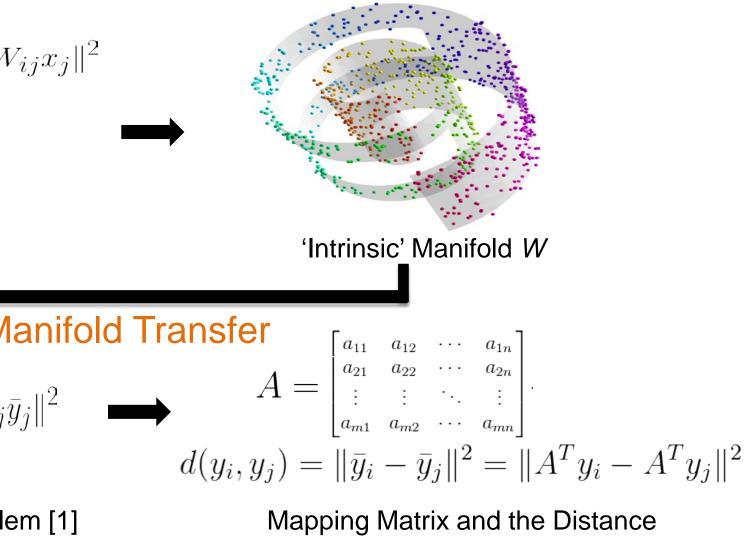


CV Lob Lab



1	$\left\{ \begin{array}{c c} & & & \\ & & & \\ & $	$ \qquad \qquad$
	Sophisticated Features, e.g. CNN	LLE Encoding
2	$\left\{ \begin{array}{c c} & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ $	$ \qquad \qquad$
	Cheap Features, e.g. LBP	Generalized Eigenvector Problem [1]

Metric Imitation by manifold transfer for efficient vision applications

Dengxin Dai, Till Kroeger, Radu Timofte, and Luc Van Gool Computer Vision Lab, ETH Zurich

The code and data are available at http://people.ee.ethz.ch/~daid/MetricImitation/

Experiments

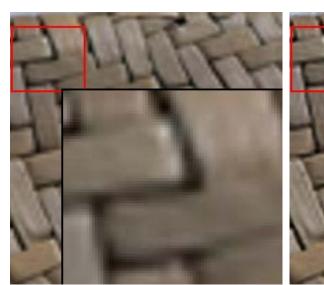
• IWO	τγρε	es of r	nanito	d Str	ucture	es: LL	.E [4	Jand	саре	iger	n [5].										
Clusteri	ng	TFs =	cheap t	arget fe	atures;	SFs =	expe	nsive sc	ource fe	ature	S										
Table 1:	Purity			-	where 50 e rest fo			ages are	e used f	or	Table 2: Purity o		•	•		· ·	,		lasses, testing		half of
	TFs	Μ	Ι	SFs	Μ	Ι	SFs	Μ	Π	SFs		TFs	N	ΛI	SFs	M	Ι	SFs	Μ	Π	SFs
	LBP	MI_LLE	MI_Lap	SIFT-llc	MI_LLE	MI_Lap	CNN	MI_LLE	MI_Lap	OB		LBP	MLLLE	MI_Lap	SIFT-llc	MI_LLE	MI_Lap	CNN	MLLLE	MI_Lap	OB
Scene-15	0.36	0.40	0.46	0.49	0.47	0.48	0.69	0.42	0.48	0.54	Scene-15	0.63	0.67	0.70	0.85	0.65	0.66	0.90	0.61	0.59	0.74
CUReT-61	0.33	0.44	0.46	0.39	0.33	0.41	0.60	0.31	0.37	0.44	CUReT-61	0.62	0.62	0.64	0.65	0.66	0.69	0.77	0.51	0.58	0.68
Caltech-101	0.32	0.34	0.34	0.51	0.37	0.36	0.68	0.37	0.35	0.52	Caltech-101	0.57	0.62	0.60	0.73	0.59	0.57	0.77	0.64	0.63	0.70
Event-8	0.39	0.46	0.46	0.57	0.47	0.47	0.82	0.48	0.48	0.46	Event8	0.70	0.72	0.74	0.80	0.70	0.72	0.89	0.75	0.73	0.80
Retriev	al	TFs =	cheap t	arget fe	atures;	SFs =	expe	nsive sc	ource fe	ature	S										
				ا ا مانانی ا						тг											

Table 3: IVIAP OF Image retrieval with LBP, GIST and PHOG (LGP) as the TFS. 50% images for training and the rest for testing. Decall is set to 0%

50% images for training and the rest for testing. Recall is set to 0:1.														t	the recall	is set to	1.0.				
	TFs LGP	MI MI_LLE MI_Lap		SFs MI ap SIFT-llc MI_LLE MI_La		II MI_Lap	SFs CNN	MI_LLE	MI LLLE MI Lap			TFs	M	I	SFs	Ν	II	SFs	M	Ι	SFs
Scene-15	0.52	0.60	0.61	0.60	0.64	0.64	0.72	0.62	0.63	OB 0.65		LBP	MLLLE	MI_Lap	SIFT-llc	MLLLE	MI_Lap	CNN	MI_LLE	MI_Lap	OB
CUReT-61	0.84	0.95	0.93	0.90	0.94	0.96	0.95	0.92	0.90	0.91	Holiday	0.38	0.50	0.48	0.66	0.50	0.49	0.72	0.48	0.46	0.48
Caltech-101	0.42	0.48	0.46	0.57	0.51	0.51	0.79	0.48	0.48	0.59	Ukbench	0.33	0.39	0.38	0.63	0.44	0.39	0.86	0.36	0.38	0.58
Event-8	0.52	0.63	0.63	0.70	0.65	0.64	0.88	0.60	0.56	0.58	OKOCHCH	0.55	0.57	0.50	0.05	•	0.57	0.00	0.50	0.50	0.00
						T															

Super-resolution

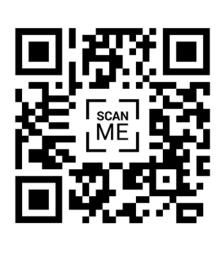
Table 5: Average PSNR on Set5 and Set14.


Benchr	nark	Bicubic	Zeyde <i>et al.</i> [ZEP12]	GR [TDV13]	ANR [TDV13]	NE+LLE [TDV13]	SRCNN [DLHT14]	JOR [DTV15] (5mil)	MI (0.5mil)
Set5	x3	30.39	31.90	31.41	31.92	31.84	32.39	32.55	32.53
	x4	28.42	29.69	29.34	29.69	29.61	30.09	30.19	<u>30.15</u>
Set14	x3	27.54	28.67	28.31	28.65	28.60	29.00	29.09	29.10
	x4	26.00	26.88	26.60	26.85	26.81	27.20	27.26	<u>27.25</u>

Reference

Four vision tasks: image clustering, image retrieval, instance-based object retrieval, and super-resolution Three sophisticated features: the CNN features (4096) [2], SIFT-LLC (21504) [3], and Object Bank (44604) Three cheap features: **GIST** (20), and **PHOG** (40), and **LBP** (59) Two types of manifold structures: IIE [1] and I an Figen [5]

Table 4: MAP of image retrieval by MI on the Holidays and UKbench datasets, when


Bicubic / 25.5 dB

[1] X. He, D. Cai, S. Yan, and H.-J. Zhang. Neighborhood preserving embedding. In ICCV, 2005.

[2] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014. [3] J.Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear coding for image classification. In CVPR, 2010. [4] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323–2326, 2000. [5] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, 2001.

The CNN features teach LBP and GIST

ANR / 26.9 dB

SRCNN / 27.1 dB

MI / 27.7 dB

European Research Council