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In this chapter, one of the most popular and intuitive prototype-based clas-
sification algorithms, learning vector quantization (LVQ), is revisited, and
recent extensions towards automatic metric adaptation are introduced. Met-
ric adaptation schemes extend LVQ in two aspects: on the one hand a greater
flexibility is achieved since the metric which is essential for the classification
is adapted according to the given classification task at hand. On the other
hand a better interpretability of the results is gained since the metric param-
eters reveal the relevance of single dimensions as well as correlations which
are important for the classification. Thereby, the flexibility of the metric can
be scaled from a simple diagonal term to full matrices attached locally to
the single prototypes. These choices result in a more complex form of the
classification boundaries of the models, whereby the excellent inherent gen-
eralization ability of the classifier is maintained, as can be shown by means
of statistical learning theory.

1.1 Introduction

An ubiquitous problem in machine learning is the inference of a classification
model of given patterns into known classes; e.g. the classification of the out-
come of several medical tests into different types of diseases, the classification
of handwritten symbols into one of the letters ’a’, ..., ’z’, or the classification
of photographs into objects depicted on these images. There exist numerous
algorithms to automatically learn a classification given several training ex-
amples, ranging from logic-based approaches which model the class decisions
by rules, statistical approaches which implement e.g. Bayesian inference, up
to many classification algorithms connected to neural networks such as the
simple perceptron or support vector machines [1.13].

Learning vector quantization (LVQ) has been introduced by Kohonen
[1.19] as a prototype-based classification algorithm based on metric com-
parisons of data. It enjoys a great popularity due to several reasons: LVQ
constitutes a classifier which is very intuitive since it represents classes by
prototypical examples in the original data space, and classification takes place
as an inference of the class of the respective closest prototype given a data
point. Thus, the decision rules are interpretable and they can be inspected
by experts in the field who can, for example, directly inspect and verify
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prototypical examples used by LVQ for the classification. Learning rules are
typically based on intuitive Hebbian learning, and the core algorithms can be
implemented in just a few lines of code, i.e. implementation and realization
of the algorithms is very simple. Unlike alternatives such as the perceptron
or support vector machines which are restricted to only two classes in its
basic form, LVQ can naturally deal with any number of given classes with-
out making the classification rule or learning algorithm more complicated.
Similarly, missing values do hardly constitute a problem for LVQ classifiers.
Missing values are simply ignored, and only the known parts are compared to
the LVQ prototype vectors; the prototypes, in turn, simply infer their values
from all data points where the considered attribute is known.

Despite these advantages, LVQ faces several drawbacks in its original form
which were overcome only recently. One major problem of original LVQ al-
gorithms consists in the fact that the underlying learning rules are usually
based on heuristics and a mathematical investigation of their learning be-
havior and generalization dynamics was lacking. This problem has recently
been addressed by several approaches: first, alternative learning rules were
proposed which derive LVQ type learning from an explicit cost function or
statistical model, see e.g. [1.18, 1.29, 1.28]. This way, the objective which is
optimized by the learning rules is stated explicitly and questions such as the
learning dynamics and generalization behavior can be investigated based on
the underlying cost function. Further, extensions of LVQ towards more adap-
tive parameters can be developed in a principled way by means of changing
the cost function. Among several classical heuristic LVQ rules, we will intro-
duce one important LVQ learning rule which has been derived from a cost
function in this chapter.

As an alternative, several approaches try to mathematically investigate
the learning dynamics and generalization behavior of LVQ rules (including
heuristics) in typical model situations. The mathematical treatment becomes
possible if certain assumptions are made (such as the fact that training pat-
terns are independent and identically distributed, and the limit of infinite
dimensionality is taken) such that powerful methods which stem from sta-
tistical physics can be applied. These methods yield very interesting results
which demonstrate the ability (or inability) of several LV(Q heuristics to learn
the classification rules underlying specific simple though prototypical settings
[1.5]. We will not consider these methods in this chapter, rather, we refer to
the recent overview article [1.4].

As further possibility, the worst case generalization ability of LVQ-
classifiers can be investigated using statistical learning theory, resulting in
explicit bounds on the generalization behavior of the models which are in-
dependent of the underlying (unknown) data distribution [1.16]. Since these
bounds hold for every possible input distribution, they are rather loose in
general. However, they reveal the important parameters which influence the
generalization behavior as well as the scaling of the error with respect to these



1. Metric Learning for LVQ 111

parameters. Interestingly, it can be shown that the bounds do not depend on
the input dimensionality for LVQ networks, such that excellent generaliza-
tion can be expected for LVQ networks also for high-dimensional data. In this
chapter, we will shortly introduce this framework and we will explain a few
relevant facts which can be proved within this framework for LVQ networks.

One major drawback of original LVQ algorithms with respect to practical
applications consists in the limitation of LVQ to the standard Euclidean met-
ric. In consequence, prototypes represent isotropic classes, and class bound-
aries are formed by hyperplanes which are perpendicular to the lines connect-
ing the prototypes. This setting is inappropriate for practical applications:
often, input dimensions are not scaled equally such that the relevance of the
dimensions for the classification does not coincide. Despite this fact, the Eu-
clidean metric scales every dimension equally, such that single dimensions can
easily dominate the classification simply due to their inappropriate scaling. A
related problem is particularly pronounced for high-dimensional data. Often,
every dimension is disrupted by a small amount of noise, which accumulates in
high dimensionality such that the overall classification can become meaning-
less. The situation might be even more complex since, in general, correlations
of the data dimensions influence the classifications and should be taken into
account for the decisions. Because of these aspects, generalizations of LVQ to
more complex metric schemes have been proposed, one particularly relevant
approach being the generalization to adaptive metrics which can set relevance
terms of the input dimensions or even the data correlations according to the
given classification task [1.18, 1.6]. For LVQ schemes which stem from a cost
function, learning rules can be directly derived thereof taking the gradients,
for example. We will introduce this intuitive and elegant scheme for general
matrix learning in this chapter.

1.2 Learning vector quantization

Learning vector quantization (LVQ) as introduced by Kohonen [1.19] aims
at learning a clustering given example data. Assume labelled data points
{zi,y;} € R® x {1,...,C} are given, the training set. An LVQ network
consists of k prototypes w; € R™ in the same space as the inputs, which are
labelled by c(w;) € {1,...,C}. The prototypes define a classifier by means
of a winner takes all rule: for a point & € R™ the output class is determined
by

c(x) = c(w;) such that w; = argmin,, d(z,w;) (1.1)

where d(x,w;) usually denotes the squared Euclidean distance

n

d(z,w;) =Y (] — [w,]:)*. (1.2)

i=1
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The subscript [-]; refers to the ith component of the vectors. The receptive
field of prototype w; is defined as the set of points which pick this prototype
as their winner. Obviously, LVQ defines a classification which is constant on
the receptive fields of the prototypes.

The goal of learning is to adapt prototypes automatically such that the
class label of data points in the receptive fields coincide with the label of the
respective prototype. Hence the classification error

Hxi | c(x:) # yi} (1.3)

should be minimized. Different strategies to achieve this goal have been pro-
posed. LVQ1 implements Hebbian learning as a direct heuristic. Prototypes
are initialized randomly. Afterwards, training points «; are presented repeat-
edly in random order, and the location of the prototype w; which becomes
winner for x; is adapted according to the following rule:

_ wi+n-(r;, —w;) if e(w;)=1y;
wj{w;—n-(wi—w;) ifc(wj-);;éyi (1.4)

Interestingly, this simple learning rule leads to a quite efficient algorithm
which displays remarkable results. Kohonen proposed a few alternatives
which account for a faster convergence or better adaptation of the decision
boundaries. One popular alternative, for example, is given by LVQ2.1, which
adapts the two closest prototypes in every step as follows: if the closest two
prototypes w;, and wj, belong to different classes and they fall into a win-
dow near the decision boundary, simultaneous adaptation of both vectors
wj, and wj, according to the LVQ1 learning rule takes place. Otherwise, no
adaptation takes place. Further variants include, for example optimized LVQ
which has a data-adapted learning rate for fast convergence, or LVQIII which
is often used to further tune the classification borders after initial training
with one of the other methods.

All LVQ schemes as introduced above have the drawback that their learn-
ing rule is heuristically motivated, thus, their dynamical behavior and con-
vergence properties are not clear. One might attempt to derive LVQ1 or
LVQ2.1 as gradient descent methods of cost functions by formally integrat-
ing the models. By symbolic integration, interpreting the learning rule (1.4)
as a stochastic gradient descent, we obtain the following cost term

1 5y, .
Ervgr = 9 Z(SN(wiij ) (_1)1+ vietws) . d(ai, wj) (1.5)
1,

for LVQ1, where 6; ; denotes the Kronecker delta-symbol and N (x;) refers to
the prototype closest to x;. For LVQ2.1, formal integration yields the formula

1
Eivaz1 = 5 > SN+ ()0, ON - () L (w3, wy) - (d(@i, wj) — d(s, wy,))
N
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where N (x;) refers to the closest prototype to @; with class label y; and
N~ (z;) refers to the closest prototype to x; with a class label different from
the label y;. 1w (w;, wy) implements the window rule of LVQ2.1.

Note that, for both cases, the gradient of the cost function is not well de-
fined if points x; lie at the boundaries of receptive fields. Thus, the cost func-
tion cannot directly be extended towards the case of an underlying smooth
distribution of data points in a real vector space according to some density
function. One can easily see that, for the cost function (1.5), such an exten-
sion cannot exist in principle, since the function would be discontinuous at
borders of receptive fields. Further, the discrete cost function (1.5) is only
locally a valid cost function, since the overall value of Fryqq.1 is smaller if
there exist many misclassified points compared to a correct classification.
Compared to this fact, the cost function (1.6) allows an extension towards
a continuous input distribution by means of an interpretation of the indica-
tor functions by means of delta-functions. Optimizing this cost term directly,
however, shows instabilities and divergence due to the unboundedness of this
cost function, such that, in practice, a subtle tuning by means of the window
rule becomes necessary [1.22].

Several researchers have proposed alternative LV(Q schemes which are
directly derived from an appropriate cost function, such that convergence and
learning dynamics are explicitly stated in terms of the objective, see e.g. [1.28,
1.29,1.23,1.18, 1.17]. We will focus on the approach [1.23] and generalizations
thereof, since it provides a very convenient extension of LVQ2.1. The cost
function underlying generalized LVQ (GLVQ) as introduced in [1.23] has the
form

1 d(zi,w;) — d(x;, wy)
E e ) N wiON— (m P i ’ 1.
D D t = )

4,5,k

where @ : R — R is a strictly monotonic increasing function such as the
identity or the logistic function. This cost function involves the same term
as LVQ2.1, the comparison d(z;, w;) — d(x;, wy) which is negative iff the
classification of x; is correct, and which is smaller the larger the difference of
the distance to the closest correct prototype versus the closest wrong proto-
type. Unlike LVQ2.1, this cost term is scaled by means of the denominator
such that summands in (—1,1) arise. These are possibly subject to a further
nonlinear transformation @ — however, it is also possible to choose @ as the
identity.

It has been shown in [1.18] that the definition (1.7) constitutes a valid
cost function also in the case of an underlying continuous smooth input dis-
tribution. In this case, the borders of receptive fields are realized by means
of delta functions and the computation leads to update rules which are valid
for every possible data point. The general learning rule can be derived from



VI Biehl, Hammer, Schneider, Villmann

(1.7) by means of a stochastic gradient descent. Prototypes are initialized
randomly and the repeated presentation of data points x; give rise to the up-
date of the closest prototype w; with the same label as x; and the prototype
wy, with a different label than x; as follows:

od iy Wi
wj=wj+n-¢’-u+(wi)-% (1.8)
J
od 15

where @' is evaluated at (d(x;, w;) — d(z;, w))/(d(x;, w;) + d(xz;, wy)), the
factor puT(z;) equals 2d(x;, w)/(d(x;, w;) + d(zi, wy))?, the factor p=(x;)
equals 2d(z;, w;)/(d(z;, w;) +d(zi, w))?, and the derivative of the squared
Euclidean metric is

W = 2z —w). (1.10)

Note the similarity of this cost function to the LVQ2.1 update rule: instead
of using a window technique, the LVQ2.1 updates are scaled using the factors
put(x;) and p(x;), respectively, which stem from the denominator of the
summands of the cost function. It has been demonstrated e.g. in [1.23, 1.22]
that a robust convergence and classification accuracy can be obtained this
way provided a suitable function & is chosen.

A simple example of a GLVQ network is displayed in Fig. 1.1: three mul-
timodal classes in two dimensions are trained using two prototypes per class,
random initialization of the prototypes, constant learning rate n = 0.01,
and 500 epochs. Fig. 1.1 shows the final prototype locations and the re-
ceptive fields, resulting in a classification accuracy of 98.89%. This excel-
lent classification accuracy can be obtained because the setting can be de-
scribed by means of prototypes and their receptive fields based on Eu-
clidean distances. Fig.1.1 (right) displays the behavior of GLVQ if the two
dimensional data set is embedded in ten dimensions the following way:
(z1,72) = (21,72, 1 + 11,21 + M2, 21 + 13, T1 + N4, 75,6, 17, Ns) Where 7;
refers to noise with increasing variance. In this case, data are disrupted by
noise which does not contribute to the classification accuracy. It can be ex-
pected that the classification accuracy decreases since the standard Euclidean
metric cannot account for this fact. Indeed, the classification accuracy drops
to at most 83.33% due to the included noise, and the result of several runs
shows small differences due to the fact that several local optima of the op-
timized cost function exist for this setting. In Fig. 1.1, the projection of the
resulting classifier to the first two dimensions is depicted and receptive fields
in these two dimensions are computed.

This observation suggests that it would be fruitful to change the underly-
ing metric in this classification task. The general formulation of LVQ learning
schemes in terms of cost functions has the benefit that the integration and
adaptation of additional model parameters besides the prototype locations
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Fig. 1.1. Left: A simple two-dimensional data set which can easily be learned with
LVQ. The result of a GLVQ run is depicted. Right: If the same data set is embedded
into ten dimensions by adding noise, the classification accuracy of GLVQ decreases
from 98.89% to only 83.33%, as depicted on the right image by projecting onto the
first two relevant dimensions.

becomes easily possible, since a well-defined interface is offered by means of
the cost function. This possibility has been used to integrate metric adap-
tation into the learning schemes. As seen in the previous example, a wrong
choice of the metric, e.g. induced by useless noisy dimension can severely
disrupt the classification capacity of GLVQ networks, thus metric adaptation
becomes necessary.

1.3 Metric learning

One drawback of LVQ classification schemes given by (1.1) consists in the re-
striction of the metric to the standard squared Euclidean distance (1.2). This
restricts the classes to decision boundaries which stem from isotropic classes,
i.e. the decision boundaries are given by hyperplanes which are perpendicular
to the lines connecting the prototypes. This setting is problematic if dimen-
sions are not scaled properly. Further, numerical problems might occur for
LVQ schemes if huge dimensionality has to be dealt with and noise accumu-
lates. It has been discussed e.g. in [1.20] that Euclidean distances become
more and more meaningless if the dimensionality of the data increases. This
problem is partially prevented by LVQ schemes which consider only differ-
ences of distances. Nevertheless, when irrelevant and noisy data is included,
it can become essential to identify the relevant dimensions for a given clas-
sification task. Because of this reason, much research exists on methods to
adapt the metric according to the given classification at hand, such as prun-
ing methods (see e.g. [1.14, 1.32, 1.15]) or a direct adaptation of the metric
used for classification (see e.g. [1.36]).

A few heuristics to adapt the metric for LVQ schemes have been proposed
e.g.in [1.8, 1.21]. Here, we present a more principled approach which has been
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introduced in [1.18] and later been extended in [1.6] to adapt the metric based
on a formulation of LVQ learning in terms of a cost function. The Euclidean
distance (1.2) is substituted by a more general form such as

da(z,w;) = Nillzli — [w,]:)? (1.11)
=1

where \; > 0 with >, A; =1 or
da(@, wj) = (x —w;)" - A+ (x — wy) (1.12)

where A is a n xn symmetric and positive semidefinite matrix with ) [A]; =
1. Note that definiteness can be enforced by setting A = 202, for example,
the regularization then corresponds to Y [A]; = >-,;[2]F = 1. 2 € R™"
has the same rank as A. These choices provide valid metrics, whereby the
diagonal metric (1.11) introduces relevance terms which can weight the sepa-
rate dimensions independently according to their contribution for the general
learning task. In particular, useless dimensions can be dropped by setting the
corresponding relevance to a small value. The full matrix (1.12) refers to a
general metric which, besides appropriate scaling, can take correlations of the
data dimensions into account. It provides a general linear transformation {2
of the data. This way, the shapes of receptive fields do no longer stem from a
metric with isotropic isobars, rather, isobars have the form of achses aligned
resp. arbitrary ellipsoids.

The transformations provided by these more general metrics can either
be assigned globally to the whole data space, or they can be applied locally
to the distance calculation of every specified prototype. In the latter case,
the metric becomes parameterized as

da, (2, w;5) = (& —wj)' - A - (& — wy) (1.13)

where A; = Qjﬁ;f constitutes a positive semidefinite matrix which is now
attached to the prototype w;. Note that, this way, local matrix adapta-
tion becomes possible, and cluster boundaries obtain a more general form
described by quadratic equations. In the general setting, convexity or even
connectedness of receptive fields need no longer hold. We will consider this
most general setting in the following.

The question occurs how metric parameters can be determined to give
an optimum classification accuracy. Since we have considered LVQ schemes
which are derived from an explicit cost function, the derivation of explicit
learning rules is rather straightforward: A more general metric such as e.g.
(1.13) can directly be included into the update rule for prototypes, eqn. (1.9),
where the more general metric leads to the derivative

Od s, (x,w;)

awj = _2/1]' . (:1: — wj) (114)
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Further, the updates for the prototypes are accompanied by updates for the
metric parameters §2; and {2, assigned to the closest correct and wrong pro-
totype, respectively, as follows:

ddy, (i, wj)

AR~ — -yt () - oo (1.15)
J
Ay ~ & - (1) - %ﬂ:w’f) (1.16)

where the quantities @', u™ and u~ are as beforehand, using the more general
metric, and the derivative of the distance with respect to the matrix yields

9dy, (, w;)
O(82;)im

See e.g. [1.6] for the exact derivation of this update rule and [1.17] for a proof
that this rule is valid also for a smooth continuous underlying input distri-
bution. This gives the update rule for the most general case, adaptation of
individual full matrices attached to the prototypes. The corresponding learn-
ing algorithm is referred to as local generalized matrix LVQ (local GMLVQ).
The update for one global matrix follows thereof by summation, referred to
as GMLVQ. Similarly, the update of a simple diagonal matrix can be ob-
tained thereof reducing the general matrix A; to diagonal form, referred to
as (local) generalized relevance LVQ ((local) GRLVQ). In all cases we require
> ;[45]i = 1 for all j to prevent degeneration towards the meaningless global
optimum given by a vanishing matrix. This constraint is simply realized by
an explicit normalization after every update step.

Note that this generalized learning rule for the matrix parameters can
be interpreted in the standard Hebbian style if a diagonal matrix is present:
dimensions are decreased according to the squared distance of a data point
to the closest correct prototype in every dimension, and increased according
to the squared distance of the closest wrong prototype in every dimension.
Taking normalization into account, this is a reinforcement of the dimensions
where data point and correct prototype are close together, resp. a weaken-
ing of the dimensions where the wrong prototype and the data point are
close together. For full matrix update, the correlations of the dimensions of
the transformed data and the considered training point are also taken into
account.

We would like to demonstrate the increased classification power of these
more general LVQ forms in a simple example. First, we look again at the data
displayed in Fig. 1.1, embedded in ten dimensions, as before. Instead of the
standard Euclidean metric, we use a global diagonal metric as introduced in
Eqn. (1.11) with adaptive relevance parameters for the separate dimensions.
This way, the noise can be suppressed by the LVQ classifier by setting the
relevance of the corresponding dimensions to small values. Training using the
same parameters as before and the learning rate 0.001 for the relevance terms

=2 [2(x —wy)] ([x] — [w;]i) (1.17)
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leads to a classification accuracy of 98.89%, which is the same accuracy as for
the original two dimensional data set. The relevance profile of the classifier
is depicted in Fig. 1.2. As can be seen clearly, the relevance profile effectively
reduces the problem to the original two dimensional problem, such that the
same accuracy as for the simple two-dimensional setting can be achieved.

Next, we consider the even more complicated data set which is obtained
by transforming the ten dimensional data by a random matrix in (0, 1)10x10,
This way, the relevant dimensions for classification are no longer aligned with
coordinate axes. In consequence, GRLVQ using the same parameters as be-
forehand yields to a decreased accuracy of about 75%, the best performance
being around 77.78%, depending on the initialization of the prototypes. Un-
like the previous setting, several local optima of the cost function exist, and
a different optimum is found depending on the run. GLVQ without metric
adaptation achieves only about 67.78% accuracy. Interestingly, as depicted in
Fig. 1.2 (right), one solution found by GRLVQ emphasizes only few dimen-
sions of the data, hence a very simple solution of the problem is favored by
the algorithm which can increase the classification accuracy in comparison to
simple GLVQ.

We apply full matrix adaptation for the same data set, using the same
training parameters. The achieved classification accuracy of 94.44% approx-
imates the classification accuracy of the original data set, since GMLVQ can
rotate the data arbitrarily in Euclidean space, thus effectively reducing the
data set to the original one. By the construction of the method, the matrix
2 found by GMLVQ constitutes one transformation of the data set such that
standard LVQ becomes easier in the projected space. Interestingly, the found
transformation clearly indicates that a two dimensional subspace is used for
classification since the eigenvalue profile is almost zero for all but the largest
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Fig. 1.2. Left: Relevance profile learned by LVQ with diagonal metric adaptation,
obviously, the problem is almost reduced to the original two dimensional problem
because of A; ~ 0 for all ¢ > 3. Right: Relevance profile for the ten dimensional
problem transformed by a random matrix in R*©*!?, Interestingly, one major com-
ponent (8) is identified and data are projected to only few dimension.
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two eigenvectors, see Fig. 1.3 (right). The projection of the data and pro-
totypes by means of this matrix {2 is depicted in Fig. 1.3 exemplarily for
dimensions 3 and 10 of the data. Obviously, the original data are found up
to a rotation and scaling. Note that the transformation (2 is not unique and
different equivalent projections can be found. Correspondingly, projections
onto alternative dimensions either look qualitatively the same like Fig.1.3,
or they display a strong correlation of the considered dimensions, indicating
that the original data are recovered and stored in several of the projected
points. It would be possible to obtain a unique representation by referring
to the unique positive and symmetric root of A instead of {2, which gives
qualitatively the same image as depicted in Fig. 1.1.

The presented examples benefit from a global adaptation of the metric to
take scaling and correlations of the axes into account, resulting in an adaptive
global linear transformation of the data such that the classification becomes
easier in the projected space. Geometrically, the transformations correspond
to axis aligned or general ellipsoidal isobars of the clusters, instead of only
spherical shapes. In practical applications, it is often the case that a specific
scaling behavior is valid only locally around given prototypes, and relevant
data correlations differ in different regions of the input space. In such set-
tings, ellipsoidal cluster shapes with different main axes centered around the
prototypes are needed. This situation can be taken into account by LVQ
schemes if the metric parameters are attached to the different prototypes,
and every prototype is allowed to determine the local metric individually.
As a consequence, the receptive fields are no longer determined by global
transformations, but local transformations, i.e. the separating borders are
determined by a quadratic equation rather than a linear one, and the recep-
tive fields need no longer be convex nor connected, see e.g. [1.6] for a very
intuitive example which demonstrates this effect.
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Fig. 1.3. Left: Data and prototypes found by GMLVQ when projected back using
the trained matrix {2, displaying dimensions 3 and 10. Obviously, the original data
is recovered up to scaling and rotation this way. Right: Profile of the eigenvalues
found by GMLVQ for the transformed data set.
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LVQ with matrix adaptation has successfully been applied to a number
of practical applications. Besides benchmark scenarios reported e.g. in [1.25],
LVQ with local or global matrix adaptation has been used for the analy-
sis of satellite remote sensing data [1.35], medical image processing [1.1],
classification of gene expressions measured by micro- and macroarray data,
respectively [1.3, 1.31], content based image retrieval [1.9], analysis of mass
spectra in the frame of clinical proteomics [1.24], online object segmentation
in digital images [1.12], or the supervision of technical systems such as piston
engines [1.7]. In particular for applications in biology and medicine, the ex-
plicit interpretability of the found matrices in terms of relevance factors and
relevant data correlations is thereby of particular importance. It opens the
way towards efficient feature construction in image analysis, and identifica-
tion of potential biomarkers when analyzing mass spectra, for example.

1.4 Generalization ability

When dealing with classification tasks, the goal is usually not to achieve a
small classification error on the training set, rather the underlying regularity
for the classification of arbitrary data points should be learned. Therefore
the generalization ability of classification schemes is usually estimated by
means of the classification error of data not used for training, or by means of
statistical estimators with less variance such as crossvalidation in practical
applications [1.13]. Nevertheless, it is relevant to guarantee that a classifica-
tion method can generalize to unseen examples in principle — this does not
necessarily hold for arbitrary algorithms (such as e.g. algorithms which only
learn by heart using a table look-up).

Further, it is interesting to know which parameters influence the general-
ization error of the classifier. For LVQ, there exists a couple of free parameters
such as the number of prototypes, the data dimensionality, and the complex-
ity of the adaptive metric. It would be worthwhile to know whether these
parameters influence the generalization ability on the same scale, requiring
the same amount of training examples to fix the corresponding free param-
eters in a given training setting. Note that it does in general not hold that
the generalization ability and the number of necessary examples for valid
generalization scales linearly (or even polynomially) with the number of free
parameters of a classifier: two counterexamples are the support vector ma-
chine, which generalizes well independent of the input dimensionality of the
classifier (which determines the number of free parameters), rather, the so-
called margin is the relevant quantity for characterizing the generalization
ability in this case [1.34]. Conversely, there exist simple function classes with
only one parameter, such as the class {z — cos(tz)|t € R} which do not allow
valid generalization in the classical sense of PAC learnability [1.33, 1.30].

LVQ networks show an astonishing robustness towards overfitting. Even
if the number of prototypes is chosen higher than necessary, this does hardly
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decrease the generalization ability since, usually, the prototypes just share
the prototypical positions in the data space due to the underlying Hebbian
learning rule. This observation has first been formalized in [1.11], where the
generalization ability of simple LV(Q networks has been characterized using
computational learning theory. These results were later extended towards
more general schemes including adaptive metrics e.g. in [1.16, 1.6]. Here we
introduce the setting formalized within statistical learning theory and we
give a short overview of the most important bounds for LVQ networks. The
overall argumentation follows the general theory of large margin classifiers as
laid out in [1.2] and adapted to LVQ networks in [1.6].

Assume that a LVQ networks is given with k prototypes w; and inputs in
R™. For simplicity, we restrict to the case of binary classifications, i.e. class
labels {—1,1} are considered. We refer to prototypes labeled by —1 by w;
and to prototypes labeled by 1 by the notation w;r. Classification of a LVQ
network takes place by a winner takes all rule, which can be written as

x — f(x) = sgn (mi_n{dm (2, w;")} — min{dy, (z, w?)}> (1.18)
w; i

where d, refers to the (possibly matrix weighted and local) distance measure,
and sgn selects the sign +1 of the overall value.

In the following argumentation, we will not be interested in the question
of how exactly a certain LVQ network is trained. Rather, the role of the
learning algorithm is characterized by the fact that the training error is small
for a given training set. We are interested in the question whether this fact
implies that the error for arbitrary, possibly unseen data points is also small.
Assume that the underlying regularity which should be learned is described
by an (unknown) probability distribution P on R™ x {—1,1}. Then the goal
of learning is to achieve a small generalization error

Ep(f) = Py # f(2)) (1.19)

where f is the function implemented by the LVQ network as denoted in
(1.18). Since P is not known, the empirical error

Eu(f) = Hys # fl@)}] (1.20)
=1

is usually minimized during training. Thereby, it is assumed that the training
set {(x;,y:) |4 =1,...,m} is representative for the unknown regularity, i.e.
the examples are drawn independently and identically distributed according
to P. The capability of LVQ of generalizing to new data means that a small
empirical error (1.20) also includes a small generalization error (1.19).
Obviously, the empirical error would be representative for the real error if
the data were not used to infer the function f, e.g. «; denote data from a test
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set. In our situation, however, it is assumed that the data (x;,y;) are used
for training and the function f is chosen such that the empirical error on the
training data becomes small. Therefore, f depends on the given data, and
it will change e.g. if the training set is enlarged. The trick to obtain bounds
also in this setting relies on the derivation of uniform bounds of the deviation
of the empirical error and the real error which hold simultaneously for every
possible function f implemented by a LVQ network.

For this purpose, we specify the class of functions which can be realized
by a LVQ network with p prototypes:

F={f:R" - {-1,1}]| f is defined by Eq. 1.18} (1.21)

Further, we assume that inputs are restricted to a ball |x| < B for some B >
0, and, correspondingly, prototypes also fulfill |w;| < B. Further, we assume
that /4; is symmetric and positive semidefinite for every ¢ with ,[4;];; = 1.
We refer to this restricted class also by the symbol F. We are interested in
bounds of the form Ep(f) < Ep(f) + e(m) which hold simultaneously with
high probability for every f € F and sample drawn i.i.d. according to P.
Thereby, e(m) will include the relevant parameters of the learning method
such as the number of prototypes for LVQ.

Similar to corresponding bounds for support vector machines, we do not
directly derive bounds of this form which depend on F, rather, we look at
a slight modification which also takes the security of classifications provided
by f € F into account. We define the following real-valued function which is
obtained from f as given in 1.18 by dropping sgn:

My :x— <mi_n{d/1i (x,w; )} — an{dAi (a:,wj)}) (1.22)

i i

The sign of this function determines the output class. Simultaneously, the
absolute value of this function indicates the security or margin of the clas-
sification for the input x. The larger this margin, the more robust is the
classification of & with respect to changes or noise in the input and classi-
fication parameters, since |M(x)| gives the difference of the distance of x
from the closest correct versus the closest wrong prototype. We refer to the
function class defined in analogy to 1.21 by M.

This margin can be integrated into the empirical error. The empirical error
1.20 only counts points which are misclassified by f. The extension towards
My gives us the opportunity to judge correct but insecure classifications
differently. Thus, we can take into account a margin of the classification
which should be obeyed by the LVQ function. Formally, we fix some p > 0, the
margin accepted by the classification, and define the associated loss function

1 ift<0
L:R->Rit—<c1l—t/p ifO<t<p (1.23)
0 otherwise
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We can extend the empirical error 1.20 correspondingly as

Ef(f) = L(yi- M¢(x;))/m (1.24)

i=1

This term accumulates the misclassified points and also punishes all correct
classifications if their margin is smaller than p.

As shown in [1.2], it is in general possible to bound the deviation of the
real error and this extended empirical error with probability at least 1 —¢§/2
for § € (0, 1) uniformly for every f € F as follows:

Ep(f) < B + 2 - Ru(Mr) + 1/ 2L (1.25)
p 2m

if the m samples are drawn i.i.d. with respect to P. The key quantity of this
bound is the so-called Rademacher complexity R,,(Mxz) of the function class
Mg defined by LVQ classifiers, a measure of the richness of this function
class. The richer the function class, the more degrees of freedom have to be
specified by the training examples and, in consequence, the larger the bounds
on a possible deviation of the empirical and real error. The Rademacher

complexity is defined as
) (1.26)

where o; are independent uniform {—1, 1}-valued random variables, and ex-
pectation of x; is taken with respect to the marginal distribution induced by
P on R™. This measure, in essence, counts the fraction of cases in which, on
average, a random classification of m data points (realized by o;) can be im-
plemented by a function in M such that the signs coincide and the absolute
values are as large as possible.

It is possible to find explicit bounds on the Rademacher complexity of
LVQ function classes as specified in 1.22 using techniques established in [1.2]
as detailed in [1.26]. We obtain the overall bound

k2B3 + 1n(1/(5)>

2 m
EZO}‘ : Mf(a:i)

i=1

Rm(M]-') = Ewl,...,meal,...,am ( sup
MyeMgF

N (1.27)

with probability at least 1 — §/2 where k refers to the number of prototypes
and B the maximum size of the inputs and prototypes. Thus, the overall
bound

. 1 (kKB In(1/5)
Ep(f) < m(f)+\/%0< p; +min{1,p}> (1.28)

results which holds with probability at least 1 — § simultaneously for every
function f € F. Since this is valid for every such function f, prototypes

Rm(M]:) <0 <
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as well as local matrix parameters can be adapted according to the given
training setting without affecting the bound. I.e. the bound also holds in the
most general setting of complete local adaptive matrices of LVQ classifiers.

In principle, the bound states that the difference of the real error and the
extended empirical error, taking the margin p into account, decreases with
v/m, m being the number of training examples. Important parameters of the
LVQ model which influence this bound are (besides the achieved training
error and margin) the number and the size of the prototypes. Interestingly,
the number of free parameters is not directly included in this bound, which
is O(k - n?) where n denotes the input dimensionality of the classifier. The
dimensionality of the data contributes only indirectly through the margin p.
Thus, similar to support vector machines, large margin generalization bounds
can be obtained for local GMLVQ which are independent of the input dimen-
sionality.

Naturally, the question occurs how to choose the margin parameter p in
this bound. Eqn. 1.28 holds for every p > 0, but it will give different results
for different values, since a balance between a low empirical error and a low
structural term stemming from the function class has to be obtained. In
practice, p will be chosen a posteriori according to the margin which can be
achieved on (large parts of) the training set. Eqn. 1.28 does not hold for this
scenario, since, in this case, p is no longer independent of the data. However,
it is possible to generalize the above inequality such that bounds for arbitrary
(posterior) p can be derived thereof, whereby the strict dependence on p is
substituted by a prior believe value in the flavor of PAC-Bayesian bounds.
We refer to [1.26] for further details.

We would like to conclude with a short look at the concrete training al-
gorithms for LVQ networks. The bound 1.28 holds for every LVQ network
regardless of the underlying training algorithm. However, it can be expected
that a training algorithm which does not only reduce the number of misclassi-
fications but which also has a look at the margin of the classification would be
beneficial. Note that the margin | min,, - {d, (&, w; )} —min, + {d4, (z,w;)}|
directly corresponds to the nominator of the summands optir;lized by GLVQ
and extensions as well as by LVQ2.1. Thus, it can be expected that training
algorithms based on this cost function display an inherent tendency towards a
good generalization of the classifier. Interestingly, in applications, one can of-
ten observe a tendency of matrix adaptation towards simple solutions, i.e. few
dimensions are emphasized by the adaptive metric and the remaining ones
are effectively dropped, as we have already seen in one example as depicted
in Fig. 1.2.

1.5 Conclusions

We have discussed prototype-based classification algorithms in terms of the
popular LVQ family, and we have put these algorithms into one mathematical
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framework by referring to underlying cost functions. This point of view allows
to easily generalize LVQ schemes towards very efficient and more powerful
classifiers which extend the original LVQ scheme by adaptive metrics. This
extension, though conceptually simple, drastically increases the applicability
of LVQ classifiers which would be otherwise restricted to comparably simple
low dimensional and Euclidean settings. While increasing the capacity of LVQ
classifiers, these extensions maintain or even improve the interpretability of
prototype-based classification rules by introducing additional terms which
can be directly inspected such as a relevance weighting of the data dimensions.
This scheme has proven beneficial in a variety of application areas ranging
from the supervision of technical systems up to the analysis of biomedical
data, as referenced in this chapter.

Interestingly, besides the increased capacity of LVQ classifiers, their ex-
cellent generalization ability is maintained by these models. This observation
can be substantiated by an explicit mathematical framework stemming from
computational learning theory, which allows the derivation of explicit worst
case generalization bounds of LVQ classifiers, which demonstrate that these
models can be interpreted as large margin classifiers similar to support vec-
tor machines. These mathematical foundations as well as the dramatically
improved capability of LVQ networks makes them state-of-the-art classifiers
with the interesting benefit of a direct interpretability of the models and
linear runtime depending on the number of training examples.

GLVQ without matrix adaptation constitutes a O(n) algorithm, n refer-
ring to the data dimensionality. This complexity is not increased if relevance
matrices are adapted during training, resulting in a highly efficient and flexi-
ble model. When dealing with full matrices, however, the complexity increases
to O(n?) which becomes infeasible for large input dimensionality. Therefore,
it might be advisable to priorly reduce the ranks of the included matrices.
This scheme has been proposed e.g. in [1.10]. In addition, further regulariza-
tion might be interesting such as a controlled transition of the matrix from
the standard Euclidean form to an adaptive matrix with possibly reduced
rank. One very interesting possibility to achieve this goal using a simple reg-
ularization term has recently been introduced in [1.27].
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