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Metric Learning for Text Documents

Guy Lebanon

Abstract—Many algorithms in machine learning rely on being given a good distance metric over the input space. Rather than using a
default metric such as the Euclidean metric, it is desirable to obtain a metric based on the provided data. We consider the problem of
learning a Riemannian metric associated with a given differentiable manifold and a set of points. Our approach to the problem involves
choosing a metric from a parametric family that is based on maximizing the inverse volume of a given data set of points. From a statistical
perspective, it is related to maximum likelihood under a model that assigns probabilities inversely proportional to the Riemannian volume
element. We discuss in detail learning a metric on the multinomial simplex where the metric candidates are pull-back metrics of the Fisher
information under a Lie group of transformations. When applied to text document classification the resulting geodesic distance resemble,

but outperform, the tfidf cosine similarity measure.

Index Terms—Distance learning, text analysis, machine learning.

1 INTRODUCTION

ACHINE learning algorithms often require an embed-

ding of data points into some space. Algorithms such as
k-nearest neighbors and neural networks assume the embed-
ding space to be R", while SVM and other kernel methods
embed the data in a Hilbert space through a kernel operation.
Whatever the embedding space is, the notion of metric
structure has to be carefully considered. For high-dimen-
sional structured data such as text documents or images, it is
hard to devise an appropriate metric by hand. This has led, in
many cases, to the use of default metrics such as the pixel-
wise Euclidean distance in images and the cosine similarity
term frequency distance in text documents. These assump-
tions of default metrics is often used without justification by
data or modeling arguments. We argue that, in the absence of
direct evidence of Euclidean geometry, the metric structure
should be inferred from the available data. The obtained
metric may be useful in learning tasks such as classification
and clustering through algorithms such as nearest neighbor
and k-means. The learned metric d may also be useful for
statistical modeling of the data through custom probability
distribution such as p(z) = Z ! exp(—d?(x, ) /20?).

Several attempts have recently been made to learn the
metric structure of the embedding space from a given data
set. Saul and Jordan [12] use geometrical arguments to learn
optimal paths connecting two points in a space. Xing et al.
[13] learn a global metric structure that is able to capture
non-Euclidean geometry. The learned metric is global and
not local as the resulting distances are invariant to
translation of the data points. While an invariant metric
may be desirable, in some cases, it is often not natural for
compact or bounded manifolds. Lanckriet et al. [6] learn a
kernel matrix that represents similarities between all pairs
of the supplied data points. While such an approach does
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learn the kernel structure from data, the resulting Gram
matrix does not generalize to unseen points.

Learning a Riemannian metric is also related to finding a
lower dimensional representation of a data set. Work in this
area includes linear methods such as principal component
analysis and nonlinear methods such as spherical subfamily
models [2], locally linear embedding [11], and curved
multinomial subfamilies [3]. Once such a submanifold is
found, distances d(z, y) may be computed as the lengths of
shortest paths on the submanifold connecting « and y. As
shown in Section 3, this approach is a limiting case of
learning a Riemannian metric for the high-dimensional
embedding space.

Lower dimensional representations are useful for visua-
lizing high-dimensional data. However, these methods
assume strict conditions that are often violated in real-
world, high-dimensional data. The obtained submanifold is
tuned to the training data and new data points will likely lie
outside the submanifold due to noise. It is necessary to
specify some way of projecting the off-manifold points into
the manifold. There is no notion of non-Euclidean geometry
outside the submanifold and if the estimated submanifold
does not fit current and future data perfectly, Euclidean
projections are usually used.

Another source of difficulty is estimating the dimension
of the submanifold. The dimension of the submanifold is
notoriously hard to estimate for high-dimensional sparse
data sets. Moreover, the data may have different lower
dimensions in different locations or may lie on several
disconnected submanifolds, thus violating the assumptions
underlying the submanifold approach.

We propose an alternative approach to the metric learning
problem. The obtained metric is local, thus capturing local
variations within the space and is defined on the entire
embedding space. A set of metric candidates is represented as
a parametric family of transformations or, equivalently, as a
parametric family of statistical models and the obtained
metricis chosen from it based on some performance criterion.
We examine the application of the metric learning techniques
in the context of classification of text documents and images
and provide experimental results for text classification.

In Section 3, we discuss our formulation of the
Riemannian metric problem. Section 4 describes the set of
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metric candidates as pull-back metrics of a group of
transformations followed by a discussion of the resulting
generative model in Section 6. In Section 7, we apply the
framework to text classification and report experimental
results on the WebKB data. The appendix contains a review
of relevant concepts from Riemannian geometry.

2 THE FISHER GEOMETRY

In this section, we describe some well-known results
concerning the Fisher geometry of a space of probability
distributions. The reader may want to consult the appendix
at this point for a review of relevant concepts from
Riemannian geometry. For more details on the Fisher
geometry, refer to the monographs [5], [1].

Parametric inference in statistics is concerned with a
parametric family of distributions {p(x; 0) : 6 € © C R"} over
the event space &X'. If the parameter space © is a differentiable
manifold and the mapping 6—p(x;6) is a diffeomorphism,
we canidentify statistical models in the family as points on the
manifold ©. In this paper, we will mostly be concerned with
the manifold of multinomial models'

P, = {0€R7L+1: Vi 6; >0, ZQL = 1}

The manifold P, is described as a subset of R"*! despite the
fact that it is an n-dimensional manifold. This notation leads
to substantially simpler expressions later on. Notice that the
above manifold contains a parameter vector 6 of the multi-
nomial distribution—that also happens to be a probability
vector by itself. The simplex P is a submanifold of R""" and,
as such, we can write its tangent vectors in the standard base
of R""!. Using this expression for tangent vectors, it is easy to
identify the tangent space of the simplex as

n+1
TP, = {v c R"!: Zvi = 0}.

=1

Note that the above representation of TP does not depend
on ¢ and is not unique. Since the tangent space T3P, is an
n-dimensional vector space, we can express tangent vectors
as vectors in R"*! in many ways, each corresponding to a
specific choice of a base.

The Fisher information matrix E{ss'}, where s is the
gradient of the log-likelihood: [s], = Ologp(z;6)/06;, may
be used to endow © with the following Riemannian metric

8 0
Zuzvj/ 86 —logp(x;0)— a0, log p(z; 0)dx
_ . 0logp(x;0) dlog p(x;0)
= Zulv] E{ 90, 20, ,
(1)

where the above integral is replaced with a sum if & is
discrete. Note that, in this paper, we adopt the terminology
of differential geometry: A symmetric, positive definite
bilinear form (local inner product) is referred to as the

1. The parameters 6§ are required to be positive for the simplex to be a
manifold, rather than a manifold with corners. This is a technical issue and
does not influence possible applications.

metric, rather than the distance function d(-,
Appendix A for further details.

Another important manifold that will appear in this
paper is the positive sphere

$ = {ee]R"“ Vi >0, ) 6= 1}.

Tangent vectors to the positive sphere, much like the
simplex, may be written in the standard basis of R"*!
leading to the following identification of the tangent space

n+l
TQSZ_ = {’U € Rn+1 . Zvﬂl = 0}

i=1

-). Consult

Using the above expression for tangent vectors, the metric ¢
on §" defined as éy(u, v)dCfZ"Jrllu v; has the same func-
tlonal form as the standard Euclidean inner product. Since
this inner product characterizes Euclidean geometry, the
local geometry of (§7,6) is the Euclidean geometry,
restricted to the sphere.

Fortunately, distances ds(6,n) (see (13) for the definition
of d7) on (P,J) have a closed form expression. The
expression is obtained by noticing that

0= (Vor....\/6.)

is an isometry between (P, 7), and ($',6), and noticing
that ds(0,n) is given by the length of the great circle
connecting the two points ds(n, ) = arccos(}_ n;6;). It then
follows that

f:P =S

dy(0,n) = ds(f(0), f(n)) = arccos <nZ M) :

See Appendix A.3 for a definition of isometry in differential
geometry. It is well-known that the transformation f: P —
§" is an isometry. A proof may be found at Section 4.1 of [7].

3 THE METRIC LEARNING PROBLEM

The metric learning problem may be formulated as follows:
Given a differentiable manifold M and a data set
D = {zy,...,zn} C M, select a Riemannian metric g from a
set of metric candidates G. As in statistical inference, G may be
a parametric family G = {¢" : A € A € R*} or as in nonpara-
metric statistics a less constrained set of candidates. We focus
on the parametric approach, as we believe it to generally
perform better for high-dimensional sparse data such as text
documents. We use a superscript for the parameter ¢* since
the subscript of the metric is reserved for its value at a
particular point of the manifold (see Appendix A.3).

Let {e;}, represent a basis of the tangent space T, M. The
volume element of g at « is defined as dvol g(z ) det G(z),
where G(z) is the matrixwhoseentriesare [G(z)],; = g.(e;, €;).-
Note that det G(z) > 0 since G(z) is positive definite.
Intuitively, the volume element dvol g(z) summarizes
the “size” of the metric g at « in one scalar (it is originally a
bilinear form or a matrix). Similarly, the inverse volume
element measures the “smallness” of the metric at z. Paths
crossing areas with high inverse volume will tend tobe shorter
than paths over an area with high inverse volume.
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The size of the metric at a data set D = {x,...,zx} may
be measured as the product of the inverse volume elements
at the points ;. One problem is that the above quantity is
unbounded. This can be demonstrated using basic proper-
ties of determinants dvol (cg(x)) = ¢"/2dvol (g(x)). A simple
solution is to enforce the total volume to be constant
through normalizing. We therefore propose to choose the
metric based on the following objective function

N

(dvol g(z;))~
nfM (dvol g(z)) " da”

Maximizing the inverse volume in (2) will result in shorter
curves across densely populated regions of M. As a result,
the geodesics will tend to pass through densely populated
regions. This agrees with the intuition that distances
between data points should be measured on the lower
dimensional data submanifold, thus capturing the intrinsic
geometrical structure of the data. Note that the normalized
inverse volume element may be seen as a probability
distribution over the manifold and maximizing O(g, D) may
be considered as a maximume-likelihood problem. The
normalization in O is necessary for the same reason it is
necessary in probabilities. We are not interested in the total
mass but in local variations of it.

If G is completely unconstrained, the metric maximizing
the above criterion will have a volume element tending to 0
at the data points and +oo everywhere else. Such a solution
is analogous to estimating a distribution by an impulse train
at the data points and 0 elsewhere (the empirical distribu-
tion). As in statistics, we avoid this degenerate solution by
restricting the set of candidates G to a constrained set of
smooth functions.

The case of extracting a low-dimensional submanifold (or
linear subspace) may be recovered from the above framework
if g € G is equal to the metric inherited from the embedding
Euclidean space across a submanifold and tending to +oco
outside. In this case, distances between two points on the
submanifold will be measured as the shortest curve on the
submanifold using the Euclidean length element.

If G is a parametric family of metrics G = {gA : A € A}, the
log of the objective function O is equivalent to the log
likelihood of the data ¢(\) under the model

1

2)

plrs ) = - (dvol g())

As a side note, if g = J the above model is the inverse of
Jeffreys’ prior p(x) o dvol J(x) a widely studied distribu-
tion in Bayesian statistics. However, in the case of Jeffreys’
prior, the metric is known in advance and there is no need
for parameter estimation. For prior work on connecting
volume elements and densities on manifolds, refer to [10].

Specifying the family of metrics G is not an intuitive task.
Metrics are specified in terms of a local inner product and it
may be difficult to understand the implications of a specific
choice on the resulting distances. Instead of specifying a
parametric family of metrics as discussed in the previous
section, we specify a parametric family of transformations
{F) : A € A}. Theresulting set of metric candidates will be the
pull-back metrics G = {F}J : A € A} of the Fisher informa-
tion metric J (See Appendix A.3 for the definition of the pull-
back metric F*g with respect to a transformation F and a
metric g). Since the metrics are pull-back metrics of the Fisher
information for the multinomial distribution, a closed form

(0,1,0)

(0,0,1)

(a) (b)

Fig. 1. The 2-simplex P, may be visualized as (a) a surface in R? or
(b) as a triangle in R?.

expression for the distance dr; 7 (7, y) is readily available (see
Appendix A.3).

Denoting the metric inherited from the embedding
Euclidean space by 6, we define f to be a flattening
transformation if f : (M, g) — (N, 6) is an isometry. In this
case, distances on the manifold (M, g) = (M, f*§) may be
measured as the shortest Euclidean path on the manifold NV
between the transformed points. Such a computation is
often simpler than the original distance computation for an
arbitrary metric. A flattening transformation f, thus takes a
locally distorted space and converts it into a subset of R"
equipped with the local Euclidean metric 6(u,v) = ), u;v;.

In the next sections, we work out in detail an implementa-
tion of the above framework in which the manifold M is the
multinomial simplex P,,.

4 A PARAMETRIC CLASS OF METRICS

Consider the following family of diffeomorphisms F) :
P, —P,

def [ X1 )\1 :171L+1)\1L+1
F) = e rebP,.
)\((L.) (<1.’ A) ) ) <:E7 A> > b G

The family F) is a Lie group of transformations under
Composmon whose parametric space is A = IP. The 1dent1ty

element is (- e PR ’7I+1) and the inverse of F) is (F,\) =F,
where
1N
LD SRTOYS

The above transformation group acts on z € P, by increasing
the components of x with high \; values while remaining in
the simplex. Fig. 1 illustrates how to visualize PP, in two
dimensions and Fig. 2 illustrates the above action in IP;.

We will consider the pull-back metrics of the Fisher
information 7 through the above transformation group as
our parametric family of metrics G = {F;J : A € P,}. Note
that since the Fisher information itself is a pullback metric
from the sphere under the square root transformation, we
have that F}J is also the pull-back metric of (§,, §) through

the transformation
A def 1A g1 Ansl
F\(z)= U ptn e el
) (\/<m>’ Aeey )

As a result of the above observation we have the following
closed form for the geodesic distance under F;J
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(a)

The above distance is surprisingly similar to the tfidf cosine
similarity measure [4]. The differences are the square root, the
normalization and the choice of non-idf A parameters in (3).

5 COMPUTING THE VOLUME ELEMENT OF F}J

To apply the framework described in Section 3 to the
metric FyJ, we need to compute the volume element
given by the square root of the determinant of the Gram
matrix of F;J. This is done in several stages. First, the
Gram matrix G is computed, then some useful lemmas
concerning matrix determinants are proven and, finally,
we compute det G.

5.1 Computing the Gram Matrix G

We start by computing the Gram matrix [G];; = F}J(0;,0;),
where {9;}!, is a basis for TyP,, given by the rows of the
matrix

1 0 0 -1
0 1 0 -1
U= ] c ]Rnxn-H (4)
0 0 -1
0 0 1 -1

and then proceed by computing det G in Propositions 1 and 2
below. Note that since the determinant is invariant under
change of basis, we are free to select the convenient base
expressed by the rows of (4).

Proposition 1. The matrix [G];; = F}J (0, 0)) is given by
G=JJ =UD - ")D-xa")UT, (5)

where D € R"™ " is a diagonal matrix whose entries are

Ao 1

;2 (x, \)

[D]m =

and o is a column vector given by

o) =2
bV mig N

(b)

Note that all vectors are treated as column vectors and
for \,a € R, A\a" € R"™"*! is the outer product matrix
P\CMT]U = )\7;0[]'.

Proof. The jth component of the vector F),v is

Taking the rows of U to be the basis {9;};_, for T, P,
we have, fori=1,...,nand j=1,...,n+1,

e

TN
Z(m A)W v

A/ (T, A)
90 ]n+1 N — n+1
x] x )\3/2

If we define J € ]R”X”+1 to be the matrix whose rows
are {F.9;}_,, we have J = U(D — Aa").

Since the metric F}J is the pullback of ¢ through B,
we have [G} = (F\0;F\.0;)and G = JJT =U(D — Aa")
(D—Xa")" a8 O
Before we turn to computing the determinant of the

matrix G above, we prove Lemmas 1 and 2 below that will
prove to be useful in computing det G.

F\.0
[F)\0i]; = 5

5.2 Some Useful Lemmas Concerning Matrix
Determinants

The determinant of a matrix det A € R™*" may be seen as a
function of the rows of A, {4;}],

fR" x f(A1,..., Ay) = det A.

The multilinearity property of the determinant means that
the function f above is linear in each of its components

.xR" > R

ijl,...,’ll f(Al,.. A/ lvA.j+B.j7A.j+17---7An)
:f(Alv"'vAj—lvA AJ+17"'7A7L)
+ f(Ah .. ~aAjflij7Aj+17' o 7An)'

Lemma 1. Let D € R™" be a diagonal matrix with Dy, = 0 and
1 a matrix of ones. Then,

s

[|
o
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Proof. Subtract the first row from all the other rows to
obtain

0 0 - Dum
Now, compute the determinant by the cofactor expan-
sion along the first column to obtain

“D][Dii+0+0+---+0.
=2

det(D —1) = (

Lemma 2. Let D € R™*" be a diagonal matrix and 1 a matrix of
ones. Then,

det(D — zm: H
i=1 jti

=1

=
S

Proof. Using the multilinearity property of the determinant,
we separate the first row of D —1 as (Dy,0,...,0) +
(=1,...,—1). The determinant det D — 1 then becomes
det A + det B, where Ais D — 1 with the first row replaced
by (Di1,0,...,0) and B is the D — 1 with the first row

replaced by a vector of —1.

Using Lemma 1, we have det B = —[]j_, Dj;. The
determinant det A may be expanded along the first
row resulting in det A= DM, where M;; is the
minor resulting from deleting the first row and the
first column. Note that M;; is the determinant of a

matrix similar to D — 1 but of size n —1 xn — 1.
Repeating recursively the above multilinearity argu-
ment, we have

det(D—-1) =
HD]-]-+D11< H Djj+ Doy <HDjj+D33
j=2 J J=4

(fio ) 1o £

5.3 Computing det G
Proposition 2. The determinant of the Gram matrix G of the
metric FYJ is

TS /i)

<£L’, /\>n+1

Proof. We will factor G into a product of square matrices and

det G (6)

compute det G as the product of the determinants of each
factor.

By factoring a diagonal matrix A, [A],; = i—ﬁ
from D — Ao, we have @)

5
J= U(I - <2i>>A T (7)
c=u1- <ii>>A2 (1 <2A>> v @

Note that G =JJ' is not the desired decomposition
since J is not a square matrix.

We proceed by studying the eigenvalues and eigenvec-
tors of I — ﬁ in order to simplify (8) via an eigenvalue
decomposition. First, note that, if (v, 1) is an eigenvector-
eigenvalue pair of “ , then (v,1 — ) is an eigenvector-
elgenvalue pair of I - Next, note that vectors v such
that z"v =0 are elgenvectors of 7 AL w1th eigenvalue 0.
Hence, they are also eigenvectors of I-— < A> with eigenva-
lue 1. There are nsuchindependentvectors v, . . ., v,.Since
trace(I — <’>T;>) = n, the sum of the eigenvalues is also nand
we may conclude that the last of then + 1 eigenvaluesis 0.

The eigenvectors of I — <—/\ may be written in several
ways. One possibility is as the columns of the following
matrix

k

—T2 _ 23 . _Zngl A
T x| Zy
0 A2
V= 0 1 . 0 )\3 c Rn+1><n+1’
0 0 - 1 A

where the first n columns are the eigenvectors that
correspond to unit eigenvalues and the last eigenvector

corresponds to a 0 eigenvalue.

Usmg the above eigenvector decomposition, we have
11— (*# = VIV~ and I is a diagonal matrix containing
all the eigenvalues. Since the diagonal of I is
(1,1,...,1,0), = VIny-1" where
vin ¢ ]R"HX” is V w1th the last column removed and
V-l e R is V1 with the last row removed.

We have then,

det G = det (U(V" Y Im A2V 1Ty IO
_ det((UV|7L)(V—l\nAZV—l\nT)(V\nTUT))
2 D
= (det(UV'”)) det(V‘”“AZV‘”"T).

Noting that

T2 Ty _Zn Tl
€ € € Iy
1 o -+ 0 -1
Uv\n _ 0 1 R 0 -1 c ]]‘:{nxn7
0 o - 1 -1
we factor 1/x; from the first row and add columns 2, ..., n

to column 1, thus obtaining

- Z?:ll Ty —x3 0 —Tp —Tptl — L1
0 0 0 -1
0 1 0 -1
0 0 1 -1
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Computing the determinant by minor expansion of the

first column, we obtain

We proceed by computing det V-1"A%V

The inverse of V, as may be easily verified is,

L1
(z, A)
—zde (@A) w2 —x3A2
—T1)3 —T2 )3 () =233
—Z1 A1 —22An41
1A oA

Removing the last row gives

1
V*lln —
(2,A)
—I )\2 (:I‘u,)\>7.1‘2 /\-g —I3 /\-g
—T13 —Ta A3 (x,A)=x3A3
—Z1 An+1 —Z2Ant1
1
-~ p
(2, A)
—z1 () /Ae—12 —x3
-z —z (@A) /A3 —x3
—7 —19
where
A 0O
0 A3
P =
0O 0 O

[V A2y =1inT] s the scalar product of the i and j rows

of the followmg matrix

_ 2
|\ :—<1: AP
—Vah “V2he \};:—i‘;*\/ w33

—VriA —V/T2A2

We therefore have

, , 1
V71|rLA2V71\nT _ Z<

—1jnT

—Tpi1 A2

—Tn41 A3

(2 A) =Tnt1 Ant1

Tnp1A1

—Tn+1 /\2

—Tni1A3

(TN =Tni1 Anp1

(2,A)/ A1 —Tn g1

)\n+1

“Vnt1 gl
“Vint1 1

(2
) VI 1 41
Vo1 Ang1

z,\) 2PQP,

where
()
:2 w1 < 71 e -1
A
0= -1 TZA:; -1 ... -1
_ _ 1 N
1 1 1 g1 Ant1 1

As a consequence of Lemma 2, we have

)\ n z, )\ n—1 njl CL’)\
det Q@ = 1M ﬁ% — 1A < > n+1z:'/72 -
IT2 @ih [T @i
/\ n—1
g
[Ii5 @i

and

n+1
det V—l\n,AZ —1nT _ (1/4)71 :L' A —2n <H by )

z, b n—1 n+1l

(]
[[i2r widi \iza

This proves the proposition since multiplying det V'~

A2V-1"T above by (9) gives (6). 0

Proposmons 1 and 2 reveal the form of the objective

1 1
xlx)\n n+

4”%)\277 :$7

1n

function O(g, D). Fig. 3 displays the inverse volume element
on P, with the corresponding geodesic distance from the
left corner of IP;. In the next section, we describe a
maximum-likelihood estimation problem that is equivalent
to maximizing O(g, D) and study its properties.

6 AN INVERSE VOLUME PROBABILISTIC MODEL

Using Proposition 2, we have that the objective function
O(g, D) may be regarded as a likelihood function under the
model

1 inJrl 12
plasd) = (x,\)? H:n zAEP,, (10)
where Z = [p (z,)) =2 [ 2%dz. The loglikelihood func-

tion for model (10) is given by

rL+1

(z) =" E H\/—dm

110g(<9c7 A)) — log/P

The Hessian matrix H(z, ) of the log-likelihood function
xX; JJJ'

may be written as
2 Ti  Zj
e @0 (@ e )

() o)

where k=" and L is the positive linear functional

Jp, @ N I Var f,)) d
f]P” l‘,)\ ’” Hn+1 \/fldac

[H (z, )‘)Lij ==

Lf=
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9 x10°

T T T T T T T T T

- (172,1/2)

I 113.2/3)
8 (o5
(0.1/110.1, 10/10.1)

0 . . ) . L . . ) . |

0.1 02 03 04 05 06 07 08 09
Inverse volume element as a function of location on the simplex

(@)

- (1/2,1/2)

(1/3,2/3)

L (1/6,5/8)
{0.110.1, 10110.1)

08

0.6

0.4

0.2

0.1 02 03 04 05 06 07 08 09
Distance from left corner as a function of location on the simplex.

(b)

Fig. 3. (a) The inverse volume element 1/4/det G(z) as a function of 2 € P, and (b) the geodesic distance d(z,0) from the left corner as a function
z € IP,. Different plots represent different metric parameters A € {(1/2,1/2),(1/3,2/3),(1/6,5/6), (0.0099,0.9901)}.

Note that the matrix given by LH(z,\) = [LH;j(z,\)] is
negative definite due to its covariance-like form. In other
words, for every value of A\, H(z, A) is negative definite on
average, with respect to the model p(z;\). While not as
strong as negative definite, this property indicates a
favorable condition for maximization.

6.1 Computing the Normalization Term
We describe an efficient way to compute the normalization
term Z through the use of dynamic programming and Fast

Fourier Transform (FFT).
Assuming that n = 2k — 1 for some k € N, we have

n+1
Z:/ x,)\k x;/Qdm—
p, oV 1
/ ij+2dxo<

P, Jj= aj+-+app1=kaq;>0 j=1

n+1

i Y
artFap1= ka1>(]

T F(a,i + 3/2) a
D(aj+1) "7

*Qp41-

The following proposition and its proof describe a way to

compute the summation in Z in O(n?logn) time.

Proposition 3. The normalization term for model (10) may be
computed in O(n®logn) time complexity.

Proof. Using the notation ¢, = F&’Z:j{?) the summation in Z
may be expressed as
k—ay
7 Z Cay AT Z Can Ay + -
as=0
oy (1)
2 kiznﬂ a;
Z Ca, )\a,, Cp_ Z n+1 !
a,=0

A trivial dynamic program can compute (11) in O(n?)
complexity.

However, each of the single subscript sums in (11) is,
in fact, a linear convolution operation. By defining

J
a,
Bz] = Zc(l,)\jl e

a;=0

. n—1
J_Ezzw a n
E c )\ nc Z 7 Zzﬂ @
Qp, n+1 ’
a, =0

we have Z = Bj; and the recurrence relation B;; =
fn Ocm)\ "Bit1,j—m which is the linear convolution of
{Biy1, J} _, with the vector {c;\! }] o- By performing the
convolution in the frequency domain (i.e., multiplying
the FFT of the vectors and then computing the inverse
FFT), filling in each row of the table B;; for i=
0,...,n+1,7=0,...,k takes O(nlogn) complexity lead-
ing to a total of O(n?logn) complexity. 0

The computation method described in the proof may be
used to compute the partial derivative of Z, resulting in
O(n®logn) computation for the gradient. By careful
dynamic programming, the gradient vector may be com-
puted in O(n’logn) time complexity as well.

7 APPLICATIONS

7.1 Text Classification

In this section, we describe applying the metric learning
framework to document classification and report some
results on the WebKB data set. We map documents to the
simplex by multinomial MLE or MAP estimation. This
mapping results in the well-known term-frequency (tf)
representation where the multinomial model entries are the
frequencies of the different terms in the document.

It is a well-known fact that less common terms across the
text corpus tend to provide more discriminative informa-
tion than the most common terms. In the extreme case,
stopwords like the, or, and of are often severely down-
weighted or removed from the representation. Geometri-
cally, this means that we would like the geodesics to pass
through corners of the simplex that correspond to sparsely
occurring words, in contrast to densely populated simplex
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Fig. 4. Comparison of top and bottom valued parameters for idf and
model (10). The words are sorted by their idf or A values. The data set is
the faculty versus student Web page classification task from WebKB
data set. Note that the least scored terms are similar for the two methods
while the top scored terms are completely disjoint.

corners such as the ones that correspond to the stop-words
above. To account for this in our framework, we use the
metric F;J = (F;!)"J, where 0 is the MLE under model
(10) obtained by a gradient descent, modified to work in IP,,,
with early stopping procedure. In other words, we are
pulling back the Fisher information metric through the
inverse to the transformation that maximizes the normal-
ized inverse volume of D. As a result, geodesics will tend to
pass through sparsely populated regions emphasizing
differences in dimensions that correspond to rare words.

The standard tfidf representation of a document consists
of multiplying the tf parameter by an idf component

N
#documents that word k appears in’

idfi, = log

Given the tfidf representation of two documents, their
cosine similarity is simply the scalar product between the
two normalized tfidf representations. Despite its simplicity
the tfidf representation leads to some of the best results in
text classification (e.g., [4]) and information retrieval and is
a natural candidate for a baseline comparison due to its
similarity to the geodesic expression.

10" ' ' o

(a)

A comparison of the top and bottom terms between the
metric learning and idf scores is shown in Fig. 4. Note that
both methods rank similar words at the bottom. These are the
most common words such as this, at, etc., that often carry
little or no information for classification purposes. The top
words, however, are completely different for the two
schemes. Note the tendency of idf to give high scores to rare
proper nouns while the metric learning method gives high
scores for rare common nouns. This difference may be
explained by the fact that idf considers appearance of words
indocuments as abinary event while the metriclearning looks
at the number of appearances of a term in each document
through the documents representation as term frequencies.
Asaresult, the totalnumber of appearances of each term in the
corpus is taken into account rather than the number of
documents it appears in. Rare proper nouns such as the high
scoringidf termsin Fig. 4 appear several times in a single Web
page. As a result, these words will score higher with the idf
scheme but lower with the metric learning scheme.

In Fig. 5, the rank-value plot for the estimated A values
and idf is shown on a log-log scale. The x axis represents
different words that are sorted by increasing parameter
value and the y axis represents the A or idf value. An
experimental observation is that the idf scores show a
stronger linear trend in the log-log scale than the A values.

To measure performance in classification we compared
the testing error of a nearest neighbor classifier under two
different distances. We compared geodesic distance under
the learned metric with tfidf cosine similarity. Fig. 6
displays test-set error rates as a function of the training
set size. The error rates were averaged over 30 experiments
with random sampling of a fixed size training set.
According to Fig. 6, the learned metric outperforms the
standard tfidf measure by a considerable amount.

7.2 Image Classification

Images are typically represented as a two-dimensional
array of pixels taking values in some bounded continuous
range, e.g., © = (0, 1100100 &~ (9 1)19% " A metric g on the

104.3
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wl ]
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Fig. 5. (a) Log-log plots for sorted idf values and (b) the sorted X values of the learned metric. The task is the same as in Fig. 4.
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Fig. 6. Test set error rate for nearest neighbor classifier on WebKB binary tasks. Distances were computed by geodesic for the learned Riemannian
metric (dashed) and tfidf with cosine similarity (solid). The plots are averaged over a set of 30 random samplings of training sets of the specified
sizes, evenly divided between positive and negative examples. Error bars represent one standard deviation.

resulting manifold © is specified by defining its values for
every pair of basis tangent vectors at each point in ©

golejem) t,k=1,...,n jl=1,...,m V0eO.

The value gy(eij, ery) may be interpreted as the cost of
increasing the brightness of pixels (4,7) and (k,!) simulta-
neously in the image 6.

A reasonable restriction is to constrain g to a local
diagonal form gy(e;;, ex;) = 8ix6;f(N(0;;)), where f is some
function and N(6;;) is a neighborhood of the pixel 6;;. Using
the above intuition, this means that the cost depends only
on the neighborhood of the pixel and there is no pairwise
interaction when simultaneously changing the values of
two pixels. The volume element, in this case, is easily
computed to be dvolg(f) = [[,; V/f(N(0;;)). The parametric
family of metrics reduces to a selection of a parametric
family of functions {f) : A € A}.

The learned metric would then capture local properties
of images in the training collection. For example, the metric
learned for face images would be different from the metric
learned for outdoors scene images. We leave the precise
specification of f and experimental results for future work.

8 SUMMARY

We have proposed a new framework for the metric learning
problem thatenables robustlearning of alocal metric for high-
dimensional sparse data. This is achieved by restricting the set
of metric candidates to a parametric family and selecting a
metric based on maximizing the inverse volume element.

In the case of learning a metric on the multinomial
simplex, the metric candidates are taken to be pull-back
metrics of the Fisher information under a continuous group
of transformations. Since the geometries are isometric to the
positive sphere equipped with the metric inherited from the
Euclidean space, the geodesic distances are easily com-
puted. Furthermore, the geometries are easily visualized
and are shown to be of a form similar to the popular tfidf
distances. The optimization problem, which may be cast as
a maximume-likelihood problem, selects a specific geometry
that is similar to tfidf, yet posseses qualitative differences
that enable it to outperform tfidf in text classification.

The framework proposed in this section is quite general
and may be employed in other domains. The key component
is the specification of the set of metric candidates by flattening
transformations and the ability to compute a closed form
expression for their volume elements.
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Fig. 7. Two neighborhoods U, V in a two-dimensional manifold M, the coordinate charts ¢y, ¢y, and the transition function ) between them.

APPENDIX A
ReviEw OF RIEMANNIAN GEOMETRY

In this section, we describe concepts from Riemannian
geometry that are relevant to this paper. For more details,
refer to any textbook discussing Riemannian geometry,
e.g. [9]

Riemannian manifolds are built out of three layers of
structure. The topological layer is suitable for treating
topological notions such as continuity and convergence.
The differentiable layer allows extending the notion of
differentiability to the manifold and the Riemannian layer
defines rigid geometrical quantities such as distances,
angles, and curvature on the manifold. In accordance with
this philosophy, we start below with the definition of
topological manifold and quickly proceed to defining
differentiable manifolds and Riemannian manifolds.

A.1 Topological and Differentiable Manifolds

A homeomorphism between two topological spaces X and Y’
is a bijection ¢: X — Y for which both ¢ and ¢! are
continuous. We then say that X and Y are homeomorphic
and essentially equivalent from a topological perspective. An
n-dimensional topological manifold M is a topological
subspace of R"™, m > n that is locally equivalent to R", i.e.,
for every point x € M there exists an open neighborhood
U C M thatis homeomorphic to R". The local homeomorph-
isms in the above definition ¢y : U C M — R" are usually
called charts. Note that this definition of a topological
manifold makes use of an ambient Euclidean space R™ (a
Euclidean space such that the manifold is its topological
subspace). While sufficient for our purposes, such a reference
to R™ is not strictly necessary and may be discarded at the
cost of certain topological assumptions” [8]. Unless otherwise

2. The general definition, that uses the Hausdorff and second
countability properties, is equivalent to the ambient Euclidean space
definition by Whitney’s embedding theorem. Nevertheless, it is consider-
ably more elegant to do away with the excess baggage of an ambient space.

noted, for the remainder of this section, we assume that all
manifolds are of dimension n.

We are now in a position to introduce the differentiable
structure. First, recall that a mapping between two open sets
of Euclidean spaces f : U ¢ R* — V C R/ is infinitely differ-
entiable, denoted by f e C* (RF,R") if f has continuous
partial derivatives of all orders. If for every pair of
charts ¢y, ¢v, the transition function defined by

'lﬂ:(ﬁv(UﬁV)C]R"—)]R"7 ¢:¢UO¢\71

(when UNV #0) is a C*(R",R") differentiable map then
M is called an n-dimensional differentiable manifold. The
charts and transition function for a two-dimensional
manifold are illustrated in Fig. 7.

Differentiable manifolds of dimensions 1 and 2 may be
visualized as smooth curves and surfaces in Euclidean space.
Examples of n-dimensional differentiable manifolds are the
Euclidean space R", the n-sphere 8" = {z € R""' : " 2? = 1}
its positive orthant §7 = {z e R""': Y 2? =1, Vi ; > 0},
and the n-simplex P,, = {x €¢ R"™ : Y 2; =1, Vi 2; > 0}.

Using the charts, we can extend the definition of
differentiable maps to real valued functions on manifolds
f: M — TR and functions from one manifold to another
f: M — N. A continuous function f : M — IR is said to be
C>*(M,R) differentiable if for every chart ¢y the function
ooyt € C*(R",R). A continuous mapping between two
differentiable manifolds f : M — N is said to be C* (M, N)
differentiable if

Vre C®(N,R), rofeC®M,R).

A diffeomorphism between two manifolds M, N is a
bijection f: M — N such that feC®(WM,N) and
e C® (N, M).

A.2 The Tangent Space

For every point x € M, we define an n-dimensional real
vector space T, M, isomorphic to R", called the tangent space.
The elements of the tangent space, the tangent vectors
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Fig. 8. Tangent spaces of the 2-simplex 7, P, and the 2-sphere T, S,.

v € T, M, are usually defined as directional derivatives at =
operating on C*(M,R) differentiable functions or as
equivalence classes of curves having the same velocity
vectors at z. Intuitively, tangent vectors and tangent spaces
are a generalization of geometric tangent vectors and spaces
for smooth curves and two-dimensional surfaces in the
ambient R®. For an n-dimensional manifold M embedded in
an ambient R™ the tangent space T, M is a copy of R"
translated so that its origin is positioned at . See Fig. 8 for an
illustration of this concept for two-dimensional manifolds in
R®.

In many cases, the manifold M is a submanifold of an
m-~dimensional manifold A, m > n. Considering M and its
ambient space R™, m > n is one special case of this phenom-
enon. For example, both P, and §" are submanifolds of R,
In these cases, the tangent space of the submanifold T, M is a
vector subspace of T,/ = R™ and we may represent tangent
vectors v e T, M in the standard basis {9;}!", of the
embedding tangent space T,R™ as v = > ;" v;0;. For exam-
ple, for the simplex and the sphere we have (see Fig. 8)

n+1
TP, = {v e R Zvi = O}

i=1

n+1
T.S, = {v e R Zv,xl = 0}.

i=1

(12)

A C* vector field X on M is a smooth assignment of
tangent vectors to each point of M. We denote the set of
vector fields on M as X(M) and X, is the value of the
vector field X at p € M. Given a function f € C*(M,R),
we define the action of X € X(M) on f as

(X)(p) = X, (f)

in accordance with our definition of tangent vectors as
directional derivatives of functions.

XfeC®(M,R)

A.3 Riemannian Manifolds

A Riemannian manifold (M, g) is a differentiable manifold
M equipped with a Riemannian metric g. The metric g is
defined by a local inner product on tangent vectors

g;r('a') :TJ,'M XTmMg’Rv reM

11

r[?{a

that is symmetric, bilinear, positive definite, and C*
differentiable in x. By the bilinearity of the inner product
g, for every w,v € T,M

n

ge(v,u) =) zn: it 9:(8;, 0;)

i=1 j=1

and g, is completely described by {g.(9;,0;) : 1 <i,5 <n}
—the set of inner products between the basis elements
{0i}i=, of T, M. The Gram matrix [G(z)];; = 9.(0;,0)) is a
symmetric and positive definite matrix that completely
describe the metric g,.

The metric enables us to define lengths of tangent
vectors v € T, M by \/g.(v,v) and lengths of curves ~:

[a,b] = M by
b
L(y) = / o (1), A1),

where 4(t) is the velocity vector of the curve v at time ¢.
Using the above definition of lengths of curves, we can
define the distance d,(z,y) between two points z,y € M as

b
do(@,y) = inf / V920 (F(8), (®))dt,

where I'(z,y) is the set of piecewise differentiable curves
connecting = and y. The distance d, is called geodesic
distance and the minimal curve achieving it is called a
geodesic curve.’ Geodesic distance satisfies the usual
requirements of a distance and is compatible with the
topological structure of M as a topological manifold.

Given two Riemannian manifolds (M,g), (NV,h) and a
diffeomorphism between them f: M — N, we define the
push-forward and pull-back maps below:

Definition 1. The push-forward map f.:T,M — Ty N,
associated with the diffeomorphism f: M — N is the
mapping that satisfies v(ro f) = (fiv)r, ¥Vr € C*(N,R)
and Vv € T, M.

The push-forward is none other than a coordinate free
version of the Jacobian matrix J or the total derivative

operator associated with the local chart representation of f.

(13)

3. It is also common to define geodesics as curves satisfying certain
differential equations. The above definition, however, is more intuitive and
appropriate for our needs.
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Fig. 9. The map f: M — N defines a push forward map f. : T, M — Ty, A that transforms velocity vectors of curves to velocity vectors of the

transformed curves.

In other words, if we define the coordinate version of f :

M= N
f=¢ofor i R" = R",
where ¢, 1) are local charts of A/, M then the push-forward

map is

of;
fiu=Ju= Z( / 6964,‘”7‘) €is
where J is the Jacobian of f and f; is the i-component
function of f: R™ — R". Intuitively, as illustrated in Fig. 9,
the push-forward transforms velocity vectors of curves v to
velocity vectors of transformed curves f(7).

Definition 2. Given (N, h) and a diffeomorphism f: M — N
we define a metric f*h on M called the pull-back metric by the
relation (f*h),(u,v) = hye)(feu, fv).

Definition 3. An isometry is a diffeomorphism f: M — N
between two Riemannian manifolds (M, g), (N, h) for which
gz(u,v) = (f*h),(u,v) Yz eM, VYu,veT, M.
Isometries, as defined above, identify two Riemannian

manifolds as identical in terms of their Riemannian
structure. Accordingly, isometries preserve all the geo-
metric properties including the geodesic distance function
dg(z,y) = din(f(x), f(y)). Note that the above definition of an
isometry is defined through the local metric in contrast to
the global definition of isometry in other branches of
mathematical analysis.
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