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Abstract

Domain Adaptation aims at benefiting from a la-
beled dataset drawn from a source distribution to
learn a model from examples generated according
to a different but related target distribution. Creat-
ing a domain-invariant representation between the
two source and target domains is the most widely
technique used. A simple and robust way to per-
form this task consists in (i) representing the two
domains by subspaces described by their respective
eigenvectors and (ii) seeking a mapping function
which aligns them. In this paper, we propose to use
Optimal Transport (OT) and its associated Wasser-
stein distance to perform this alignment. While the
idea of using OT in domain adaptation is not new,
the original contribution of this paper is two-fold:
(i) we derive a generalization bound on the tar-
get error involving several Wasserstein distances.
This prompts us to optimize the ground metric of
OT to reduce the target risk. (ii) From this theo-
retical analysis, we design an algorithm (MLOT)
which optimizes a Mahalanobis distance leading
to a transportation plan that adapts better. Experi-
ments demonstrate the effectiveness of this original
approach.

1 Introduction

Domain adaptation (DA) has been shown to be very effec-
tive in many real world applications, e.g., in computer vision,
medical diagnosis, or recommender systems, to cite a few.
The main idea is to use labeled data of a source domain to
improve the performance of a classifier deployed on a related
target domain which suffers from a lack of labeled examples.
In this paper, we address a complex setting, called unsuper-
vised DA, where there is only unlabeled data available from
the target distribution.

Different approaches have been proposed to tackle this
problem, some of them coming with theoretical guarantees
(see, e.g. the survey [Redko et al., 2019b]). One classical
way is to learn a common latent space where the distribu-
tion shift is smaller. For instance, the Subspace Alignment
algorithm (SA) [Fernando et al., 2013] learns a classifier in
a subspace obtained after a linear alignment of the source

and target eigenvectors. In a similar manner, the Correla-
tion Alignment (CORAL) [Sun et al., 2016] uses the covari-
ance of the source and target distributions to reduce the shift,
while Transfer Component Analysis (TCA) [Pan et al., 2011]

looks for common features between the two domains. Some
other works directly learn the target labels but do not gather
the two distributions in a common feature space. This is the
case of MEDA [Wang et al., 2018] which learns a domain-
invariant classifier in Grassman manifold. On the other hand,
DA with deep learning has received much attention during
the past decade from the computer vision community leading
to a substantial amount of research to address visual tasks for
which a large amount of training data or a pre-trained model
is available (see, e.g. the survey [Wang and Deng, 2018]).

More recently, Optimal Transport (OT) has been shown
to be a very promising tool to perform DA tasks. OT con-
sists in mapping two source and target probability measures
with a minimal cost of transportation associated to the so-
called Wasserstein distance. Beyond its use in deep learning
to solve visual DA tasks (see, e.g., [Sun and Saenko, 2016;
Bhushan Damodaran et al., 2018]), this idea of reducing the
shift by OT has been exploited in a more generic DA setting
by the algorithm OTDA [Courty et al., 2017b]. OTDA modi-
fies the original Kantorovich optimization problem by resort-
ing to a regularization preventing the transportation plan from
moving two source points of different labels onto the same
target example. Then, a classifier can be learned from the la-
beled source data and deployed over the target distribution.
Based on this work, [Courty et al., 2017a] ensures that the
final classifier is coherent with the transportation plan.

Inspired from both SA and OTDA, our contribution aims
at using OT for domain adaptation by aligning the source and
target subspaces. The main conjecture we formulate in this
paper is that the Euclidean distance usually used as the cost
matrix in OT may not be the best metric to perform the adap-
tation. While learning a better metric (especially a Maha-
lanobis distance) in OT has been recently studied [Deshpande
et al., 2019; Genevay et al., 2018; Paty and Cuturi, 2019;
Cuturi and Avis, 2014], optimizing such a ground metric to
address DA tasks has not receive attention yet. We fill this
gap from both a theoretical and an algorithmic perspective.
First, we formally establish a relation between the target er-
ror and the magnitude of different Wasserstein distances. This
prompts us to see the Wasserstein distance as a parameterized
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Figure 1: Behavior of MLOT on a toy dataset. On the left, the original source and target examples. In the middle, OTDA fails to transport
correctly the blue and red classes. On the right, the proposed MLOT which combines a learned metric and some per-domain dimensionality
reduction, leads to a perfect transportation plan. Notice the difference in scale between the two axes.

metric that might be minimized, leading to a better transporta-
tion plan for DA. We also formally make a link between a
PCA and the minimization of the Wasserstein distance. Based
on this theoretical analysis, we propose MLOT, an algorithm
which optimizes a Mahalanobis distance that improves the
Optimal Transport between the source and target subspaces
generated by a PCA. Unlike OTDA which does not change
the feature space, MLOT jointly optimizes (i) the dimension-
ality reduction of the source domain, (ii) the transportation
plan between the source and the target and (iii) the underly-
ing metric used in the transportation. The intuition behind
MLOT is illustrated in Figure 1. The original source and tar-
get examples are represented on the left. The second figure
shows the limitation of OTDA when the transportation is per-
formed in the original feature space. The figure on the right
gives evidence on the advantage of performing a PCA before
learning jointly the ground metric and the transportation plan.

The rest of the paper is organized as follows: Section 2
reminds the main principles of OT, DA and Metric Learning.
Section 3 is dedicated to the theoretical contribution of our
paper which leads to the design of our MLOT algorithm in
Section 4. An extensive experimental study is presented in
Section 5 before our conclusion in Section 6.

2 Optimal Transport and Metric Learning

In this section, we briefly introduce Optimal Transport, its use
in OTDA, and Metric Learning.

2.1 Optimal Transport and OTDA

Let X ⊆ R
n be a feature space. We consider here a source

distribution µs and a target distribution µt both defined over
X . OT [Villani, 2008] aims at moving µs on the top of µt

with a transportation plan of minimal cost. We will use in
this paper the formulation proposed by Kantorovich [1942]

which gives the Wasserstein distance between µs and µt. Let
Π(µs, µt) be the collection of all joint probability measures
on X ×X with marginals µs and µt respectively. Let suppose
that µs and µt have a finite p-order moment with p ≥ 1. One
can define the p-Wasserstein distance at the power p as

Wp
p (µs, µt) = min

γ∈Π(µs,µt)

∫

X×X

c(xs, xt)
p dγ(xs, xt), (1)

where c : X × X → R is a cost function. The mini-
mizer of the previous problem γ∗ corresponds to the Opti-
mal Transport plan. In practice, we deal with the empirical
measures µ̂s and µ̂t supported on ms and mt examples re-
spectively. In such a case, γ∗ can be represented by a ma-
trix of size ms × mt where γ∗

i,j corresponds to the mass

that should be sent from the point xi
s to the point x

j
t . Let

Π̂(µ̂s, µ̂t) = {γ ∈ R
ms×mt

+ |γ1mt
= µ̂s, γ

T 1ms
= µ̂t}.

Considering the Euclidean distance as the cost function, we
denote by Cp the ms × mt matrix composed of the costs

C
p
ij = ‖xi

s − x
j
t‖

p
2. The p-Wasserstein distance can be refor-

mulated as follows:

Wp
p (µ̂s, µ̂t) = min

γ∈Π̂(µ̂s,µ̂t)

ms
∑

i=1

mt
∑

j=1

‖xi
s − x

j
t‖

p
2γij

= min
γ∈Π̂(µ̂s,µ̂t)

〈γ,Cp〉.

(2)

It is worth noting that (i) Problem (2) is a linear program,
(ii) the solution is not stable and (iii) the algorithmic com-
plexity is supercubic. To change it into a strongly convex
problem with a unique solution, we usually add a regulariza-
tion term in the form of the classic Shannon entropy [Cuturi,
2013]. Let λe ∈ R+ be a small regularization parameter, we
get

Wp
p (µ̂s, µ̂t) ≈

〈

argmin
γ∈Π̂(µ̂s,µ̂t)

〈γ,Cp〉 − λeΩe(γ), C
p
〉

, (3)

with Ωe(γ) = −
∑ms

i=1

∑mt

j=1 γij log(γij). Problem (3) can

be efficiently solved by resorting to the Sinkhorn-Knopp
algorithm [Cuturi, 2013]. The mass of a source point will
now be spread across several target points preventing the
algorithm from overfitting and leading to smoother solutions.

OTDA (Optimal Transport for Domain Adaptation)
[Courty et al., 2017b] was the first attempt to use Optimal
Transport for Domain Adaptation. While Problem (3) is to-
tally unsupervised, OTDA takes into account the labels of
the transported points. Let us suppose that a discrete label
ys ∈ Y = J1, cK is associated to each source example, with
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c the number of classes. OTDA adds a penalty term to pre-
vent two source points of different labels from being sent to
the same target location. This takes the form of the following
optimization problem:

min
γ∈Π̂(µ̂s,µ̂t)

〈γ,Cp〉 − λeΩe(γ) + λcΩc(γ), (4)

where Ωc(γ) =
∑mt

j=1

∑c

cl=1 ‖γ(Icl, j)‖2 and γ(Icl, j) is

the column j of matrix γ with only the rows corresponding to
samples of class cl.

2.2 Metric Learning

As said before, the cost matrix C used in OT is usually set to
the Euclidean distance. Though this choice seems natural, it
has a direct impact on the quality of the transportation. We
suggest here to optimize this matrix by learning a metric that
allows us to better match in a DA setting the source and tar-
get distributions, hopefully in a smaller feature space. Metric
Learning (ML), and especially Mahalanobis distance learn-
ing, has been widely studied in the literature during the past
decade (see, e.g., the survey [Bellet et al., 2015]). It typically
boils down to optimizing the shape and the orientation of an
ellipsoid rather than using the Euclidean ball. More formally,
let L ∈ R

k×n with k ∈ J1, nK and M be a PSD matrix such
as M = LTL. For all (i, j) ∈ J1,msK

2, the squared Maha-
lanobis distance D2

M parameterized by M is defined as

D2
M (xi

s, x
j
s) = (xi

s − xj
s)

TM(xi
s − xj

s) = ‖L(xi
s − xj

s)‖
2
2.
(5)

Notice that L defines a unique M but there is more than one
Cholesky decomposition of M . The goal of Metric Learn-
ing is to learn either the matrix L or M under semantic con-
straints, which typically aim to bring closer examples of the
same class while pushing away data of different labels (see,
e.g. LMNN [Weinberger and Saul, 2009] or ITML [Davis
et al., 2007]). The problem is often convex in M but the
PSD constraint makes the optimization more complicated.
The minimization in L is not convex but is simpler and gives
good results in practice. In the rest of this paper, we will de-
note by Ωl(L) the underlying objective function of the metric
learning problem. Note that learning a Mahalanobis distance
for OT has been recently studied [Deshpande et al., 2019;
Genevay et al., 2018; Paty and Cuturi, 2019; Cuturi and Avis,
2014]. Our objective in the rest of this paper is to show how
to optimize such a ground metric when OT is used to address
domain adaptation tasks by the alignment of the source and
target subspaces.

3 Theoretical Analysis of DA with OT

In this section, we derive two theoretical results. First, we es-
tablish a strong relation between a PCA and the minimization
of the Wasserstein distance. Then, we derive a generaliza-
tion bound on the target error whose terms depend on several
Wasserstein distances. By changing the Euclidean costs by a
Mahalanobis distance, we can see Wp

p (µ̂s, µ̂t) as a parame-
terized distance that might be optimized from training data.
This leads to the design of a new Domain Adaptation algo-
rithm, called MLOT (see Section 4), which learns the ground
metric allowing us to optimize the transportation plan while
performing the adaptation.

µ̂
g#µ̂

PCA(µ̂) ⇐⇒ min
g

W(µ̂, g#µ̂)

Figure 2: Standard PCA projecting a discrete distribution µ̂ (data
in orange) onto a one-dimensional subspace (in purple). This pro-
jection is equivalent to finding the optimal mapping function g that
minimizes the Wasserstein distance W(µ̂, g#µ̂).

3.1 PCA and Wasserstein Distance

As usually done in OT, let us use the push forward notation.
For any measurable function g : X −→ X and distribution
µ on X , we define g

#
µ(B) = µ(g−1(B)) for all Borel

B ∈ B(X ). In practice, this means that we draw a point from
µ and then apply the transformation g to that point. If g is a
linear function, it can be assimilated to its associated matrix
G. Let Dim(Im(g)) be the dimension of the affine subspace
formed by the image of g. This notation allows us to define
the dimension of a non-centered vector space.

The following theorem aims at showing that PCA is the
best way to reduce the dimension of a distribution in the sense
of the Wasserstein distance. By dimensionality reduction, we
mean that the transformed distribution lays in a subspace (not
necessarily centered) of X , but the points are still defined in
X (see Figure 2). For the sake of clarity, we consider here the
case of the 2-Wasserstein with the Euclidean distance as the
underlying distance. We also focus on the case of a discrete
centered distribution. The complete derivation for the more
general case can be proved in a similar way.

Theorem 1. Given a set of m examples {xi}mi=1 lying in a n
dimensional space and i.i.d. from a distribution µ. Let µ̂ the
empirical counterpart of µ defined as µ̂ = 1

m

∑m

i=1 δxi with
E(µ̂) = 0. Let d ∈ J1, nK and V be the d × n matrix formed
with the first d normalized eigenvectors of the covariance ma-
trix of µ̂. Let Gd = {g : Rn −→ R

n|Dim(Im(g)) ≤ d}.
Then, we have

argmin
g∈Gd

W2
2 (µ̂, g#µ̂) = V TV. (6)

Proof. Suppose that the minimizer g∗ ∈ Gd of Problem (6)
exists. In such a case, let γg∗ be the associated optimal cou-
pling matrix. With these notations, we get:

min
g∈Gd

W2
2 (µ̂, g#µ̂) =

∑

i,j
‖xi − g∗(xj)‖22(γg∗)i,j . (7)

To get rid of the last term of Eq. (7), let us reorder the
function g∗ into g̃∗(xi) = g∗(xj) when (γg∗)i,j = 1

m
. In

this case, the corresponding matrix γg̃∗ = 1
m
Im with Im the

identity matrix, and we get:

min
g∈Gd

W2
2 (µ̂, g#µ̂) =

∑

i,j
‖xi − g̃∗(xj)‖22(γg̃∗)i,j
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min
g∈Gd

W2
2 (µ̂, g#µ̂) =

1

m

∑

i
‖xi − g̃∗(xi)‖22

≥
1

m

∑

i
‖xi − V TV xi‖22.

The last line comes from the PCA. It shows that V TV asso-
ciated with 1

m
Im upper bounds the optimal solution g∗. But

since V TV ∈ Gd, it is actually the optimal solution.

Theorem 1 tells us that PCA is the best way to reduce
the dimension in the sense of the Wasserstein distance. The
next result provides a generalization bound on the target error
where Wasserstein distances are the main terms to minimize.

3.2 Upper Bound on the Target Risk

Let H = {h|h : X → Y} be the hypothesis space. We
assume the existence of a deterministic ground-truth func-
tion f : X → Y which gives the label associated to each
point of X . For all (h, h′) ∈ H2, we define ǫt(h, h

′) =
Px∼µt

(h(x) 6= h′(x)) and ǫs(h, h
′) = Px∼µs

(h(x) 6= h′(x))
which represent the disagreement between two classifiers.
The goal of DA is to find the best h ∈ H which minimizes
the target risk ǫt(h, f) = Px∼µt

(h(x) 6= f(x)). In the
same way, ǫs(h, f) = Px∼µs

(h(x) 6= f(x)) is the source
risk. To simplify the notations, let us use ǫt(h, f) = ǫt(h)
and ǫs(h, f) = ǫs(h).

Lemma 1 (Generalization bound [Shen et al., 2017]). Let
µs, µt be two probability measures on X . Assume the hy-
potheses h ∈ H are all K-Lipschitz continuous for some
K ∈ R

∗
+. Then, ∀(h, h)′ ∈ H2, the following holds:

ǫt(h, h
′) ≤ ǫs(h, h

′) + 2KW2(µs, µt). (8)

Building on the proof of Redko et al. [2017] based on the
seminal works of Ben-David et al. [2007] and Mansour et
al. [2009], we derive the following bound.

Theorem 2. Let gs : X −→ X and gt : X −→ X . Under
the assumption of Lemma 1, ∀h ∈ H, the following holds:

ǫt(h) ≤ ǫs(h) + 2K [W2(gs#µ̂s, gt#µ̂t)]

+ 2K [W2(µ̂s, gs#µ̂s) +W2(gt#µ̂t, µ̂t)]

+ 2K [W2(µs, µ̂s) +W2(µ̂t, µt)] + λ

(9)

where λ is the combined error of the ideal hypothesis h∗

that minimizes the combined error ǫs(h
∗) + ǫt(h

∗).

Proof. We have :

ǫt(h) ≤ ǫt(h
∗) + ǫt(h

∗, h)

= ǫt(h
∗) + ǫs(h, h

∗) + ǫt(h
∗, h)− ǫs(h, h

∗)

≤ ǫt(h
∗) + ǫs(h, h

∗) + 2KW2(µs, µt)

≤ ǫt(h
∗) + ǫs(h) + ǫs(h

∗)

+ 2K [W2(µs, µ̂s) +W2(µ̂s, µt)]

≤ ǫs(h) + λ

+ 2K [W2(µs, µ̂s) +W2(µ̂s, µ̂t) +W2(µ̂t, µt)]

≤ ǫs(h) + 2K [W2(gs#µ̂s, gt#µ̂t)]

+ 2K [W2(µ̂s, gs#µ̂s) +W2(gt#µ̂t, µ̂t)]

+ 2K [W2(µs, µ̂s) +W2(µ̂t, µt)] + λ.

Algorithm 1 MLOT

Input: η (gradient step) Xs Xt Ys

1: Vs = PCA(Xs), Vt = PCA(Xt)
2: Ls = V T

s Vs, Lt = V T
t Vt

3: for i = 1 to N do
4: γ = argmin

γ∈Π̂(µ̂s,µ̂t)

〈γ,C2(Ls, Lt)〉−λeΩe(γ)+λcΩcl(γ)

5: Ls = Ls − η∇Ls
(〈γ,C2(Ls, Lt)〉+λlΩl(Ls))

6: end for
7: X̃s = γLtXt

8: classifier = classifier method(X̃s, Ys)

9: Ŷt = classifier(Xt)

10: return Ŷt

Note that if gs and gt are linear, gs#µ̂s and gt#µ̂t can be
seen as linear projections of the source and target examples
taking the form of two matrices that can be learned by any
standard metric learning algorithm. Therefore, rather than
discussing about its tightness, it is worth noticing that the
previous bound is the first one which jointly relates (i) the
target risk in domain adaptation, (ii) the minimization of the
Wasserstein distance and (iii) the metrics that can be learned
to get a better transportation plan. We can use Theorem 1 to
minimize both W2(µ̂s, gs#µ̂s) and W2(gt#µ̂t, µ̂t). Note that
W2(µs, µ̂s) and W2(µ̂t, µt) can be bounded under some as-
sumptions using Theorem 2.1 in [Bolley et al., 2007]. More-
over, λ is supposed to be small to allow the adaptation. A the-
oretical analysis about λ is available in [Redko et al., 2019a].

The last term of interest that has to be minimized in the
bound of Theorem 2 is W2(gs#µ̂s, gt#µ̂t). We address this
problem from an algorithmic perspective thanks to our algo-
rithm MLOT presented in the next Section.

4 MLOT: Metric Learning in OT for DA

Inspired from OTDA [Courty et al., 2017b], our algorithm
MLOT leverages our previous theoretical analysis and resorts
to an additional term Ωl(Ls) dedicated to optimize a metric
allowing us to get a better transportation plan. Let us consider

the cost function C2(Ls, Lt)ij = ‖Lsx
i
s − Ltx

j
t‖

2
2. MLOT

takes the form of the following joint optimization problem:

min
Ls∈Rn×n,γ∈Π̂(µ̂s,µ̂t)

〈γ,C2(Ls, Lt)〉 − λeΩe(γ)

+ λcΩcl(γ) + λlΩl(Ls).
(10)

Note that MLOT only learns the matrix Ls associated to
the source data. The reason is twofold. First, it prevents
the algorithm from leading to a trivial minimal solution
W2(Ls#µ̂s, Lt#µ̂t) where both matrices Ls and Lt are null.
By this way, MLOT tends to provide two different matrices
Ls (which is learned) and Lt (set to V T

t Vt according to The-
orem 1) which better capture the peculiarities of the two dis-
tributions. Second, labels - that are required to learn a metric
- are available only in the source domain. To find the solution
of Problem (10), we minimize the objective function w.r.t. γ
and Ls alternately. From a practical point of view, we ap-
ply one step of gradient descent over Ls and then completely
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Figure 3: Workflow of MLOT.

compute the optimal γ. Since the problem is not convex, the
initialization of Ls is key. According to Theorem 1, we use a
PCA to set Ls = V T

s Vs. At the initialization, Ls is a n × n
matrix of rank d. But note that along the iterations, this rank
can increase if it allows a better adaptation. The pseudo-code
of MLOT is described in Algo. 1, where Xs and Xt are the
source and target datasets, and Ys is the set of source labels.

Note that any gradient descent-based metric learnign algo-
rithm can be used to learn Ls via the term λlΩl(Ls). Note
also that the computation of the barycenter of the transported

points X̃s = γLtXt makes sense only if the 2-Wasserstein is
used. Figure 3 summarizes the workflow of MLOT.

5 Experiments

In this section, we perform experiments and demonstrate the
effectiveness of MLOT compared to OTDA and other base-
lines on various datasets and types of features.

5.1 Datasets

We use the Office-Caltech dataset [Gong et al., 2012] which
is a classic benchmark on visual DA. We study the effect
of using different features such as SURF features [Bay et
al., 2006] and DeCAF Deep Learning features [Donahue et
al., 2014]. The Office-Caltech dataset is composed of 4 dif-
ferent subsets (Amazon, Caltech, DSRL, Webcam) that are
combined in a pairwise manner, to create 12 DA subprob-
lems. The notation A → C means that Amazon is used as
the source and Caltech as the target. There are the same 10
classes in each dataset containing from 157 to 1,123 images.

We also use the Office31 dataset [Saenko et al., 2010] with
features extracted from the 7th layer of DeCAF Deep Learn-
ing network. The dataset is composed of 4,110 images in 3
subsets (Amazon, DSLR, Webcam) with 31 classes.

5.2 Setup and Cross-validation

We compare 10 different methods1 that are able to handle ar-
birtary features. We exclude deep learning methods as they
require having the original images and fine tuning a net-
work. We compare: NA(No Adaptation). The classifier is
learned on the source dataset and directly applied on the tar-
get. LMNN: Large Margin Nearest Neighbor [Weinberger
and Saul, 2009]. SA: Subspace Alignment [Fernando et al.,
2013]. CORAL: CORrelation ALignment [Sun et al., 2016].
TCA: Transfer Component Analysis [Pan et al., 2011]. OT:

1We could not run MEDA [Wang et al., 2018] because the im-
plementation requires the use of a proprietary software.

Optimal Transport with entropy [Cuturi, 2013]. OTDA: Op-
timal Transport with entropy and class regularization [Courty
et al., 2017b]. OTDAp: OTDA after a PCA. JDOT: Joint
Distribution Optimal Transportation [Courty et al., 2017a].
MLOT: our method. Following [Courty et al., 2017b] the
final classification is done with a 1-Nearest Neighbor (1NN).

In unsupervised DA, there is no target label and it is impos-
sible to use the classical cross-validation procedure to choose
the best hyper-parameters. To fairly compare methods, we
take inspiration from the work of [Zhong et al., 2010] and
apply the following strategy for all methods. We first as-
sign pseudo-labels to the target points (using the considered
method) and then use these target labels to re-assign labels to
the source data, using a basis DA algorithm. Here, we choose
SA [Fernando et al., 2013] which has been shown to be one
of the most robust DA method. We can then compare the ac-
tual source labels with the predicted source ones. We take the
set of hyper-parameters that gives the best accuracy over 48
hours, limited to 1000 iterations. This back-and-forth adap-
tation is done independently for each pair of datasets. MLOT
is parameterized by 5 hyper-parameters: the three regulariza-
tion parameters (λe, λc, λl) which control the trade-off be-
tween each term in Eq. (10), the number of dimensions kept
by the PCA (d) and the number of iterations (N ). Note that
in these experiments, we used arbitrarily LMNN [Weinberger
and Saul, 2009] to learn Ls in the term Ωl(Ls). Therefore,
an additional parameter has to be tuned corresponding to the
margin used in this metric learning algorithm. Note that SA
and MLOT resort to a PCA. To speed-up the process, we used
a ”randomized”-PCA [Halko et al., 2011] and run 10 itera-
tions. This explains why the variance is indicated for these
three methods in the reported results in Table 1.

The code of the 10 methods is available2, together with the
datasets, the code for the cross-validation that recreates Table
1, and the code that produces automatically Figures 1 and 4.

5.3 Analysis of the Results

The results are reported in Table 1. For the SURF fea-
tures, MLOT outperforms, on average, all the other meth-
ods. MLOT outperforms OTDA 8 times over the 12 DA sub-
problems and yields impressive improvements for some cases
(e.g. W −→ A and C −→ D) and a clear gain on average (1.5
points). The results on Office-Caltech DeCAF6 features show
the effectiveness of our method on deep learning features.
MLOT outperforms by 1.8 the second best method (here OT).
On the Office31 dataset, the best results are obtained by SA.
MLOT is still very competitive and outperforms OTDA by
0.9 point on average.

As already mentioned, cross-validating the hyperparame-
ters in unsupervised DA is key and is still an open problem,
since we do not have access to labels from the target do-
main. We performed an experimental comparison to show
how the cross-validation method used in this paper behaves
when compared to a scenario where we would use the ac-
tual labels of the target examples. Table 2 reports the gap
between the optimal hyperparameters and those obtained by
our method inspired from [Zhong et al., 2010]. We can see

2https://github.com/Hv0nnus/MLOT
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SURF

Dataset NA LMNN SA CORAL TCA OT OTDA OTDAp JDOT MLOT

A→C 26.0 40.3 40.2±0.2 25.4 40.0 33.9 40.2 39.4±0.5 39.9 42.3±0.6
A→D 25.5 36.9 39.3±2.5 26.8 31.8 30.6 40.1 39.6±1.1 37.6 40.8±0.8
A→W 29.8 38.0 39.9±1.3 26.8 41.7 32.5 37.3 39.8±0.9 38.0 41.3±1.1
C→A 23.7 46.0 41.3±1.1 23.6 39.8 41.0 52.7 48.5±0.7 48.1 51.5±0.8
C→D 25.5 45.9 45.4±1.2 26.1 44.6 36.9 47.8 51.4±1.4 49.7 52.2±1.3
C→W 25.8 41.7 36.6±1.1 23.7 36.9 28.1 46.4 45.8±1.4 43.4 45.9±0.8
D→A 28.5 31.1 35.4±1.0 28.8 32.9 29.3 32.4 37.8±1.0 32.8 37.8±0.7
D→C 26.3 30.7 32.3±0.6 30.0 31.5 31.7 32.0 33.5±0.7 31.7 34.4±0.5
D→W 63.4 77.3 88.5±1.1 84.4 84.7 88.8 88.8 87.5±1.2 82.7 87.8±0.7
W→A 23.0 32.3 32.6±0.5 26.2 29.4 34.1 33.7 37.6±0.6 37.6 38.0±0.8
W→C 19.9 30.4 29.0±0.6 22.6 29.2 30.1 34.1 33.3±0.5 33.1 33.2±0.6
W→D 59.2 86.6 89.5±1.0 84.1 91.7 89.2 92.4 91.8±1.2 89.8 90.8±0.8
AVG 31.4 44.8 45.8±1.0 35.7 44.5 42.2 48.2 48.8±0.9 47.0 49.7±0.8

DeCAF6 AVG 71.0 79.4 83.7±0.5 77.2 83.4 83.9 83.2 82.6±0.5 78.2 84.7±0.3

Office31 AVG 64.3 64.7 66.5±0.2 64.1 64.1 65.3 65.3 65.2±0.1 64.4 66.2±0.1

All datasets AVG 53.8 62.6 65.1 ± 0.6 58.0 64.0 63.5 65.6 65.6 ± 0.6 63.0 67.0 ± 0.5

Table 1: Accuracy of all the methods on 3 different types of features. The best method for each dataset is in bold.

OT TCA LMNN SA JDOT OTDA OTDAp MLOT

45.3 45.3 47.9 47.4 48.5 52.8 54 55.1
42.2 44.5 44.8 45.8 47.0 48.2 48.8 49.7

Table 2: Accuracy comparison on Office-Caltech (SURF features)
between a cross-validation method that uses the true target labels
(first line) and the cross-validation method used in this paper that
exploits pseudo-labels in the unsupervised DA setting (second line).
CORAL and NA are excluded as they do not have hyperparameter.
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Figure 4: Absolute difference between the mean accuracy of MLOT
and OTDA (on the left). The rows (resp. columns) correspond to
the results with different values of the regularization parameter λc

(resp. λe) on the entire Office-Caltech dataset with SURF features.
On the right, accuracy of MLOT for each pair of parameters.

that the ranking of the methods is preserved, even though this
experiment shows that there is still room for improving the
way we may tune the parameters in unsupervised DA. Note
that the other datasets show similar behaviors. To show the
specific gain brought by MLOT compared to OTDA, we per-
formed a last experiment where we set the hyper-parameters
of MLOT as follows: λl = 1, N = 10, marginLMNN = 10,
d = 70; and we tune λe and λc. The results are reported in
Figure 4. It is worth noticing that whatever the set of parame-
ters, MLOT always yields better accuracy, which confirms the
interest of learning a metric and using the PCA to initialize
Ls and Lt. Note that when the entropy term has more impor-

tance (last column), the difference between the two methods
is smaller because γ tends to be uniform. When the class
regularization is set to 0 (first row), OTDA becomes simi-
lar to OT (Sinkhorn algorithm). This shows the effectiveness
of MLOT even without the class regularization. However, the
performances drop without this supervised information which
tends to show that the metric learned and the class regulariza-
tion are complementary. Notice that the results of MLOT are
quite good for many values of the entropy and class regular-
izations (Figure 4 on the right). The best performance is 50.9
which is better than the result obtained by the cross-validation
method. Once again, this is an evidence about the difficulty
of tuning parameters in unsupervised DA.

6 Conclusion

We proposed in this paper a new Domain Adaptation (DA)
method, called MLOT, benefiting from both Metric Learn-
ing (ML) and Optimal Transport (OT). Dedicated to address
problems in the complex unsupervised DA setting, MLOT
jointly learns a good metric and the optimal transportation
plan. A theoretical study has driven the design of MLOT. We
derived a bound on the target error which prompts us to learn
the ground metric involved in the Wasserstein distance. The
experimental study has shown very competitive results and a
significant improvement compared to OTDA, the first method
coupling OT and DA. Although deep learning is not at the
core of this paper, note that we designed a differentiable ver-
sion of MLOT using the PyTorch framework. While the first
results, with pre-extracted features, did not bring any perfor-
mance boost, this implementations opens the door to a full
end-to-end model for Wasserstein-based domain adaptation.
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Flamary, Devis Tuia, and Nicolas Courty. Deepjdot:
Deep joint distribution optimal transport for unsupervised
domain adaptation. In ECCV, 2018.

[Bolley et al., 2007] François Bolley, Arnaud Guillin, and
Cédric Villani. Quantitative concentration inequalities for
empirical measures on non-compact spaces. PTRF, 2007.

[Courty et al., 2017a] Nicolas Courty, Rémi Flamary,
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