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METRIC PROJECTIONS AND THE
DIFFERENTIABILITY OF DISTANCE FUNCTIONS

SIMON FITZPATRICK

Let M be a closed subset of a Banach space E such that the

norms of both E and E* are Frechet differentiable. It is

shown that the distance function d{•, M) is Frechet

differentiable at a point x of E ~ M if and only if the

metric projection onto M exists and is continuous at X . If

the norm of E is, moreover, uniformly Gateaux differentiable,

then the metric projection is continuous at x provided the

distance function is Gateaux diff erentiable with norm-one

derivative. As a corollary, the set M is convex provided the

distance function is differentiate at each point of E ~ M .

Examples are presented to show that some of our hypotheses are

needed.

1. Introduction

For a nonempty subset M of a real Banach space E , l e t

<j)(x) = tnt{\\x-y\\ : y € M)

be the distance function associated to M and let

P(x) = {y € M : \\x-y\\ = <f>(x)}

be the set of nearest -points in M to x , for each x £ E . We call a

sequence [y^\ from M a minimizing sequence for x provided

ll*-2/nll "*• <t>(x) a s n •* °° .
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If M i s also bounded we define, for each x € E ,

ty(x) = ,sup{||x-y|| : y € M)

and

F[x) = {y ( M : \\x-y\\ = <jj(x)} ,

the set of farthest -points in W from x , and we ca l l a sequence [y )

f r o m M a m a x i m i z i n g s e q u e n c e f o r a; p r o v i d e d |jrc—i/ || •* ty(x) a s M - » • « > .

The maps P and F are called the metric projection and antiprojection

for Af respectively.

A real-valued function / on E is said to be Gateaux differentiable

at a point x of E if there is an element df{x) of £* (the dual of

E ) such that, for each y in E ,

lim t~1(/(a;+t!/)-/(a:)) = < df(x), y) ,

and we call df{x) the Gateaux derivative of f at x .

We say that / is Frechet differentiable at a point a; if there is

an element /'(x) of E* such that

lim ||!/ir1Cf(*«f)-.f(*)-</'(*), »>) = 0 ,

and we call f ( x ) the Frechet derivative of / at x . Clearly, if /

is Frechet differentiable at a point x then i t is also Gateaux

differentiable at x and / ' (x) = df(x) .

Denote by B(E) the closed unit ball at the Banach space E and let

S(E) = ix 6 E : \\x\\ = l} be the unit sphere of E . We say that a nonzero

element x* of E* strongly exposes B(E) at x € S(E) provided a.

sequence [y J from B(E) converges to x whenever (< x*, y >)

converges to ||x*|| . A Banach space E i s said to be strictly convex if

S{E) contains no l i ne segments and locally uniformly convex provided a

sequence (x ) from B(E) converges to a point x of 5(ff) whenever

I|X4XJ| - 2 .

Let D denote the (set-valued) norm-one duality map on E , defined

for each x € E by
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D{x) = {x* € B(E*) : <x*, x> = ||x||} .

The Banach space E is smooth provided D(x) i s a singleton for a l l non-

zero x in E , in which case, for each nonzero x and y ,

(1) t^dlx+tj/H-llxll) - <0(x), y> + 0 as t ->- 0 .

This is clearly equivalent to the assertion that the norm of E is Gateaux;

differentiable at each nonzero point x , with Gateaux derivative D{x) .

It is easily seen that the norm of E is Frechet differentiable (at each

nonzero point x ) if (l) holds uniformly for y € S{E) . We say that the

norm of E is uniformly Gateaux different-table if (l) holds uniformly for

x € S(E) , for each y in E .

5mulian [JS] showed that the norm of E* is Frechet differentiahle at

x* 6 E* if and only if x* strongly exposes B(E) , and that if E* has

Frechet differentiate norm then E is reflexive. Lovaglia [JZ] showed

that if E is reflexive and locally uniformly convex then E* has Frechet

differentiable norm. In[J7], 5mul ian proved that the norm of E is

uniformly Gateaux differentiable if and only if E* is weak* uniformly

convex, that i s , whenever (x*) and [y*] are sequences from B(E*) such

that ||x*+z/*|| •*• 2 we have x* - y* -* 0 weak*. Using this

characterization, i t can be shown that every separable Banach space has an

equivalent norm which is uniformly Gateaux differentiable (see [24],

p. h29), and Trojanski [20] showed that there are nonseparable reflexive

Banach spaces with no equivalent uniformly Gateaux differentiable norm.

Sul I ivan [79] has investigated some consequences of uniform Gateaux

differentiability.

A multivalued mapping T from a Banach space X to a Banach space Y

is said to be continuous at x € X provided T is single-valued at x

and y •* Tx whenever x -* x and y '(. Tx

In [3], Asplund showed that if M is a closed subset of Hilbert space

and x has a nearest point in M , then the metric projection onto M i s

continuous at the point x if and only if <j> is Frechet differentiable at

x ; moreover, P is norm-weak continuous at x if and only if $ is

Gateaux differentiable at x . His proofs used properties that are unique

to Hilbert space.
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We will prove similar resul ts in more general Banach spaces, and we

wi l l not need to assume the existence of a nearest point to x . If <J> is

only Gateaux different iable at x we will need to assume that

||<i<l>(x)|| = 1 , "but t h i s wi l l actually yield (norm-norm) continuity of P at

x . The case where <J> i s differentiable for a l l x ^ M i s of special

in t e re s t : we give conditions under which th is yields the convexity of the

se t M .

Throughout t h i s chapter, M wi l l be assumed to be a non-empty subset

of the Banach space E .

2. Consequences of the d i f ferent iabi l i ty of <j> and i|i

The f i r s t lemma we need is obvious.

LEMMA 2.1 . For a nonempty subset M of a Banach space E and any

points y and z of E , we have |<J>(y)-<J>(3) | - \\y-z\\ and if M is

bounded then \ty{y)-\\){z) | 2 ||y-z|| .

LEMMA 2 . 2 ( V l a s o v [ 2 1 ] , B l a t t e r [ 6 ] ) . Let M be a subset of a

Banach space E .

(a) If x £ E ~ M is a point of Gateaux differentiability of <j> and

y € P{x) then <d<$>(x), x-y) •- \\x-y\\ and \\d${x)\\ = 1 .

(b) If M is bounded, x t E is a point of Gateaux

differentiability of ty and y € F{x) then <dty(x), x-y) = \\x-y\\ and

Proof. (a) Clearly \\x-y\\ = <&{x) > 0 . For 0 < t < 1 ,

4>U) - t\\x-y\\ = {l-t)\\x-y\\ = \\x+t(y-x)-y\\

> §{x+t{y-x)) since y £ M ,

2 <\>(x) - t\\x-y\\

by Lemma 2 .1 . So equality holds throughout and

<d(J)(a:), y-x) = lim t~X{<$>[x+t(y-x) ]-<|>(x)}
t+0

= -\\y-x\\ :

hence < d$(x), x-y) = \\x-y\\ . But Lemma 2.1 implies that ||d(J>(a:)|| 5 1 ,

so t h i s also shows that ||<i<j>(a:)|| = 1 .

(b) If M i s a single point th i s i s clear . Otherwise x # y and
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\\x-y\\ = ty{x) . For 0 < t < 1 ,

* (a;) + t\\x-y\\ = (l+t) \\x-y\\ = \\x+t(x-y)-y\\

£ ty[x+t{x-y)) since y € M ,

As above, th i s implies that <c#(x), x-y) = ||x-!/|| and ||cfy(x)|| = 1 .

How we can give a proof of a resul t of Zhivkov.

THEOREM 2.3 [23]. Suppose M is a subset of a strictly convex

Banach space E .

(a) If x is a point of Gateaux differentiability of (j> then there

is at most one nearest point in M to x .

(b) If M is bounded and x is a point of Gateaux differentiability

of 41 then there is at most one farthest point in M to x .

Proof. (a) If x (. M , t h i s i s obvious. Otherwise Lemma 2.2 shows

that for a l l elements y and z of P(x) ,

<dd»(a), x-y) = \Wx)\\'\\x-y\\ = ||d(j.(x) ||- ||a:-3|| = < d*(x), x-z) .

Since E is s t r i c t l y convex, d§{x) can a t ta in i t s norm at only one point

of S{E) , which implies that P(x) has at most one element.

(b) This is proved similarly.

Lemma 2.2 t e l l s us that i f (j) i s Gateaux differentiable at x and

ll<#(a:)l| < 1 then P(x) i s empty. (We will give an example la te r to show

that th is si tuation can occur even in Hilbert space.) When ||<Aj>(a;) || = 1 ,

we can prove the existence of nearest points but we need some strong

assumptions.

THEOREM 2.4. Let M be a closed subset of a Banach space E with

uniformly Gateaux differentiable norm.

(a) Suppose that x € E ~ M is a point of Gateaux differentiability

of (j) with ||d<t>(x)|| = 1 . Assume

(i) that dty(x) strongly exposes B{E) at some point z and

(ii) that z strongly exposes B(E*) at d<$>{x) .

Then every minimizing sequence for x converges to x - <f>(x)s , and the

latter is the unique nearest point in M to x .
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(b) Suppose that M is bounded and that x is a point of Gateaux

differentiability of ty with ||djj(x)|| = 1 . Assume

(i) that dty{x) strongly exposes B(E) at some point z and

(ii) that z strongly exposes B(E*] at d>l>(x) .

Then every maximizing sequence for x converges to x - i|/(x)s , and the

latter is the unique farthest point in M from x .

Proof. (a) Suppose (y ) is a minimizing sequence for x . For a l l

t > 0 ,

<$>(x+tz) - <f>(x) s inf \\x+tz-y \\ - l im ||x-v ||
n n-*=°

2 lim inf (Wx+tz-yJ-Wx-yJ) .

By assumption (i) ,

1 = <d<J>(x), z) = lim t~1{^>(x+tz)-<i,{x)) ,

so

1 S lim inf lim inf t~X[\\x+tz-y \\-\\x-y ||) .

We claim tha t , as t -*• 0 ,

(2) t^iWx+tz-yJ-Wx-yj) - <D(x-z/J, Z) H- 0

uniformly for n € N . To see th i s , l e t a = \\x-y || and note that by the

uniform Gateaux d i f fe ren t i ab i l i ty of the norm,

0

uniformly in n as t -* 0 . From the fact that D(ru) = D(u) for u £ E

and r > 0 , together with homogeneity of the norm, we see that

yj) - <D{x-yn), z) •* 0

uniformly in n as t •* 0 . But a -»• (()(x) > 0 , so t h i s yields the

uniform convergence of (2) .

Thus 1 2 lim inf < D[x-y ) , z) . Since z strongly exposes B(E*)
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at d<t>(x) , we have D{x-y ) •* d${x) . Now

\\x-yj 2 <d<t>(x), x-yn> = <0(x-z/J, x-yj + <d<t>{x)-D{x-yn) , x-y^)

so (d<t>{x), \\x-y ||~1(x-i/ ) / "*" 1 as n •* °° . By assumption fxj , t h i s

implies that \\x-y \\~ [x-y ) •* z ; hence y •*• x - <t>(x)z as required.

(b) Suppose that [y ) is a maximizing sequence for x . For each

t < 0 ,

2 sup ||x+£;s-i/w|| - lim \\x-yn\\
n

> lim sup (||a:+ta-i/n||-||x-j/nl|) .

From assumption (i) it is clear that

1 = ( dflf(x) z) = lim t

1 < lim inf ft -1 lim sup [\\x+tz-y \\-\\x-y \\)
t-Hi- L ,r*» J

= lim inf lim inf *~1(||x+t2-{/ ||-||x-i/ ||) .
t->0 TT*» w n

The rest of the proof is similar to part (a).

COROLLARY 2.5. Suppose that M is a closed subset of a Banach space

E equipped with a norm which is Frechet differentiable, is uniformly

Gateaux differentiable and induces a Frechet differentiable dual norm on

E* .

(a) If x € E ~ M is a point of Gateaux differentiability of (f>

with \\d$(x)\\ = 1 then each minimizing sequence for x converges and

hence P is continuous at x .

(b) If M is bounded and x is a point of Gateaux differentiability

of ty with ||di»(x)|| = 1 then each maximizing sequence for x converges

and hence F is continuous at x .
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Proof. Our assumptions on the norm of E imply that every nonzero

element of E (respectively E* ) strongly exposes B(E*) (respectively

B{E) ) . Thus we can apply Theorem 2.1*. The continuity of P

(respectively F ) follows immediately from the convergence of a l l

minimizing (respectively maximizing) sequences.

If we strengthen the hypothesis on <j> to Frechet differentiability of

<f> at x , then we can obtain the convergence of minimizing sequences for

x with weaker assumptions on the Banach space E .

THEOREM 2.6. Suppose M is a closed subset of a Banach space E .

(a) If x € E ~ M is a point of Frechet differentiability of <f> ,

then ||(j)'(x)|| = 1 . If $'{x) strongly exposes B{E) at some point z ,

then every minimizing sequence for x converges to x - §{x)z , and the

latter is the unique nearest point in M to x .

(b) If M is bounded and x € E is a point of Freahet

differentiability of \p , then \\ty'{x)\\ = 1 . If <JJ'(^) strongly exposes

B(E) at some point z 3 then every maximizing sequence for x converges

to x - ty{x)z , and the latter is the unique farthest point in M from

x .

Proof. In order to prove (a) and (b) simultaneously, introduce a

constant X which i s to be equal to 1 in part (a) and equal to -1 in

part (a). In part (b) l e t [y ) be any minimizing sequence for x and

l e t 4>-| = <t> • In part (b) , l e t [y ) be any maximizing sequence for x

and l e t 4> . = IJJ .

Choose a sequence (a ) of positive numbers such that a •+ 0 and

a > X(||a:-y ||-(|). (x)) for every n € M . If 0 < t < 1 then for each n ,

\<t>x(x+\t[yn-x)) £ \\\x+\t[yn-x)-yn\\ since ^ € M ,

= \(l-\t)\\x-yn\\

S (l-\t)\a2+\<$, (x)
[ n A

hence

(3) \<t>Ax) - X<J>,[x+Xt[y -x)) 2 t<$> (x) - 2 a 2 .
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Now l e t e > 0 . By d e f i n i t i o n of <$>!(x) , t h e r e i s 6 > 0 such t h a t

whenever \\y\\ < 6 we have

| < t > x ( z + i - ) - < j > x ( z ) - < < ^ U ) , y ) \ < c l l j /H .

Let t = a (||x-j/ ||) . For large n , a < 6 , so taking At [y -x] in

place of y yields

etjx-yj - \<4>[(x), Xtjy^x)) 2 X^x) - X

by (3)• Thus

and dividing by a yields

Since e > 0 was a r b i t r a r y , a -*• 0 and ||<j>,'(x)|| £ 1 (by Lemma 2.1) we
Yt A

have

1 2 lim inf {{

> lim inf [\\x-y \\)~\x(x) = 1 ;

hence ||ij>'(x)|| = 1 as required. Furthermore, if (j)̂ (a;) strongly exposes

B[E) at z then (||x-j/ II)"1 (a:-*/ ) -»• s because

I t follows t h a t j / •* x - <j>,

COROLLARY 2.7. Suppose M is a closed subset of a Banaah space E
such that the norm of E* is Freehet differentiable.

(a) If <f> is Freehet differentiable at some x € E , then every
minimizing sequence for x converges, hence P is continuous at x .
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(b) If M is bounded and ty is Freahet differentiable at some

x € E , then every maximizing sequence for x converges, hence F is

continuous at x .

Proof. By the assumptions on .E , every nonzero element of E*

strongly exposes B{E) . So Theorem 2.6 applies, except for the trivial

case x € M in part (a).

COROLLARY 2.8. Suppose M is a closed bounded subset of a Banach

space E such that the norm of E* is Frichet differentiable. Then the

set of x in E which have every maximizing sequence for x converging

to the unique farthest point in M for x is a residual subset of E .

Proof. The function ip is clearly convex and E is reflexive, so ty

is Frechet differentiable at the points of some residual subset of E (see

L~J4]). By Corollary 2.7 (b) , each of these points has the required

property.

Corollary 2.8 generalizes a result of Asplund [2].

THEOREM 2.9- Let M be a bounded subset of a Banach space E .

Suppose that x € E and y € F{x) and that dty(x) exists. Then the norm

of E is Gateaux differentiable at x - y , with derivative dty(x) . If

^i'(x) exists then the norm of E is FrSchet differentiable at x _ y .

Proof. Suppose ip'(x) exists, and let x* € D(x-y) , so that for

every h f E ,

<x*, h> < \\x-y+h\\ - \\x-y\\ .

Since ||x-!/+7j|| - \\x-y\\ 5 ijj(x+7z) - ty{x) we have that for every e > 0

there i s 6 > 0 such that \\h\\ < 6 implies

< x * , h) < < • ' ( * ) , h> + cllfcH ,

that i s , whenever ||z|| = 1 ,

< x * , z> 5 (\l>'(x), z) + e .

This being true for al l E > 0 we conclude that x* = lj)'(x) . It follows

that for each e > 0 there is 6 > 0 such that ||7z|| < 6 implies

< x \ h> £ \\x-y+h\\ - \\x-y\\ 5 <x*, h) + e\\h\\ ,

so x* = t|j'(x) is the Frechet derivative of the norm at x - y . If only

dtyix) exists, a similar proof shows that d\f)(x) is the Gateaux derivative
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of the norm at x - y

Theorem 2.9 does not have an analogue for the function <f> , as the

following example shows.

EXAMPLE 2.10. Let E = R2 equipped with the norm

|| [x , x ) || = \x | + |x_| , and l e t M be the bounded set

{(0, t) (. R2 : -1 5 t 5 l ) . Then ij> is (Frechet) differentiable at each

point x = [x , x ) such that x # 0 and -1 < x^ < 1 : for such

points, <f>(a;) = \x | and P(x) = (o, x J . However, the norm is not

differentiable at x - P(x) = [x , 6] .

3. Sufficient conditions for differentiability of $ and ty

I t should not now be surprising that we need some continuity-l ike

condition (such as "every maximizing sequence converges") in order to prove

that tf> or (f> is differentiable. Also, Theorem 2.9 shows tha t , at leas t

for i|) , we need to assume the d i f fe rent iab i l i ty of the norm at x - Fx .

THEOREM 3 .1 . Suppose M is a closed subset of a Banaeh space E

and x € E ~ M .

(a) If every minimizing sequence in M for x converges to z and

the norm of E is Gateaux (respectively Frechet) differentiable at x - z

then <j> is Gateaux (respectively Frechet) differentiable at x .

(b) If P(y) is nonempty for a dense set of y in some

neighborhood of x and if P is continuous at x , with the norm E

Gateaux (respectively Frechet) differentiable at x - Px , then cj> is

Gateaux (Frechet) differentiable at x .

Abatzoglou [/] proved a resul t less general than Theorem 3.1 (b): he

assumed that P is continuous on an open set containing a; .

THEOREM 3.2. Suppose M is a closed bounded subset of a Banaeh

space E and let x £ E .

(a) If every maximizing sequence for x converges to z and the

norm of E is Gateaux (respectively Frechet) differentiable at x - z ,

then i|) is Gateaux (respectively Frechet) differentiable at x .
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(b) If F(y) is nonempty for a dense set of y in some neighborhood

of x and F is continuous at x , with the norm of E being Gateaux

(respectively Frechet) differentiable at x - F(x) , then \p is Gateaux

(respectively Frechet) differentiable at x .

To prove these theorems we will obtain a general result which contains

both as special cases. Let h : E -*• R be a Lipschitz function. If M is

a subset of E define

n U ) = inf{h(x-m) : m S M} .

Recall the definition of the Clarke subgradient [7], "dh of h : first

let

,0, . n. h(z+ty)-h{z)h (x, y) = lim sup —i ^ —L

for x, y i. E , and then define

2h(x) = {x* € 27* : <x*, y) S h°(x, y) for all y i E) .

Wote that if dh(x) is single valued then dh(x) exists and

Dh(x) = idh(x)} (see [H]).

We need the following mean-value property for dh .

PROPOSITION 3.3 [//]. If x and y are points of E then there

is a point z of [x, y] = {tx+(l-t)y : 0 < t 5 l) and some z* € 3h(z)

such that

<3*, y-x) = Hy) - Hx) .

THEOREM 3.4. Let M, h and n be as above. Suppose that x is a

point of E where n is finite and that z is a point of M such that

n(x) = h{x-z) and dh is single-valued at x - z . Further assume the

following continuity-like condition: for every y in some neighborhood of

zero in E we can assign an element m{y) of M such that, as y •*• 0 ,

both

and

(5) m(y)
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It then follows that r\ is Gateaux differentiable at x and

dr\{x) = dh(x-z) . Moreover, if dh is continuous at x - z then r\ is

Freahet differentiable at x .

Proof. Let y € E and t > 0 . Then define

(6) rtty) = t~1[rl(x+ty)-r)(x)-(dh(x-z), ty>]

5 t~1[h{x+ty-z)-h(x-z)-<dh(x-z), ty>]

since z € M . Also if we define

a(ty) = t~1[r)(x+ty)-h[x+ty-m(ty))] ,

then a(ty) •*• 0 as t •* 0 by (h) . Moreover,

(7) v{ty) > t-X{h{x+ty-m{ty)}-h{x-m{ty)\} + <*(ty) - <dh{x-z), y)

- <x*, y> - <dh(x-z), y> + a{ty)

for some x* = x*{ty) £ dh[w(ty)) , where w(ty) € [x+ty-m(ty), x-m(ty)] ,

"by Proposition 3-3. As t •*• 0 we have m(ty) •*• z , by (5 ) , so w(ty)

converges to x - z . Since <>h i s norm-weak* upper semicontinuous at

x - z (see [ H ] ) w e have x*(ty) -*• dh(x-z) weak* as t •*• 0 . Thus

(x*(ty)-dh{x-z), y> •*• 0 as t •+ 0 , so (7) converges to zero as t •* 0 .

Also (6) converges to zero as t •*• 0 since h i s Gateaux di f ferent iable

at x - z . So we have r(ty) + 0 as t -*• 0+ , for a l l y d E , which

implies that dri(x) ex is t s and is equal to dh(x-z) .

If 3ft is continuous at x - z , then all the assertions concerning

convergence in this proof are valid uniformly for y € B(E) , and n is

Frechet differentiable at x .

Proof of Theorem 3.1. It easily is seen that for h equal to the

norm of E , the Clarke subgradient dh and the duality map D are

identical, and that D is single-valued (respectively continuous) at a

point x of E if and only if the norm is Gateaux (respectively Frechet)

differentiable at x . Hence, setting h equal to the norm, we only need

to produce m(y) satisfying the conditions (h) and (5) of Theorem 3.*+.

(a) For each nonzero y in E take any m(y) f M such that

0 S \\x*yMy)\\ - *(*•*) S \\yf

and take m(0) = z ; this choice of m(y) clearly satisfies condition (It)
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of Theorem 3.U. Furthermore,

<j>U) < \\x-m(y)\\ S \\x+y-m(y) II + llyll

< ||y||2 + 4>(x\y) + \\y\\ by choice of m(y) ,

- ||y||2 + <J>(x) + 2\\y\\

By Lemma 2.1. This shows that if yn •* 0 then \\x-m[y J || -* 4>(a:) , so

m[y ) •*• z since [m[y )) is a minimizing sequence for x . Thus

condition (5) of Theorem 3.** is also satisfied.

(b) Let U toe a neighborhood of zero such that there is a dense

subset A of x + U on which nearest points exist. For each nonzero

y £ U take any w(y) € 4 such that

II2
< hII

and take w(0) = a; . Let m(y) be any element of P[w{y)) for each

y t . l t . Then continuity of P at x implies that m{y) •* P(x) as

y -*• 0 . Also

0 5 y
S ||x+z/-u(t/)|| + \\w(y)-m{y)\\ -

by the tr iangle inequality and Lemma 2 . 1 ,

5 \\w{y)-m(y)\\ - 4>[w(y)) + 2\\y\\2 • by choice of w{y) ,

= 2||y||2 since m(y) € P[w(y)) .

Thus the conditions of Theorem 3.^ are sat isf ied.

Proof of Theorem 3.2. We note that

\l>{y) = -inf{-\\y-m\\ : m £ M)

and thus we can apply Theorem 3.1* to h = -\\'\\ and n = -i|) . The detai ls

are similar to those of the Proof of Theorem 3 .1 .

COROLLARY 3.5. Suppose that E is a Banach space such that the

norms of E and E* are both Frechet differentiable.

(a) If M is a closed subset of E and x i E ~ M , then the

following are equivalent:

(i) the metric projection is continuous at x ;

(ii) every minimizing sequence in M for x converges;
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(Hi) the function (j) is Frechet differentidble at x .

(b) If M is a closed bounded subset of E and x is a point of

E , then the following are equivalent:

(i) the metric antiprojection is continuous at x ;

(ii) every maximizing sequence in M for x converges;

(Hi) the function ip is Frechet differentiable at x .

Proof. (a) Lau [70] proved that P(y) is nonempty for a dense set

of y in E . Now, by Theorem 3.1 (b), if P is continuous at x , then

<f> is Frechet differentiable at x . Conversely, if <f> is Frechet

•differentiable at x , then Corollary 2.7 shows that every minimizing

sequence for x converges, which in turn implies the continuity of P at

x .

(b) By Corollary 2.8, there is a dense set of y € E such that F(y)

is nonempty. Now Theorem 3.2 (b) and Corollary 2.7 finish the proof, as in

part (a).

COROLLARY 3.6. Suppose that M is a closed subset of a Banach space

E such that the norm of E is both Frechet differentiable and uniformly

Gateaux differentiable and the norm of E* is Frechet differentiable.

(a) The following are equivalent for a point x of E ~ M :

(i) the function <f is Frechet differentiable at x ;

(ii) the function <J> is Gateaux differentiable at x and

Hd<f»(aOII = 1 ;

(Hi) the metric projection onto M is continuous at x .

(b) If M is bounded and x £ E , the following are equivalent:

(i) the function ^ is Frechet differentiable at x ;

(ii) the function if) is Gateaux differentiable at x and

(Hi) the metric antiprojection is continuous at x .

Proof. This is immediate from Theorem 2.6, Corollary 2.5 and

Corollary 3-5.

Our interest in the differentiability of <f> arose initially from an

https://doi.org/10.1017/S0004972700006596 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006596


306 Simon Fitzpatrick

attempt to answer the following question. Is every real valued locally

Lipschitzian function on a separable reflexive Banach space necessarily

Frechet differentiable on a dense set? This question appears to remain

open. (The counterexample presented in [4] (and cited subsequently in [5],

[75] and [22]) is in fact continuously Frechet differentiable, while the

one presented in [73] is convex, hence differentiable on a dense G. set.)

The next corollary shows that such a "generic" differentiability result is

valid for <\> in certain spaces.

COROLLARY 3.7. Let M be a nonempty closed subset of a reflexive

locally uniformly convex Banaoh space E . If E is smooth then <j> is

Gateaux differentiable except on a set of the first category, and if the

norm of E is Frechet differentiable then <j) is Frechet differentiable

except on a set of the first category.

Proof. Lau [70] has shown that there is a dense Gr subset A of E

o

such that, if x € A , then every minimizing sequence in M for x

converges. We can apply Theorem 3-1 (a) to get 4> differentiable on

A ~ M . However, <)> is constant (zero) on the interior of M , so we have

4> differentiable on A ~ boundary(M) , which is a dense G*. set since the
boundary of M is closed and nowhere dense.

We need not prove a corresponding result for IJJ since ty is convex

and every reflexive space E is an Asplund space [74], that is, every

continuous convex function on E is Frechet differentiable on a dense G«
o

subset of E .

4. Convexity of M when $ is differentiable

Suppose that M is a closed subset of a Eanach space E . If § is

Frechet differentiable (or Gateaux differentiable with norm-one derivative)

at each point of E ~ M then we give conditions on E which guarantee

that M is convex.

A subset M of E is called a Cebysev set if every point x of E

has a unique nearest point in M , and the set M is spproximatively

compact provided every minimizing sequence in M for each point x of E

is relatively compact. We need the following results of Vlasov.
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THEOREM 4.1 (Vlasov [ZJ]). (a) In a smooth locally uniformly

convex Banach space E , every approximatively compact Cebysev set is

convex.

(b) In a Banach space with uniformly Gateaux differentiable norm,

every approximatively compact Zebysev set is convex.

Our first result of this section is for <f> Gateaux differentiable

with norm-one derivative. However, if (f> is Frechet differentiable, then

Theorem 2.6 shows that the derivative has norm equal to one, for each point

of E ~ M .

THEOREM 4.2. Suppose that M is a closed subset of a Banach space

E equipped with a norm which is Frechet differentiable , is uniformly

Gateaux differentiable and induces a Freehet differentiable norm on E* .

If <f> is Gateaux differentiable at x and \\d${x)\\ = 1 , for all

x 6 E ~ M , then M is convex.

Proof. By Corollary 2.'5, if x is a point of E ~ M then x has a

unique nearest point in M and every minimizing sequence for x

converges, hence is relatively compact. If a; is a point of M , then the

same conclusions are obvious. Thus M is an approximatively compact

Cebysev set, and Theorem k.1 (b) shows that M is convex.

THEOREM 4.3. Let M be a closed subset of a smooth reflexive

locally uniformly convex Banach space. If <J> is Frechet differentiable at

each point of E ~ M then M is convex.

Proof. By Corollary 2.7, if x £ E ~ M then x has a unique nearest

point in M and every minimizing sequence for x converges, hence is

relatively compact. So M is an approximatively compact Cebysev set, and

M is convex by Theorem k.l (a).

The farthest distance function ty for a closed nonempty bounded

subset M of a reflexive space E can not be Gateaux differentiable with

nonzero derivative at each point of E . [Since i|> is nonnegative-valued

and convex, and E is reflexive, it is easily seen that I|J attains its

minimum at some z € E . But then dip(z) = 0 .) Nor does taking i/>

differentiable only for points not in M help.

EXAMPLE 4.4. There is, in any Hilbert space H , a bounded nonconvex

subset M such that ty'(x) exists for all x € H ~ M . In fact, we can
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take M = S{H) U {0} = {x i. H : \\x\\ = 0 or 1} . Then IJJ(X) = 1 + ||x|| for

a l l x £ H , which i s Frechet differentiable at every nonzero x £ H , yet

O E K .

5. More examples

EXAMPLE 5.1. Let E be the Hilbert space l,^ and M the closed

nthsubset \2e., l%e?, ..., (l+n )e , •••( where e is the

coordinate unit vector. Then 0 E S has no nearest point in M but

is Gateaux differentiable at 0 with d<J>(0) = 0 .

Proof. For x 6 E we have, as in Asplund [3],

•(l+n~ )e : n = 1, 2, ...

= WTW* - f(x)

where f(x) = supj 2(l+n"1)< x, e >-(l+n"1)2 : n = 1, 2, ... \ , so f

continuous and convex. Also /(x) = -1 whenever

2(l+n"1)<x, e > < (l+n"1)2 _ 1

for all n ; hence

(8) (|>2(x) = ||x||2 + 1

provided

r 2 i - le > < (2n+l)' (2n +2nl

P P
for all n . Since (|> =11*11 - / is the difference of two convex

functions, it is sufficient to check Gateaux differentiability of <f> on a

dense set of directions. Thus on the set

A = jx 6 E : <x, en> < (2n+l)-(2n
2+2n)"1, n = 1, 2, ...j

we have d<j>(x) = (l+||x|| ) ?x for all x £ A , by (8), since the derivative

of || 'II at x is equal to 2x for all x € I .

It should also be noted that <j> is not Frechet differentiable at any
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point of A by Corollary 3.6, and that A is not a Gaussian null set in

the sense of Phelps (see Lemma 3 of [16]); of course, since the closure of

A has empty interior, it is of the first category in l^ .

EXAMPLE 5.2. In E = l^ let

M=

Then 0 d E has a unique nearest point in M (namely, e^ ) but <\> is

not Gateaux differentiable at 0 , since Lemma 2.2 would then imply that

||i<j>(0)|| = 1 and Corollary 2.5 would show that every minimizing sequence

for 0 converges to e , which is not the case.

EXAMPLE 5.3. There exists a locally uniformly convex Asplund space

E and a nonempty bounded closed convex subset M of E which admits no

farthest points. This shows that Corollary 2.7 fails if the conditions on

E are weakened to E being a locally uniformly convex Asplund space.

Proof. Cobzas, [S] defined an equivalent norm ||| • III on the Asplund

space c such that E = (e , ||| • III) is locally uniformly convex and if

M = {x 6 a : lkllro - if is the original unit ball of c then no point of

E ~ M has a nearest point in M . Consequently, M admits no farthest

points: if x £ E and y € M is a farthest point from x , with

v = \\x-y\\ , say, then r > 0 and Me x + rB{E) . Let z = 2y - x . If

m 6 M , then \\m-x\\ £ r and therefore

Hs-xll = \\2(y-x)-(m-x)\\ > 2r - r = r = \\z-y\\ ,

so y is a nearest point in M to z .

Nor does Corollary 2.7 work if E is only assumed to be reflexive and

structly convex.

EXAMPLE 5.4. There exists a strictly convex reflexive Banach space

E , a nonempty open subset U and a closed set M in E , such that (f>

is Frechet differentiable throughout U but no point in U has a nearest

point in M .

Proof. Edelstein [9] renormed Z-2 © IR by taking
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K (x, r)« = nax(Hx|,

for (x, r) € ff , and showed that no point in the open set

U = {(«, r) : ||u|| < h and \r\ < %}

has a nearest point in the set

M = | ( e n , 2 W " 1 ] : n = 1 , 2 , . . . J .

However, for (w, r ) € (/ ,

(u, r) = 2 - (2-r)

which is easily seen to be Frechet differentiable on U .
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