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0. Introduction
A highly developed branch of the modern theory of dynamical systems is the study
of deterministic ones with statistical properties in behaviour. During the last decade
such systems were discovered in various domains of physics, chemistry, biology and
technology. It is due to their complexity, that only the simplest of such systems
have been analytically investigated (Lorenz system, Rikitake dynamo, billiard sys-
tems), and that is why numerical methods are widely used, especially in applied
investigations. In numerical modelling we have no true trajectory of a dynamical
system f, but an approximation x = (xl,x2t...) such that the sequence of distances
{p(xn+1 ,fxn)}™=1 is small in some sense. For the case of round off errors in computer
modelling, such a sequence is uniformly small, i.e. there exists some e > 0, such
that supnp(xn+l,fxn)<e. The sequence x in this case is called an e-trajectory of
the dynamical system / [1]. In a series of investigations [1-14] a study was made
of the properties and applications of e -trajectories.

Dynamical systems with stochastic behaviour always have a large set of invariant
measures. However under the presence of a stochastic attractor (the definition is
given in § 1), which is the type of system we shall consider, there exists a special
invariant measure n, such that each smooth probability distribution on the phase
space converges to this measure under the action of the dynamical system. In applied
investigations very often this measure is calculated by the histogram of a computer
trajectory, i.e. by an e-trajectory. It is well known that there are not only e-
trajectories, but even true trajectories of dynamical systems with stochastic attractors,
the statistics of which essentially differs from the measure n [18,19]. In § 2 of this
paper we show, that in the typical situation the statistics, obtained from an e-
trajectory, 'with probability 1' is close to the measure fi.
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A very important and often used result is the fact, that in the case of smooth
hyperbolic dynamical systems each e-trajectory is uniformly traced by some trajec-
tory of the system. In § 3 we are going to find new sufficient conditions under which
this property is valid for a class of piecewise smooth systems.

In the case when distances p(xn+1,fxn) are small only in average (impulse
perturbations, stochastic perturbations of Gauss type and so on) there are no results
of the tracing trajectories type in the literature. In § 4 it is shown that for the case
of smooth hyperbolic dynamical systems there is in fact such a tracing property,
not uniform, but on average along the trajectory.

The main results of the present paper are the proof of the 'genericity' property
of the statistics, calculated on an e-trajectory of a dynamical system with a stochastic
attractor (Theorem 1) and the proof of the tracing on the average property for on
average e-trajectories of hyperbolic dynamical systems (Theorem 4). The last result
is a generalization of the well-known result of D. V. Anosov about e-trajectories in
the case of perturbations which are small only in average.

1. Main definitions and assumptions
Let (X, p) be a d-dimensional compact manifold (for example the unit cube or the
torus with the Eucledian norm), on which a nonsingular (with respect to the Lebesgue
measure m on X) map f:X-*X is given. Iterations/", n = 1,2,..., of the map /
generate on X a discrete time dynamical system, which we also denote by /

Following Sinai [3] we shall say that the dynamical system / has a stochastic
attractor A with an /-invariant measure p., if

(a) supp fi = A and any probability absolutely continuous (with respect to the
Lebesgue measure on X) measure with support in a neighbourhood of A under the
action of the dynamical system / converges weakly to (i;

(b) The dynamical system /1A with the measure p, is mixing.
Further we shall assume for simplicity that the condition (a) in the definition

above is fulfilled for any absolutely continuous probability measure on X.
Up to the present, among all dynamical systems with stochastic attractors, smooth

ones with hyperbolic structure have been the most deeply studied [1-5]. Let us give
a definition.

A compact /-invariant set A is called hyperbolic, if the restriction of the tangent
bundle of the diffeomorphism / on A decomposes into a continuous Whitney sum
of two sub-bundles Ws(x) (stable manifold) and W(x) (unstable one). Here

W.(x) = {yeX: p(fx,fny) < e for n e Z+},

W".{x) = {yeX: p{f-x,f-y) < e for n eZ+}.

The last two definitions concern local stable and unstable manifolds.

Statement 1.1. (Local direct product structure) [1,4]. For the hyperbolic dynamical
system / there exist constants 0 < e0 < 1< A, C,, y < oo, such that for all 0 < e s e0.
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(a) for any x, y e X there exists a point r(x, y) such that

r(x, y) € W»{x) n ^ ( y ) , p(x, r(x, >-)) + p(>>, r(x, y)) < ClP(x, y);

(b) for any xeWs
B(y), yzX

(c) for any x, y e A

It is on this statement that the application of so-called Markov partitions of
dynamical systems is based [2-4]. Let us call by a rectangle a subset A, of the
attractor, decomposed into local layers of stable (Ws) manifolds and unstable (W")
ones. By Statement 1.1 the intersection of any local layers consists just of one point.
A set of rectangles {A!,. . . , AN}, intersecting only by boundaries, is called a Markov
partition of the attractor A, if for each internal local layer W" c A, the intersection
fW" n Aj consists of one or several local layers of unstable manifold lying inside
Ay for any i, j = 1,2,..., N, and (analogously) if fWs

B lies inside A,, then it is a
subset of some local stable layer.

There exist Markov partitions of Anosov systems [1] and of smooth hyperbolic
dynamical systems with Axiom A of Smale [4,5]. Partitions of the Markov type are
known also for the Lorenz model [3] with discrete time. In the last case there exist
stable and unstable manifolds of this system, but because of the discontinuity of
the Poincare map / there is no possibility to represent the tangent bundle in the
form of their continuous Whitney sum.

For the description of piecewise differentiable dynamical systems of the Lorenz
type and systems with not one-to-one mappings / , we introduce a class of systems
PC1+a, 0 < a < 1 [18]. We shall say that / e PCl+a, if there exists a partition of the
phase space X intersecting only by boundaries nonempty subsets X, with piecewise
differentiable boundaries, such that for all i the map / = / | i n t X , is a C1-
diffeomorphism, and the function |det Dfx\~l satisfies on int X, the Holder condition
with an exponent a and may be extended as a function, satisfying this condition
to clos X.

The dynamical system/is said to be piecewise expanding, i f / e PC1+a and there
exists A > 1, such that for all i and x, y e X, the following inequality holds:

p(fx,fy)>Xp(x,y).

For a survey of properties of dynamical systems of class PC1+a, see [18].
Now let us consider the space of sequences X°° with elements in the phase space

X of the dynamical system/ The Lebesgue measure m on X induces in the standard
manner the measure m°° on X°°. A sequence x e X°° is called an e-trajectory [1] of
the map / if p(xn + 1 , /xn)<e for all neZ+. We introduce also the notion of an
e - a-trajectory, i.e. an average e-trajectory. A sequence x e X°° is called an e -
a-trajectory if there exists a number N = N(e), such that for all m > N, k e Z+

m

™~' I p(xn+k+ufxn+k)<e.
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The e- and e-a-trajectories can be interpreted as trajectories of perturbed
systems. In this case to the e -trajectory we assign perturbations uniformly bounded
by a small constant e (for example round off errors in computer modelling), and
to the e - a-trajectory - perturbations which are small only on average (for example
the realizations of a Gaussian process with zero mean value, impulsive perturbations
and so on).

An important example of problems, in which the e - a-trajectories arise naturally,
is the investigation of the most probable paths of discrete time dynamical systems
with general Markov perturbations that was carried out in another author's paper.

The investigation of properties of e-trajectories of dynamical systems was the
subject of a series of papers [6-14,18]. The most significant result in this field is
D. V. Anosov's theorem about e-trajectories, by which for any o->0 one can find
e > 0 such that for each e-trajectory x e X°° of a smooth hyperbolic dynamical
system /, there exists a point x e X, such that

supnp(xn,fx)<<T.

The last property is called the tracing property of the e-trajectory. In part 4 of
the present paper this result is generalized to the case of e - a-trajectories, i.e.
perturbations, which are small only on average.

For proofs of some statements that we shall need further let us give some properties
of functions with bounded a,/?-variation, introduced in [18]. Fix a,Be(0,1) and
for equivalence classes in the space of m-integrable functions L\X, m), define the
a,B-variation on a Borel set Y c X :

V(g,Y) = inf sup ra0(g,Y,t),

where g is a representative of the equivalence class g e V(X, m),

6(g,Y,t)=\ Osc (g)dx, Osc(g) = sup(g)-inf(g),
J y B,(x)r-> V A A A

B,(A) = {y e X: p(y, A) < f} - the ^-neighbourhood of the set A.

We denote by BV(X, a, fl) the space of functions with bounded a,/3-variation

from Ll(X, m). As was shown in [18], this space, equipped with the norm
l|g||v=V(g,X) + ||g||,

becomes a Banach space. We shall say that a function ge V(X, m) satisfies some
property, if there exists a representative of the same equivalence class which satisfies
this property.

Statement 1.2 [18] (a) If {gn}"=)c BV(X, a, p), | |gn| |<M<oo and there exists
geV(X, m) such that | | g n -g | | ^0 as n-»oo, then geBV(X, a,/3) and \\g\\v<M;

(b) each bounded in BV(X, a, B) set is a compact set in Ll(X, m);
(c) if {gn}"=, c BV(X, a,B) then for any Borel set Yc X

V[ I gn, y)=£ I V(gn, Y);

(d) if ge BV(X, a, B) and X^Rd, then
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We shall also need some facts from the measure theory. Denote by M(X) the
set of normalized Borel measures on X. A sequence of measures {/in}^=1 <= M(X)
is called weakly converging to a measure n e M(X) if for any continuous on X
function h,

h dixn -» h dfi, as n -» oo.

In M(X) one can introduce a metric p*(-, •) which is equivalent to the weak
convergence of measures. For this purpose, in the space of continuous functions
on X with the uniform norm || • ||c, we fix a dense family of functions {lin}"=1 and
define this metric by the following formula

,1 f f
/ \ y •} —"Ml, ||—1 I I L -J I u A

* B=j C | J „ Ml J n A

2. Statistical properties of the e-trajectories
In this section we shall investigate typical statistical properties of e-trajectories of
dynamical systems with stochastic attractors. Let x e X°° be a trajectory of the
dynamical system / and x(e)e X°° be an e-trajectory. Denote

71 = 1

where S(x) is a 5-function on X, concentrated at the point xeX, x = {xn}™=l,

In view of the compactness of the phase space X of the dynamical system f the
sequences of measures {fi(x, N)}^,=u {/i(Jc(e), N)} have limit points fi(x) and
fi(x(e)) respectively.

A question about the connection between the measure /A(X) and the measure fi
on the stochastic attractor A of the dynamical system was studied in a series of
papers [6,7,13,18]. A trajectory x of the dynamical system / is called typical if
fi(x) = fi. From the Birkhoff egodic theorem it follows that for /ot-almost all points
x 6 X the genericity property is fulfilled. More delicate properties of the set of
typical points of dynamical systems were studied for example in [4,6,7].

We shall be interested in an analogous problem for the limit measures n(x(e}),
constructed not along the trajectory, but along the e-trajectory of the dynamical
system. As it is easy to see, an e-trajectory, in distinction to a true trajectory of the
system, is not defined already by its initial point. Therefore the notion of the
genericity here has to be defined for elements xU) of the infinite dimensional space
(X°°, m°°). Fix o-0>0.

We shall call an e-trajectory xU) <r-typical if there exists a natural number N^,
such that for all N> Nv,
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THEOREM 1. Let a dynamical system fe PCl+a, inf|det D/x|>0 and there exists a
globally attracting stochastic attractor (A, /*). Then for any 0<o-<cr0 there exists
e > 0, such that for m°°-almost all e-trajectories of the dynamical system are cr-typical.

COROLLARY 1. For sufficiently small e > 0 there exists No such that for all N> No

measures (i(x(t), N), determined by mx-almost all e-trajectories, are close to the
f-invariant measure fi on the stochastic attractor.

COROLLARY 2. If we additionally assume that the dynamical system f possesses the
tracing property, then for sufficiently small e > 0 for m°°-almost all e-trajectories, the
trajectories of the dynamical system tracing these e-trajectories are typical.

For the proof of this theorem we need some results about small random perturba-
tions of dynamical systems with stochastic attractors.

Let us fix a family of stochastic Markov processes {ire}e>Q on the phase space X
of the dynamical system under consideration. This family is defined by its transition
probability densities

qc(x, y) = l/m(Be(x) n X) for y G Be(x) n X,

The Markov process fe, which is equal to the superposition of the initial dynamical
system/and the stochastic process ire, is called a stochastically e -perturbed system.
In other words under the action offe a point xe X at first transforms to a point fx
and then to a random point y, which is chosen according to the transition probability
density qe(fx,y).

As it is easy to see, each realization of the Markov process / is an e -trajectory
of the initial system, that allows us to apply results about small random perturbations
of dynamical systems for the investigation of properties of e-trajectories.

LEMMA 2.1. The random process fe possesses a unique normalized invariant measure
fie which is absolutely continuous with respect to Lebesgue measure.

Proof. The dynamical system / induces in the space of probability densities the
transformation P, which is called the Perron-Frobenius operator and is defined by
the relation

Ph(x)dx=\ h(x)dx, heL\X,m)
JA Jr'A

for any Borel set A c X. An analogous operator Qe for the Markov process ire is
defined by the relation

QMx) = J h(x)qe(u, x) du, h G L\X, m).

By definition of the stochastically perturbed system, the operator, describing the
dynamics of probability densities under the action of fe, is represented in the form
Pc = QeP.

Let us fix e > 0 and show, that there exists ye < oo, such that for any function
h € BV(X, a, f3) the following inequality holds:

V(Qeh,X)<ye\\h\\.
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Really, for any h e BV(X, a, B)

Osc(fc)<sup h(x)w(x) dx,
A Msi JA

where we V(X, m), |-| is the Euclidean norm. From this

V{Qth,X)< sup ra I Osc (Qeh)dx
0<(</3 Jx B,(x)nX

s sup r" sup w(s)Qch(s) dsdx
0<r</3 Jx |w|sl JB,(x)r\X

= sup '"" sup w{s)qe(u, s) ds \h(u)dudx

< sup t— [sup qe(x,y)] sup |w(s)|ds|ft(«
0<l<£ J Jx x,y |w|sl jB,(x)nX

<C sup r-"m-1(B.(0)) | |/I(M)| rfw 1 | m(B,(x)n X) dx
0<r</3 LJx JJx

sup ram(B,(0))

because a, )8 satisfy the inequality 0< a, )8 < 1. Hence

V(Psh, X) = V(QeP/., X)s ye\\Ph\\ s y.||fc||.

Now we show that for each function heL\X,m)
N z.1

JV"1 I P"eh * he e BV(X, a, j8) as JV->-oo.
n = l

Really,

Therefore, by the Property 1 2(b) of functions with bounded a,B -variation the
sequence {iV~'X^=i P"h} has a limit point he, which is a function of bounded
a,B -variation. Applying the statistical ergodic theorem [20], we obtain that this
sequence converges to he also in the L'-norm and Pehe = he. That proves the fact
that the measure /ie with the density he is the fe -invariant measure.

For the proof of uniqueness of this measure it is enough to check up the fulfilling
of the Doeblin condition [20]. Let &e(x, A) be the probability of a transition of the
Markov process fc from a point x e X t o a Borel set AsX. Then

= | qt(Jx,y)dy*Cm-\BM) \
JA JA

From which, if we fix S = y~2, then for any Borel set A with Lebesgue measure
m(A)< S, the Doeblin condition is fulfilled. •

Statement 2.1. Under the conditions of the theorem above the measures /u.e-> fi as
e->0.
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Under different assumptions about the dynamical system / and its perturbations
this statement was proven in papers [13-16, 18].

LEMMA 2.2. For m" -almost all realizations jc<e) e X°° of the random process fs the
measures fi(xu\ N)-> /AE as N-*oo.

This statement is a consequence of the Doeblin condition for the random process

Now we are ready to prove the theorem. By Statement 2.1, for any cr>0 there
exists e > 0, such that p*((ie, ti)<cr. On the other hand, by Lemma 2.2 it follows
that for /w°°-almost all realizations Jc(e) of the random process /„ (i.e. e-trajectories
of the system/) the limit measures n{x(e)) coincide with the measure /ue. Hence
p%(n(x(e}), fi)<o- for m°°-almost relizations of fc. •

Corollary 1 is equivalent to the theorem and Corollary 2 follows from the fact
that a trajectory jc of the dynamical system/, tracing an e-trajectory Jc<e) lies uniformly
close to it.

3. Tracing conditions for e-trajectories
For the first time the tracing property for e-trajectories was discovered in paper [1]
for the case of smooth hyperbolic dynamical systems. From that time a series of
papers [6-14,18] was dedicated to the investigation of this property and to its
applications to both theoretical and applied problems. However, there has been no
increase of the class of dynamical systems for which the tracing property is proven.
The point is the fact that the proof of the Anosov theorem about the tracing of
e-trajectories essentially uses the existence and properties of smooth stable and
unstable manifolds of the hyperbolic dynamical systems. Therefore to extend this
result to a class of piecewise continuous dynamical systems, possessing for example
critical points, we have to use sufficiently different techniques of proofs. In the
present section we shall obtain some sufficient conditions for the validity of the
tracing property for such systems.

THEOREM 2. Let fbe a piecewise expanding map with expanding constant A > 1 and
for any component X,, of the partition described in the definition of PCi+a-systems,
assume the condition /X, = X is valid. Then for any a>0 there exists e > 0 such that
any e-trajectory of the system f is uniformly traced by a trajectory of this system with
the accuracy a:

Proof. Let us denote Y = U, dX, Y = U~=o/~" Y, X = X\ Y By the construction of
the set X, it is a dense set in X and for any i it fulfils f(X n X,) = X For any point
xeX, we denote by X(x) the set X,.

Fix e > 0 small enough. Then in view of the expanding property, we have for any
x, y € X, such that p(fx, y)<e that there exists a point y'eX(x)nX with properties
fy' — y and

p(x,y')<e/\.

Really, for example, let xeX,. By the expanding condition, setting y'=fTxy, we
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obtain

e > P(y,fx) = p{ffT'y,ffTlfx) a kP{f7ly,fTlfx) = V( / , *)•

Now choose cre(0, e / ( l - l /A)) . Suppose that an e-trajectory Jc<e) = {x(
n
e)}™=1cX

(in the general case in view of the fact that X is a dense set in X it is enough to
approximate xie) by a sufficiently close e-trajectory x(c)<= X). Choose an arbitrary
natural number N and set yN = x^. As pC/x^-i, 7N) — e, then there exists yN-t e

(^ such that

Now since

p(fxW-2, yN-i) < P(fxW-2, *#-,) + p(x%lu yN_J < e(l - 1/A) < a,

then there exists ^ e X ^ ' j n X such thatfyN-2 = yN-i and

p(x(^_2,yN_1)<e(l + A-1 + A-2).

Continuing this construction, we have for arbitrary nsJV, that there exists yn e
X(xl

n
e)) n X, such that fyn = yn+1 and

In such a way we construct the segment of the trajectory {yn} of the dynamical
system f, uniformly tracing the e-trajectory x(e) on the time interval [0, N]. But
since the number N can be chosen arbitrarily large, then the statement of the
theorem follows.

We remark that for the one-dimensional representation of the Lorenz system a
close result was obtained earlier in the paper [8].

It turns out that the condition fXt = X of Theorem 2 is in a sense a necessary
one for the tracing property of e-trajectories which follows from the results of papers
[8,11,18].

As was shown in [18,22] a powerful method for the extension of results about
dynamical systems with stochastic behaviour is a topological conjugation of such
systems, i.e. the constructing of a system/= h~xfh for the dynamical system/ Here
h is a homeomorphism of the phase space X into itself. The existence conditions
of the topological conjugacy for different classes of dynamical systems can be found
for example in [5,17,22]. A class of dynamical systems topologically conjugated
to piecewise expanding or hyperbolic systems is sufficiently more broad than initial
ones, for which the tracing property is known. For example the next statement is valid.

LEMMA 3.1. Let f be a piecewise expanding or hyperbolic dynamical system. Then
there exists a homeomorphism h : X -» X such that there is a critical point in the system
f=hfh~\
Proof. By the conditions there exists a point x e X such that fx^x and / is a local
C'-diffeomorphism in a small neighbourhood of points JC and fx. If there exist

corresponding derivatives the following equality is valid

h'(x)f'(hx)=f'(x)h'(fx).

Hence each homeomorphism h:X-*X is locally differentiable at points x,fxeX,
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such that h'(x) ̂  0 and h'(fx) = 0, conjugates the map / with the map possessing a
critical point. •

THEOREM 3. Let a dynamical system f be conjugate by means of a homeomorphism
h to a system f=h~1fh, possessing the tracing property. Then f also possesses this
property.

Proof. Let {xn}™=oe X°° be an e-trajectory of the map /, i.e. p{fxn, jcn+1) < e for all
natural n. Denote xn = h~lxn and consider the sequence {xn}"=oeX°°. By the
definition

e>p(xn+i,fxn) = p(hxn+l, hh~1fhxn) = p{hxn+l,hfxn).

But as h is a homeomorphism, then h is a continuous and hence also uniformly
continuous map of the compact set X into itself. Therefore for any e > 0 there exists
e > 0 such that if p(x, y)<e then p(hx, hy) < e. In such a way the sequence {*„}"=<>
is an e-trajectory of the map/(e and e here are connected in a way mentioned above).

As the map / possesses the tracing property, then for any cr > 0 there exists e > 0
such that for any e-trajectory {xn}™=0 of the system / there exists a point xeX such
that p(f"x, xn)<a for any natural n. If we set x = hx, then

a>p(f"x, xn) = p(h-*hf"h-xhx, h~lhxn) = pih-'fx, /T'xJ.
Now, applying again the uniform continuity of the map h, we obtain that the

trajectory {/"x}"=0 also uniformly traces the e-trajectory of the map / under
consideration. •

4. Properties of e - a-trajectories
In this section we shall study properties of trajectories of perturbed hyperbolic
dynamical systems, when the perturbations are small only in average, i.e. e —
a-trajectories. We shall restrict ourselves to the case when the map / satisfies the
Smale Axiom A on the whole phase space X (i.e. the w-limit set of the map /
coincides with X and periodic points of/ are dense in X). In the opposite case we
can restrict, as is usually done, the dynamical system / to its locally maximal
hyperbolic set [4,5].

THEOREM 4. For any a > 0 there exists e > 0 such that for any e - a-trajectory x e X°°
there exists a trajectory of the system f tracing on average the trajectory x with the
accuracy a, i.e. there is xeX, such that the following inequality holds:

TlnTJV-1 X p(xn,/nx)<o-.

To simplify calculations we shall assume further that p(-, •) is the Lyapunov
metric [1] for the map / on X.

For the proof of this theorem we need some generalization of the Statement 1.1
about the local structure of the direct product in the nonlocal case.

LEMMA 4.1. There are constants A,B>0 such that for any pair of points x,yeX
there exists a point r(x, y)e X, such that

(a) r(x,y)eW(x)nWs(y);
(b) p(r(x, y), x) + p(r(x, y), y) <Ap(x, y);
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(c) p(f-nr(x,y),f-nx)< B\-np(x,y) forn>0, A>1;
(d) p(rr(x,y),fny)^B\-"p(x,y) forn>0,A>l.

Proof. We shall use the fact, that for the Axiom A hyperbolic dynamical system /
there exists a Markov partition whose elements have an arbitrary small diameter
[4,5].

Let us fix a Markov partition with a diameter less than the constant e0 (from
Statement 1.1). Because of the transitivity of the map / there is an exponent n0,
such that the transition matrix of the Markov partition (i.e. the matrix with elements
0 or 1, assigning to transitions under the action of/ from the one element of the
partition to another) in this degree is strictly positive. Therefore after the time n0

all stable and unstable layers are sure to intersect, i.e. the condition (a) of the
theorem is fulfilled and, accordingly there is a point r(x, y) in their intersection.
This point may be not unique.

Points f~"°x and f~"°y lie in some elements of our Markov partition. Since after
the time n0 images of these two elements intersect, then we have an estimate

p(x, r(x, y)) + p(r{x, y), y) < yn«e0+ yn°e0 = 2eo'y'I° = Ae0,

where the constant y coincides with the corresponding constant in the Statement
1.1. The item (b) of the lemma is a consequence of this inequality for the case
p(x, y) > e0 (the case p(x, y) < e0 follows from the Statement l.l.a).

Now we prove the item (c). Consider an element of the Markov partition contain-
ing the point r(x, y). The preimage of this element of degree n0 intersects the
trajectory of the point x and therefore the point f~"(r(x,y))e W"0(x) for n^n0,
and hence by the Statement 1.1.b, item (c) is valid. Part (d) of the lemma is proven
analogously. •

Proof of Theorem 4. Let {xn}^=1 be an e - a-trajectory of the m a p / Fix a natural
number k > 1 and choose segments of this sequence so, that for any segment the
following inequality is valid

i;m=p(xm-1,fxm)<ke.

Denote by nt the length of the ith segment (i.e. the number of points in it). By the
theorem about e-trajectories, for sufficiently small e > 0 for any constructed segment
of the sequence there exists a segment of a trajectory of the map / uniformly
approximating it with the accuracy <r. By the construction a distance between the
end of the ith segment (xj+)) and the beginning of the (i + l)th one (x'+l) A, is less
than £n/ + 2e, where £ni=p(.fx\+), x\+\) is the distance between the /-image of the
last point of the ith segment and the first point of the (i+ l)th segment.

The approximating on average trajectory of the system / i s constructed inductively
by steps. At first we approximate the first pair of segments, then the constructed
segment of the approximation and the third of initial ones and so on. Here the
approximation is a choice of a segment of the trajectory, constructed for the end
x<+) and the beginning x( - ) of two consecutive segments by the point r(xi+\ x<-)).
The existence of such an approximation and its properties were described in Lemma
4.1.
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- I 1

Denote by AJ the distance between the last point of the approximation, constructed
at the ith step of the procedure and the first point of the next segment (Ai = A,),
and by Sf the sum of distances from points of segments of trajectories to the
approximating trajectory also to the ith step of the procedure (Si = 0).

From the estimates of Lemma 4.1 there follows:

Denoting by a, = BA~"'+1, 0 = 2B/(1 - I /A) , we obtain

ala2+- • • + ala2 a,-)

a i ) + " " " +A,-].

LEMMA 4.2. There are constants 0<q<\, keZ+ such that for any m> N (from the
definition of the e - a-trajectory) and natural M the following inequality holds

I! ai+M < qm.

Proof. By the definition of quantities a,

= (BA"'c)'n J lnAJ.

On the other hand by the definition of an e - a-trajectory and its segments it follows
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that
m - l

m~l X ni+M>k,
i=0

as for L = Y.7^o ni+M the next inequality is valid
L

L~l I P ( % M - I , A + M ) S £ .

Leaving in the last inequality only terms exceeding the value k, we obtain an estimate
L

i.e. L/m>k or m"1 X ^ 1 "I+M > k.
In such a way QiJ?)<(B\~k)m, as A > 1. Now choosing a natural number k such

that

q = BX~k<l

we obtain the desired estimate. •

Continuation of the proof of the theorem. By Lemma 4.2

Q,, = 1 + a, + a,a,+1 + • • • + a,aI+1 a,+,- + • • •

< l + a1 + --- + a,aI+1 aj+M + 1 / ( 1 - 9
M )

< MA"M5M +1/(1 - ? M ) = <7<co
and this estimate does not depend on the number i. So

Hence

AT1 I p^+^/^s^A/-1 I
n=l \ n = l

which finishes the proof of the theorem. •

Lemma 4.2 shows that in a general case the approximation parameter k exceeds
1 and, hence, we could not inductively approximate the e - a-trajectory by segments
of trajectories of the initial system.
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