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Metric regularity and quantitative stability in
stochastic programs with probabilistic constraints *
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Abstract

Necessary and sufficient conditions for metric regularity of (several joint) probabilistic
constraints are derived using recent results from nonsmooth analysis. The conditions
apply to fairly general nonconvex, nonsmooth probabilistic constraints and extend earlier
work in this direction. Further, a verifiable sufficient condition for quadratic growth of the
objective function in a more specific convex stochastic program is indicated and applied in
order to obtain a new result on quantitative stability of solution sets when the underlying
probability distribution is subjected to perturbations. This is used to establish a large
deviation estimate for solution sets when the probability measure is replaced by empirical
ones.
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1 Introduction

When building stochastic models in decision making under (stochastic) uncertainty, the two
main approaches consist in introducing future costs (e.g. for the compensation of constraint vio-
lations) and in fixing certain reliability levels for constraints. The latter approach is motivated
by many problems in engineering sciences, where system reliability is an important feature
(e.g. inventory control, power generation, structural design etc. [30], [38], [55]). It leads to
stochastic programming problems with (so-called) probabilistic or chance constraints. To give
a mathematical formulation of the model we study in this paper, let ¢ be an s-dimensional
random vector on some probability space (2, A, P) and let £ € H;(x), 5 =1,...,d, describe d
constraints depending on ¢ and on the decision vector = € IR™. Denoting by ¢ the objective
function and by ' the subset of IR™ expressing all deterministic constraints, we arrive at the
following model:

mm{g(:z;) | LS C,P(f S H](l')) ijv .] = 177d}

Here p; € (0,1) denotes the probability (or reliability) level subject to which the constraint
‘¢ € Hj(x) has to be satisfied. Since different reliability requirements might be fixed for
different constraints, the levels p; € (0,1), 7 = 1,...,d are allowed to be different. Later we
shall prefer the following formulation of the model

P()  min{g(x) | 2 € Cou(Hy(a)) = py j = L.....d}. (1)

where 1 denotes the probability distribution of £, i.e., p = Po&™!. In Section 2 the assumptions
on the data ¢,C, H;(j =1,...,d) are specified, so that the model is well-defined and enjoys
suitable properties. In Section 3 we shall study the case where H; has the form H;(x) = {z €
R? | hj(x) > z;} with h; : IR — IR*, j = 1,...,d, and Z;l:l s; = s, and in Section 4 we
shall deal with the polyhedral case, i.e., C is polyhedral and h = hy is linear (d = 1).

In most practical applications of the stochastic programming methodology only incomplete
information on the probability distribution p (of &) is available. This fact and the possible
need of approximations for p in solution methods (cf. [31], [34], [38]) motivate a stability
analysis of P(u) with respect to perturbations of p in the space P(IR*) of all Borel probability
measures on IR* endowed with a suitable convergence (or metric). In the context of stochastic
programs with probabilistic constraints, this problem was addressed in several papers, e.g.
(1], [14], [15], [16], [22], [23], [24], [42], [43], [44], [46], [47], [48], [51], [52], [53], [54]. In [14]
a nonlinear parametric framework is adapted to study stability with respect to changes of
finite dimensional parameters of the distribution . The convergence theory for measurable
multifunctions is utilized in [47] to develop general approximation results for probabilistically
constrained models. This approach is also used in [51], [52], leading to general, satisfactory
results on convergence rates of estimates for such models. Further results in this direction are
given in [23], [24]. Asymptotic properties of the optimal value based on an extended delta
method are studied in [48]. Recently, a new class of nonparametric estimators that preserve
convexity properties has been adapted to chance constrained models in [16]. The asymptotic
behaviour of these estimates and of solution sets to stochastic programs is analysed, too. In
the remaining papers quoted above, stochastic programs are viewed as parametric programs



with respect to the probability measure . [22], [53] and [54] give qualitative stability results
for constraint sets, marginal values and solutions when the measure u is perturbed in P(IR*)
equipped with the (metrizable) topology of weak convergence ([6]). In [1], [42], [43], [44], [46]
quantitative stability results for marginal values are obtained with respect to certain metric
distances on P(IR°) (the Prokhorov metric in [1] and so-called discrepancies in the other
papers). The papers [42], [43], [44] also contain results on upper semicontinuity of local solution
sets.

The aim of the present paper is to extend the results in [42], [43], [44] in two directions: ear-
lier conditions on the stability of probabilistic constraint sets are considerably generalized and a
novel result on the Hausdorft Holder stability of solution sets is established. We start our anal-
ysis by stating a general quantitative stability result for P(y) (Theorem 2.1), which relies on
the recent work by Klatte [26] and on techniques developed in [44], [46]. The crucial conditions
in this result are the metric regularity of the probabilistic constraints and a quadratic growth
condition for the objective function near non isolated minima. The growth condition appears
in a more general context also in [2], [7], [49] for instance, and in a slightly different framework
in [28]. The aim of our analysis is to derive verifiable conditions (on the original problem P(u))
for metric regularity and quadratic growth. In particular, we focus on conditions that apply to
nonsmooth probabilistic constraints in order to enlarge the range of applications. In Section
3 we obtain characterizations of metric regularity by exploiting the nonconvex subdifferential
calculus by Mordukhovich ([32], [33]). Two types of sufficient conditions for metric regularity
are developed. The first one represents an explicit growth condition for the composite function
0,.(x) = (u(Hi(x)),...,u(Hg(x))) at a feasible point (Theorem 3.12). The second type consists
of separate constraint qualifications for the function h = (hy,...,hy) relative to C' and for
a function @, whose components are certain marginal distribution functions of u (Theorem
3.16). In case p has a density, a more transparent and verifiable condition, which implies the
constraint qualification for @, is established (Theorem 3.17). This can be achieved even glob-
ally if the strict positivity region of the density contains an infinity path (Theorem 3.21). The
principal statements are illustrated by examples showing their validity and limitations. Earlier
results are essentially extended (cf. the discussion following Proposition 2.2). In Section 4 we
consider a particular convex stochastic program and give a criterion implying quadratic growth
of the objective near the solution set. In this respect a local strong concavity property of the
measure y is essential. The methodology for proving this result (Theorem 4.2) is shown to
extend to establishing the Hausdorff Holder continuity for solution sets (Theorem 4.3). Finally,
it is outlined that the latter result has immediate implications to rates of convergence for non-
parametric estimation procedures in P(u). Namely, we derive a large deviation type result for
the Hausdorff distance of solution sets if the original distribution p is estimated by empirical
measures.

2 A general result on quantitative stability

In this section, we develop a framework for stability analysis of probabilistic constrained models
and present a general result on the quantitative stability of marginal values and (local) solution



sets. We consider the stochastic programming model P(yu) formulated in the introduction

P(p)  min{g(z) |z € C,u(Hi(2)) = pj, j=1,...,d},

which involves several (joint) probabilistic constraints. For the data we assume that ¢ is
a continuous mapping from [R™ into IR, C is a nonempty, closed subset of IR™, H; is a
set-valued mapping from R™ into IR® having a closed graph (for each j = 1,...,d), p; €
(0,1) (j = 1,...,d) and p € P(IR*). Making use of the notations p = (p1,...,ps) and
M,(v) =Hx € C |v(Hi(x)) > p;, 3 =1,...,d)} for each v € P(IR*), the model P(u) takes
the form

min{g(x) | 2 € My(p)}. (2)

The first step to analyse stability of (2) with respect to perturbations of p in P(IR®) is to
identify a (suitable) metric distance on P(IR*). Consistently with [46], [44] we consider the
following distance, which is sometimes called B-discrepancy:

a(p,v) = sup{|u(B) —v(B)| | B € B} (3)

Here B is a class of closed subsets of IR® such that all sets of the form H;(x) (x € C; 5 =
l,...,d) belong to B and that B is a determining class (i.e., it has the property that if
any two measures agree on B, then they coincide). Convergence of a sequence of probability
measures with respect to the metric @ means its uniform convergence on 5. Necessary and
sufficient conditions on B such that weak convergence of probability measures implies uniform
convergence on B usually refer to certain uniformity properties of the class B with respect to
the limit measure (cf. e.g. [4], [5]) or to the sequential compactness of B, viewed as a subset of
the hyperspace of closed subsets of IR* equipped with a suitable topology ([29]). In particular,
if B is a subclass of all convex Borel sets, then the uniform convergence on B to the limit
measure £ is implied by its weak convergence and the condition u(dB) = 0 for all B € B
(0B denoting the topological boundary of B).

A special feature of model (2) is that we have to take into account its possible nonconvexity.
Even when the original model is convex (cf. e.g. Proposition 2.2), perturbations of u (e.g. by
discrete measures) lead to nonconvex perturbed programs. Hence, an appropriate concept for
the stability analysis of (2) has to take into account the perturbation of sets of local minimizers.
Here we make use of the concepts developed in [25], [39] and, in particular, of so-called complete
minimizing sets (CLM sets). Given V C IR™, we put for each v € P(IR*)

ev(v) =inf{g(x) |z € M,(v)NelV}
and
Uy (v) =argmin{g(z) |z € My(v)NedlV}={x e M,(v)NeV |glx) =ev(v)},

where ¢l V' denotes the closure of V. Given p € P(IR*), we call a nonempty subset X of
IR™ a CLM set for (2) with respect to V, if V is an open subset of IR™ containing X and
X = Uy(p). For a discussion of CLM sets we refer to [39], but mention that nonempty sets of



global minimizers, isolated local minimizers and sets of non-isolated local minimizers around
which ¢ satisfies a quadratic growth condition (cf. e.g. [7], [49], [26]) are examples of CLM
sets.

To state our quantitative stability result, we still need a stability property for the probabilis-
tic constraint in (2). We put 0, : R™ — IR?, (%(:1;) = u(H;(z)) foreach v € R™, j=1,...,d,
and p = (p1,...,ps) € IR?. Consistently with the general definition given in Section 3 we say
here that the probabilistic constraint function 6,(-) — p is metrically regular with respect to C
at some z° € M,(u) if there are constants @ > 0 and & > 0 such that

dist (2, My (1)) < a - dist (0,,(x) — p, L — y) = al| max{0,p — y — 0,(2)}]

for all (z,y) € (C' N B:(2")) x B:(0). Here (and in all what follows) B.(x) denotes the closed
ball with radius ¢ around z. The following general stability result will serve as an orientation
for the further development of our analysis.

Theorem 2.1 In addition to the general conditions, assume that

(i) X is a CLM set for P(u) with respect to a bounded set V' (i.e., X = Wy (u) and X is

compact),
(ii) g is locally Lipschitz continuous,

(iii) the probabilistic constraint function 0,(-) — p is metrically regular with respect to C at
cach z° € X.

Then there are constants L > 0 and & > 0 such that the set-valued mapping Wy from
(P(IR?),cr) to IR™ is upper semicontinuous at p, Wy(v) is a CLM set for P(v) with respect
to V oand |ev(p) —ev(v)| < L-a(p,v) holds whenever v € P(IR?), o(p,v) < 6.

If, moreover, the following quadratic growth condition is satisfied

(iv) there exists a constant ¢ > 0 such that we have
gl) 2 @v(p) + ¢ dist (z, Wy (n))* Yo € My(u) OV,

then Wy is upper Holder continuous at p with rate 1/2, i.e.,

sup dist (x, Wy (p)) < L- oz(/,L,l/)l/2 whenever v € P(IR®), a(u,v) < 4.
z€Wy (v)

Proof:

The first part of the assertion is proved in Theorem 3.2 of [44]. It remains to note that
condition (i) is equivalent to the fact that the set-valued mapping ¢ — M,(u) from R? to
IR™ is pseudo-Lipschitzian at each pair (2% p) € X x {p} (cf. [35], Theorem 1.5). On the
other hand, the latter property is equivalent to the local Lipschitz continuity of the function
(7,q) — dist (x, M (1)) from IR™ x IR? to IR at each (2° p) € X x {p} (see Theorem 2.3
in [40]), which is assumed in [44]. The second part of the result follows from Theorem 2.2 in

5



[26] by using the same arguments as by deriving Theorem 3.2 in [44] from Proposition 1 and
Theorem 1 in [25] (see also Theorem 2.5 in [42]). O

All assumptions (i)-(iv) in the theorem concern the original (or unperturbed) problem P(u).
While (i) and (ii) do not require further discussion, the conditions (7ii) and (iv) are decisive and
deserve verification. Verifiable conditions for the quadratic growth condition are apparently not
vet known. In Section 4 we shall take up this question for the case of a single (joint) probabilistic
constraint (i.e., d=1), polyhedral C' and a set-valued mapping H having a convex polyhedral
graph. The method for proving the corresponding result (Theorem 4.2) will even allow to
establish a Hausdorff Holder continuity result for Wy. The metric regularity property (i)
(or its equivalent characterizations mentioned in the above proof) has already been discussed
in some special cases for C' and for H; (j = 1,...,d) (cf. [42], [43], [44], [46]). In Section
3 we shall considerably extend earlier results in this direction by exploiting recent tools from
nonsmooth analysis. In order to explain this extension, we record now a metric regularity result
for a situation where the data satisfy certain convexity properties. For this purpose and for later
use we introduce the notion of an r-concave probability measure (r € [—o0,0]). Following
[10] and [12] we define the generalized mean function m, on IRy x IRy x [0,1] as follows:

(Aa” 4+ (1= \B)/7 if 1 € (0,00) or r € (—00,0),ab > 0

0 if ab=0,r € (—00,0)
my(a,b; ) = atb' = if r=0 (4)
max{a,b} if r=o0
min{a, b} if r=-o0

The measure p € P(IR?) is called r-concave, r € [—oo0,00] ([8], [12], [38]), if the inequality
p(AB1 4+ (1 = X)Bz) > m,.(u(B1), u(Bs); A) holds for all A € [0,1] and all Borel subsets By, By
of IR* such that AB; + (1 — A)By is Borel. For r = 0 and r = —oo, u is also called
logarithmic concave and quasi-concave, respectively ([37]). Since m,(a,b;\) is increasing in r
if all the other variables are fixed, the sets of all r-concave probability measures are increasing
if r is decreasing. It is known (cf. [8], [10], [37], [38]) that u € P(IR®) is r-concave for some
r € [—oo,1/s] if p has a density f, such that

FuQz + (1= X)2) > my)(fu(2), fu(2);X),  where r(s) =r(1 —rs)”" (5)

holds for all A € [0,1] and z,Z € IR°. A density f, satisfying (5) is called r(s)- unimodal
(see e.g. [12] for a detailed discussion of unimodality). We mention that e.g. the uniform dis-
tribution (on some bounded convex set), the (nondegenerate) multivariate normal distribution,
the Dirichlet distribution, the multivariate Student and Pareto distributions are r-concave for
some r € (—o0,00] (see [8], Chapter 4 in [38]).

Proposition 2.2 In addition to the general assumptions, let C' be conver, H; (j = 1,...,d)
have convex graphs and let p be r-concave for some r € (—oo,00]. Suppose there exists
an element & € C such that the strict inequality 0,(z) > p holds componentwise. Then the
probabilistic constraint function 6,(-)—p is metrically regular with respect to C' at each feasible

2 € My(p).



The proof is carried out in [44] (as part of the proof of Corollary 3.7) making use of the
Robinson-Ursescu theorem for multifunctions having a closed convex graph. In Section 3 we
shall study the case of €' C IR™ being closed and H;(x) = {# € IR° | hj(x) > z;} with
hj:IR™ — IRY, 7=1,...,d and Z;l:l s;=s. For d =1, C'= IR™, continuously differentiable
h = h; and a probability measure g having locally Lipschitzian distribution function F),, a
particular metric regularity result is given in [42] (Corollary 5.6) using the Clarke generalized
gradient. This has been partially extended by allowing for a general closed subset C' of IR™
(but assuming h to be linear) in [43] (Proposition 2.1) by making use of Clarke’s nonsmooth
calculus. Another type of result for a nonconvex situation (with d = 1, C' convex, h linear,
but without assuming that g has concavity properties) is developed in [46] (Theorem 4.6) and
[43] (Corollary 2.2) by imposing a local growth condition on the composite function F,(h(-))
near binding feasible points. In Section 3 these earlier results will be unified and considerably
extended by relaxing assumptions on the data and by relying on Mordukhovich’s calculus for the
approximate subdifferential and coderivative. A new local growth condition for the composite
function p(H;(-)) is identified and shown to be sufficient (and in some cases also necessary)
for metric regularity (Theorem 3.12). Later, separate constraint qualifications for the measure
and the function H that imply metric regularity are established . Furthermore, the question
of global metric regularity is discussed. This is of interest, since the set X in condition (iii) of
Theorem 2.1 is not explicitly given in general. The constraint qualifications needed in [43] and
[42] for the special cases considered there, are recovered from our general results.

Finally, we give an idea how a quantitative stability result like Theorem 2.1 can be em-
ployed to derive asymptotic properties of solutions to P(u) when estimating g by empirical
measures. Let &,&,...,&,,... be independent IR*- valued random variables on some proba-
bility space (2,4, P) having common distribution g. The empirical measure of & ,... &, is
pn =130 8, (n € IN), where 4, is the probability measure with mass one at z € IR®.
The following result represents a large deviation type estimate for the ’distance’

sup  dist (x, Uy (p))
r€Wy (un)

of sets of local solutions to P(u,) and P(u), respectively, as n tends to infinity. We note
that this 'distance’ is an extended real-valued A-measurable mapping due to Theorem 2K in
[41]. To state the result we need the notion of a permissible Vapnik-Chervonenkis (VC) class
of sets. A collection C of sets is said to shatter a set A if every subset of A is of the form
BN A for some B € C. The supremum of cardinalities of finite sets shattered by C is denoted
by s(C). C is called a VC class iff s(C) is finite. We refer to [13], [50] for a detailed discussion
of VC classes and empirical measures. A class C of Borel subsets of IR® is called permissible
iff suppee |(B) — pn(B)| is a (real-valued) A-measurable function.

Proposition 2.3 Assume that the conditions (i)-(iv) of Theorem 2.1 are satisfied and that B
forms a permissible VC class of closed subsets of IR°. Then it holds for all ¢ > 0 that

limsupn~tlog P( sup dist (z, Uy (n)) >e) < —2min{d? e* L™},

n—oo xeqjv(un)

where L and § denote the constants and V' the bounded open set arising in Theorem 2.1.
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Proof:

Let ¢ >0 and L,d and V be as in Theorem 2.1. We set As = {w | a(y, 1,) < 6} and know
that As belongs to A since B is permissible. With Ajs denoting the complement of As we
obtain the following inclusion from Theorem 2.1:

{w| sup dist (e, Uy(p) >} C AsU{w]|e < Lalp, )}
z€Wy (fin)

C {w ] alu ) = minfs, 272,

Furthermore, since B is a VC class of (Borel) subsets of [R®, for all A > 0 and n > 2 there
exists a constant K () such that P(a(u, p,) > A) < K(A)p(n)exp(—2A*n), where the function
p has polynomial growth (cf. chapter 26 in [50]). Hence, we obtain

n~ log Pa(p, pta) = A) < 0™t log(K(A)p(n)) — 2A?
and

limsupn~'log P( sup dist (z, Uy (1)) > &)

n—oo xeqjv(un)

limsupn~log P(a(iu, it,) > min{s,s*L7?}) < —2(min{d,e?L7%})%.
n— 0o

IA

a

Examples of VC classes are e.g. the collection of all s-dimensional intervals, all closed balls
in IR?, all half spaces in [R* and all polyhedra with at most k faces ([13], [50]). The notion
‘permissible’ for the required measurability property of a(pu, i) is borrowed from [36]. In Ap-
pendix C of [36] general techniques are described to establish that classes of sets are permissible.
Another idea is to require a separability assumption on the process {u,(B)— u(B) | B € B}.
It is known, for example, that B is permissible iff it is universally separable (cf. Chapter 11
in [36]). B is called universally separable iff there exists a countable subclass By such that
each characteristic function yp with B € B is the pointwise limit of a sequence (xp,) with
B, € By. In particular, the class of closed convex subsets of IR° is universally separable.

3 Metric regularity of probabilistic constraints

The importance of metric regularity as a stability concept in stochastic programming has been
outlined in Section 2 (Theorem 2.1). In this section we study a specific class of probabilistic
constraints by putting

Hj(x)={z € B* [ hj(x) 2 z;} xc R";j=1,....d

in the general model P(u) formulated in Section 1. Here we assume that z; € IR h; : R™ —
R,z = (z1,...,24) € IR* = IR** x --- x [R**. Then the probabilistic constraint becomes

M={veClu{z e R [ hi(x) = z}) 2pi} (G=1,....4d), (6)

8



where C' C IR™ is closed, p € P(IR?) is a probability measure on R* and p; € (0,1) are
prescribed probability levels. For the following it will be more convenient to transform (6) into
the equivalent description

M =A{z € C|®u(h(x)) = p}, (7)

where h = (hy,...,hq) : R™ — IR® and p = (p1,...,pa) refer to the entities introduced above.
The mapping @, = (CI)L, cees CI)Z) : IR* — IR? comprises the marginal distribution functions of
[ as its components:

J

O (y) = F(00,...,00,7j,00,...,00) (j=1,...,d),

where y = (y1,...,y4) € R°’,y; € IR (j = 1,...,d). Note that ®, is a non-decreasing
mapping which, in case of d =1, reduces to the usual distribution function Fj,. In particular,
the components CI){L are upper semicontinuous.

According to the remarks following Proposition 2.2 the aim of this section is to formulate
sufficient characterizations of metric regularity in a general nonsmooth framework. As the main
tool the subdifferential calculus by Mordukhovich [33] shall be applied. This offers certain ad-
vantages over using the corresponding (larger in general) concepts by Clarke [11]. In particular,
the Mordukhovich coderivative yields an equivalent criterion for metric regularity [32]. It turns
out that, for instance in the case of a single locally Lipschitzian inequality f(z) < 0, which
is binding at some feasible point z, an equivalent characterization of metric regularity by a
relation like 0 ¢ Jf(Z) requires the departure of 9 from the framework of convexity. In fact,
it is shown in [17] that Mordukhovich’s subdifferential of Lipschitzian functions may be home-
omorphic to any compact subset of IR, in particular, it may contain an arbitrary number of
connected components (for a related extension to the more general Hilbert space setting see

[18]).

3.1 Basics from nonsmooth analysis

In this section, some basic concepts for characterizing metric regularity in a nonsmooth setting
shall be recalled. Let X.Y.Z be arbitrary sets. For multifunctions  : X:Y, 0 : Y:Z put

Kerd = {2 € X |0e€ ®(a)}
Im® = {yeY|yecd(z)ze X}
Gph® = {(z,y) e X xY |y € ®(x)}
e (y) = {reX|ye ()}

Ood(z) = |J O(y) (z€X), andif X = R™,Y = IR™ :
yed(x)
limsup®(z) = {yeVY |3z, = 2°Ty, = y:y. € P(z,)}.
r—a0

Now let X,Y be two normed spaces. A multifunction ¢ : X:Y is called metrically regular
at some point (2°,y") € Gph ® if there are constants a > 0 and ¢ > 0 such that

dist (2, @7 (y)) < a - dist (y, ®(z)) V(z,y) € B-(2") x B(y").

9



The abstract form of constraint sets writes as C'N F~Y(K), where ¢ C X and K C Y are
closed subsets of the respective spaces ( K usually being a closed convex cone) and F': X — VY
is the constraint function. Then, F' is said to be metrically regular with respect to C' at some
feasible point z° € C'N F~Y(K) if the associated multifunction

CI)(:L')—{ —F(zx)+ K forxzeC

o else

is metrically regular at (2% 0). It is easily seen that this is equivalent to the conventional
definition of metric regularity for constrained systems:

de > 03a > 0Y(z,y) € (CNB(2%) x B-(0) :  dist (z, CNF YK —y)) < a-dist (F(x), K —y)

Note that in this relation only the constraints given by F' are subject to perturbations y
whereas (' is considered to be a fixed set of unperturbed constraints.
For some closed subset S C IR" and z° € S the following concepts are defined:
T(S;2% = limsup t7'(S —{2°}) (contingent cone)
£10
T.(S; :1;0) = {hcR"|Vz, — 2° H{x,} €S) VL, L0 3h, = h: x,+1t,h, €5}
(Clarke’s tangent cone)
T°(S;2%) = {z* € IR" | (x*,h) <O Vh e T(S;2°)} (Fréchet normal cone)
N,(S;2%) = limsup T°(S;z) (approximate normal cone)

z—20
zES

N(S;2%) = {z* € R"| (2", h) <0Vh e T.(5;2°)} (Clarke’s normal cone)

The normal cone N, induces the approximate subdifferential for lower semicontinuous functions
f: IR — IR:
0uf(2%) = {x” € " | («7, —1) € Ny(Epi f; («°, f(2")))},
where Epi refers to the epigraph. For locally Lipschitzian functions Clarke’s subdifferential 0,
relates to 0, as
O.f(z°) = eonv 0, f(2). (8)

A closed subset S C IR™ is called regular at z° € S in the sense of Clarke, if T(S5;z°%) =
T.(S;2%). Similarly, a locally Lipschitzian function f is called regular at 2° € IR" in the sense
of Clarke, if T(Epi f; (2% f(29))) = T.(Epif; (2% f(2°))). In case of the mentioned kinds of
regularity it holds that N.(S;2%) = N,(S5;2°%) and 9.f(2°) = 9. f(2?).

A multifunction & : IR”:IRW with closed graph and some point (2% 3°) € Gph ® induces
a multifunction D} ®(z%y°) : IR™ 7 R" defined via

D@ (2, y")(y*) = {o" € R" | (z*, —y*) € No(Gph &; («°,y"))},

which is called the approximate coderivative of ® at (z° y°). For single valued, locally Lip-
schitzian functions ® : IR" — IR™ one has (see [19], Prop. 8):

Drd(2, ®(2))(y") = duly™, ®)(x) Vo € R" Vy* € R™ (9)
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The following results are due to Mordukhovich (compare [32], [33]) and will be substantially
exploited in this section:

Theorem 3.1 A multifunction & : IR”:IRW with closed graph is metrically regular at some
point (2°,y°) € Gph ® if and only if Ker D*®(z°, y°) = {0}.

Theorem 3.2 Let the multifunctions @ : IR”:IRW and O : ﬂ%m:ﬂ%k have closed graph and
(7,2) € Gph(© o ®). Suppose that the multifunction M : IR" x IR* — IR™ defined by

M(z,2)=®(z)NO7'(2)
is locally bounded around (z,%) and that the condition
D:0O(y,z)(0) N Ker D;®(z,y) = {0} Vye M(z,2)
holds. Then one has

D@0d)z,2) (=) C ) Did(z.y)oDiO(y.2)(z") Ve R

ye®(z)NO~1(2)

Lemma 3.3 Let 51,5 C IR" be closed sets with @ € S;1 NSy and N,(S1;%) N —N,(S2; &) =
{0}. Then
No(S1 N S2;2) € No(S1;2) + No(Se; @),

where equality holds if S1,S5y are reqgular in the sense of Clarke.

3.2 An explicit growth condition

Before dealing with the chance constraint (7) we start our considerations with general constraint
sets described by finitely many inequalities:

P={xecC|F(x)>0} F:IR"— IR*, C C IR"(C closed). (10)
Obviously, (7) fits into this type of constraints. For a feasible point 2 € P denote by

I = {ie{l,....k}| Fi(z°) =0}
= {ic{l,....k}| Fyis not continuous at z°}

the sets of active and noncontinuity indices, respectively, at z°, where the I} refer to the com-
ponents of F'. The following definition provides an explicit growth condition on the components
of F' which will imply metric regularity.

Definition 3.4 We say that the constraint mapping I : IR® — IR¥ in (10) is growing at some
feasible point 2° € P with respect to C if

(i) F; is upper semicontinuous in a neighbourhood of x° for i € {1,... k}

11



(ii) there exists an p > 0 such that the following local growth condition is fulfilled:

In>0Ver e B,(2°)NCVe>03dye B(x)NC: Fi(y) > Fy(z)+plly—z| Vie Ul

Note that, for continuous F', this is merely a growth condition imposed on the active compo-
nents at z°.

Lemma 3.5 Let 2° € P be a feasible point of (10). If I is growing at x° with respect to C,
then F' is metrically reqular at x° with respect to C.

Proof:

According to Section 3.1 one has to verify metric regularity of the multifunction

| —F(2)+ R ifzeC
CI)(:L')—{ 0

else

at the point (2°,0) € Gph ®. Choose a number v with 0 < v < n (where n refers to Definition
3.4) which, according to the definition of the index sets [ and .J, satisfies

Fi(z) >~ Vig¢ IUJVze€int B,(2°) (11)

For computing Fréchet normal cones T° in a neighbourhood of (z°,0), fix an arbitrary (z,b) €
(int B,(2%) x int B,(0)) N Gph ®. Then z € C' and b > —F(x) by definition of ®.

Let us first consider the case I U .J # (). By Definition 3.4 there exists a sequence y; —
(y1 € C), such that Fi(y;) > Fi(x) + pllyi — z|| Vi € T U J. Clearly y; # x. We show that the

vector () bt (Wl (o (12)

with 1 = (1,...,1)T belongs to Gph® for [ large enough. In fact, if : € I U J, then

[bi = pllyr — x|| = = Fi(x) — pllyr — || > = Fi(w),

where the [b]; denote the corresponding components of b. On the other hand, taking for
instance the Euclidean norm, b € int B,(0) implies [b]; > —~, hence [b], — p|llyi — || > —~
for © = 1,...,k and large [. In particular, relation (11) makes also the indices ¢ ¢ [ U J
satisfy [b]; — pllyi — x| > —Fi(y) (I large enough). Combining both cases one arrives at
b—pllyi—z||1 € —F(y) + IR, which together with y, € C' yields (y;,b— p|ly;— z||1) € Gph ®.
Without loss of generality, we assume (y; — z)/||lyi — «|| — &, so (12) shows that (&, —p1)
belongs to the contingent cone T'(Gph ®; (x,b)). Consequently,

(& =p1), (€, 7)) = (£,€) —p(L,y™) <0 V(€ y") € T°(Gph ®; (x,b))

Due to [}¢]l = 1 this means €] > (—£,6%) > —p(L,y).
Now turn to the case 1U.J = (). Here (x,b)46(0,—p1) € Gph ® for sufficiently small § > 0
(compare (11) and recall [b]; > —~ for the components of b). So (0,—p1) € T(Gph ®; (z,b)),

12



and applying an arbitrary normal vector (£*,y*) to this provides the inequality —p(1,y*) < 0.
Summarizing, one has

—p(L,y™) < [|€7]] (13)
V(&5 y*) € T°(Gph ®; (2,b)) Y(x,b) € (int B,(2°) x int B,(0)) N Gph ®

in any case. Consider any z* € Ker D*®(2°,0). Local upper semicontinuity of all components
F; together with the closedness of €' imply the closedness (near (2°,0)) of Gph ®. By virtue
of Theorem 3.1 the lemma is proved if we can show that z* = 0. By definition

(0,—z*) € N,(Gph @;(2°,0)) = limsup T°(Gph ®;(z,b))

(z,b) =(29,0)
(z,b)€Gph &

so there are sequences
(xlvbl) — (1’0,0), (xlvbl) S Gphq), (gl*vyl*) — (07 _Z*)v (gl*vyl*) € To(Gph(I); (xlvbl))'

Along with (13) this leads to —p(1,—z*) < 0, or, because p is positive, to (1,z*) < 0. On
the other hand, b, > —F(x;) implies (0,¢;) € T(Gph®;(x;,b;)) for arbitrary standard unit
vectors e; € IR*,(j = 1,...,k), hence y; < 0. By continuity, z* > 0, so the desired relation
z* =0 follows. O

The reverse direction of Lemma 3.5 does not hold in general, as one can see from the example
C =1IR,F(z)=|z| if 2 #0 and F(0) = 1. While F' is upper semicontinuous, it fails to be

growing at 0. On the other hand one computes

Na(Epi (=F);(0,0)) = {(z,y) € I* | y € {0, —|2[}}

hence, Ker DX¢(0,0) = {0} for the multifunction ¢ = —F + IR}, so ¢ is metrically regular at
(0,0) due to Theorem 3.1 and, therefore, F' is metrically regular at 0.

For some special cases, however, the growth condition of Definition 3.4 is an equivalent
characterization of metric regularity in the constraint system (10). Before establishing a cor-
responding result, we need some preparatory propositions, some of which are of independent
interest.

Proposition 3.6 In the constraint set (10) assume that k = 1, —F is a regular, locally
Lipschitzian function at some z° € P with F(z2°) = 0 and C is a regular set at 2° (here
twice ‘regular’ is meant in the sense of Clarke). Then, metric reqularity of F at 2° w.r.t. C

implies O,(—F)(2%) N =N, (C;2°%) =0

Proof:

Obviously, Epi(—F) and C x IR are closed, regular subsets of IR"™', both of which contain
(2°,0). Since F is locally Lipschitzian, one has N,(Epi(—F); (2% 0)) N (IR* x {0}) = {(0,0)}
(this follows from elementary calculations and amounts to the fact that the so-called singular
subdifferential of locally Lipschitzian functions reduces to zero). Therefore

No(Epi (= F); (2%,0)) N =No(C x IR;(2°,0)) = No(Epi(—=F); (2°,0)) N [=N,(C;2°%) x {0}]
= {(070)}
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and Lemma 3.3 yields
Na(Epi (—F) N (C x R); («°,0)) = Na(Epi (= F): (2°,0)) + [Na(C5.2%) x {0}].

Suppose there exists some & € 9,(—F)(z") N —N,(C;z%). Then, according to the above de-
composition

(0,—1) = (& —1) + (=¢,0) € Nu(Epi (=F) N (C' x [R); (2°,0)) = Na(Gph ¢ (2°,0)),

where ¢ : IR"7 IR is defined by ¢(z) = —F(z) + IRy if © € C, and ¢(z) = 0 if = ¢
C. Hence, 1 € Ker D:¢(2°,0), so by Theorem 3.1 ¢ is not metrically regular at (2°,0).
Consequently, F' is not metrically regular at 2 w.r.t. C in contradiction to the assumption.

Thus 9,(—F)(z%) N —=N,(C; 2% = 0. O

Proposition 3.7 In the constraint set (10) assume that k =1 and F is a locally Lipschitzian
function at some z° € P with F(2°) = 0. Then the constraint qualification J.F(z°) N
N(C;2°%) =0 implies F' to be growing at 2° w.r.t. C.

Proof:
Since both J.F(2°) and N.(C;x°) are closed, convex and nonempty and the subdifferential
is even compact, the separation theorem provides the existence of some h € IR",||h|| =1 and

~v € IR such that
(€ Ry < v < (" h) V(7)€ d.F(2°) x NC; 2.

;From v < 0 (since 0 € N.(C;2%)) and the cone property of N. one deduces (7* h) >0 for
all 7 € N.(C;2°). Therefore —h belongs to the dual of N.(C;z"), which is Clarke’s tangent
cone T.(C,z%). On the other hand, Clarke’s directional derivative of F at x° in direction &
computes as

d°F(2°% h) = max{(£*,h) | €& € 0.F(2")} < v < 0. (14)

Suppose that F' is not growing at z° w.r.t. C. Then there exist sequences z' — 2% (2! € ()

and g, > 0 such that F(y) < F(a")+17Yy—2!|| Yy € B, (2")NC. Putting ¢, = %min{el,l_l}
one has #; | 0 and F(y) < F(2) + 7|ly — 2| Vy € By, (2') N C. The above mentioned
fact that —h € T.(C;2%) implies that, along with the sequences {z'}, {t,}, there is a sequence
h' — h such that 2! — ;! € C for [ € IN. So, for large [, we get 2! — t;h! € thl(l’l) nc
(recall that ||h]| = 1). With y; = x; — t;hy it follows y; — 20 and F(y;) < F(2') + [74]|h]|.

According to the definition of Clarke’s directional derivative one arrives at

d°F(2%h) = limsup 7' (F(x +th) — F(x)) > limsup {7 (F(y' + t;h) — F(y))
z—20 =00
10
= limsup ¢; Y(F(y' + tih) — F(y)) > limsup =R =0
=0 [—o0
(here, replacing h by h; in the third estimation relies on F' being locally Lipschitzian). This
is a contradiction to (14). O
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In the following, a function F : IR" — IR* is called nondecreasing at 2° € IR"™ if the relation
y > x = F(y) > F(z) (with the partial orders in IR" and IR*, respectively) holds for all z,y
in some neighbourhood of z°. In particular, the function ®, in (7) is nondecreasing at all

x € IR®.

Proposition 3.8 Let F: IR" — IR* have upper semicontinuous components and be nonde-
creasing at z° € IR". Then the associated mullifunction ¢ : IR”:IRk defined by o(x) =
—F(z) + RE satisfies Im D:¢(a%,y) C IR™ Vy € ¢(a).

Proof:

First note that Gph ¢ is closed due to the upper semicontinuity of F. Consider arbitrary
y € ¢(z°) and (z*,y*) € IR" x IR* such that 2* € D ¢(2°,y)(y*). This means (2, —y*) €
N.(Gph ¢; (2°,y)) and, by definition, there are sequences (z;,y1) — (2% y), ((z1,y;) € Gph &)
and (z7,—yr) — (2%, —y*) (2}, —y;) € T°(Gph¢; (x1,y1))). Since F is nondecreasing at x°,
one has (e;,0) € T(Gph ¢; (21,y1)) for all standard unit vectors e; € IR" and for all [ € IN. It
follows that ((«f, —y;),(e;,0)) = (a7); <0 for j =1,...,n, hence 27 <0 and z* € R", as
desired. O

Corollary 3.9 If F' : IR™ — IR is upper semicontinuous and nondecreasing at z°, then
Jo(—F)(2°) C R™. If, additionally, F 1is locally Lipschitzian at z°, then J.(—F)(z°) C IR"™
and

B(0) N 0,(—F)(2°) = 0 = B., =(0) N (= F)(2°) =0 ¥z >0, (15)

where the balls are taken w.r.t. the Fuclidean norm.

Proof:

First note that —F' is lower semicontinuous, so (compare Section 3.1)
0u(—F)(2°) = D;(2°, —F(2°))(1) € IRZ

with reference to Proposition 3.8. The next assertion follows from (8) since R™ is closed and
convex. Concerning (15) one has

0.(=F)(2°) € RZ 0 {z” | [l = dist (0, 0u(—F)(2"))},

where || - || refers to the sum norm and dist to the Euclidean distance. The right-hand side
of this inclusion is closed and convex, hence, again by (8), it also contains d.(—F)(2°) and one
obtains

||| > n_l/QH:I;*Hl > n~Y2dist (0,8a(—F)(x0)) >e/v/n Vit e ac(—F)(:L'O).
O

Corollary 3.10 If F': IR* — IR s a locally Lipschitzian distribution function of some random
variable, then 0,F(x),0.F (x) C IR} Vo € IR™ and 0 € 0,F(x) if and only if 0 € 0.F(x).
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Proof:

Repeat the proof of Proposition 3.8 with ¢(x) = F(z) + IR: to get Im D:¢(a,y) C IR} Vy €
$(2). Using this, repeat the proof of Corollary 3.9 and replace —F by F and IR" by IR’
constantly. a

Now we are able to formulate conditions under which metric regularity implies growth according
to Definition 3.4, such that both concepts are equivalent in view of Lemma 3.5.

Lemma 3.11 In (10), let k =1 and F be locally Lipschitzian at some feasible point z° € P.
Then metric reqularity of F' at 2° w.r.t. C implies that F is growing at 2° w.r.t. C provided
that one of the following conditions holds:

(i) —F and C are regular at z° in the sense of Clarke.
(ii) F is nondecreasing at z° and C = IR".

Proof:

According to Definition 3.4 only the binding case F(z°) = 0 is of interest. Consider the first
condition in the lemma. Proposition 3.6 yields 9,(—F)(z°) N —N,(C;2°) = 0. The regularity
assumptions make the corresponding concepts of approximate and Clarke subdifferentiation
coincide, hence J.(—F)(z°)N—N.(C;2°%) = (). This, however, means that d.F(2°)NN.(C;2°%) =
(). Now apply Proposition 3.7. Concerning the second condition in the lemma note that
metric regularity of F at z° implies metric regularity of the multifunction —F + IR, at

(22,0) = (2%, F(2?)) (recall C'= IR™). Then Theorem 3.1 provides
0 ¢ Dy(—F+IR)(2°,0)(1) = {«" € R" | (2", —1) € Na(Epi (=1); (2°, F'(2")))}
= Ou(—F)(").
;From (15) we conclude that 0 ¢ 9.(—F)(2°), so 0 ¢ J.F(2°). Apply Proposotion 3.7 (with
C = IR", so N.(C;2°) ={0}) once more. 0
Now we apply the above results to the characterization of metric regularity of the probabilistic

constraint (7).

Theorem 3.12 In the probabilistic constraint (7) let h be continuous and 2° € M some
feastble point. Suppose there exist p > 0,n > 0 such thqt for all components CI)ZL of ®, that
are not continuous at h(z°) or that are binding (i.c., ® (h(z°)) = p;) the growth condition

Vo € Bn(l'o) NCVe>03ye€ B(x)NC q)ﬂ(h(y)) > q)i(h(x)) + plly — z|]

is fulfilled. Then the constraint function ®,(h(:)) — p is metrically reqular at z° w.r.t. C.
Neat consider the special case d =1 (i.e., ®, = F,), where h at 2° and F, at h(z°) are
locally Lipschitzian and where, additionally, one of the following conditions holds:

(i) —F,oh as a function and C as a set are reqular at z° in the sense of Clarke.

(ii) h is nondecreasing at z° and C = IR".
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Then one has equivalence between metric reqularity of the constraint function F,(h(-)) —p at
2% w.r.t. C and the following growth condition: If F,(h(z®)) = p, then there exist p > 0,7 > 0
such that

Vo € B,(z°)NCVe> 03y € B(x)NC:  Fu(h(y)) > Fu(h(z)) + plly — 2|

Proof:

Recall that the components of ®, are automatically upper semicontinuous, hence the com-
position ®,(h(-)) — p enjoys the same property. Apply Lemma 3.5. The necessity of metric
regularity with the growth condition in the second assertion is a special case of the first asser-
tion. For the sufficiency apply Lemma 3.11 to the function F = F,(h(-)) — p and note that F
is nondecreasing at x° in the case (ii) since F, is always nondecreasing everywhere. O

To illustrate the potential and the limitations of Theorem 3.12 consider the following two
examples.

Example 3.13 In the probabilistic constraint (7) let m =2,s =d =1, p = 0.5, h(xy,22) =
x1 + x9. Let p be the uniform distribution over the interval [—0.5,0.5] and take

C = {(z1,22) € IR* | 21 > 0, 27 < w9 < 27}

Obviously one has

Q,(y)=Fu(y) =y+05 VYye(-0.50.5).

The point of interest is 2° = (0,0) € C. Then, in a small neighbourhood of this point, it
holds that F,(h(xy,22)) = 1 + 29 + 0.5. In particular, the constraint is binding at z°. Being
an affine linear function, —F, o h is regular at z° in the sense of Clarke. Furthermore,
T.(C;2°%) = T(C; 2%, hence C is a regular set at z° in the sense of Clarke. Therefore, the
assumptions of the second assertion in Theorem 3.12 are fulfilled, so we know that checking
metric reqularity s equivalent to verifying the second growth condition in Theorem 3.12. Now,
fir any v € C near z°. One may find a point y € C,y # x arbitrarily close to = such that
y—a € IR%. Then the difference F,(h(y))— Fu(h(x)) equals the sum norm ||y — x|1, therefore
F,oh is growing at 2° w.r.t C, hence metric regularity of F, oh holds at 2° w.r.t. C.

In [43] (Corollary 2.2) a sufficient growth condition for metric regularity of the constraint
function ®,(h(-)) — p was proposed for the special case d =1, &, = F,, continuous, h linear
and (' convex. FEssentially, growth was required along line segments in . Note that in
Example 3.13 there are no (nontrivial) line segments emanating from z° and entirely contained
in C, so the mentioned condition does not work here although, apart from nonconvexity of C',
the remaining assumptions are fulfilled. Furthermore, even if C' is convex and F), continuous,
but h slightly violates linearity (e.g. being piecewise differentiable), this condition does no
longer hold true. This illustrates the extension obtained by Theorem 3.12.

The following example indicates a situation where metric regularity of chance constraints
cannot be recovered from the growth condition of Theorem 3.12 (compare Remark 2.5 in [43]).
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Example 3.14 In (7), let d =1 and p € P(IR?) be a discrete measure with countable support.
Suppose p € (0,1) to fulfill

Zler% |Fu(z) —p| >0

Then the constraint function F,(h(:)) — p is metrically regular at all feasible 2° w.r.t. C,
whereas it is not growing w.r.t. C at all 2° such that F, is not continuous at h(z?).

3.3 Separate Constraint Qualifications

While metric regularity of the probabilistic constraint (7) has been characterized in terms of the
composite function ®, o h so far, we now want to formulate separate constraint qualifications
for the two single functions that are easier to verify and to interpret. With the constraint
functions @, and h from the definition of the probabilistic constraint in (7) we associate the
following two multifunctions I'; : IRS:IRCI and I'y: ﬂ%m:ﬂ%s via

h(z) z€C

Ii(z)=p—P.(2) + IRSII— and  y(z) = { 0 else

Then, their compositionis I' =17 01y : lRm:IRd with

B —®,(h(z))+ RL 2€C
[(z) = { g else

Proposition 3.15 In (7), assume h to be continuous and consider some feasible point & € M.
Then the two constraint qualifications

Ker DTy (h(%),0) = {0} (16)
Ker D*T'5(7, h(z)) N IR = {0} (17)

imply Ker D:T'(z,0) = {0}.

Proof:
All of the three multifunctions I';,I'; and I' have a closed graph (due to the closedness of
C, continuity of h and upper semicontinuity of ®,). Let us assume for a moment that the
application of Theorem 3.2 is justified. Then the relation 0 € D:I'(z,0)(z*) (for arbitrary z*)
along with the fact that I'y is single-valued (I's(z) = h()) yield the existence of some y* € IR?
such that

y € DUy (h(2),0)(z*) and 0€ D:Ty(@, h(z))(y").

i From Proposition 3.8 we know that Im D*I';(h(z),0) C IR®. This leads to
y* € Ker D:Ts(z, h(z)) N IR®. = {0}

by (17) and to z* € Ker D;I'1(h(z),0) = {0} by (16). Consequently, D:T'(z,0) = {0}, as

desired.
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To check the assumptions of Theorem 3.2 first note that the multifunction M(x,z) =
[y(z) N TTY(2) fulfills either M(z,2) = 0 or M(x,2) = {h(x)}, so it is locally bounded by
continuity of A. In particular, M(z,z) = {h(z)}, and again from Proposition 3.8 and (17) we
have

DT (h(7),0)(0) N Ker DTo(7, h(z)) € R: N Ker D:Ty(%, h(7)) = {0}.
O

The result of this proposition can now be restated in terms of the ingredients of the probabilistic
constraint (7) itself.

Theorem 3.16 The constraint function ®,(h(:)) — p in (7) is metrically regular at some
feastble point x € M w.r.t. C if the following two conditions are fulfilled:

(i) The function ®,(-) — p is metrically reqular at h(x) in the constraint ®,(z) > p.

(ii) h is continuous, N,(Gphh;(z,h(2)))N(=N.(C;z)x {0})={0} and
Dih(z, h(2))(y") N =No(C52) =0 ¥y € IR\ {0}

Proof:

Obviously, condition (i) is equivalent to (16) by Theorem 3.1. Concerning (ii) one has Gph 'y =
Gph hN(C x IR?) for the multifunction I's introduced above. The first part of (ii) corresponds
to the assumption of Lemma 3.3 (with S; = Gph h and Sy = C' x IR®), so the lemma yields

N,(Gph T'y; (7, h(2))) C Nu(Gph h; (7, (7)) + Na(C; 7) x {0}

Choose any y* € Ker DiI'zy(2, h(2)) N IR?.. In particular, (0,—y*) € N, (Gphls;(z,h(Z))) and
we have (0, —y*) = ({,a)+ (7,0) according to the decomposition just stated. Then & = —7 €
—N,(C;z) and (& —y*) = (,a) € No(Gphh;(z,h(z))). It follows & € Dih(z, h(2))(y*) N
—N,(C;z), hence y* = 0 due to the second part in (i7) and to y* € IR°. However, this is
(17), so Proposition 3.15 guarantees Ker D:I'(z,0) = {0} and, Theorem 3.1 implies metric
regularity of ®,(h(:)) —p at = w.rt C. O

Theorem 3.16 offers the possibility to check properties of the measure p and of the function h
in (7) separately. Yet the conditions imposed are rather abstract. In the following we develop
criteria that are better to verify. First we turn to condition (i) and try to reformulate it in terms
of assumptions concerning the density of the measure u. If p has a density, then, denoting

y:(yiv'"7yf17"'7ycllv"'7y:ld) (yERS;S:SI—I_"'—I_Sd)v

one recognizes that the components of ®, may be written as

00 00 yjl y;J 00 00
o (y) = / / // /"-/fu(y)dyfﬂ---dy}ﬂdy?"-dy}dyfi‘f---dyi-
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Next we introduce the set where this density is locally bounded below by a positive number:
Dt ={yelR°|3Fe>0V5€ By): fu.(y)>c}

For continuous f,, of course, this set reduces to D" = {y € IR* | f.(y) > 0}. Finally, for any
subset 1 C {1,...,d} put

R i¢l

Q" =C) x x Cq, where C; {611%“‘1 il

The following theorem provides a density condition guaranteeing sufficient growth of @, to
arrive at the desired property of metric regularity.

Theorem 3.17 For & € M in (7), denote the set of active indices by I(z) = {1 € {1,...,d} |
@ (h(z)) =p'}. If p has a density and (h(z) + Q@YADY £ O, then condition (i) of Theorem
3.16 is satisfied.

Proof:
By assumption, there exists some y € DT such that for all j € I(z)

gE< (@] k=1,...,s; and 3k(j) e {1,...,5;}: 5V = [h(2)]}V

J

Here, lower and upper indices refer to the partition of vectors in IR* = IR** x --- x IR*
introduced above. By definition, one has f,(y) > ¢ for all y € B.(y). Choose any z €
B./s(h(z)). Without loss of generality we consider the balls with respect to the maximum
norm || - ||s. As a consequence, we have for all indices j € [(Z)

kE~ —k
2>y —ef2 k=1,...,s;.
Next define some vector e € IR via

L {1 j € 1(z) and k = k(j)

TTV 0 else
and put z(t) = z 4 te for t € (0,e/2). Clearly, for all indices j € I(z) it holds
NV = 250 1t and [(0]F = 25 ik #£ k().
In particular, |[z(¢) — z|[cc = and for ¢ € [Zf(j), Zf(j) + t] one has

e — g9 < e — 29 4 159 — @)V <ef2 4 e/2 =<

Now, the following estimation can be made for the active indices j € I(z):

oo BOL LY EOL
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)
o) 3 o) o)

e _ZOZ;“_ZO ]I o
L O
ST e
g —:/2 KO g —e2 gy, 7,
ST

Y

= & J-(€/2)"‘”J e = (1) = 2l

But, having in mind, that @, is continuous due to the assumption that g possesses a density,
the above estimation results in ®,(-) — p being growing at h(z) (w.r.t. IR®) in the sense of
Definition 3.4 (put p = (£/2)*,n = ¢/2 and recall that the above estimation is valid for all

€ (0,e/2)). According to Lemma 3.5 ®,(-) — p (considered with the > 0 constraint) is
metrically regular at h(z). This is condition (i) of Theorem 3.16. O

Since, by definition, 0 € Q/(®) for whatever index set (), one concludes
Corollary 3.18 If h(z) € D*, then condition (i) of Theorem 3.16 is satisfied.

This density condition h(z) € Dt was used in [43] (Lemma 2.1) in order to derive a corre-
sponding stability result for a specific probabilistic constraint (d =1 and h linear in (7)). For
continuous densities one simply would have to require f,(h(z)) > 0. Note, however, that this
relation is far from being necessary in order to ensure condition (i) of Theorem 3.16, as can be
seen from the following example:

Example 3.19 In (7), we take d =1, s =m =2, h(z) =z, p = 0.5,C = IR*. In particular,
&, coincides with the distribution function of the measure p, which we assume to be induced
by the following density on IR*:

y € Bi(0)
July) = (2 —lyl)a vy € B2(0) \ B1(0)
0 y € IR*\ B»(0)

where the balls of the corresponding distances refer to the Fuclidean norm and the number
a > 0 is suitably chosen to guarantee [p» fu(y)dy = 1. Obviously, f, is continuous and
Dt =int By(0). For = =(0,3) we deduce from the symmetry of f, around the origin that

®,(h(z)) = ©,((0,3)) = 0.5 = p,
hence, we have the binding case [(x) = {1}. Of course, f,(h(z)) = f.((0,3)) = 0, so the

strong condition of Corollary 3.18 does not apply. Nevertheless, one may derive condition (i)
of Theorem 3.16 because [(0,3) + OIR2]ND* £ O (take, for instance (0,—3) € JIR%), hence,

the weaker condition in Theorem 3.17 is satisfied.
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Frequently, the property of metric regularity is required at points that are not given explicitly,
e.g. the set of local minimizers. Therefore, it might sometimes be useful to know conditions
under which metric regularity holds everywhere. For instance, as a part of this question, one
could ask when condition (i) of Theorem 3.16 is satisfied everywhere, i.e., ®,(-)—p is metrically
regular at all h(z) with & € M. Using Corollary 3.18 one gets an immediate criterion for such a
global behaviour, namely Dt = IR*, which is fulfilled for some of the conventional distributions
(like multivariate normal). The situation becomes more interesting for densities whose support
isnot all of R®. To investigate this problem in more detail we introduce the following definition:

Definition 3.20 A subset ) C IR" is called an infinity path in IR" if there exists some
continuous function m: IR — IR" such that Imm = () and

lim max m(t) = —oc0, lim max m;(t) = 0o

t——00 t=1,...,n t—o0 1=1,...,n
Roughly speaking, one part of () must tend to —oco with all its coordinates simultaneously,
while for the other part it suffices that at least one coordinate tends to +o0o. Of course, any

infinity path is a connected subset of IR". This concept allows an appropriate characterization
in the case of @, having only one component, i.e., d = 1.

Theorem 3.21 If d = 1, p has a density and Dt contains an infinity path Q in R, then
condition (i) in Theorem 3.16 holds globally, i.e., ®,(-) — p is metrically reqular at h(z) for
all T e M.

Proof:
Consider any & € M and put z = h(z). With reference to Definition 3.20 there exist ¢1,¢2 € IR,
such that

max m;(t;) < min z, max m(ty) > max z;

1=1,...,5 1=1,...,5 1=1,...,5 1=1,...,s

Hence, for ¢1 = m(t1),q2 = m(t2) one has ¢; € @ Nint (z+ R?) and ¢ € QN (IR*\ (24 IR>)).
Now

IR = [int (z + IR U [IR°\ (2 + IR*)] U [z + OIR®]

is a disjoint decomposition of IR*, where the first two sets are open. Therefore QN (z401IR%) # ()
because otherwise

Q=[@Nint(z+ R)U[QN IR\ (= + [R2))]

would be a decomposition of () into two open, disjoint and nonempty subsets in contradiction
to the connectedness of . Taking account of Q C DT, we arrive at

0+ D0 (2 4+ 0R) C DTN (h(z) + Q')
Since ¥ € M was arbitrary, the assertion follows from Theorem 3.17. O

It is noted here, that the assertion of the theorem is not restricted to the fixed probability level
p, in fact, this value does not enter the proof at any point. Consequently, under the indicated
assumptions, ®,(-) — p’ is metrically regular at h(z) not only for all &+ € M but even for all
p' € (0,1). The following example shall illustrate the meaning of Theorem 3.21.
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Example 3.22 Adopt the setting of Example 3.19, but with the density on IR? replaced by

ac™if g 20, Jys| < 1/2 or oy <0,]ye —yi| < 1/2
Fuly) = 0 else

(a such that [ f.(y)dy =1). Obviously, here the set Dt coincides with the one which the first
line in the definition of f, relates to, so DT # IR*. Nevertheless, condition (i) of Theorem
3.16 is satisfied for all (!) T € IR*. In fact, the continuous function 7 : IR — IR* defined by
m(t) = (t,t) if t <0 and w(t) = (t,0) if t > 0 generates an infinity path Q@ = Imm that is
contained in D, so Theorem 3.21 applies.

Now, reflect the densily w.r.t. the origin, i.c., take fu(y) = fu(—y). Then, the set DF
does not contain any infinity path. For instance, the canonical candidate Q' C D', which is
defined by Q' = Imn’, where 7'(t) = (¢,0) for t < 0 and #'(t) = (t,t) for t > 0, fails to
satisfy the first limiting condition in Definition 3.20 (while the second one holds true).

Now we turn to the second constraint qualification in Theorem 3.16. As will be seen below, this
can be viewed as some kind of Mangasarian-Fromovitz Constraint Qualification for continuous
inequality constraints. The first part of this condition (relating the approximate normal cones
of the Graph of h and of the set ') is always fulfilled, for instance, if ¢' = IR™ or if h is
locally Lipschitzian. In order to gain more insight, we consider the cases of locally Lipschitzian
or even (- mappings h.

Proposition 3.23 If h is locally Lipschitzian in (7), then condition (ii) of Theorem 3.16
reduces to

0 {y™ W) () N =N, (C;z) =0 Vy* € IR\ {0}. (18)
If h € CY(IR™, IR*) with Jacobian Dh, then the corresponding relation reads

[DR(z)]"y" ¢ Nu(Ci7) Yy~ € I’ \ {0} (19)

Proof:
For locally Lipschitzian A the first part of condition (i) in Theorem 3.16 is automatically
fulfilled. In fact, if k is a Lipschitz modulus of h near z, then |[a*|| < E||b*|| for all (a*,b%) €
T°(Gph h; (z,h(x))) and all x near T (compare [20], Lemma 3.8). Now, the same relation must
hold true for all (a*,b*) € N,((Gph h; (2, h(z))) too. In particular, b* =0 implies a* = 0.
Finally, the second part of condition (i) is nothing else but (18) as a consequence of (9).
Now (19) follows from the fact that the approximate subdifferential and the usual derivative
coincide in the Cl- case. O

In case C' = IR™ (i.e., No(C;2) = {0}), Gordan’s theorem shows the equivalence of (19) with
the condition

I elR": Vhi(z)-£E>00=1,...,s,

where now, in contrast to the derivations above, we return to the conventional labelling of the
components of h. Restricting this relation to the active indices only (which have no meaning
for h in our present context) this would be the well-known Mangasarian-Fromovitz Constraint
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Qualification (in the absence of equations). Replacing the sets in (18) by the corresponding
(bigger) concepts of Clarke’s subdifferential calculus, one gets the stronger requirement

0.0y h)(T) N NC;7) =0 Yy € R\ {0}, (20)

which is closely related to well-known constraint qualifications in the locally Lipschitzian setting
(e.g. [40], [9], [3], [21]). However, let us emphasize once more that, in (7), the mapping h does
not appear itself as a constraint, but as the inner part of a composite constraint. In particular,
there is no active index set to be considered. Furthermore, the application of (18) according
to Mordukhovich’s calculus promises advantages over (20) for certain classes of mappings, like
nonsmooth convex ones, the most trivial example being h(x) = |z|, C = IR, where (18) is
satisfied at zero due to d,(—|-|)(0) = {—1,1} while (20) fails to hold.

Similar to the considerations with respect to condition (i) in Theorem 3.16 one may ask
under which circumstances condition (i) of the same theorem holds globally, i.e., for all & € M.
An answer may be deduced from the following corollary to Proposition 3.23:

Corollary 3.24 In (7), let all components of h be concave and the set C be convex. If, for
T € M, there exists some x* € C' such that h(x*) > h(z) (componentwise), then condition (ii)
of Theorem 3.16 is satisfied.

Proof:

Due to concavity, h is locally Lipschitzian, so we have to check (18). If this relation does not
hold, then there exist some y* € IR% \{0} and { € IR™ such that { € d(y*, —h)(z)N—N(C; )
(note that (y*,—h) is convex and that d, and N, coincide with the subdifferential d and
the normal cone N of convex analysis). Since both # and z* belong to the convex set C,
we derive (£,2* — ) > 0. On the other hand, by the sum rule of the convex subdifferential,
there are ¢ € d(—h;)(x) with & = Y7, y7&. In particular, by the definition of the convex
subdifferential, one has (&, 2*—&) < h;(%)—h,;(2*). Summarizing, one obtains the contradiction

£7x —IL' Zyz Z7x —IL' <Zyz ([E*))<O
from the strict inequality in the assumption. a

The corollary corrects an error in [43] Lemma 2.1., where, in the context of linear mappings h
and convex sets (', the existence of somea™ € C' with h(x*) > h(2) was required instead of
the strict inequality.

Now, the desired global property may be formulated as follows: If, in (7), h is concave (e.g.
linear) and C' is convex, then condition (ii) of Theorem 3.16 is fulfilled at all & € M except
for the pareto optimal points of the vector optimization problem

max{h;(z) |z € C,i=1,...,s}.

At the end of this section we reexamine Example 3.13 using the tools related to Theorem 3.16.
In contrast to the previously given verification of metric regularity by means of the composite
function ®, o h, the corresponding result shall be obtained now via separate considerations of
the measure and the function h.

24



Example 3.25 (Example 3.13 revisited) Due to N,(C;(0,0)) = {(&,&) € R* | & < 0}
one has

[DR(0,0)]"y™ = (y",y)" ¢ No(C3(0,0)) ¥y~ > 0.
Consequently, (19) applies. On the other hand DT = (—0.5,0.5) for the given unifrom distri-
bution over [—0.5,0.5]. So h(0,0) = 0 € Dt and we are in the situation of Corollary 3.18.
Summarizing, both conditions of Theorem 3.16 are satisfied and the desired metric reqularity
result follows.

4 Quadratic growth condition and quantitative stability

In order to obtain quantitative stability results for solution sets, a certain growth condition for
the objective function in a neighbourhood of the optimal set has to be verified. This is studied
next for more specific (convex) stochastic programs with one joint probabilistic constraint and
polyhedral deterministic constraints. More precisely, we consider the problem

P(u) min{g(z) | z € C, F,(Ax) > p}, (21)

where ¢ : IR™ — IR is convex quadratic, C' C IR™ is convex polyhedral, A is an (s,m)-
matrix, p € (0,1) and F, is the distribution function of a probability measure p € P(IR?),
which is assumed to be r-concave for some r € (—o0,0). Due to the r-concavity of u, P(u)
represents a convex program. In the following, W(u) refers to the set of (global) solutions to
(21) and, as in Section 2, Wy (v) denotes the localized solution set to P(v), where v € P(IR?)
is a perturbation of y and V C IR™ an open neighbourhood of W(u).

In the first step of our analysis a reduction argument is used to decompose the original prob-
lem P(u) into two auxiliary problems. The first one is a stochastic program under probabilistic
constraints, again with decisions taken in R’, whereas the second one represents a parametric
quadratic program with polyhedral constraints. The reduction argument also provides insight
into the structure of the solution set W(y). A similar argument was already used in a different
context in the proof of Theorem 2.4 in [45].

Proposition 4.1 In addition to the general assumptions, let v € P(IR®) and suppose the
closure clV of V. C IR™ to be a polytope. Then we have

ev(v) =inf{rv(y) |y € A(Cv), F,(y) 2 p} and Vy(v)=ov(Yv(v)),

where

Yv(v) = argmin{rv(y) [y € A(Cv), Fu(y) = p}
Cy = CnelV
mv(y) = inf{g(z) | Av=y,z € Cv}
ov(y) = argmin{g(z) | Av =y,z € Cv} (y € A(Cv)).
Here, my is convex on A(Cv), ov is Hausdorff Lipschitzian on A(Cy) and there exists an

n >0 such that
g(z) > mv(Az) + nd(z,ov(Az))?* V€ Cy.
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Proof:
Since the constraint set {& € Cy | F,(Ax) > p} is compact, Wy (r) is nonempty. Let
x € Uy(v). Then x € Cy, F,(Ax) > p, and

ev(v) = g(z) > mv(Az) > inf{mv(y) | y € A(Cv), I'.(y) = p}.

Conversely, let y € A(Cy) with F,(y) > p. Then there exists an x € oy(y) with 7y (y) =
g(x) > ¢v(v). Hence

pv(v) =inf{mv(y) [y € A(Cv), F.(y) 2 p} and  g(z) = mv(Az) Yo e Uy(v).

This implies Wy (v) = oy (Yv(v)). The convexity of my is immediate and the Lipschitz property
of oy is shown in [27], Theorem 4.2. Finally, the proof of the last statement in the lemma is
based on Hoffman’s theorem. It is omitted here for the sake of brevity. a

The preceding result enables us first to study the growth behaviour of the objective function
in the auxiliary problem

min{7v(y) |y € A(Cv), F,(y) > p},

where V' is some suitably chosen subset of IR™. In a second step, the formula for Wy in the
above proposition and the properties of oy may be exploited. This two-stage procedure forms
the basis of the proof of the following results.

Theorem 4.2 [In addition to the general assumptions in this section, suppose that
(i) W(p) is nonempty and bounded;
(i) () N argunin {g(x) | = € C} = 0;

(iii) 3z € C : F,(Az) > p (Slater condition);

(iv) F is strongly convexr on some open convexr neighbourhood U of A(VW(u)), where r €
(—00,0) is chosen such that p is r-concave.

Then the following quadratic growth condition is satisfied:
Je> 03V D V() (Vopen): g(x) > o(p) +cd(z,¥(p))* Ve CNV,F,(Az) > p.

Proof:

Let Vo C IR™ be an open convex set such that W(u) C Vo and A(Vy) C U. For each = € W(u)
select e(x) > 0 such that the closed ball (w.r.t. the norm || -||s) Beo(z,e(x)) around x with
radius e(x) is contained in V4. Since W(u) is compact, a finite number of these balls cover
(). The closed convex hull V' of their union is a polyhedron with W(u) CV C V C Vg,
where V = intV. With the notations from Proposition 4.1 consider now the problem

min{7v(y) |y € Sv, Fu.(y) > p}, with Sy = A(Cy)
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or, equivalently,
min{wv(y) [y € Sv,h(y) <0} where h(y) = Fi(y) —p.

According to Proposition 4.1 the solution set Yy (u) of this problem fulfills W(pu) = Wy (u) =
ov(Yv(p)). Let y. € Yv(u) and y = Az with © € C' from (ii). Then r-concavity of
implies for any A € (0, 1]:

RAY+ (1= ANy=) = FyQy+ (1= Nye) —p" <AF(g) + (1 = M F(y.) = p
< AF(y)—p") <0.

Thus, we may select A € (0,1] such that g = 5\y+(1—5\)y* belongs to Sy and has the property
h(y) < 0. This constraint qualification implies the existence of a Kuhn-Tucker coefficient A, > 0
such that
Ty (y«) = min{my (y) + Ah(y) |y € Sv; and  Ah(y.) =0

In case A. = 0, this would imply y. € argmin{my(y) | y € Sy} and, hence, the existence
of some x,. € V(yu) with g(z.) = mv(Az.) = min{g(x) | Az = y, @ € Cy}. Then, in
contradiction to condition (i7), =* would minimize g w.r.t. € due to z* € intV. Thus
Ax > 0 and my + ALk is strongly convex on Sy. Hence, y. is the unique minimizer of my + A.h
and the growth property

3p >0 plly =yl < wvly) + Ahly) —7vly”) Yy € Sy (22)
is valid. From Proposition 4.1 we conclude W(u) = Wy (u) = oy (y.) and
Az — gull? < o™ (wv(A2) — pl(p)) Vo € Cr, Fu(Az) > p 23)

Now, choose any « € C' NV such that F,(Ax) > p. Obviously
d(l‘, \I}(/“L)) = d(l‘, O-V(y*)) < d(l‘, UV( l’)) + dH(O-V(Ax)v O-V(y*))7

where dp refers to the Hausdorff distance on bounded subsets of IR™. Using the last two
statements of Proposition 4.1 (with some Hausdorff Lipschitz modulus L > 0) along with (23)
we continue by

dz, U(n))” < 2(d(z,0v(Ax))’ + du(ov(Ax), ov(y™)))
2017 (g(2) — mv(Ax)) + L7|| Az — y.1*)
(™! (g(a )—Wv( )+ L™ (mv(Ax) = o(pn))

2max{n™", L*p™ }Hg(x) — o(n))

Ax)
Ax)

VAN VANRVANRVAN
[

a

Together with Theorem 2.1 the preceding result leads to upper Holder continuity of the localized

solution set mapping Wy at p (with rate 1/2) immediately. The class B of closed subsets of

IR? defining the metric o on P(IR*) (see (3)) specializes to the collection of all left orthants

here, i.e., Bx = {z+ IR* | z € IR*}. Hence, the metric a becomes the Kolmogorov distance

ak(u, ) = sup |F.(z) — F,(z)]. Using the special structure of problem P(u) we are able to
“€R

show even the Hausdorff Holder continuity of Uy at p.
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Theorem 4.3 Adopt the setting of Theorem 4.2. Then there exist L > 0,6 > 0 and a neigh-
bourhood V' of W(p) with

dg(U(p), Uy (v)) < L|F, — F,||//*  whenever v € P(IR®), |F, — F,||o < 6.
Here, again, dp denotes the Hausdorff distance and ||F, — F)||c = sup.cp: [Fu(2) — F,(2)].

Proof:

As in the proof of Theorem 4.2 we construct a polyhedron V' C IR™ such that W(u) is
contained in the interior V' of V. Since the assumptions (i) - (i) of Theorem 2.1 are satisfied
(cf. Proposition 2.2) for the metric regularity property, the localized solution-set mapping Uy
is upper semicontinuous at y (w.r.t. the Kolmogorov distance ap(u,v) = ||F, — F,||~) and
Uy (v) #£ 0 is a complete local minimizing set for P(v) if ax(u,v) is sufficiently small. Hence,
there exists a § > 0 such that 0 #£ Uy (v) CV for all v € P(IR®) with ||F, — F,||. < 4.
With the notations from Proposition 4.1 and using the fact that Yy () = {y.} and ¥(u) =
Uy () = ov(y.) we obtain

dpr (W (), Wy (1)) = du(ov(y.),ov(Yv(v)) < L sup |ly = u.|.

y€eYv (v)

where I > 0 is the Hausdorff Lipschitz constant of oy (cf. Proposition 4.1). Using (22), the
above chain of inequalities extends to

dy(W(p), Oy (v)) < Lp~*/* sup )[Wv(y) — ()] = Lo P lpv(v) — ov(p) [V
yeYy (v

Appealing to the Lipschitz property for the localized marginal values (w.r.t. o) in Theorem
2.1 completes the proof. a

The assumptions (i)-(iv) imposed in the Theorems 4.2 and 4.3 all concern the original problem
P(p). Condition (i) is basic for our stability analysis and is satisfied, for example, if C' is
a polytope. The conditions (i7) and (iii) mean that the probability level p is not chosen
too low and too high, respectively. (ii) expresses the fact that the presence of the probabilistic
constraint F,(Ax) > p moves the solution set W(u) away from that obtained without imposing
the reliability constraint for "Ax > ¢’. From a modelling point of view, both conditions show
the significance of the choice of the reliability level p. Assumption (iv) is decisive for the desired
growth condition of the objective function around W(u). Contrary to the r-concavity of pu,
which is supposed to hold globally, (iv) requires strong convexity of F7 as a local property
around A(VW(zu)) (in addition to the convexity of F on IR® with values in the extended real
numbers). Although no general sufficient criterion for (iv) is available so far, (iv) seems to be
satisfied in many cases when A(W(u)) belongs to the interior of the support of p. This is
illustrated by the following example.

Example 4.4 Let m = 2, s = 1, g(x) = 21 Vo = (xy,29) € R*,A = (1,0),p = 1/2,C =
[—1,1] x [=1,1] and p be the uniform distribution on [—1/2,1/2]. Then W¥(u) = {0} x
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[—1,1], () =0 and for each r <0,

00 , 2< —1/2
Frsy = (s 1/2) L s e (=122
1 , 2> 1/2
Hence, it holds
d* Fr
dZ; (z) =r(r— 1)F;_2(Z) >0

in a neighbourhood of z = 0, and F is strongly convex around A(V¥(u)) = {0}. Since
the conditions (i)-(iii) are satisfied, both theorems apply. In fact, we have x1 = g(x1) >
d(x,U(p))* =af for all x € (—1,1) x (—1,1) satisfying F,(z1) > 1/2.

As a conclusion from Theorem 4.3 we finally derive a large deviation result for the Haus-
dorff distance of solution sets when estimating g by empirical measures. As in Section 2,
let &,&, ..., &, ... beiid IR*-valued random variables (on some probability space (€2, A4, P))
having common distribution g, and let g, = n™'3% &, denote the empirical measure of
£1y.. & (n € IN). Since By is a permissible VC class (cf. Section 2), the proof of our final
result follows the same lines as Proposition 2.3 and is therefore omitted.

Corollary 4.5 Adopt the setting of Theorem 4.3. Then it holds for all ¢ > 0,

limsupn™"log P(dg (U(p), Oy (pn)) > &) < —2min{d%,e* L7},

n—0oo

where L and § denote the constants and V' the bounded open set arising in Theorem 4.3.
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