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We introduce a metric notion of Ricci curvature for �� manifolds and study its convergence properties. We also prove a �tting
version of the Bonnet-Myers theorem, for surfaces as well as for a large class of higher dimensional manifolds.

1. Introduction

Recent years have seen a great “revival” of Ricci curvature,
mainly due to not only Perelman’s celebrated work on the
Ricci ow and the Poincare conjecture [1, 2], but also to its
extension to a far larger class of geometric objects thanmerely
smooth 3-manifolds (see [3] and the bibliography therein).
In consequence, Ricci curvature has become an object of
interest and study in graphics and imaging. �e approaches
range from the implementations of the combinatorial Ricci
curvature of Chow and Luo [4]—see, for example, [5],
through—the classical approximation methods of smooth
di�erential operators [6, 7] to discrete, purely combinatorial
methods [8, 9].

We have addressed the problem of Ricci curvature of
�� surfaces and higher dimensional �� (piecewise at)
manifolds, from a metric point of fview, both as a tool in
studying the combinatorial Ricci ow on surfaces [10, 11] and,
in a more general context, in the approximation in secant
of curvature measures of manifolds and their applications
[12, 13]. Computational applications aside, these and related
problems—see [14, 15]—make the study of a robust notion
of Ricci curvature for �� spaces a subject of thriving interest
in the geometry and topology of (mainly 3-dimensional)
manifolds. �is paper represents a continuation of both
papers above.

In all fairness, other de�nitions of Ricci curvature for �-
dimensional �� manifolds have been considered previously.

�emain contribution, fromour point of view, is that of Stone
[16, 17] that we will discuss in detail and adapt here. More
recent contributions are due to Alsing et al. [18] Glickenstein
[19] and Trout [20]. However, our approach is quite di�erent
and owns nothing to the mentioned works. �e only one
of the quoted papers that has a similar starting point with
ours—namely, Stone’s articles—is [20]. Moreover he—as we
do (and as Stone originally did) seeks a discrete version of the
Bonnet-Myers theorem. However, these facts represent the
only common ground: his approach is (as Stone’s was) purely
combinatorial whereas ours is metric; his methods are also
combinatorial in nature (even the Morse function employed
is combinatorial) while, in contrast, our basic tool of study
is Wald’s metric curvature. We should also mention the fact
that the convergence and related results for the combinatorial
Ricci curvature for images introduced in [8] (and further
developed in [9]) were proven by passing from the original
cell complex associated to an image to the �� manifold, so
they also follow the basic pattern of proof considered in this
paper and represent, as such, an alternative approach to Ricci
curvature for “weighted” �� 2- and 3-dimensional manifolds.

�e paper is structured as follows. In Section 2, we
address the main problem, namely, that of de�ning a com-
putable, discrete metric Ricci curvature for �� (piecewise
at) manifolds. Here, we use methods similar to those in
[12] to address a problem—or, rather, a particular case—
considered therein. We also investigate the convergence
properties of this newly introduced curvature. In Section 3,
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we address a rather more theoretical question, namely, if
the newly introduced version of Ricci curvature satis�es—
as indeed expected from a proper (“correct”) notion of Ricci
curvature—a Bonnet-Myers type of theorem. �e methods
in this part are, partially, those developed in [10]. We further
generalize these results by making appeal to the theory of
Alexandrov spaces. In Section 4, we bring an immediate
generalization to ��manifolds of a comparison theorem.We
conclude with a few brief remarks regarding possible further
directions of study.

A note to the reader before we proceed to the main
part of our paper is that our default source for geometric
di�erential de�nitions and results is [21], and if no other
source is speci�ed the reader should consult, if needed, this
encyclopedic source. Also, as a background material for ��
topology we refer the reader to [22].

2. Definition and Convergence

To begin with, we have to be able to properly de�ne Ricci
curvature for �� manifolds. �is is indeed possible, not just
for �� manifolds but also for polyhedral ones—and in a
quite natural manner—combining ideas of Stone [16, 17] and
metric curvatures. For this, one regards Ricci curvature as the
mean of sectional curvatures:

Ric (�1) = Ric (�1, �1) =
�
∑
�=2
	(�1, ��) , (1)

for any orthonormal basis {�1, . . . , ��}, and where 	(�1, ��)
denotes the sectional curvature of the 2 sections containing
the directions �1.

First, one has, of course, to be able to de�ne (variational)
Jacobi �elds (see below). �is is where we rely upon Stons’s
work. However, we do not need the whole force of this
technical apparatus, only to determine the relevant two
sections, and, of course, to decide what a direction at a vertex
of a ��manifold is.

In fact, in Stone’s work, combinatorial Ricci curvature is
de�ned both for the given simplicial complex T and also
for its dual complex T

∗. In the latter case, cells—playing
here the role of the planes in the classical setting of which
sectional curvatures are to be averaged—are considered.
However, his approach for the given complex, where one
computes the Ricci curvature Ric(
, �1 − �2) of an �-simplex

 in the direction of two adjacent (� − 1)-faces, �1, �2, is
not natural in a geometric context (even if useful in his
purely combinatorial one), except for the 2-dimensional case,
where it coincides with the notion of Ricci curvature in
a direction (i.e., in this case, an edge—see also Remark 9
below). Passing to the dual complex will not restrict us
since (T∗)∗ = T and, moreover—and more importantly—
considering thick triangulations enables us to compute the
more natural metric curvature for the dual complex and use
the fact that the dual of a thick triangulation is thick, as we
will detail below.Working only with thick triangulations does
not restrict us, however, at least in dimension ≤ 4 since any
triangulation admits a “thickening”—see [23], (�is holds, as
already mentioned, for any �� manifold of dimension ≤ 4,

and in all dimensions for smoothable��manifolds as well for
any manifold of class ≥ C1. Since the proof of the main result
of Section 3, regarding manifolds of dimension higher than
3 holds only for manifolds admitting smoothings, restricting
ourselves only to such manifolds does not represent any
further hindrance.)

First, let us recall the de�nition of thick triangulations.

De�nition 1. Let � ⊂ R
�; let 0 ≤ � ≤ � be a �-dimensional

simplex. �e thickness (or fatness) � of � is de�ned as being

� (�) = dist (�, �
)
diam
 , (2)

where � denotes the barycenter of 
 and �
 represents the
standard notation for the boundary of 
 (i.e., the union of the
(� − 1)-dimensional faces of 
).

A simplex � is �0-�ℎ���, for some �0 > 0, if �(�) ≥ �0. A
triangulation (of a submanifold ofR�)T = {
�}�∈I is �0-thick
if all its simplices are �0-thick. A triangulation T = {
�}�∈I
is thick if there exists �0 ≥ 0 such that all its simplices are
�0-thick.
Remark 2. �is is Munkres’ de�nition [24]. For a discussion
of other equivalent de�nitions, their mutual interplay and
relationship with certain aspects of di�erential geometry
(mainly curvature approximation), see [12]. Note that this
de�nition holds for more general simplices not necessarily
Euclidean ones.

To be able to de�ne and estimate the Ricci curvature of
T and T

∗ and the connection between them, we have to
make appeal in an essential manner to the fatness of the
given complex. We begin by noting—by keeping in mind
formula (2)—that, since the length of the edge �∗��, dual to the
edge ��� common to the faces ��, ��, equals �� + ��, the �rst
barycentric subdivision (needed in the construction of the
dual complex—see e.g., [22]) of a thick triangulation is thick.
For planar triangulations, and also for higher dimensional

complexes embedded in some R�, one can realize the dual
complex (also in R

�) by constructing the dual edges �∗��
orthogonal to the middle of the respective ���-s. To show the
thickness of the dual simplices, one has also tomake appeal to
the characterization of thickness in terms of dihedral angles
(Conditions (1.15) of [25].) Note that the notion of thickness
also makes sense for general cells.

De�nition 3. Let c = c� be a �-dimensional cell. �e thickness
(or fatness) of c is de�ned as

� (c) = min
b

Vol (b)
diam	 (b) , (3)

where the minimum is taken over all the �-dimensional faces
of c, 0 ≤ �. (If dimb = 0, then Vol(b) = 1 by convention.)

�erefore, we can summarize the discussion above as
follows.
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Lemma 4. 	e dual complex T
∗ of a thick (simplicial)

complexT is thick.

Moreover, the following (common) Gromov-Hausdor�
convergence property also follows immediately.

Lemma 5. LetT,T∗ be as above. 	en

lim

(T)→0

(T) = lim

(T∗)→0

(T∗) , (4)

where �(T), �(T∗) denote the mesh ofT,T∗, respectively.
Remark 6. It is important to stress here the crucial role
of the thickness of the triangulation; as far as geometry is
concerned, thickness ensures, by its de�nition, the fact that
no degeneracy of the simplices occurs, and hence no collapse
and degeneracy of the metric can take place. Moreover, in its
absence, no uniform estimates for the edge lengths can be
made, and hence convergence of (dual) meshes and, as we
will see shortly, of their metric Ricci curvatures can not be
guaranteed.

Returning to the de�nition of Ricci curvature for sim-
plicial complexes, given a vertex V0, in the dual of an �-
dimensional simplicial complex, a direction at V0 is just an
oriented edge �1 = V0V1. Since there exist precisely � 2-cells
c1, . . . , c�, having �1 as an edge and,moreover, these cells form
a part of � relevant variational (Jacobi) �elds (see [16]); the
Ricci curvature at the vertex V, in the direction �1, is simply

Ric (V) =
�
∑
�=1
	(c�) . (5)

Remark 7. Observe that the index “�” in the de�nition (5)
above runs from 1, and not from 2, as expected judging from
the classical (smooth) setting. �is is due to the fact that
we de�ned Ricci curvature by passing to the dual complex,
with its simple but demanding (so to say) combinatorics. For
the implications of this fact, see �eorem 40 and Remark 41
below.

Remark 8. Note that we followed [16] only in determining the
variational �elds but not in his de�nition of Ricci curvature.
Indeed, he considers a direction at a vertex V0 to be the union
of two edges �1 and �2 in the dual complex,where �1 = (V0, V1),
and �2 = (V1, V2), and where the direction is determined by
the lexicographical order. �en (according to [16, pp. 16-17]),
the relevant variational �elds are given by the 2� distinct 2-
cells c1, . . . , c2�, containing the edges �1 and �2, but only 2� −
1 relevant ones, since one of the cells is enumerated twice.
Hence, the Ricci curvature at V in the direction �1�2 is to be
taken as the total defect of these 2� − 1 cells as follows:

Ric∗ (V0, �1 − �2) = 8� −
2�−1
∑
�=1
{������c�
����� | �1 < c� or �2 < c�} .

(6)

See Figure 1.

�is approach is necessary in the combinatorial case.
However, it is more di�cult than our approach, and it

c2

c1

c3

�0
e1

e2

Figure 1: Part of the simplicial complexT and its dual cell complex
T
∗. �e (variational) Jacobi �eld given by 2�−1 cells (� = 2), in the

direction �1 − �2, at the vertex V0 is emphasized.

would produce unnecessary complications in determining
the relevant analogues of the (� − 1) 2-sections of the
classical, smooth case. Moreover, it is quite possible that, in
any practical implementation, the advantages obtained by
considering larger variational �elds would be countermined
by “noise” added by considering such order 2 (or larger)
neighbourhoods of the given vertex. However, computing
Ricci curvature according to this scheme is still possible,
using our metric approach (but see also Remark 9).

Remark 9. It is still possible (by dualization) to compute Ricci
curvature according,more-or-less, to Stone’s ideas, at least for
the 2-dimensional case. Indeed, according to [17],

Ric (
, �1 − �2)

= 8� −
2�−1
∑
�=1

�����{�� | �� < �1 or �� < �2;

dim�� = � − 2}
����� .

(7)

�is de�nition of Ricci curvature is a combinatorial defect
one (presumably inspired by the classical de�nition of Gauss
curvature as the angular defect at a vertex—see, e.g., [26] ).
�is is evident from its expression butmademore transparent
by the 2-dimensional case. Indeed, in this case, the simplices
�� are 0-dimensional; that is, vertices and hence �(��)
represent just the number of 2-simplices having �� as a
common vertex; therefore Ric(
, �1 − �2) represents nothing
but the total combinatorial defect at these 2� − 1 vertices (see
also [16, p. 17.] for similar interpretation of Ric∗).

In consequence, using the approach of the original proof
of Hilbert and Cohn-Vossen [26] (and following methods
well established in graphics, etc.), we can consider, instead of
the combinatorial defect, the angular defect of the cell c� dual
to the vertex ��. �is, of course, applies both for our way and
Stone’s of determining a direction.

However, this approach to the de�nition of �� Ricci
curvature is far less intuitive (and apparently has lesser
geometric content, so to speak) in dimension ≥ 3. �is is the
reason why, for our present study, we have made use of the
dual complex.
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Figure 2: Isometric embedding of a metric quadruple in S
2
√ (a) and H

2
√ (b).

To determine—using solely metric considerations—the
sectional curvatures 	(c�) of the cells c�, we shall employ
the so-called (modi�ed) Wald curvature 	�. At this point,
we have to remind the reader of a number of de�nitions
and results that, unfortunately, are perhaps (at least partly)
forgotten. We begin with the following basic.

De�nition 10. Let ( , !) be a metric space, and let " =
{#1, . . . , #4} ⊂  , together with the mutual distances: !�� =
!�� = !(#�, #�); 1 ≤ �, $ ≤ 4. �e set " together with the set of
distances {!��}1≤�,�≤4 is called ametric quadruple.

Remark 11. One can de�ne metric quadruples in a somewhat
more abstract manner, that is, without the aid of the ambient
space. In this approach, a metric quadruple is de�ned as a 4-
point metric space; that is," = ({#1, . . . , #4}, {!��}), where the
distances !�� verify the axioms for a metric.

Wenext introduce somenecessary notation. Let % denote
the complete, simply connected surface of constant Gauss

curvature &, that is; % ≡ R
2, if & = 0; % ≡ S

2
√, if & > 0;

and % ≡ H
2
√−, if & < 0. Here, % ≡ S

2
√ denotes the sphere

of radius * = 1/√&, and % ≡ H2√− stands for the hyperbolic
plane of curvature√−&, as represented by the Poincarémodel

of the plane disk of radius * = 1/√−&. Using this notation,
we can next bring the following.

De�nition 12. �e embedding curvature &(") of the metric
quadruple " is de�ned to be the curvature & of the gauge
surface % into which " can be isometrically embedded (see
Figure 2).

We are now able to bring the de�nition ofWald curvature
[27, 28] (or rather of its modi�cation due to Berestovskĭı
[29]).

De�nition 13. Let (5, !) be ametric space. An open set6 ⊂ 5
is called a region of curvature ≥ & if and only if any metric
quadruple can be isometrically embedded in %�, for some
7 ≥ �. (While not needed in the remainder of the paper,
we mention for the sake of completeness that a metric space
(5, !) is said to have Wald-Berestovskĭı curvature ≥ & if and
only if for any 9 ∈ 5 is contained in a region 6 of curvature
≥ &).
Remark 14. Evidently, one can consider the Wald-Berestov-
skĭı curvature at an accumulation point of a metric space,
hence, on a smooth surface, by considering the limits of the
curvatures of (nondegenerate) regions of diameter converg-
ing to 0.



Geometry 5

Before we proceed further, let us make a certain modi�-
cation of the notation in order to make it more uniform and
more familiar to the reader working in classical di�erential
geometry as well as in graphics. Henceforth, we shall denote
by 	� the Wald curvature of a surface (�� or smooth), by
analogy to its classical (Gauss) curvature	 (of course,	�(#)
will denote the Wald curvature of a point on the surface).

At this point, the question that naturally rises is whether
it is possible to actually compute Wald curvature and, if
possible, in what manner. First of all, the �rst basic step is to
note that the role of the abstract open sets 6 in De�nition 13
is naturally played by the cells c�. We can state this as a formal
de�nition, for the record.

De�nition 15. Let c be a cell with vertex set ?c = {V1, . . . , V�}.
�e embedding curvature 	(c) of c is de�ned as

	 (c) = min{�,�,�,	}⊆{1,...,�}& (V�, V�, V�, V	) . (8)

Remark 16. Evidently, the de�nition above presumes that the
cells in the dual complex have at least 4 vertices. However,
except for some utterly degenerate (planar) cases, this condi-
tion always holds. Moreover, it can be easily corrected by the
truncation of the problematic vertices.

It is certainly worthwhile to note that it is possible to
actually compute the Wald curvature of each of these cells,
using the following formula for the embedding curvature
&(") of a metric quadruple ":
& (")

=

{{{{{{{
{{{{{{{
{

0 if Γ (") = 0,
&, & < 0 if det (cosh√−& ⋅ !��) = 0,
&, & > 0 if det (cos√& ⋅ !��) , √& ⋅ !�� ≤ H

and all the principal minors of order

3 are ≥ 0,

(9)

where !�� = !(#�, #�), 1 ≤ �, $ ≤ 4, and Γ(") = Γ(#1, . . . , #4)
denotes the Cayley-Menger determinant:

Γ (#0, . . . , #3) =

����������������������

0 !201 ⋅ ⋅ ⋅ !213
!210 0 ⋅ ⋅ ⋅ !213
...

... d
...

!230 !231 ⋅ ⋅ ⋅ 0

����������������������

. (10)

Remark 17. (1) For some �rst numerical results regarding
the application of these formulas in a practical context, see
[30, 31]. However, it should be noted that, apart from the
Euclidean case, the equations involved are transcendental,
and cannot be solved, in general, using elementary methods.
(2)We have also employedWald curvature as a malleable

tool in conjunction with Ricci curvature in a somewhat more
theoretical context in [10]. We should remark here that, given
its (metric) intrinsic nature, 	� “behaves well,” so to speak,
under Gromov-Hausdor� convergence (see [32, 33] and for
the consequences of this fact for applications in graphics,

imaging, etc., see [30, 31]). Moreover, since 	� or rather a
somewhat modi�ed version of it, 	�� identi�es with Rinow
curvature (see [34, 35]), it allows us to view the whole
problem of de�ning and computing Ricci for �� (polyhedral)
manifolds (in particular its applications in graphics, Regge
calculus, etc.) in the larger context of Alexandrov spaces (see,
e.g., [32, 33]).

Remark 18. Obviously, one can use the same method as
above to compute the Ricci curvature (of T∗), according to
Stone’s original approach for determining directions in cell
complexes.

To return to the main problem of this section, from the
de�nitions and results above, we obtain—�rst discretely, at
�nite scale bounded away from zero, and then passing to
the limit—the following result connecting between the Ricci
curvatures of a simplicial (polyhedral) complex and its dual.

�eorem 19. LetT,T∗ be as in Lemma 5 above. 	en,

lim
mesh (T)→0

Ric(
) = lim
mesh (T∗)→0

I ⋅ Ric ∗ (
∗) , (11)

where 
 ∈ T, and where 
∗ ∈ T
∗ is (as suggested by the

notation) the dual of 
.
Remark 20. �is result is, admittedly, somewhat vague. How-
ever, to our defense, we can only underline the fact that
the precise constant I is hard to determine. �e thickness
condition, that ensures a metric “quasiregularity” of the
triangulation, supplies us only with weak estimates. To obtain
stronger ones, one should be able to control the regularity
of the combinatorical structure as well. �is is evident, but
it will become even clearer in the sequel. It should be noted
in this context that, at least in graphics, mesh improvement
techniques allow us to consider such “combinatorial almost
regular” triangulations.

We now easily obtain the following theorem.

�eorem21. Let � be a (smooth) Riemannianmanifold, and
letT be a thick triangulation of �. 	en,

Ric T J→ I1 ⋅ Ric�� , LM mesh(T) J→ 0, (12)

where the convergence is the weak convergence (of measures).

For related results, see [12, 25] for the Lipschitz-Killing
curvatures, [10, 36] for discrete (combinatorial, respective
metric) Gaussian curvature, and [37], for the Einstein mea-
sures.

Proof. �e theorem follows easily from Lemma 5; the fact
that Ric(V) is de�ned in a purely metric, intrinsic manner
is from the fact that intrinsic properties are preserved
under Gromov-Hausdor� limits (see [33]) and also from
�eorem 19.

Remark 22. While the desired constant I1 is, of course,
I1 = 1, and some �rst experimental results hint that, at least
for certain “nice” triangulations, this is indeed the case, we
cannot guarantee a better result—see the remark following
the preceding theorem.
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Remark 23. While we have adopted theWald curvature as the
metric curvatures for surfaces (and the Finsler-Haantjes one
as a metric alternative for the computation of principal cur-
vature) of our choice, for reasons detailed above, it would be
interesting to explore the capabilities—both theoretical and
practical—as far as �� di�erential geometry is concerned,
of other metric curvatures (see [12] and the bibliography
therein) and in particular of the Menger curvature measure
[38]:

N (T) = N� (T) = ∑
�∈T
&�� (O) (diamO)2, (13)

for some # ≥ 1, where &�(O) denotes the Menger curvature
(of the simplex O).

3. The Bonnet-Myers Theorem

Having introduced ametric Ricci curvature for��manifolds,
one naturally wishes to verify that this represents, indeed,
a proper notion of Ricci curvature and not just an approx-
imation of the classical notion. According to the synthetic
approach to di�erential geometry (see, e.g., [3, 33]), a proper
notion of Ricci curvature should satisfy adapted versions
of the main, essential theorems, that hold for the classical
notions. Amongst such theorems the �rst and foremost is
Myers’ theorem (see, e.g., [21]). And, indeed, �tting versions
for combinatorial cell complexes andweighted cell complexes
were proven, respectively, by Stone [16, 17] and Forman [39].
Moreover, the Bonnet part of the Bonnet-Myers theorem, that
is, the one appertaining to the sectional curvature, was also
proven for ��manifolds, again by Stone—see [40, 41].

3.1. 	e 2-Dimensional Case. For the special—yet of main
importance in applications (see [4, 5, 10])—case of 2-
dimensional manifolds, such a result is easy to prove, given
the fact that Ricci and sectional curvature essentially coin-
cide.More precisely, we can formulate the following theorem.

�eorem 24 (Bonnet-Myers for �� 2-manifolds—combina-

torial). Let  2�� be a complete, connected 2-dimensional ��
manifold such that

(i) there exists !0 > 0, such that mesh ( 2��) ≤ !0, (where
mesh ( 2��) denotes the mesh of the 1-skeleton of 2��,
i.e., the supremum of the edge lengths);

(ii) 	Comb( 2��) ≥ 	0 > 0.

	en 2�� is compact, and moreover

diam ( 2��)

≤
{{{
{{{
{

2H!0, �0 ≥ (2 − √2) H,
4H3!0

[(2H − !0) (4H�0 − �20)1/2]
��M�,

(14)

where 	Comb denotes the combinatorial Gauss curvature of

 2��,

	Comb (V�) = 2H −
��
∑
�=1
R� (V�) , (15)

where R1, . . . , R�� are the (interior) face angles adjacent to the
vertex V�.

Remark 25. Condition (1), that ensures that the set of vertices
of the �� manifold is “fairly dense” (in Stone’s formulation
[41, p. 1062]), is nothing but the necessary and quite common
density condition for good approximation both of distances
and of curvature measures—see for example [12, 25] and
the references therein. �e mere existence of such a !0
is evident for a compact manifold; however, it can’t be
apriorily supposed for a general manifold; hence, has to
be postulated. Moreover, to ensure a good approximation
of curvature, this density factor has to be properly chosen
(see, e.g., [42]); thus, tighter estimates for the mesh of the
triangulation can be obtained from (14) along with better
curvature approximation. Not less importantly, an adequate
choice of the vertices of the triangulation also ensures, via the
thickness property, the nondegeneracy of the manifold (and
of its curvature measures)—see [12].

Proof. �e theorem follows readily from �eorem 3 of [40].
Indeed, in the two-dimensional case, the so-calledmaximum
and minimum curvatures, �+, respective �− (see [40, p. 12],

for the precise de�nitions), at the vertices of  2�� coincide
with the combinatorial Gauss curvature. Moreover, due to
the fact that here we are concerned solely with 2-dimensional
simplicial complexes (�� manifolds), conditions (1) and (2)
of �eorem 3 of [40] are equivalent, respectively, to our
conditions (2) and (1) above. �erefore, the conditions in the
statement of�eorem 3 of [40] are satis�ed, and, by (ii) of the
said result, the theorem follows immediately.

Remark 26. It is easy to see that the theorem above extends to
more general polyhedral surfaces. Indeed, by their very de�-
nition such surfaces admit simplicial subdivisions. However,
during this subdivision process �+ and �− do not change since
the only relevant contributions to these quantities occur at the
vertices and depend only on the angles at these vertices, more
precisely on the normal geometry (see [40, p. 12]), that su�er
no change during the subdivision process.

Remark 27. �e bound (14) is rather weak, as compared to
the one for the classical case, but it is the only one supplied by
Stone’s result we made appeal to, namely, �eorem 3 of [40].

�e proof above su�ers from the disadvantage of making
use of Stone’s maximum and minimum curvatures even
though in this context making appeal to them is rather
natural.�is drawback represents themain reasonwe did not
feel compelled to detail here Stone’s de�nitions, but rather
to refer the reader to the original paper. We can, however,
provide a di�erent proof, independent of Stone’s work but at
the price of using some heavy (albeit classical) machinery,
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that, moreover, takes us away, so to say, from the discrete
methods. On the other hand, smooth, analytical tools are
far more familiar to a large research community in CAGD,
imaging, and so forth.

Alternative Proof. �e basic idea (which we �rst employed in

[10]) is to consider a smoothing 2 of 2��. Since, by [24,�e-
orem 4.8], smoothings approximate arbitrarily well both dis-
tances and angles (more precisely, they are �-approximation

hence, for � is small enough, also S-approximations of 2��—
for details see [24], or, just for the minimal required facts,

the Appendix of [10]) on 2��, defects are also arbitrarily well
approximated.Given that the combinatorial curvature of 2��
is bounded from below, it follows that so will be the sectional
(i.e., Gauss) curvature of 2.

Unfortunately, the Gaussian curvature of  2 is positive
only on isolated points (the set of vertices of  2��), so we
cannot apply the classical Bonnet theorem yet. However, we

can ensure that 2 is arbitrarily close to a smooth surface 2+,
having curvature Gaussian curvature 	( 2+) > 0. (�is is
easily seen by adding spherical “roofs” (of low curvature) over
the faces and then slightly modifying the construction, to
ensure that the curvature will be positive also on the “sutures”
of the said roofs, corresponding to the edges of the original
��manifold).�erefore, the classical Bonnet theorem can be
applied for 2+; hence, 2�� is compact and its diameter has
the same upper bound (again using the same arguments as

before (i.e., �- and S-approximations as that of 2+ (and 2);
namely,

diam ( 2��) ≤
H
√	0

. (16)

Remark 28. Apparently, the bound for diameter given by the
proof above is tighter than the one obtained by Stone in [40].
Nevertheless, we should keep in mind that, in practice, one
is more likely to encounter �� surfaces as approximations
of smooth ones (and, obviously, �� surfaces are �� approx-
imations of their own smoothings). However, the larger the
mesh of the approximating surface (i.e., the “rougher” the
approximation), the larger the deviation of the approximating
triangles from the tangent planes is (at the vertices); hence,
the more likely it is to obtain large combinatorial curvature.
Hence, there is a correlation between the size of the simplices
and curvature, even though it is not a straightforward one.

Since the leitmotif of the previous section was metric
(Wald) curvature, it is natural to ask whether a �tting version
of the Bonnet-Myers theorem exists for this type of curvature.
�e answer is—at least in dimension 2—positive: we can,
indeed, state an analogue of Myers’ theorem, in terms of the
Wald curvature.

�eorem 29 (Bonnet-Myers for �� 2-manifolds—metric).

Let 2�� be a complete, connected 2-dimensional �� manifold
such that

(i�) there exists !0 > 0, such that mesh( 2��) ≤ !0;
(ii�) 	�( 2��) ≥ 	0 > 0.
	en 2�� is compact, and, moreover

diam ( 2��) ≤
H
√	0

. (17)

Proof. We employ again the basic argument �rst used in [10].
Since distances (and angles) are arbitrarily well approximated
by smoothings, it follows that so are metric quadruples
(including their angles); hence, so is Wald curvature. By [34]
(see also [35], �eorems 11.2 and 11.3), the Wald curvature at
any point of nontrivial geometry  2, namely, at a vertex V,
	�(V) equals the classical (Gauss) curvature 	(V) (and, of
course, this is also true a fortiori at all the other points, where
both the smooth and the��manifolds are at).�erefore; the
Gauss curvature of 2 approximates arbitrarily well theWald

curvature of  2��; hence, we can apply the same argument

as in the second proof of �eorem 24 to show that  2�� is,
indeed, compact and, furthermore, satis�es the upper bound
(16).

Remark 30. Like the previous theorem, the result above
can be extended to polyhedral manifolds, and even in a
more direct fashion, since Wald curvature does not take into
account the number of sides of the faces incident to a vertex
but only their lengths.

Remark 31. �is result, as well as its generalization to higher
dimensions (see �eorem 33), is hardly surprising, given the
fact that, by [43], �eorem 29, Myers’ theorem holds for
general Alexandrov spaces of curvature ≥ 	0 > 0, and Wald-
Berestovskii curvature is essentially equivalent to the Rinow
curvature (see [34]), hence, to the Alexandrov curvature (see,
e.g., [33, Chapter 1]). Rather, we give in the special case of
�� surfaces (manifolds) a simpler, more intuitive proof of the
Burago-Gromov-Perelman extension of Myers’ theorem.

In higher dimension, none of the arguments applied in
both proofs of�eorem 24 are applicable, at least not without
imposing further conditions.
(1) Regarding the �rst proof, we have the following.
(i) In dimensions higher than 2, �+ and �− do not

necessarily equal each other (see [40, Example 4, p. 14]), and, a
fortiori, they fail to equal the combinatorial Gauss curvature.
�ey do, however, according to Stone [40], resemble in
their behaviour theminimum, respectivemaximumsectional
curvature at a point common to 2-planes, that contain a given
(�xed) tangent vector at the point in question.

An important proviso should be added, however: while
for the general �� simplicial complexes, the equality between
�+ and �− fails to hold, it is true for the most relevant—at
least as far as our analysis is concerned-case, namely that of
�� manifolds without boundary (see [40, Example 3, p. 13]).
�erefore, in the light of the facts above, it follows that while
for a fairly general and important setting the connection is
straightforward, it is not clear how to compare, in the general
case, our proposed metric discretization of Ricci curvature,
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with the maximal and minimal curvatures of Stone (hence to
combinatorial curvature, whenever they equal it—and each
other). A natural attempt would be to use straightforward
extensions of �+ and �−—let us denote them, for convenience
by, Ricmin and Ricmax. However, it is not clear (at least at this
point in time) how expressive these de�nitions would prove
to be.

Remark 32. It is true that the lower bound on �+, as consid-
ered in �eorem 3 of [40], has a simple expression, in any
dimension, via a topological condition (cf. [40, Lemma 5.1]);
namely, that the intersection of any (��) geodesic segment

of ends # and U with the 2-skeleton of  2�� is precisely the
set {#, U} (with the exception, of course, of the case when the
segment is contained in a simplex. However, since the metric
information contained in this new condition is void (or rather
thoroughly encrypted, so to say), it has no apparent advantage
for application in conjunction with metric curvature).

(ii) For an application of the Stone’s methods in combi-
nation with the metric curvature approach to any dimension,
one would have to make appeal to Jacobi �elds, as de�ned in
[16].However, as discussed in the previous section, thiswould
probably lead to numerical instability.
(2) Regarding the second proof we have the following.

No smoothing of a ��manifold necessarily exists in a
dimension higher than � > 4, and even if it exists, it
is not necessarily unique, for � ≥ 4—see [44].

However, if such a smoothing exists, then the second
proof of �eorem 24 (and of �eorem 29) extends
to any dimension, and we obtain the following ��
(metric) versions of the classical results.

�eorem 33 (�� Bonnet—metric). Let ��� be a complete, �-
dimensional ��, smoothable manifold without boundary, such
that

(i��) there exists !0 > 0, such that mesh ( ���) ≤ !0;
(ii��) 	�( ���) ≥ 	0 > 0,

where	�( ���) denotes the sectional curvature of the “combi-
natorial sections”, that is, the cells �� (see Section 1).

	en ��� is compact, and, moreover,

diam ( 2��) ≤
H
√	0

. (18)

Proof. We should note in the beginning that the “rounding”
argument of the second proof of �eorem 24 is not easy to
extend directly—if at all—to higher dimension. Instead, a
more subtle argument has to be devised. To this end, wemake
appeal again to Stone’s paper [40], and we build the spherical
simplicial complex  �Sph,� associated with the given �� (or

rather piecewise-at) complex  ���. �is is constructed as
follows: consider the sphere of radius * = *(
) and radius
V = V(
), circumscribed to a given simplex 
, and its image

∗ = 
∗(*∗) on a sphere of radius *∗ = *∗(
), *∗ ≥
*, via the central projection from V. We denote by  �Sph,�
the simplicial complex obtained by the remetrization of ���

by the replacement of each 
 by its spherical counterpart

∗. �en, by Lemma 5.5 of [40], for large enough *∗ >
*, the following holds for any pair of points #, U ∈  ���:
dist����(#, U) ≤ Idist��Sph,�(#

∗, U∗), for a certain constant I,
where #∗, U∗ denote the spherical images of #, U. Since the
curvature at each vertex of the spherical simplex obtained
by central projection of the simplices of  ��� onto their
circumscribed spheres is smaller than the corresponding one
(at the same vertex) in the �� (piecewise-at manifold),
this holds a fortiori for  �Sph,�. It follows from the classical

Bonnet theorem (a�er applying the necessary smoothing)
that diam( ���) < diam( �Sph,�).

Remark 34. An approach similar to the one used in the
proof above was also employed by Cheeger [45] in a rather
similar context. We should stress here that, as a by product
of the results in this paper, we also address—using our own
methods—a problem posed by Cheeger in [45, Remark 3.5].

We should underline the fact that if we approach the
problem of �� Ricci curvature from the viewpoint of the �rst
part of the paper, that is, of �� (secant) approximations of
smooth manifolds, then the situation changes dramatically.
Indeed, even when such a smoothing  � (� ≥ 3) exists,
it is not probable that its sections provided by  ���, in the
manner indicated in Section 2, su�ce to approximate well
enough—let alone reconstruct—the Ricci curvature of  �.
In simple words, “there are not enough directions” in  ���
to allow us to infer from the metric curvatures of a ��
approximation, those of a given smoothmanifold � (in fact,
not even a good approximation); hence, we are faced again
with a problem that we already mentioned in conjunction
with the �rst proof, namely, that of insu�cient “sampling
of directions” in �� approximations. (On the other hand,
the increasing of the number of directions, that is, of 2-
dimensional sections (simplices), generates a decrease of the
precision of the approximation due to the (possible) loss of
thickness of the triangulation—a problem which we have
discussed in some detail in [12].)

To sum up, all the considerations above show us that,
unfortunately, in higher dimensional, no general analogue
of Myers’ theorem for �� manifolds can be obtained by
applying solely smoothing arguments. It is true that a Ricci
curvature of the smooth manifold  � is obtained in terms
of  ���; however, it is not clear, in view of the paucity of
sectional directions (i.e., possible 2-sections), how precisely
this is connected to its discrete counterpart.�erefore, we can
obtain, at best, an approximation result (with limits imposed
by the thickness constraint—see discussion above).

We conclude with the following remarks. From the
discussion above it is transparent that, unfortunately, at this
point in time we can o�er no proof for the general case, that
is, for non-smoothable �� manifolds of dimension � ≥ 4.
To obtain such a proof for Bonnet’s theorem, one should
adapt Stone’s methods, as developed in [40]; while for a
comprehensive generalization ofMyers’ theorem, one has the
apparentlymore di�cult task of accordinglymodi�ng, for the
metric case, the purely combinatorialmethods of [16]. A quite
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di�erent approach, but one that would allow us to extend the
metric approach to quite general weighted IW complexes,
would be to adjust Forman’s methods developed in [39] to
our case. �e essential step in this direction would be to �nd
relevant geometric content (e.g., lengths, area, and volume)
for Forman’s “standard weights” associated to each cell.

3.2. Wald Curvature and Alexandrov Spaces. In this section,
we bring a proof of a more general case, albeit at the price
of using some extraneous and powerful techniques and
results. For this, we �rst need some further preparations
and background material, mainly the notion of Alexandrov
curvature. Since this represents, by now, a quite classical
and standard notion, and since introducing it formally here
would take us too far a�eld, we will not bring here the
technical de�nition and related material, but rather we refer
the reader to, for example, [32]. However, we should mention
that, in de�ning Alexandrov curvature, one makes appeal to
comparison triangles in the model space (i.e., gauge surface
%), rather than quadrangles, as in the de�nition of Wald
curvature.

It is more important to point out that Wald’s curvature
is essentially equivalent with the much more modern notion
of Alexandrov curvature, at least for spaces in which there
exist “su�cientlymany”minimal geodesics (see, for instance,
[46], Corollary 40), a condition that certainly is ful�lled in
�� surfaces. For the practical consequences of the similarities
and di�erences between the two approaches, see [11]. �e
reason we prefer working with the Wald curvature, is that
it is computable, and, moreover, it has even simpler, more
practical approximations—see [31]. For further theoretical
relative advantages of the curvature types discussed above,
see [46]. We should perhaps mention, that, in fact, we have
�rst considered Wald’s curvature—and the metric approach
to curvature in general—as means of computing, in a direct
and applicable manner, Alexandrov’s curvature.

It is, however, important to notice that one has taken
into account the “discrete” nature of the types of spaces
considered, hence to compute solely the Wald curvature of
the 1-star neighbourhood of a vertex, as already stressed
above, and not to consider (ever) smaller neighbourhoods,
as perhaps natural in other contexts. �is, however, agrees
with the method of computing discrete curvature as angular
defect, as employed, for instance, in [36] and in theChow-Luo
discrete Ricci ow [4] (aswell as inmany other instances—see
the bibliography for some of them). A positive consequence
of this fact is that any such neighbourhood becomes a region
having the same Alexandrov curvature bounded from below
as the computed Wald one. Moreover, by the Alexandrov-
Toponogo theorem (see, e.g., [46], �eorem 43 and its proof,
pp. 837–840), the whole surface becomes a space of curvature
(Wald or Alexandrov) bounded from below.

Moreover, taking into account only these “discrete” neigh-
bourhoods is very important when equating the Wald and
Alexandrov curvature, since it allows avoiding the blowup
of Alexandrov curvature at the vertices during smoothing.
However, if one still wishes to consider smaller-and-smaller
neighbourhood of the vertices (motivated, perhaps, by other

applications, then imaging and graphics, such as those in
Regge calculus [25]), one can resort to the basic approach
of Brehm and Kühnel, that is, “rounding” the edges by
cylinders of radius S (without any change in curvature) and
replacing the polyhedral cones at the vertices by smooth
“caps,” up to a predetermined admissible error of, say, S1.
Note that such a “�ltration” of 	� by Gaussian curvature (of
the approximating smooth surfaces) is in concordance with
common practices in imaging, vision and, indeed, in many
applicative �elds. In addition, considering only this “discrete”
neighbourhoods is very important when equating the Wald
and Alexandrov curvature since it also allows us to avoid
the blowup of Alexandrov curvature at the vertices during
smoothing.

If one is willing to make appeal to the theory of Alexan-
drov spaces, then, by using this equivalence of Wald and
Alexandrov curvatures with the above mentioned provisos,
a result of the desired type follows immediately.

�eorem35 (Bonnet-Myers-Alexandrov Spaces). Let ��� be
a complete, connected �� manifold, such that 	�( ���) ≥	0 > 0.

	en ��� is compact, and, moreover

diam ( 2��) ≤
H
√	0

. (19)

Proof. �e theorem follows from [46, Corollary 47, p. 840]
and from the fact that ��� is locally compact.

3.2.1. 	ick Cell Complexes. Determining whether a general
�� complex has Wald curvature bounded from below can
be, in practice, quite di�cult. However, in the special case
of thick complexes (see de�nition in Section 1) one can
determine a simple criterion as follows.

Lemma 36. Let  =  ��� be a complete, connected ��
manifold thickly embedded in some R�, such that 	�( 2) ≥
	0 > 0, where  2 denotes the 2-skeleton of  . 	en there
exists 	1 > 0 such that 	�( ���) ≥ 	1 > 0.
Sketch of Proof. We indicate a proof only for the case � =
3; the general case follows by a simple inductive argument.
Consider an edge � belonging to the 1-skeleton of  ���. We
have to show that 	�(") ≥ 	0 > 0, for any quadruple
incident to �. If" is one of the quadruples determined by the

original cells of  2 (such as "1 in Figure 3), the condition

is ful�lled trivially since 	�( 2) ≥ 	0 > 0. Otherwise, the
edges of" are either edges of the original cells (see Figure 3),
or diagonals of such cells (e.g., ! in Figure 3) or they connect
vertices belonging to two di�erent cells of the given complex
(such as �̃ in Figure 3 connecting between vertices of the cells
c2 and c3). But, it is quite standard to show that, by the fatness
of the cells c�, there exists a constant �1 such that (1/�1)� ≤
! ≤ �1�. In a similar manner, using the boundedness from
below of the angles as an equivalent de�nition of thickness,
one can show that the fatness of the embedding implies that
there exists a �2 such that (1/�2)� ≤ �̃ ≤ �2�.
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Figure 3: �ickness of metric quadruples adjacent to an edge in an
embedded piecewise-at 3-manifold.

�e desired conclusion follows from the two double
inequalities above and from the continuity of the determinant
function that de�nes the Wald curvature.

�e �tting version of Bonnet-Myers now follows as a
direct corollary.

�eorem 37 (Bonnet-Myers—thick complexes). Let  =
 ��� be a complete, connected �� manifold thickly embedded

in some R�, such that 	�( 2) ≥ 	0 > 0, where 2 denotes
the 2-skeleton of . 	en ��� is compact, and, moreover,

diam ( 2��) ≤
H
√	0

. (20)

Remark 38. We have formulated the theorem in terms of
piecewise-at manifolds since this is the case of the most
interest, both for theoretical ends (see, e.g. [13, 23, 25] ) and
application oriented ones (see, for instance, [42]). �e most
natural and useful instance in which such manifolds arise
is that of secant approximations to smooth manifolds, as
emphasized inmost of the papersmentioned above.However,
the proof extends—mutatis mutandis—to the case of spaces
whose simplices are modelled a�er spherical or hyperbolic
spaces.

4. A Comparison Theorem

Up to this point, we have not yet de�ned the sectional
curvature	(c) of a cell c. In light of our preceding discussion
and results, the following de�nition is quite natural.

De�nition 39. Let  =  ��� be an �-dimensional ��
manifold (without boundary). �e scalar metric curvature
scal� of is de�ned as

scal� (V) = ∑	� (c) , (21)

the sum being taken over all the cells of ∗ incident to the
vertex V of ∗.

Using this de�nition and the results of Section 2, we
immediately (and, in fact, quite trivially, since the result
holds, regardless of the speci�c de�nition for the curvature
of a cell) obtain, the following generalization of the classi-
cal curvature bounds comparison in Riemannian geometry
(compare also with [47, �eorem 1]).

�eorem 40 (Comparison theorem). Let  =  ��� be an�-dimensional �� manifold (without boundary), such that
	�( ) ≥ 	0 > 0; that is, 	(c) ≥ 	0, for any 2-cell of the
dual manifold (cell complex) ∗. 	en

	� ⪋ 	0 Z⇒ Ric � ⪋ �	0. (22)

Moreover,

	� ⪋ 	0 Z⇒ scal � ⪋ � (� + 1)	0. (23)

Remark 41. (1) Inequality (23) can be formulated in the
seemingly weaker form

Ric� ⪋ �	0 Z⇒ scal� ⪋ � (� + 1)	0. (24)

(2) Note that in all the inequalities above, the dimension
� appears, rather than � − 1 as in the smooth, Riemannian
case (hence, for instance, one has in (23) �(� + 1)	0 instead
of �(� − 1)	0, (On the other hand, this holds even if � =
3!. . .) as in the classical case). �is is due to our de�nition
(5) of Ricci (and scalar) curvature, via the dual complex of
the given triangulation, hence, imposing standard and simple
combinatorics, at the price of allowing for only such weaker
bounds (without a�ecting the analogue of the Bonnet-Myers
theorem—see Section 2 above).

5. Final Remarks

We conclude with a few short comments, regarding future
study.

(i) �e �rst and foremost concern would be to develop
a proof for the general case, along the lines sketched
above, and without making appeal to the theory of
Alexandrov spaces.

(ii) Another less urgent task would be to provide full
proofs and sharp, speci�c bounds in all the cases
where these were only summarily sketched.

(iii) Note that the most common discretization of Gaus-
sian curvature, namely, the angle de�cit approach,
corresponds in fact to curvature × area measure, so
it is, essentially, a curvature measure (for a further
development of this idea, see, e.g., [25]). In contrast,
in our approach Wald’s curvature is a (point-wise)
curvature function. It is, therefore, only natural to try
and de�ne a curvature measure based on Wald’s cur-
vature.�is would allow a better comparison with the
previous works where the defect based discretization
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of curvature is used, not least the ones relating to the
discrete Ricci ow [4, 5]. In addition, this would allow
for a comparison with the other metric approaches to
the curvature of ��manifolds (see Remark 23 above).

(iv) As a last—but certainly not least—open problem
that we believe to be worth solving is to develop a
�tting notion of “Einstein metric” associated to the
metric Ricci curvature introduced in this paper. Such
a metric will probably be related to the stationary
points of the Regge functional.
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