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1. Introduction. Let Em denote the w-dimensional euclidean space and
generally Emp the pseudo-euclidean space of m real variables with the distance
function

(\   Xl  -   X{   \" +   ■   ■   ■   +    I   Xm  -   Xni   I")1'", p   >   0.

As p—► » we get the space E„ with the distance function max,-=i,... ,m | x< — as/ |.
Let, furthermore, lp stand for the space of real sequences with the series of
pth powers of the absolute values convergent. Similarly let Lp denote the
space of real measurable functions in the interval (0, 1) which are oummable
to the ^»th power, while C shall mean the space of real continuous functions
in the same interval. In all these spaces a distance function is assumed to be
defined as usual, f L2 is equivalent to the real Hubert space ÍQ. The spaces
Emp, lp, and Lp are metric only if ^»^1, but we shall consider them also for
positive values of ^»<1. Finally, if © is a (not necessarily metric) space with
the distance function PP', we shall denote by ©(7) the new space which arises
by changing the distance function from PP' to PP'y, (y >0).

A general theorem of Banach and Mazur ([1], p. 187) states that any
separable metric space @ may be imbedded isometrically in the space C. Fur-
thermore, as a special case of a well known theorem of Urysohn, any such
space © may be imbedded topologically in §. Isometric imbeddability of ©
in § is, however, a much more restricted property of ©.

The chief purpose of this paper is to point out the intimate relationship
between the problem of isometric imbedding and the concept of positive defi-
nite functions, if this concept is properly enlarged. As a first approach to this
connection we consider here isometric imbedding in Hubert space only. It
turns out that the possibility of imbeddingj in § is very easily expressible
in terms of the elementary function e-'2 and the concept of positive definite
functions (Theorem 1). The author's previous result ([10]) to the effect that
§(7), (0<7<1), which is the space arising from § by raising its metric to a

* Presented to the Society, December 29, 1937; received by the editors December 14, 1937.
t See, for example, Banach [l], pp. 11-12. The numbers in square brackets refer to the list of

references at the end of the paper.
% Here and below the word "imbedding" stands for "isometrical imbedding."
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fractional power, is imbeddable in £>,* appears again as a simple consequence
(Corollary 1). For the class of spaces ©m arising from the euclidean space Em
by a general change of metric of the vector type (11) below, the condition of
imbeddability in ^j is directly expressible in a simple way in terms of the
usual concept of positive definite functions as described by Mathias and
Bochner (Theorem 2). The solution of this problem for m = 1 (the problem of
"screw lines" in §, von Neumann and Schoenberg [8]) allows us now to de-
rive purely analytical results in the theory of positive definite functions with
which it is equivalent. Two readily defined classes of positive definite func-
tions are completely determined (Theorems 3 and 4). In particular two new
proofs are given for the already known fact that the function exp [— |x| p]
is positive definite for values of p in the range 0<p^2, and not positive
definite if ¿>>2f (§5). One proof is geometrical, the other proof covering the
case 0<p^2 is analytical and may be read independently of the rest of this
paper.

All previous results now allow us to conclude that the spaces Emp (y), lp(y),.
and 7p(7) are imbeddable in § for values of y in the range 0 <y ^ p/2, where
p is restricted to the range 0<p^2 (Theorem 5). For p = 2 we regain our
previous result concerning §(7). It is interesting to compare and combine
this result about Lp with a theoem of Banach and Mazur ([1], p. 203) con-
cerning the linear dimensions of L2 and L". According to this theorem IP-
is imbeddable in L" if q > 1. Now as 7>(7), (0 <p ^2, 0 <y ^p/2), is imbedda-
ble in £ or 72, it follows that L"(y), (0<p^2, 0<y^p/2), is imbeddable in
any L" if q > 1.

Similar as yet unsolved problems concerning the case of p > 2 are shown
to be equivalent to further knowledge as to the positive definite character of
certain special functions of m variables. One of these unsolved problems sug-
gests a probably possible way of extending an interesting theorem of L. M.
Blumenthal on metric sets of four points to such sets of any number of points.

The reader primarily interested in the geometrical results of this paper
may omit §4 and §5 entirely by taking the known Corollary 3 for granted.

2. Positive definite functions. A real continuous function/(xi, x2, • • • , xm)
which is defined for all real values of its variables and is even, that is for which
/( —xi, • • • ,   —xm)=f(xi, • • • ,  xm), is said to be positive definite (p.d.) if

(1) Lu f(xi   — xi   , ■ ■ ■ , xm — xm )pipk = 0
i,k—1

* W. A. Wilson [12], had previously remarked that £i(l/2) is imbeddable in§.
t Due in various parts to Pólya, Mathias, and P. Levy.  For references see Bochner [3], pp.

76-77. For still another treatment of the case 0<p¿2 see Bochner [5].
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524 I. J. SCHOENBERG [November

for arbitrary real pt and any n points (x(i)), (¿= 1, • • • , m), for m = 2, 3, • ■ • .
For m — 2, (1) gives |/(xx, • • • , xm)| ä=/(0, ■ • • , 0), hence p.d. functions are
bounded throughout space and take their maximum value at the origin. We
shall use in the sequel only the following most simple properties of this inter-
esting class of functions.

I. The function defined by

I   iKwi, •••,«»)
^» J -so

(2)
• exp [¿(xi«i + • • • + xmum)]dui ■ ■ ■ dum,

where \p is a non-negative even function such that its integral over the whole
space exists, is p. d.

II. Any finite linear combination of p.d. functions with non-negative co-
efficients is again p.d. The product of two p.d. functions is again p.d.

III. A continuous function which is the limit of a sequence of p.d. func-
tions is itself p.d.

For completeness we sketch the simple proofs. Property I follows from
the fact that the left-hand side of (1) reduces to

/' " " I  \2~2 Pk exp [¿(xi ui + ■ ■ ■ + xm um)] pdui ■ ■ ■ dum ^ 0.

The additive property is clear from the fact that (1) is a linear inequality in/.
The multiplicative property is a direct consequence of a lemma of I. Schur
([11 ],p. 10)* which states that if Xa aikpipk, Xa bikpiPk, are two positive quad-
ratic forms, then 2^2" aikbikPiPk is also positive. Property III is immediately
clear by continuity. We shall later on use the fact that f(x) =cos Xx is a p.d.
function.

A closely allied concept is as follows. Let © be a space in which a distance
function PP'is defined subject to the following conditions: (1)PP' =P'P^0
for arbitrary points P, P' in @, (2) PP=0. A real continuous even function
g(t), which is defined in the range of values of ±PP', (P, P' in ©), is said to
be positive definite in © if

(3) ¿ g(PlPk)piPk ^ 0
.,i=l

for arbitrary real p¿ and any m points P, (different or not) of ©,(« = 2,3, • • •)•

* For a discussion and consequences of Schur's result see also Pólya and Szegö [9], pp. 106-107,
307-308.
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This class of functions g(t) has for a given space © properties II and III above
for similar reasons. Both definitions agree if m = 1, while © is the one-dimen-
sional euclidean space E\.

The peculiar relationship between the definitions, which will be clearer
later on, is already exhibited by the following simple example needed in the
sequel. From the formula

= 2-V-1'* f n\XU0— U ■i*du

we get, replacing x by Xj, (j = 1, • • • , m), and multiplying the resulting equa-
tions,

exp [- (xi2 + • • • + x*2)] = exp [- [(xi2 + ■ • • + xj)»2}2}

(4) = 2-m7r-""2 f f   exp [¿(xi«i H-+ xmum)]
J -00 J -00

• exp [— («i2 + ■ • ■ + u¿)/4]dui ■ ■ ■ dum,

which shows at a glance (property I) that the function

/= exp [- (Xi2 + • • • + Xn2)]

is p.d. and also that g(t) =e~'2 is p.d. in Em. As m is arbitrary, this implies
that the function e~' is positive definite in the real Hilbert space §.

3. Conditions for isometric imbedding in Hilbert space in terms of positive
definite functions. It was pointed out by K. Menger and by the author (for
references see [10]) that a necessary and sufficient condition that a separable
space © be imbeddable in § is that for any «+1 points of ©, (« = 2), we have

n

£ (FoF? + PWk  - PlPk2)piPk = 0,
¿,4=1

for arbitrary real p,.* Let us now put this condition in a slightly more sym-
metrical form. By summing over the three terms separately, we may write
this as

n n n

2^Z Pk- Z PoTk2Pk - Z PlPkPiPk = o,

* This was proved for the case when © is a separable semi-metric space; that is, when the metric
PP' satisfies the additional condition (3) PP'>0 if P^P', whereas we postulated only that (1)
PP' = P'P^0, (2) PP=0. However, our quadratic inequality, for n = 2, insures the triangle in-
equality PQ+QR^PR for any three points of ©. If we now identify with P all points Q such that
PQ=Q (which is now allowed, since PQ=0 implies RP = RQ for any R, on account of the triangle
inequality) and do this for all points of ©, we get a new space which is not only semi-metric but even
metric.
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and if we set p0= — S"p*, this last inequality is equivalent to
n n

- p„27VP„2 - 22Z PÜPkPoPk -  Z P¡P7piPk è o,
o 1

or, finally,

(5) ¿ P~P¿PiPk ^ 0.
i.k-0

Hence the inequality (5), as a consequence of the relation

(6) ¿P. = 0,

is equivalent to the above stated condition of imbeddability.
Now we are prepared to express this condition in terms of p.d. functions.

We have seen in the previous section that the function e~'2 is p.d. in §.
Clearly also e~x2'2 (X real) is p.d. in § as can be seen from (4) or by direct
reasoning. Hence e-*2'2 is also p.d. in any subset of §. Now if © is to be im-
beddable in §, it is clearly a necessary condition that e-*2'2 be p.d. in ©.

Let us prove now that this condition, together with the separability of ©,
is also sufficient. To prove this we have to show that (5) holds as a conse-
quence of (6) for any m+1 points Pi of ©. Now as e~x2'2 is p.d. in ©, we have

n

(7) £ Pipk exp [- X27V\2] è 0
0

by (3). We complete the proof in two different ways.
First proof. By expanding the left-hand side of (7) in power series we

have, in view of (6),

• - ;>o,

0 < a < 2,t^ 0,

which are immediately proved by substituting in the first integral X/_1 for X,
we have

- X2( ¿ PiPk'piPk") + X4( ¿ PiPkAPiPk\2 -

which clearly implies (5) for small values of X.
Second proof. Using the formulas

t" = c(a) f   (1 - e-^'^X-^dX,
J 0

(8) y r vc(a) = U     (1 - e-x2)X-WxJ    ,
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P.-7V = c(a)  f   (1 - exp [- \2P\P?])\-i-"d\.

If now pi are any real numbers satisfying (6), we get, for 0<cv<2,

(9)       £ PlPkttpiPk = - c(a) f   {£ PiPk exp [- X2P¡P?]}x-1-«¿X = 0,
t',fc=0 «'OVO /

by (7) and the obvious fact that c(a)>0. Now we get again the desired in-
equality (5) on allowing a in (9) to approach the limit 2. We have thus proved
the following theorem :

Theorem 1. A necessary and sufficient condition that a separable space ©
with a distance function PP' with the properties PP' =P'P^0, PP = 0, be iso-
metrically imbeddable in ¿p, is that the family of functions e~xi, (X>0), be posi-
tive definite in ©.

Notice that the condition of this theorem may be restricted to require that
e~xt* be p.d. in © only for a set of positive values of X admitting the origin
X = 0 as a point of accumulation. The properties II and III (§2) will then im-
ply that e_x'2 is p.d. in © for all positive values of X.

Recalling that we denote by ©(7), (7>0), the space obtained from © by
replacing its metric PP' by PP'y, it is of interest to point out the further fact,
implicitly contained in the previous second proof, that if © is imbeddable in
£>, then so is ©(7) for any value of 7 in the range 0 <y < 1. Indeed, let a = 27;
if © is imbeddable in §, then e~Xi2, (X>0), is p. d. in ©; hence (9) holds
in virtue of (6), and ©(7) is therefore imbeddable in § on account of the form
(5) of the imbeddability condition. Applying this conclusion to © = § itself,
we have the following corollary:

Corollary 1. The space ¡£>(y), (0<7<1), obtained from Hilbert space §
by raising its metric to a power y, is imbeddable in §.*

* We may even state the following more general theorem: Let

(8') F(t)=   f"(l - e-^X-'ArpO,

where <r(X) is non-decreasing for X g 0 and is such that f, X_2á<r(X) exists. If we change the metrif of $
from PP' to [F(PP')]1'2! lnen the new space thus arising is imbeddable in &. Indeed (6), (7), and (8')
imply

¿ F(PlPk)f>iPi. - -  f    ( £ p,p* exp [- X^pTp?]) X-W(X) S 0,
1 ''O      \i,*-l /

and the theorem follows on account of the form (5) and (6) of the imbeddability condition. We leave
open the question whether or not (8') gives the most general function F(t) with this property.

Added in proof, August, 1938: Formula (8') gives indeed all functions with the property stated
above. See the following paper Metric spaces and completely monotone functions, to appear in the
Annals of Mathematics.
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We now turn our attention to a special class of spaces of the type © which
are defined as follows. Let <j>(xi, ■ ■ ■ , xm) be a continuous function defined for
all real values of its variables with the following properties

0(xi, • • • , xm) = 0,       tf>(0, • • • , 0) = 0,
<t>(— xi, ■ ■ ■ , — xm) = <t>(xi, ■ ■ ■ , xm);

and call ©m the space of points P = (xi, ■ ■ ■ , xm) with the distance function

(11) PP' = [<t>(xi - x[, ■ ■ ■ , xm - xm')]1/2-

For such a space, which is obviously separable, the condition of Theorem 1
that e_x<2 be p.d. in ©m may be expressed in a more familiar form. Indeed,
on comparing the formulas (1), (3), and (11), we now obtain from Theorem 1
the following theorem :

Theorem 2. The space ©m of m real numbers with the metric (11) is im-
beddable in § if and only if the functions

(12) /x = exp [— X<p(xx, ■•-,*»)], X > 0,

are positive definite in the sense (1) of Mathias and Bochner for all positive
values of X.

If <p(xx, ■ • • , xm) is a homogeneous function* the conditions (12) may be
replaced by the single condition that the function

(13) /i = exp [- <b(xi, ■ ■ ■ , xm)\

be positive definite.
We mention the following corollary :

Corollary 2. If <p(xi, ■ ■ ■ , xm) is homogeneous and such that e~+ is posi-
tive definite, then

e~*\ 0<7<1,

is also positive definite.

For if er* is p.d., then by Theorem 2, ©m is imbeddable in § and there-
for ©m(7) is also (Corollary 1). Hence exp [—<py] is seen to be p.d. by
applying Theorem 2 the other way around.

4. Determination of certain classes of positive definite functions. In this
section we shall assume m = \,<p(x) being therefore a continuous non-negative
even function vanishing at the origin. In this case we know precisely when ©i,

* We say that <i> is homogeneous of degree k if <t>(txx, • ■ ■ , txm) =lK<t>(xx, • • • , x„) holds identically
in the Xi and for />0. A continuous homogeneous function <j> with the properties (10) must, unless it
vanishes identically, have a positive degree k.
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which is the space of real numbers with the metric [</>(x—x') ]1/2 is imbeddable
in § (von Neumann and Schoenberg [8]). The most general function </>(x)
for which this is the case is of the form

'     sin'' xu
-—do-(u),

0 M

where <t(u) is non-decreasing for u^O such that

r" do-(u)    .
(15) I      - exists.

Hence by Theorem 2 we infer that if

[f(x)Y = e-^M

is p.d. for X>0, then <p(x) is of the form (14) and conversely. If now/(x) is
any positive function whose positive powers [/(x)]x are all p.d., then consid-
ering

/(x)//(0) = *-♦«,

where cp(x) is necessarily non-negative, even, and vanishing at the origin, we
conclude as before that <p(x) is of the form (14). We have thus proved the
following theorem :

Theorem 3. The most general positive function f(x) whose positive powers
[f(x)]x, (X>0), are all positive definite is of the form

Í         r" sin2 xu ")
(16) f(x) = exp Y - J      -— da(u) V ,

where <r(u) is a non-decreasing function subject to the restriction (15), while c is
any real constant.

A few remarks are called for regarding the condition of this theorem that
\j(x) Y be p.d. for X >0. In the first place, as remarked after the statement of
Theorem 1, the range of X in this condition may be restricted to a sequence
of positive numbers tending to zero.

A second and more important remark is that Theorem 3 becomes false if
we assume only that the positive function f(x) is p.d., or in other words:
formula (16) always represents a positive and p.d. function; it does not,
however, represent all such functions but only those whose fractional powers
are also p. d. To prove this statement it suffices to exhibit a p.d. function
f(x) >0 such that [/(x)]\ (0<X<1), are not all p.d. Such a function is

f(x) = e2 + cos2 x,
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if e is sufficiently small, for it is easy to see that

[/■,(*)]!/* = (e2 + cos2 x)1'2

is not p.d. for such values of e. Indeed, if it were p.d. for arbitrarily small e,
it would follow that the limiting function

lim [/«(*)]1/2 = | cos x |
€->0

were also p.d. (property III). But this is not the case as is seen from the
fact that the cosine series

,           i        2        4   "                    cos 2wx
|cosx| =- + _£(- l)-1—-

ÎT 7T   „_1 4»^  —   1

has some negative coefficients, or even more directly from the fact that the
form

4

23   I COS (Xi —  Xk) I pipk,
i,k-1

where xi = 0, x2=ir/A, x3=ir/2, x4 = 37r/4, is not positive. Indeed, its determi-
nant is readily found to be — 1, hence negative. The essence of the matter is
that Schur's theorem, "If 23a<*P>P* is positive, then so is 23a«P<P* for
m = 1, 2, 3, • • ■ ," can not be so extended that we may conclude that
231 aik\ xPiPk, (X>0), is positive.

The third and last remark is that Theorem 3 is now equivalent to the
theorem that (14) and (15) give the most general <p(x) such that the space
of real numbers with the metric [<p(x — x')]U2 be imbeddable in £> (see [8]).
Hence a direct proof of Theorem 3 would furnish a new proof of that theorem.

While the problem of determining all positive and positive definite func-
tions is yet unsolved, there is another subclass of this class of functions which
can now be readily determined. It will in fact be a subclass of the class deter-
mined by Theorem 3.

Let yp(x) be a p.d. function, c a real constant. Clearly

(17)       /(*) = exp [c + p(x)] - e'(l + — *(x) + —V(x) + ■ • • J

is also p.d. in virtue of the properties II and III. It has moreover the
following additional two properties: (a) It is bounded away from zero, since
/(x)èexp [c—\p(0)]>0. (ß) All its positive powers [/(x)]\ (X>0), are also
p.d. Let us show that the converse is true, that any function f(x) having
the properties (a) and (ß) is of the form (17) where ij/(x) is p.d. Now an/(x)
with the properties (a) and (ß) clearly belongs to the class described by Theo-
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rem 3, and all we have to do is to decide which functions of the form (16) are
bounded away from zero. Now this is the case if and only if the exponent (14),
namely

*(*) =  I     -7—d°(u)
Jo        ul

is bounded in — oo <x< °o. The characteristic conditions for this have like-
wise been determined by von Neumann and the author in [8 ] and they are
as follows: <p(x) is bounded if and only if a(0)=a(+0) and f^,u~2do-(u) exists.
But if these conditions are fulfilled, then the non-decreasing function

"  d<r(u)r(«)  =    f
■ +o       W-

is bounded for u>0, and (14) can be written as

sin2 xu

(18)

where

J*    sin2 xu r
-da(u) =   I    sin2 xudr(u)

-i-n       U2                          J -hi+0       u *> +o

i r"
— I     (1 - cos 2xu)dr(u) = ip(0) - ib(x),
2 J +o

cos 2uxdr(u)
+o

is p.d. Hence, by (14), (18), and (16),

f(x) = exp [c - <p(x)] = exp [c - yp(0) + \b(x)]

and is indeed of the desired form (17). We have thus proved the following
theorem :

Theorem 4. The most general positive function f(x) which is bounded away
from zero and whose positive powers \f(x) ]\ (X >0), are positive definite is of the
form

f(x) = exp [c + \b(x) ],

where \p(x) is positive definite and c is a real constant.

Equivalent Statement: 7//(x) is a positive function, then log/(x) differs
by a constant from a positive definite function if and only iff(x) is bounded away

from zero and its powers [/(x)]x, (X>0), are all positive definite.

5. On the positive definite character of exp [ — | x| "]. We shall need in the
next section the following well known result :
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Corollary 3. The function

(19) exp [- | x\p]

is positive definite if 0 <p ^ 2 and not positive definite if p>2.

First proof. We know that exp [ — x2] is p.d. from the formula just preced-
ing (4) and property I. Hence exp [ — |x|2y], (0<7<1), is p.d. by Corollary
2, as <p(x) = | x\2 is homogeneous, and the first part of the statement is proved.
Suppose now that (19) werep.d. for a value p>2. By Theorem 2 this would
imply that the space Ei(p/2), which is the real axis with the metric | x — x' \ p/2,
were imbeddable in §. But this is clearly impossible as Ex(p/2) is not even a
metric space since the distances among the points x = 0, 1, 2 are 01 = 1,12 = 1,
02 =2p/2>2, and they violate the triangle inequality.

Second direct proof for the case 0 <p ^2. First we shall prove directly on
the basis of properties II and III (§2) that the function f(x) defined by
(16) and (15) is p.d. By property HI (7—>°o) it suffices to show that

C T  sin2 xu ~|
expL"Jo ~^~Mu)\

is p.d. By the definition of the Stieltjes integral, this is a limit of functions
of the form

exp     — 23 2-4,. sin2 xu,   , A, > 0,

and it suffices to show that each of the factors is p.d. Now

exp [— 2A sin2 xu]= exp [— A] exp [A cos 2xw],

and this is p.d. because cos 2xm is p.d. and the exponential series has posi-
tive coefficients only. This point being disposed of, it suffices to show that | x \ p,
(0<p?¿2), is of the form (14).* This is apparent on account of the formula

\p =   I     sin2 xu-u~1~pdu /   I     sisin2 m • u 1~pdu,

valid for 0<p<2, which is as easily established as the similar representa-
tion (8). An obvious step-function for <j(u) in (14), with only one jump at the
origin, settles the case p = 2.

6. On the imbedding of the spaces Emp, lv, L", (0 <p ^ 2), in § by a change
of metric. We learned in §2 that e~'2 is p.d. in £j or L2. We shall now show

* It is not by accident that the function (19) is of the form (16) if 0<p¿2. For if (19) is p.d.,
its positive powers must also be p.d., and the function is necessarily of the form (16), by Theorem 3.
Notice that it is not bounded away from zero and hence is not of the form (17).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1938] METRIC SPACES 533

that e_|i|P is p.d. in the spaces Emp, lp, and Lp for values of p in the range
0<p^2.

The function exp [— |x| p] was found to be p.d. if 0<p^2. Hence the
functions exp [— |x,| p], (¿ = 1, 2, • ■ • , m), are also p.d. when regarded as
functions of the m variables x¿, and we may infer, by property II (§2), that
their product

/= exp [- (| xi\p+ ■ ■ ■ + | xm|*>)], 0 < p ^ 2,

is p.d. But this is equivalent to the statement that exp [— \t\ p] is p.d. in
En?. As the similar statement for lp is proved in the same way as for 7>, only
requiring less care, we shall limit ourselves to the consideration of 7>. Let

Pi  =   Xi(t),

where

f  \xi(t)\pdt, ¿= 1,2, ••• ,«,
J 0

exists, be « points of l?. For

~PlFk  =   ( J      |  Xi(t)  -  xk(t) \pdt\

we have to show that
» _

(20) X) PiPk exp [- PiPk ] ^ 0
i,k=l

for real p¿. There is no loss of generality in assuming that the functions x,(/)
are continuous, as continuous functions are everywhere dense in Lp. For

x„i = m~llp- Xi(v/m),    v = 1, 2, • • • , m; i = 1, 2, • ■ • , n,

we have

(21)

/    m \ 1/p /  \      m \Wj>

(  SI x„¿ - Xyk |p )     = ( — ZZ\ Xi(v/m) - xk(v/m) \ " )
\ .-i / \m  ,_i /

—> PiPk, m -^ oo ,

which proves the inequality (20), for (20) is already known to hold for all
values of m if the PiPk of (20) are replaced by the quantities on the left-hand
side of (21).

The fact that exp [- |/| "], (0<p^2), is p.d. in Emp, l", Lp implies that
exp [— \t\2], and therefore also exp [— X|<|2], (X>0), is p.d. in Emp(p/2),
lp(p/2), and Lp(p/2). We have thus proved the following theorem:
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Theorem 5. The spaces Emv, l", and L",(0<p^2), becomeimbeddable in §
if we raise their metrics to the power p/2 or less. In other words, Emp (7), l"(y),
and L"(y) are imbeddable in ¡Qfor values of y in the range 0 <y^p/2*

Note that for p = 2 this result coincides with Corollary 1.
The fact that Emp, (0<p<l), which is not a metric space, may be made

metric by raising its metric to a suitable power was already known in a differ-
ent terminology. Indeed, the following readily established "substitute" for
Minkowski's inequality ([7], p. 32)

m mm

231 Xi + yi\p á 231 Xi\p + 231 y*\p,       o < p < 1,
1 11

means precisely that Emp(p), and therefore Emp(y), (0<y^p), is a metric
space. Now Theorem 5 states that if we restrict this range of 7 to 0 <y ^ p/2,
then not only can any three points of Emp (7) be imbedded isometrically in a
euclidean space, but the same is true for any number of such points, since the
whole space is imbeddable in Hubert space.

7. Some unsolved problems. We shall devote this last section to a few un-
solved analytical problems and to a brief discussion of their geometrical im-
plications.

Problem 1. Let p be a real number exceeding 2, and let m = 2, 3, ■ • • . Do
there exist positive exponents k such that the function

(22) exp [- (| xi|"+ • • • +| xm\")'}

is positive definite?

If there are such positive exponents, then Corollary 2 implies the existence
of a positive number Km with the properties : (22) is p.d. if 0 < k ̂  nm and is not
p.d. if K>Km. Furthermore Corollary 3 implies that pKm^2 or Km^2/p. Theo-
rem 2 furnishes the following geometrical equivalent to Problem 1. The func-
tion (22) is p.d. if and only if Emp(pK/2), and therefore also lp(pK./2) and
Lp(pK¡2), are imbeddable in §.

Particularly interesting is the next problem concerning the limiting case
p—»°°.

* The following is a different phrasing of the fact that LPipJl) is imbeddable in L2: IfO<p<2,
then there is a functional y(t) = U[x(t)], defined for all functions x(t) in L", with values y(t) in L2 such
that the relation

f   I *i(<) - x2(t) \"dt=   f   I yi(t) - y2(/) \Ht
holds for two arbitrary X\{(), x^{t) of L?. This functional y = U[x\ is necessarily continuous and univa-
lent. A study of its further properties might prove to be of interest in the theory of L".
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Problem 2. Do there exist positive exponents y such that the function

(23) exp [- [max (| Xi\, ■ ■ ■ ,   \ xm\ )H = min (eH*!", . . . , e-l*».l'*)

is positive definite ?

Again, if such exponents exist, there would exist a positive number ym
with the properties: (23) is p.d. if 0<7^7„, and is not p.d. if 7>7™. More-
over the function (23) is p.d. if and only if En?(y) is imbeddable in §.

The particular interest of this second problem is due to the following
lemma which is due essentially to Fréchet ([6], pp. 161-162). Let us call a
finite metric set and denote by am a metric space composed of exactly m+1 dis-
tinct points.

Lemma. Any finite metric set <rm of m+1 points may be imbedded isometri-
cally in E„f.

Proof. Let P0, Pi, ■ ■ ■ , Pm denote the points of am and PiPk their dis-
tances. Consider in 7%,°° the following m + \ points:

Qi = (xu, X2i, ■ ■ ■ , xmi) = (Fi-Pi, P2F„ • • • , PmPi), i = 0, 1, • • • , m.

For their distance QiQk in 7¿m°° we have

Q,Qk=     max      | x,-,- — xjk\=     max      | P,Pi — P,Pk | = PiPk,
3=1, • • •  , m 1=1, • • •  , m

for certainly \PjPi—PjPk\ —PiPk, (f = \, ■ ■ ■ , m), on account of the tri-
angle inequality in erm, while the equality sign holds if j is equal to whichever
of the numbers i or k happens to be different from zero and hence within the
range oij. If both i = k = Q, the result QoQo = 0 was clear from the start.

On the basis of this lemma it is natural to classify finite metric sets ac-
cording to their "dimension" as follows: A set c„ ¿5 said to be of dimension m
(always less than or equal to «, on account of the lemma) if it is imbeddable in
Em, but not in Em-i. If the last requirement is removed, the dimension of cr„ does
not exceed m.

If Problem 2 were solved in the affirmative, we would get the following
statement : If <xn is any finite metric set of dimension less than or equal to m,
then <rn(y) is imbeddable in En if 0 <y = ym, and ym is the best constant.

This would generalize in a certain sense the following theorem due to
L. M. Blumenthal ([2], p. 402): If o-3 is a finite metric set composed of four
points, then 0-3(7) & imbeddable in E3 if 0 <y ^ 1/2, and 1/2 is the best constant.

In conclusion let us point out the following perhaps not trivial remark
concerning Problem 2: y2 exists and is greater than or equal to 1/2. Indeed,
in view of the formula
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IT   J_œ    1
■1*1 =— I      -dx,

+ x2

we get by the transformation of variables u = (^+r¡)/2, z» = (£ — v)/2 in the
double integral

/"   r°°        r                                             dudvI     exp   ¿(xm + yv)-—-
^J-„                             J  [l + (« + v)2][l + (u - v)2]

1 f°° r i       dt C°° r i      *»™ — I     exP K(* + y)/2] ———•   I     exp [n,(x - y)/2\ ——-
2 J -K 1 + ¿2   •/_*, 1+1)

It2 . . . . T2 - I        I    I        I     1
= — exp [- §| x + y | — h\ x — y\ J = — exp [- max (| x|,| y | )J,

due to the relation 2 max (|x|, \y\) = \x+y\ +\x — y\. This formula shows
that the function (23) is p.d. if m = 2, 7 = 1/2. Hence this much is proved:

If o-n is any finite metric set of dimension not exceeding 2, then crn(y),
(0 <7 á 1/2), is imbeddable in E„.

If 73 exists, then it is certainly less than or equal to 1/2, by Blumenthal 's
theorem, and is probably even less than 1/2. A certain special set o-4 shows
that if 74 exists, it must be less than 0.45.
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