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METRIC SPACES IN WHICH PROHOROV'S 
THEOREM IS NOT VALID 

D. PREISS 

Praha 

A well-known Prohorov's theorem says that for every topologically complete 
metric space X9 for every compact set Af of measures on X with mass 1 (with the weak 
topology) and for every 6 > 0 there exists a compact set A a X such that fi(X — A) < 
< e for each /xeM. It has been a problem whether this theorem holds in every 
separable metric space which is a Borel subset of its completion. This problem can 
be solved by the help of the following theorem. 

Theorem 1. A coanalytic separable metric space is topologically complete 
if and only if it contains no countable dense-in-itself G6 subspace. 

If Prohorov's theorem holds in some metric space X then it is easy to prove 
that it holds also in every G5 subspace of X. With respect to Theorem 1 and to 
Sierpinski's result according to which every two countable dense-in-itself metric 
spaces are homeomorphic it is clear that the negative answer for some countable 
dense-in-itself metric space implies the negative answer for every separable coanalytic 
metric space which is not topologically complete. Such countable metric space can 
be constructed (namely the space of rational numbers), therefore the following 
theorem holds. 

Theorem 2.IfX is a separable coanalytic metric space then Prohorov's theorem 
holds in X if and only ifX is topologically complete. 
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